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Sobolev spaces and linear operators are important tools throughout this monograph. There-
fore we state their definition and most important results here. For a more detailed discussion
we refer to the excellent book by Gilbarg-Trudinger.

Let © be a bounded, open, smooth domain in R™, where n > 1. For p > 1, let L”(€2) denote
the Lebesgue space consisting of measurable functions defined on €2 such that
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Then LP(2) is a Banach space with the norm |[|u|,. Further, the space L*(Q) is a Hilbert space
with the scalar product

(u,v) = / uv dz.
Q
For k =1,2,..., we define
WHhP(Q) := {u € LP(Q) : Du € LP(Q) for all |a| < k},

where .
a=(ag,...,ap), ;€ {0,1,...}, |a| = Zai,
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We also denote H*(Q) := W*2(Q), and H*(Q) is a Hilbert space with the scalar product

(u,v)y ::/ >~ D*uDv dx.
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A Banach space B, is said to be continuously embedded in a Banach space B¢ if there
exists a bounded, linear, one-to-one mapping of B, into Be. Using the notation B,, — B¢, we
have the following continuous Sobolev embeddings:

Wég,p(Q) - Ll/(l/p*k/n)(Q) for kp < n,

WEP(Q) — C™(Q) for0§m<k—ﬁ,
p

where Wy?(Q) is the Banach space which is given by the closure of C¥(Q) in W*?(Q). Here
Ck(9) is the set of continuous functions u defined in  with compact support in € for which also
the partial derivatives D%u, |o| < k are continuous. Further, C*(Q) is the set of all functions in
C*(Q) for which all derivatives D%u, |a| < k have continuous extensions to the closure Q of Q.
The space C*(Q) of functions which together with all derivatives up to order k is continuous,
is a Banach space if it is endowed with the norm

|| u]| k.00 := max
|| <k

Next we present two elliptic regularity theorems.
Theorem 1 (Elliptic reqularity-LPtheory.) Let u € W*P(Q) solve the equation
—Au=f—f inQ,
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where f = ‘%' Jo f(x) dx.
Assume that f € LP(QY). Then there exists some ¢ > 0 such that

lu = a2 < cllf = £llp. (0.1)
Theorem 2 (Elliptic reqularity-Schauder Estimates.) Let u solve the equation
—Au=f inQ.
Assume that f € C*(Q2). Then there exists some ¢ > 0 such that

ullc2.e(B, 20)) < | flloaBar o) T |Ullca (B (ao)))- (0.2)

for any Ba,(x) C Q.



A map T from a normed linear space V into itself is called a contraction mapping if there
exists # < 1 such that
[Tz =Tyl <Oz —yl,Vo,y €V

Contraction Mapping Principle states

Theorem 3 A contraction mapping T in a Banach space V' has a unique fixed point that is
there exists a unique solution x € V' such that v = Tx.

The Fredholm Alternative holds for compact linear operators from a linear space into itself.

Theorem 4 (Fredholm Alternative) A linear mapping T of a normed linear space into itself
1s called compact if L maps bounded sequences into sequences which contain converging subse-
quences. Let T be a compact linear mapping of a normed linear space L into itself. Then either
(i) the homogeneous equation

r—Trx=0

has a nontrivial solution x € L or
(ii) for each y € L the equation
r—Tr=y

has a uniquely determined solution x € L. Further, in case (ii) the “solution operator” (I—T)!
is bounded.

An example of compact operator is

T(f) = [ Gle.y)f)dy

where G(z,y) is the Green’s function of —A.
Next, let us state Brouwer’s Fixed Theorem:

Theorem 5 (Brouwer’s Fized Point Theorem.) Every continuous function from a closed ball
of a Euclidean space to itself has a fixed point.

Finally, we recall the mapping degree (see [?]). If  C R"™ is a bounded region, f : Q2 — R"
smooth, p a regular value of f and p ¢ f(0), then the degree deg(f, €2, p) is defined as follows:

deg(f,Q,p) == Z signdet D f(y),

yef~1(p)



where D f(y) is the Jacobi matrix of f in y. This definition of degree may be naturally extended
to non-regular values p such that deg(f, 2, p) = deg(f,2,p’), where p’ is a point close to p.
The degree satisfies the following five properties and is uniquely characterised by them.
(i) If deg(f, Q, p) # 0, then there exists z € Q such that f(z) = p.
(ii) deg(/d,Q,y) =1 for all y € Q.
(iii) Decomposition property:

deg(fa Q7 y) = deg(f7 Qh y) + deg(f7 Q27 y)7

where Ql N QQ = @, Q= Ql U QQ and Yy g f(Q \ (Ql U Qg))

(iv) Homotopy invariance:

If f and g are homotopy equivalent via a continuous homotopy F(t) such that F(0) =
f, F(1) =gand p & F(t)(09) for all 0 < t < 1, then deg(f, 2, p) = deg(g, 2, p).

(v) The function p — deg(f, 2, p) is locally constant on R™\ f(99).



