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ABSTRACT. We consider the following singularly perturbed Neu-
mann problem

% =0 on 09,
where p is subcritical and € is a smooth and bounded domain
in R*". We construct a new class of solutions which consist of
large number of spikes concentrating on an interior straightline
intersecting with 0Q orthogonally. Our results show that higher

dimensional concentration can exist without resonance condition.

—?Au+u—-uP =0 in Q u>0 in Q,

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

We consider the following singularly perturbed elliptic problem

—?Au+u—uw?=0 in Q wu>0 in 9, %:0 on 0f),
Y (1.1)
where € is a smooth bounded domain in R with its unit outer normal
V,N22,1<p<%for]\f23,whilep>lforN:2,ands>Ois
a small parameter.

Even though simple-looking, problem (1.1) has a rich and interesting
structure of solutions. For the last fifteen years, it has received consid-
erable attention. In particular, the various concentration phenomena
exhibited by the solutions of (1.1) seem both mathematically intriguing
and scientifically useful. We refer to three survey articles [27], [28] and
[33] for backgrounds and references.

In the pioneering papers [29, 30|, Ni and Takagi proved the existence
of least energy solutions to (1.1), that is, a solution u, with minimal
energy. Furthermore, they showed in [29, 30] that, for each € > 0 suf-
ficiently small, u. has a spike at the most curved part of the boundary,
i.e., the region where the mean curvature attains mazimum value.

Since the publication of [30], problem (1.1) has received a great deal
of attention and significant progress has been made. More specifically,

solutions with multiple boundary peaks as well as multiple interior
1
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peaks have been established. (See [1], [5], [7]-[10], [11]-[15], [16], [19]-
[20], [31], [32], [34]-[35] and the references therein.) In particular, it
was established in Gui and Wei [13] that for any two given integers
k> 0,0>0and k+1 >0, problem (1.1) has a solution with ez-
actly k interior spikes and | boundary spikes for every e sufficiently
small. Furthermore, Lin, Ni and Wei [21] showed that there are at
least (e\l(?TNe\)N number of interior spikes. (We point out that positive
solutions having multiple interior or boundary spikes have been exhib-
ited in many works to a wide variety of semilinear elliptic problems,
including Cahn-Hilliard equations. We refer to [4], [3], [34]-[35], and
the references therein.)

It seems natural to ask if problem (1.1) has solutions which “con-
centrate” on higher dimensional sets, e.g. curves, or surfaces. In this
regards, we mention that it has been conjectured for a long time that
problem (1.1) actually possesses solutions which have m—dimensional
concentration sets for every 0 < m < N — 1. (See e.g. [27].) Progress
in this direction, although still limited, has also been made in [2, 22,
24, 25, 26]. In particular, we mention the results of Malchiodi and
Montenegro [24]-[25] on the existence of solutions concentrating on the
whole boundary provided that the sequence € satisfies some gap condi-
tion. The latter condition is called resonance.

In this paper, we consider solutions concentrating on interior curves.
Formal arguments show that concentrating curves must have zero mean
curvature, i.e., must be geodesics. Malchiodi [22] constructed solutions
concentrating on geodesics of the boundary along a subsequence €, —
0. If the geodesic is contained inside the domain, then it must be a
straightline. In this regard, we mention that the first work was due
to Wei and Yang [36] who proved the existence of spike layer on a
line intersecting with the boundary orthogonally. In [36], a geometric
condition of nondegeneracy was derived. Furthermore, the domain is
assumed to be two-dimensional and a resonance condition was needed,
i.e., the existence of solutions was established only along a sequence of
€ — 0. (The geometric condition was first derived for line interfaces of
Allen-Cahn equation by Kowalczyk [17].)

In all the papers above on higher dimensional concentrations ([22]-
[25]), the first approximation solution is the one-dimensional homo-
clinics and so resonance is inevitable. An interesting question persists:
can one remove the resonance condition? We shall prove in this paper
that it is possible to remove the resonance condition by using different
higher-dimensional approrimate solutions.
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We consider the situation of [36], but now in a general n—dimensional
domain. Our aim is to construct other new solutions with large number
of spikes concentrating along a straight-line. We generalize the results
of [36] in several ways: firstly, we put large number of spikes on the
line (the distance between the spikes is O(e|loge|)). Because of this,
we remove the gap condition in [36]. Our results hold for all € small.
Secondly, we consider a straightline in a n—dimensional domain. (We
believe that similar idea may be used to remove the resonance condi-
tions in [22]-[25].)

We assume that {2 contains a segment ['y which intersects orthogo-
nally the boundary of Q2 in exactly two points )1 and () and whose
length is L. We assume that ['y satisfies some non-degeneracy condition
we describe below.

After rotations and translations we may assume that ¢); = 0 and
Q> = (0,L) € RN~ x R and that T is described by

Io={(z",2y) eER""' xR :2'=0,0<zy < L}.

We assume that the boundary 0€2 near (); and ()5 is given by the graphs
of two smooth functions G; : Brn-1(0,p) — R, where Bgn-1(0,p)
denotes the ball of radius p and center 0 in RV !, for some p > 0
small. Furthermore, we assume that G1(0) = 0, G»(0) = L, VG,;(0) =
0 and D?G;(0) non degenerate, for ¢ = 1,2. It is not restrictive to
further assume that D2G1(0) is in diagonal form, namely D?G;(0) =
diag(A1, ..., An_1), where \; represents the principal curvatures of 052
at Ql-

A curve C'-close to I'g with end points on 9 can be parameterized
as follows

(1) = (h(t), 1G(h(L)) + (L = 1)G1(R(0))), 0 <t <L,

where h : [0, L] — R¥~! is a smooth function with A([0, L]) C Bgn-1(0, p).
Then the length functional £ is given by

= L(h) = /0 VIGa(h(L)) = Gi(h(0) [ + [W ()2 dt.

It is straightforward to show that ['y is a critical point for £, namely
DL(0) = 0, since 'y intersects orthogonally the boundary. Further-
more, the second variation of the length functional at 0 is given by the
quadratic form

"

D*L(0)[h]* = / B () dt + G, (0)[A(L)]* — Gy (0)[A(0)].

0
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The segment Iy is said to be non-degenerate if D?£(0) is invertible in
the set H,((0, L); RN~"). This amounts to the fact that the problem

"

~h'(t)=0 in (0,L), Gy(0)[h(0)+A'(0)=0, G;(O)[A(L)]+]'(L)
has only the trivial solution A(t) = 0.
This fact is equivalent to the condition
: I G(0)
determinant " " # 0, (1.2)
I+ LG,(0) G4(0)
where I denotes the Identity Matrix of dimension N — 1.
Indeed, from A" (t) = 0 we get that h(t) = at + b, for some vectors @
and b in RV~!. Thus the boundary conditions give
Gi(0)b+a=0, Gy0)[aL+bl+a=0.
Under the condition (1.2), the above system has only the solution a = 0,
b=0.

Let N = 2. In this case G|(0) = A; and G5(0) = —p, where \;
and p; denotes the curvatures of 0€) respectively at P, and P,. Then
condition (1.2) becomes

A+ p1 — LA #0.

At

Let N = 3, G/(0) = 0\
2

, with A\ )Xo # 0, and Go(0) =

[ g1 912

gi12 g22
this case

[AM— g1+ LA1g11][Aa — g22 + LAogas]) — g7[1 — (M + A2) L+ A1 A L?] # 0.

], with g11920 — g% # 0. The condition (1.2) becomes in

Let w be the unique solution to

Aw—w+wP=0, w>0 inRY,
w(0) = max w(y), w—0 at oo. (1.3)
yERN
The existence of w is standard and follows from well known arguments
in the calculus of variation while the uniqueness follows from results of
Kwong [18]. w is also nondegenerate, we refer to Appendix C of [30].

Our main result states that under the nondegeneracy condition (1.2),
we can put large number of spikes (at a distance O(e| loge|)) on the I'y.
More precisely we have
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Theorem 1.1. Assume 2 contains a segment I'g which intersects or-
thogonally the boundary of 2 in exactly two points Q1 and Q2 and whose
length is L. We assume that Iy satisfies the non-degeneracy condition
(1.2) described above. There exist £9 > 0 such that, for any 0 < € < &g
and for any integer k with

ll_I)%k‘ = 00 (1.4)

and N
k< — 1.5
~ ¢|lneg| (1.5)

where o > 0 is a constant depending on €2, on N and on the length
L of the segment Ty, then there exists a solution u. to Problem (1.1).
Furthermore there exist k points Q5 uniformly distributed along the
curve I'g such that

ui(z) =Y w (x - Qj) +o(1) (1.6)

J=1 ©

where o(1) — 0 as € — 0 uniformly over compacts of RY. Moreover,

) . L . . L
d’LSt( lan) ~ 2€]€’ dZSt( kaQ?) ~ 28]€
and
L
dist(Q5, Q541) ~ & for 1<j<k.

Remark 1.1. In [16], Kowalczyk proved the existence of fixed number
of spikes on a line intersecting with the boundary, under a geomet-
ric condition which is different from here. On the other hand, in [6],
D’Aprile and Pistoia proved the following result: assume that ) is a
two-dimensional convex domain. Let L be a line intersecting with the
boundary orthogonally. Then for any K fized and large, there exists K
spikes on the line. The results of [6] is a corollary of Theorem 1.1. In
fact since the domain is convex, the nondegeneracy condition holds au-
tomatically. Our Theorem 1.1 allows any nondegenerate line segment
inside the domain, convex or not.

Remark 1.2. If we rescale the domain €2 to %, then the distance be-
tween the spikes is O(log %) We are arranging k— copies of w on a long
line-segment. The main difficulty is to show that this arrangement is
nondegenerate. We notice that similar idea has been used by Malchiodi
in constructing new entire solutions to

Au—u+u? =0, u>0inR. (1.7)
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Malchiodi [23] has recently constructed positive (infinite energy) solu-
tions of (1.7) by perturbing a configuration of infinitely many copies
of the positive solution w arranged along three rays meeting at a com-
mon point. It is an interesting question if there corresponds to a tripe
junction solutions in a bounded domain.

Acknowledgments. The research of the second author has been
partly supported by Fondecyt Grant 1080099, Chile. The research of
the third author is supported by a General Research Grant from RGC
of Hong Kong.

2. ANSATZ AND SKETCH OF THE PROOF

By the scaling = €z, problem (1.1) becomes

@:0 on OS2,

ov
(2.1)
where Q. = { : z € Q}. In these expanding variables, the segment
Iy becomes I'§ := {(z',2n) : ' = 0,0 <zy < L}
Let £ > 0 be a real number and k£ an integer so that

L
kt = —. 2.2
. 22)

—Au4+u—uP=0 in €., u>0 in €,

Observe that under condition (1.5) we have that £ — oo as € — 0.
Define

1 .
Pp=( = 5)t+anjlen + 635, j=1,....k (2.3)

where ey = (0,...,0,1) and a; = (a1, a9j,...,an-1;,0) € RV [ ay; €
R. The points

Pj — anjeN — Kaj

are k points distributed along the scaled segment % at constant dis-
tance £ one from the other. Let us define the vectors a;, j = 1,...,k,
to be

a; = (alj,an,...,aNj), for all]: 1,]{5 (24)

We will assume that the vectors a; are uniformly bounded, as ¢ — 0,
namely

la;|| <6 forall j=1,...,k. (2.5)
We will denote by P the set of all points P;, namely

P={P :j=1,...,k}. (2.6)
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Let us define the function

Ulz) = Z Uj(z), with Uj(z) = [wj(z) — ¢;(2)]  (2.7)

J=l1

where

and

—Apj+¢; =0 in Q, el Cll) on Of..

Next Lemma, whose proof is contained in [21], provides a qualitative
description of the function ¢;.

Lemma 2.1. Assume that M|Ine| < d(P;,0) < &, for some con-
stant M depending on N and a constant 6 > 0 sufficiently small. Then

pj(z) = —(1+o(1))w(xr — P;) + o(eV ) (2.8)

where P; = P; + 2d(P;, 00 )vp,, vp, denotes the unit normal at P
on 08, and P; is the unique point on 0. such that d(P;, P;) =
d(P;, 2.).

We look for a solution of (2.1) of the form u = U + ¢. We set

L(g) = —Ad+ 6 — pUP'¢ (2.9)
k
E=UP-) o (2.10)
7j=1
and

N(¢) = (U + ¢)? = U — pU""*¢. (2.11)

Problem (2.1) gets rewritten as

L(¢)=FE+ N(¢) in €, g_;qj =0 on 0%

Consider a cut off function x € C*°(0, 00) such that
x(s)=1 for s<-1, and x(s)=0 for s>0. (2.12)
We fix a constant ¢ > 0 (independent of £) so that the balls of radius

Z_TC, centered at different points of P are mutually disjoint, for all £

large enough. We define the compactly supported functions

Zi(@) i=x @a = P = £+Q) dpu(c—P)  (219)



8 WEIWEI AO, MONICA MUSSO, AND JUNCHENG WEI

for j=1,...,kand i = 1,..., N. Observe that, by construction (in
fact given the choice of (), we have

/ Zi(2) Zoa(w) dz = 0, (2.14)

ifi#rorifj#s.

Consider the following intermediate non linear projected problem:
given the points P; in (2.3), satisfying (2.5), find a function ¢ in some
proper space and numbers cj; such that

L(¢)=E+N(¢)+ 35 >N ¢jiZi in Q.
9 —0, on 09, (2.15)

fQE¢Zji:O for _]:]_,,]{3,7,:]_,,N

We show unique solvability of Problem (2.15) by means of a fixed point
argument. Furthermore we prove that the solution ¢ depends smoothly
on the points P;.

To do so, in Section 3 we develop a solvability theory for the linear
projected problem

Lgb = h + Z;::l Zf\il C]ZZJZ in QE,

% =0, on 09 (2.16)

o, $Zi=0 for j=1,...,ki=1,...,N.

for a given right hand side A in some proper space. Roughly speaking,
the linear operator L is a super position of the linear operators

Li¢p = Ad — ¢+ pw?(z — P))¢, P;jeP.

Once we have the unique solvability of Problem (2.15), which is
proved in Section 4, it is clear that u = U+ ¢ is indeed an exact solution
to our original Problem (1.1), with the qualitative properties described
in Theorem 1.1, if we can prove that the constants c;; appearing in
(2.15) are all zero. This can be done adjusting properly the parameters
aj, j = 1,...,k, as will be shown in Section 3, where the proof of
Theorem 1.1 will be also given.

3. LINEAR THEORY

Our main result in this section states bounded solvability of Problem
(2.16), uniformly in small €, in points P;, uniformly separated from each
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other at distance O(¢). Indeed we assume that the points P; given by
(2.3) satisfy constraints (2.5).
Given 0 < 7 < 1, consider the norms

1Rl = sup | Y e"* i h(z)| (3.1)
j

e

where P; € P with P defined in (2.6).

Proposition 3.1. Let 6 > 0 be fixed. There exist positive numbers
n € (0,1), o and C, such that for all ¢ < gq, for all integer k and
positive real number £ given by (2.2) and satisfying (1.5), for any points
P;, j=1,...,k given by (2.3) and satisfying (2.5), there is a unique
solution (¢, cj;) to problem (2.16). Furthermore

18]l < CllAl.. (3-2)

The proof of the above Proposition, which we postpone to the end
of this section, is based on Fredholm alternative Theorem for compact
operator and an a-priori bound for solution to (2.16) that we state (and
prove) next.

Proposition 3.2. Let § > 0 be fized. Let h with ||h||. bounded and
assume that (¢, cj;) is a solution to (2.16). Then there erist positive
numbers €y and C, such that for all e < g, for all integer k and positive
real number £ given by (2.2) and satisfying (1.5), for any points P;,
j=1,...,k given by (2.3) and satisfying (2.5), one has

18]« < Cl|A];. (3-3)

Proof. We argue by contradiction. Assume there exist ¢ solution to
(2.16) and

[Alls =0, [[g]l. =1.

We prove that
Multiply the equation in (2.16) against Z;; and integrate in €., we get

/ LqﬁZﬂ(.I):/ thi+Cji/Q Z]217

since (2.14) holds true. Given the exponential decay at infinity of 0,,w
and the definition of Zj; in (2.13), we get

/Q Z]?i = /RN (Op,w)?+0(e™) as £ — oo, (3.5)
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for some § > 0. On the other hand
|| hZu| <Clhll | Bnw(z — Pye™= 1 < Clh]..
Qe Qe
Here and in what follows, C' stands for a positive constant independent

of €, as ¢ —0 (or equivalently independent of £ as £ — oo). Finally, if
we write Zj;(z) = Op,w(z — P;) and x = x (2|z — P;| — £ + (), we have

[ w0

>

= / [Azji_ij’"'pwp_l(x_Pj)Zji]X(2|x_Pj|_€+C)¢
B(P;,15%)

+ [ eVEle P-4 Z)

dB(P;,55%)

— /( O(ZAx 2z — Pj| — £+ ) +2Vx 2]z — Pj| — £+ () VZ;)
BPJ',

s f @) e - B 0+0). (9
B(P;,5*)

Next we estimate all the terms of the previous formula.
Since 3 5 }
AZ]',L' — Zji +pwp_1(:r — E)ij =0
we get, the first term is 0. Furthermore, we have
faB(Pj,%) ¢V (x 2|z — Pj| — £+ () Zji) ‘I

N

< C||¢]|« faB(Pj,%) e~ (tmlz=Fil |z _ P =" dg

< Cem 0403 9],

for some proper £ > 0. The third integral can be estimated as follows

/( ) <)cb(ZjiAX(Q\fE—Pj\ —0+()+2Vx 2z — Pj| — £+ () VZ)
B(Pj,=>

=<

2 —
< C||9]l« e e~ (s g% gs < Ce= (1403 g,

again for some £ > 0. Finally, we observe that in B(P;, [’_TC) that

U7 (z) o Nz = B)| SwP e =) | Y wle— 1)
T #Pj
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Having this, we conclude that

_ £
< Ce 193] 4]

p[ W) - e - ) 62 Gl — B - £+0)
B(P,

for a proper £ > 0, depending on N and p. We thus conclude that
el < C |08 o]l +Inl.| (3.7)
Thus we get the validity of (3.4), since we are assuming ||¢||. = 1 and
|||« — 0.
Let now n € (0,1). It is easy to check that the function

k
— —n|-—P;
W= e Fl,
j=1

satisfies
1
LW <O =)W,

in Q:\Uj=1,. xB(P}, p) provided p is fixed large enough (independently
of /). Hence the function W can be used as a barrier to prove the
pointwise estimate

9](z) < C (HL ol +) ||¢||L°°(8B(Pj,p))) W), (38
j

for all z € Q. \ U;B(P;, p).

Granted these preliminary estimates, the proof of the result goes by
contradiction. Let us assume there exist a sequence of £ tending to oo
and a sequence of solutions of (2.16) for which the inequality is not
true. The problem being linear, we can reduce to the case where we
have a sequence £ tending to oo and sequences A, ¢ ™ such
that

IR™]l. =0, and [j¢™]], = 1.
But (3.4) implies that we also have
1™ — 0.

Then (3.8) implies that there exists P € P (see (2.6) for the definition
of P) such that

||¢(n) ||L°°(B(P("),p)) >0, (3.9)
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for some fixed constant C' > 0. Using elliptic estimates together with
Ascoli-Arzela’s theorem, we can find a sequence P™ and we can ex-
tract, from the sequence ¢(™ (-—P() a subsequence which will converge
(on compact) to ¢ a solution of

(A—1+pur?) ¢u =0,

in RV, which is bounded by a constant times e~"/?!, with n > 0. More-
over, recall that ¢(™ satisfies the orthogonality conditions in (2.16).
Therefore, the limit function ¢, also satisfies

O Vwdr =0.
RN

But the solution w being non degenerate, this implies that ¢, = 0,
which is certainly in contradiction with (3.9) which implies that ¢, is
not identically equal to 0.

Having reached a contradiction, this completes the proof of the
Proposition. ]

We can now prove Proposition 3.1.

Proof of Proposition 3.1. Consider the space
H:{UEHI(QE)I/UZjiZO, jzl,,k,’l:]_,,N}

Notice that the problem (2.16) in ¢ gets re-written as
¢p+K(p)=h in H (3.10)

where h is defined by duality and K : H — # is a linear compact
operator. Using Fredholm’s alternative, showing that equation (3.10)
has a unique solution for each h is equivalent to showing that the
equation has a unique solution for A = 0, which in turn follows from
Proposition 3.2. The estimate (3.2) follows directly from Proposition
3.2. This concludes the proof of Proposition (3.1).

In the following, if ¢ is the unique solution given by Proposition 3.1,
we set

¢ = A(h). (3.11)
Estimate (3.2) implies

AR < C|[R]], (3.12)
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4. THE NON LINEAR PROJECTED PROBLEM

For small ¢, large ¢, and fixed points P; given by (2.3) satisfying
constraints (2.5) we show solvability in ¢, ¢;; of the non linear projected
problem

L(¢)=E + N(¢) + 3L, Z§:1 CjiZyi in e,

%20, on 09, (4.1)

fQEQSZji:O for ]=1,,k,7,:1,,N
We have the validity of the following result

Proposition 4.1. Let 6 > 0 be fized. There exist positive numbers
g0, C, and & > 0 such that for all € < gqy, for all integer k and pos-
itive real number £ given by (2.2) and satisfying (1.5), for any points
P;, j=1,...,k given by (2.3) and satisfying (2.5), there is a unique
solution (¢, cj;) to problem (2.15). This solution depends continuously
on the parameters of the construction (namely a;, j = 1,...,k) and

furthermore
(a+8) o
2

¢l < Ce™ (4.2)

Proof. The proof relies on the contraction mapping theorem in the
|| - [|s-norm above introduced. Observe that ¢ solves (2.15) if and only
if

¢ =A(E+ N(9)) (4.3)

where A is the operator introduced in (3.11). In other words, ¢ solves
(2.15) if and only if ¢ is a fixed point for the operator

T(¢):=A(E+ N(¢)).
Given r > 0, define

(H—ﬁ)e

B={¢eC%(Q) : lIgll. <re” 27", i ¢Z;i = 0}

We will prove that T is a contraction mapping from B in itself.
To do so, we claim that

1+£
a+e)

|E]l. < Ce™ (4.4)

and

IN@)Il. < CllIgl:+lIglE] (4.5)

for some fixed function C' independent of ¢, as £ — co. We postpone the
proof of the estimates above to the end of the proof of this Proposition.
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Assuming the validity of (4.4) and (4.5) and taking into account (3.12),
we have for any ¢ € B

(148
,PTg

”T(¢)“* < C[||E+N(¢)||*] <C e*%e 4+ r2e (O 4 g

_Q+e)
re” 2 ¢

for a proper choice of r in the definition of B, since p > 1.
Take now ¢; and ¢ in B. Then it is straightforward to show that

1T(¢1) = T(d2)lls < ClIN(¢1) = N(¢2)ll-

C gm0 + lgal" 0] iy = ol
o(1)[[61 — ]l

This means that T is a contraction mapping from B into itself.

To conclude the proof of this Proposition we are left to show the
validity of (4.4) and (4.5). We start with (4.4).

Fix j € {1,...,k} and consider the region |z — P;| < 2+L(7’ where o
is a small positive number to be chosen later. In this region the error

E, whose definition is in (2.10), can be estimated in the following way

<
<

E(@)| < C|o"(z—P) Y w@-P)+ ) o(z—P)
Pi#P; Pi#P;

< -y Y i
Pi#P;

1 o o
< pr—l(x — Pj)e_(5+4<2+0>)e 6_4(2+a)£

< CwP Hz— Pj)e_#e

(4.6)

for a proper choice of & > 0.

Consider now the region |z — P;| > 2%0_, for all j. Since 0 < p < p—1,
we write 4 = p—1— M. From the definition of E, we get in the region
under consideration

C [Z wP(x — P;)
J
[Z emwm] e e b < [Z e—ulm—Pﬂ] o h
J J

|E()]

IN

<C [Z e—ulw—Pﬂ] e—(p—u)ﬂ%(4_7)
J

IA
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for some & > 0, if we chose M and ¢ small enough. From (4.6) and
(4.7) we get (4.4).
We now prove (4.5). Let ¢ € B. Then
IN(@)| < [(U+ )" = UP —pUP"'¢| < C(¢” + |6]F). (4.8)
Thus we have

|32, IN(9)] < Ol (9] + [olP~)

< Ol + llel2)-

This gives (4.5).
A direct consequence of the fixed point characterization of ¢ given
above together with the fact that the error term E depends continu-

ously (in the *-norm) on the parameters a;, j = 1,..., k is that the map
(a1,...,ax) — ¢ into the space C(£).) is continuous (in the *-norm).
This concludes the proof of the Proposition. O

Given points P; defined by (2.3), satisfying constraint (2.5), Propo-
sition 4.1 guarantees the existence (and gives estimates) of a unique
solution @, ¢ji, j =1,...,k, i =1,..., N, to Problem (2.15). It is clear
then that the function v = U + ¢ is an exact solution to our problem
(1.1), with the required properties stated in Theorem 1.1 if we show
that there exists a configuration for the points P; that gives all the
constants ¢;; in (2.15) equal to zero. In order to do so we first need to
find the correct conditions on the points to get ¢;; = 0. This condition
is naturally given by projecting in L?({2,) the equation in (2.15) into
the space spanned by Zj;, namely by multiplying the equation in (2.15)
by Zj; and integrate all over {).. We will do it in details in the next
final Section.

5. PROJECTION OF THE ERROR AND PROOF OF THEOREM 1.1

Define the following £ x k£ matrix

2 -1 0 ... O
-1 . . .o
T=|(o . . . 0 |¢€ Mgk, (5.1)
: .2 —~1
o ... 0 -1 2
The inverse of T' is the matrix whose entries are given by

1]
k+1°

(Tﬁl) ij = mln(z,]) —
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We define the vectors S* and ST by

0 1
: k 0 0 k
TS = ; eR TS":=| .| eRt. (5.2)
1 0
It is immediate to check that
1 k
T £
k+1 +1
Sti=| : | eRF sti=| : | eR- (5.3)
k-1 2
k1 Rl
k+1 k+1
We will reorder the parameters a;;, fori =1,...Nand j=1,...,k

in the following way: for any j =1,..., N,

ai=| 7| eRF, (5.4)
Ak

Proposition 5.1. Let ¢ be the solution of (2.15) which has been 0b-

tained in Proposition 4.1. The coefficients c;; are all equal to 0 if and

only if the vectors a; defined in (5.4) are solutions of the nonlinear
system

a;- = (1 =+ %/\j)aljST + [(1 — %gjj)akj — %Zi;éj GijOki S+ -+ 6762£A + Q € Rk
foranyj=1,....N—1

a*N = —(ZUVST — akNSi + 6_52614 + Q € Rk

(5.5)
where 6o >0, A= A(ar, -+ ,a) and Q@ = Q(ay,- - - , ax) denote smooth
vector valued functions (which vary from line to line), uniformly bounded
as € = 0 (or equivalently as £ — oo) and the Taylor expansion of Q
with respect to ay, - - - , a, does not involve any constant nor any linear
term. Here the vectors aj, j = 1,...,k, are defined in (2.4) and they
satisfy constraints (2.5).

Proof. Observe that all ¢;; are zero if and only if

/ (Lop+E+ N(¢)) Zijdr =0 for all 4, ;.
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Using the Lemmas below, it is easy to check that this reduces to the
solvability of a nonlinear system in a}, that can be written in the desired
form using the inverse of the matrices 7'.

Observe that the norms of the inverses of the matrix 7" blow up at
most linearly in k, as £ — oco. Under our assumptions (1.5), this can
be absorbed since the error tends to 0 exponentially fast in terms of
L. O

R N-—1
Deﬁne KR = 1 =+ 7

Lemma 5.1. The following expansions hold

e 0t L
— C / EledLE = (agj — Cllj + E/\jalj) + 6_52eA =+ 62(56)
N,p €
forj=1,...,N—1, and
et o™t
— C / EZlNd.’E = /{(3a1N - CLQN) + 6_62£A + Q . (57)
N,p €
Forh=2,...k—-1
el 0
— EZ,:dx
CN,p Qe "
= (an_1; — 2ap; + ans1j) +e A+ Q, (5.8)
forj=1,...,N—1, and
ee E%
— E Zynd
CN,p /e mN e
= k(—ap 1 n+2apn — appn) +e 2P A+Q. (5.9)

Finally

ggb
_eC ’ / Eijdl'
N.,p e

L 1
= (a1 —ar; = 2G2(0)[a]le]) +e ™A+ Q,  (5.10)

forj=1,....,N—1, and
e££¥
— E Zind
CN,p /a e
= I{(3ak,N — ak—l,N) + 6_52e A + Q . (511)
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where §3 > 0, A = A(ay,...,ar) Q = Q(a,...,a) denote smooth vec-
tor valued functions (which vary from line to line), uniformly bounded
as £ — oo and the Taylor expansion of Q) with respect to ay, ..., ar does
not tnvolve any constant nor any linear term.

Proof. . Given P € P, we would like to estimate

Qe

An important estimate that we will use several times to compute the
above expression is the following: There exists a constant Cnj, > 0
only depending on N and p such that, the following expansion holds

P / w(-—y) w?™! @ijdx =—Cnp¥(ly)y-e; + 0(6_63@'), (5.12)
]RN

where d3 > 1 is a constant which depends on p and N. In (5.12) the
function 7 is defined as follows, for all s > 0,

P(s) :=e"* s
The proof of (5.12) is by now standard, we refer to [23] and [21] for
details.

Observe that, given e € RY with |[e| = 1 and a € RY, the following
expansion holds

¥(|le + a|)(le + a)

~ N-1

_ ( _Ral + 2) +e {7 0(a?) (5.13)

as £ — 0o. Here, we have decomposed a = all +at where a'l is collinear
to e and at is orthogonal to e.

We have all the elements now to proceed in the computations of
estimates (5.6)—(5.11).

Estimates (5.6) and (5.7). Observe that, given the structure of
U, the fact that the function w decays exponentially and the result in
Lemma 2.1, we can write using Taylor’s expansion

Eled.’L' = p/ wllj_l[—@l + CLJQ] le dx + 6_6?’[14 (514)
Qe e
where 03 > 1 and A = A(ay,...,a,) is uniformly bounded as ¢ — oo
for vectors a; satisfying (2.5). B
Let P, be the only point on 0€), such that d(Py,08;) = d(Py, P1)
and define P} to be P — Py = 2(P; — P;). Again Lemma 2.1 gives that
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o1(z) = —w(x — Pf) + o(eN*1). Then, since P, = %eN + anien + fa;
with a; = (a11,a91,-..,ay-1,1) and |a;| < J, we have

PF — Py = —(£+ 2an1)ey + £2(G(0)[ea], 0) + (O(£262), 0(e2))
Thus we get from (5.12) and (5.13), for j=1,...,N — 1,

—p/ o Zypde = p/ W w(x — P2y da

€

= —Cnpl 7 et [etD*Gy(0)[a] - ] (5.15)

e

-1 L 1
= Ot [EMU] reaLeietq

while for 7 = N, we have
—p/ o Ziyde = p/ W w(x — P2y da

= —CN,p£’¥e’e [—1 + 2a;xK]

+ e MtAL e

In the above computations we use the fact that by definition % = k.
On the other hand a direct use of (5.12) and (5.13) gives, for j =

1,...,N—1,
p/ Wl Zyjds = —Cnpl™ T e ag; — ay] + e ™A+ 0775 e7Q
and,sfor j=N,

p/ﬂs w{’_lnglN dr = —C’N,pﬁ_¥6_e [1— (aen — a1n)K]

+ e BtA4 - =n e’lQ

Putting together the above computation in (5.14) we get the validity
of (5.6) and (5.7).
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Estimates (5.8) and (5.9). Let 1 < h < k. In this case, we have
/ E Zpjdr = p/ UP wn-1 + whi1] Znjdz + e A (5.16)
Q. .

where 63 > 1 and A = A(ay,...,a) is uniformly bounded as ¢ — 0
for vectors a; satisfying (2.5). This fact is again consequence of the
exponential decay of w at infinity, and of the result contained in Lemma
2.1.

In this case, a direct computation gives (5.8) and (5.9).

Estimates (5.10) and (5.11). Arguing as in the case of the proof of
estimates (5.6) and (5.7), we get

/ E Zyjdx = p/ wi”l[—sok + wi_1] Zjdx + e %t A (5.17)

where 63 > 1 and A = A(ay,...,a) is uniformly bounded as ¢ — oo
for vectors a; satisfying (2.5).

Let P, be the only point on 9, such that d(Py,09.) = d(P, Py)
and define P} to be Py — P, = 2(P, — P;). Again Lemma 2.1 gives
that ¢i(z) = —w(z — P}) + o(eV*?). Then, since P, = (k — 5)ley +
anken + fag with a; = (a11,a91,...,ax-11) and |a;;| < J, we have

P; — Py = (£ — 2ani)en — £2(G,(0)[ed,], 0) + (O(£26?), O(l))

Thus, recalling that £ = k¢, we get from (5.12) and (5.13), for j =
1,...,N—1,

—p/ wﬁ_lgkakjd:r = p/ wi’_lw(:r—P,;‘)ijd:r

= —COnpl 7 et [—etD*G5(0)[a - ;1]

N+1

+ e AL e

N-1 L
= CN,pZ_Te_Z [ED2G2(0)[5]€ . Ej]

N+1

+ e BArr e eQ
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while for 7 = N, we have

—p/ W o Zpn de = p/ W w(x — PY) 2y da

_N-1

= _CN,p£ 2 eiz [1 + QGkNH]

+1

+ e BAL T el

On the other hand a direct use of (5.12) and (5.13) gives, for j =

1,...,N—1,
p—1 _N=1
p/ wp wpm1Zpjde = —Cnpl™ T €™ [ag-1); — ]
+ e—ﬁgEA 4 E—%e—EQ
and, for j = N,
_ _N-1
P / W lwp 1 Zgvdr = —Cnpl™ 2 e [—1 — (ag-1)n — arn)K]

+ e A4 e tQ
This concludes the proof of (5.10) and (5.11).

O
The next result is easier to get. It reads :
Lemma 5.2. The following expansions hold
el 0T / (L@) Zjidr = e ™ A,
RN
and
el e N(¢) Zjidz = e ' A,
RN
where §o > 0 and A = A(ay,- -, ax) denote smooth vector valued func-

tions (which vary from line to line), uniformly bounded as ¢ — co.

Proof. The proof of the first estimate follows the line of the proof of
Proposition 3.2 (see formula (3.6) and the subsequent estimates, to-
gether with (4.2)).

The proof of the second estimate follows from estimate (4.5) and
(4.2). O
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We now explain how (5.5) can be solved. We claim that this system
is equivalent to

at=e A+ Q (5.18)
where 8, > 0 and A = A(ay, -+ ,a,) and @ = Q(ay, - - - , ax) satisfy the
usual assumptions.

Indeed, by using the explicit expression for S+ and ST given by (5.3),
we get that solving the system (5.5) reduces to find a solution to the

following non linear system in the 2N variables a,;, ax;, forj =1,..., N
L L Y,
(—1 =+ L/\j)alj + (1 — Egjj)akj — E Zgijaki =€ A + Q
i#]
L —d3¢
(1 + E)\j)alj + (—1 - ngj)akj —L Zgijaki =€ A + Q
i#j

forj=1,...,N —1, and
(2/"& + 1) 41Ny + agy = 6763{4 + Q
an + (2k + 1) apy = e A + Q,

for some 0 < d3 < Jo. This system can be solved provided the following
2(N —1) x 2(N — 1) matrix
Be— (1 +LLG’1’(0) I— 2G50
I+ 2G7(0) —I—LG3(0)
has non zero determinant. In the above expression I denotes the iden-
tity matrix of dimension N — 1.

. (—I+ LGY(0) 1
Denote by B the matrix < I —1 - LGI(0) and observe
that
G7(0) 1

— (_T\N-1 —
detB = (—L)" “det (G’Q’(O) I+ LG’Q’(O)) = const # 0

since we are assuming the non degeneracy condition (1.2). Thus we
have, since we are assuming (1.4), namely that £k — oo as ¢ — 0,

detB;, = detB x (1 + %tr (B‘1 (G’{O(O) _Gg(0)>> + O(%))

1
= detB (1 + O(%)> # 0.
This completes the proof of the claim.

It is now straightforward to prove, using Browder’s fixed point the-
orem, that
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Lemma 5.3. There exist C' > 0 and eq > 0 such that, for all0 < € < &
(or equivalently £ large), there exists a solution of (5.18) such that

|a7| < Ce 5t forallj=1,...,N
This last result completes the proof of Theorem 1.1.
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