AARMS SUMMER SCHOOL-LECTURE VII:
INTRODUCTION TO INFINITE DIMENSIONAL
REDUCTION METHODS FOR SOLVING PDE’S

MANUEL DEL PINO AND JUNCHENG WEI

1. BACK TO ALLEN CAHN IN R?

We consider the functional
2 1 — u2)?
J(u) —/ <€2|Vu| + (1= ) > a(z)dz.
]RZ 2 4

Critical points of J are solutions of
e*div(a(x)Vu) + a(x)(1 — u*)u = 0,

where we suppose 0 < a < a(x) < . This equation is equal to

(1.1) 52Au+52%(a:)Vu+ (1 —u*)u=0.
Using the change of variables v(z) = u(ex), we find the equation
(1.2) Av + 5%(x)Vu + (1 —v*v =0.

We will study the problem: Given a curve I' in R? we want to find a
solution u. () to (1.1) such that u.(x) ~ w(Z), for points x = y+2v(y),
y € I', |z| < §, where v(y) is a vector perpendicular to the curve and
w(t) = tanh(J5), which solves the problem

w4+ (1 —w?)w =0, w(+oo)==+1.

First issue: Laplacian near I', which we will consider as smooth as we
need.
Assume: T' is parametrized by arc-length

70, = R, s — 5(s), [4(s)] = 1,1 =T|.
Convention: v(s) inner unit normal at v(s). We have that |v(s)]* = 1,
which implies that 2viy = 0, so we take v(s) = —k(s)y(s), where k(s)
is the curvature.

Coordinates: x(s,t) = v(s) + zv(s), s € (0,1) and |z| < d. If we
take a compact supported function 1)(x) near I, and we call ¢ (s, 2) =
Y(y(s) + zv(s)), then %—f =V [+ 20 =(1—kz)Vy -4 and %—f =

1
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Vi - v. Observe that Vi = (Vi - 9)%(V - v)v. This means that
Vi = 22985 + 5w, and [VY? = q=slds + [¢?. Then

/W Vi(a)Fde = // ( |¢s|2+ Iwz|2) (1 — kz)dsdz

¥ — Y + te and differentiating at t = 0 we get

1 ~ ~
/V?ﬂvwdx://m%%ﬂ%bz%(l — kz)dsdz
So

- [ awes =~ [[ =5 (=g d) + 0012 ) @1k

then
~ 1 0 1 - ~ ko~
Ay = a_ s zz z
4 (1—kz)8s(1—kz¢)+¢ 1—kz¢
We just say
- 1 1 k
Ay = s)s 2z z
v 1—k:z(1—k:z¢) T 1—kz¢
Near I' (z = 7(s) + zv(s)), we have the new equation for u — (s, 2)
1 1 g%k g2 a e a
S =¢? s)s 2 22+ (1— “Yu— z = s = =0
[l =e 1—kz(1—kzu) et (1-u)u 1z +1—l€z au+1—kz a
we want a solution u(s, z) ~ w(Z).
z a, k(s) z
Slw(=)] =¢[— — ————]Juw'(=
w3 = el - =)
The condition we ask (geodesic condition) is %*(s,0) = k(s). In v
language we want
\Y
Av + 5—a(8x) Vo4 f(v) =
a
transition on I'y = %F. we use coordinates relative to I'. rather than I'
1
Xc(s,2) = 57(58) +zv(es), |z] <d/e
Laplacian for coordinates relative to I'. are
1 1 ek(es) as 1 a,
A = s 2z - s -
V= T ch(es)?) <<1 “eh(es)2) >s+¢ (I —ck(es)z) o (I—ck(es)2)? "

where we use the computation % = —k(e)ve(s), where k. = ck(es)

Uy
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Hereafter we use s instead of s and Z instead of Z. Observation: The
operator is closed to the Laplacian on (3, Z) variables, at least on the
curve I, if we assume the validity of the relation

a:(3,0) = k(3)a(3,0), V5 e (0,0).

We can write this relation also like d,a = ka on I' (Geodesic condition).
This relation means that I is a critical point of curve length weighted
by a. Let L,[I'l = [.adl. Consider a normal perturbation of T', say
Ly = {7v(3) + h(3)v(5)|5 € (0,1)}, [[hllc2ary < 1. We want: first
variation along this type of perturbation be equal to zero. This is

DL,Th]|lh=0 =0
This means 5
5[/[“}1”}1:0 =0

or just (DL(I"),h) = 0 for all h. Observe that

L(Ty) = / a(4(3) + hE()) - [(3)rald3

and also 4y,(8) = 4(3) + Mw + A, and 7 = —k%. With the taylor
expansion

: 1 oo 1
(1—2k XL+ N2 K2R3 4 A2h%)Y2 = 1+§(—2l<;/\h+)\2k2h2+/\2h2)—§4k2>\2h2+0()\2h3)
and
- 1
a(y((s))+Mh(5v(3)) = a(5, \h(3)) = a(3,0)+Nas(s, O)h(§)+§A2agg(§, 0)h(5)*+O(N°h?).

we conclude

l l hZ 1
Li[Tan] = Lo(T) = X / (—ka+az)(3,0)h(3)d5+\? / (a5+agk2h2+§aggh2)+0(/\3h3)
0 0

This tells us:

0 o .
aLh[F/\h”A:O =0< k(5)a(s,0) = az(5,0),
the geodesic condition. Also we conclude that
2 l l '
%L(FM)]AZO = / (ah?—2k*a+az:h*)ds = — / (a(3,0)h8) h+(2a(5,0)k*—az:(3,0)h)h
0 0

This can be expressed as D?L(T") = J,, which means D*L(T)[h)* =

- fol Jalh)h. J,]h] is called the Jacobi operator of the geodesic I'. As-
sumption: .J, is invertible.
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We assume that if h(5), 5 € (0,1) is such that h(0) = h(l), 2(0) = h(l)
and J,[h] = 0 then h = 0. Ker(J,) = {0}, in the space of [—periodic
C? functions. This implies (exercise) that the problem

Jalh) = g, € C(0,1),9(0) = g(1), h(0) = h(1), h(0) = h(1)

has a unique solution ¢. Moreover ||¢||c2.a o) < C|lgllce(0,)-
Remember that the equation in coordinates (s, z) is
1 1 ek(es)
E = s 2z T 74 1./ N\
(v) (1 —ek(es)z) ((1 - ek(ss)z)v )S v (1 —ek(es)z)
Qg 1
6_
a (1 —cek(es)z)
Change of variables: Fix a function h € C*%(0,1) with ||| < 1 and do

the change of variables z — h(es) = t and take as first approximation
vo = w(t). Let us see that vy(s, z) = w(z — h(es)) so

V,+

az
s — Uy =0
SV +€av + f(v)

1 1 / / "
E(v) = T 5k:z(1 v (—h(es,ez))s + w" + f(w)
as k(es) , . € as
& MY N —ehee = 5
e a (s,22) 1-— kz(as)ez)w c (1—ck2)? a v

Error in terms of coordinates (s,t) z =t + h(es):

o las k(es) e*u’ "
E(vo)(s,t) = ew'(t) ;(88,8(75 +h)) — k) i+ h)e) (A =ke(t+h)?

1 g2 _2 1 27 Lo / € as
he”— k(t+h)hw' (t)—eh————=—
= ET e A ch e M () —eh s o
In fact
|E(vo)(t, )] < Ce2e el
o <1, and

HeUME(UO)”Cova(lt|<g) < Ce?

Formal computation: We would like ffgjs E(vo)(s,y)w'(t)dt =~ 0. Ob-
serve that

w/2

—2h" (es / = —£2h”/w/2dt—|—0 g3
) ) s T el T 1) : ()

Also

. 1
h2 2/— " /dt:(] O 3'
T +0()

5271/%(53,a(t+h))w’2/(1+ke(t+h))2 :525%(53,0)/w’2+0(53)
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and finally
2,0z k(es) e e gz )
€/t|<6/ew (—(es,e(t+h))—1— Rt T h)e) =¢ /Rw (D*(e%)((-2)(e5,0)—k?)h(es)+O(:
Then
L7 (%), e - 0

we call § = es, and we conclude that the right hand side of the above
equality is equal to
1

m((a(g, 0))R'(3) + (2k%a(3,0) — az:(3,0))h) + O(¢)

and this is equal to

1
m(Ja[h] +0(¢))
We need the equation for v(s, z) = 0(s, z — h(es)). We have
o0 _ov_on,
ds  0s ot
We write z =t + h, so we have
~ 1 0 . 0 1 0 -0
SO0 == Bs el w as ~ a0 e
k sz, . (0 1 2 - e ~
g[—l - + ;]vt + S [0s — ehty] + f(0) =0

The first term of this equation is equal to
1 e(ek(t+h)+ekh) .
T sy G
ek 1
(1 —ck(t+h))? 1 —ck(t+h)
Let us observe that for [t| < d/e, 6 < 1
S[0](s,t) = Vss+0u+0(€)0rs04+0(€) 0 0+0 (ek([t|41) ) 0550+ 0 (£) 0,04+0() 059+ f (v) = 0

We will call the operator that appears in the equation B[t]. We look
for a solution of the form o(s,t) = w(t) 4+ ¢(s,t). The equation for ¢ is

bss + O + f(w(t))p+ E+ B(p) + N(¢) =0, |t] <d/e

where E = S(u(t)) = O(e%e™"), N(¢) = f(w + ¢) — f(w) = f'(w)o,
s € (0,1/e). We use the notation L(¢) = ¢ss+ ¢+ f/(w(t))d. We also
need the boundary condition ¢(0,t) = ¢(l/e,t) and ¢4(0,t) = ¢s(1/e, t).

Y e —
T her i)l C Mo Bty B

—eh{ (B, — ehy) + (—ehw)} + f(0) = 0
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It is natural to study the linear operator in R? and the linear pro-
jected problem

bss + P + f(w(t))d + g(t,s) = c(s)w'(t)

where ¢(s) = %

/ o(s,)w'(t)dt =0, VseR

and under the orthogonally condition

Basic ingredient: (Even more general) Consider the problem in R™ x
R, with variables (y,t):

Ayp+ oy + f(w(t)p =0, ¢ e L=(R™ xR)

If ¢ is a solution of the above problem then o(y,t) = aw'(t) Some
o € R. Ingredient: 3y > 0: [ p/( (w(t))p(t)* > v [z P
for all p € H' with [, pw’ = 0. ¢ fR ®?*(y,t)dt. This is Well

defined (as we will see) Indeed: It turns out that |¢(y,t)] < Ce 7,
o < /2, thanks to the fact that ¢ € L>. We use z = (y,t) and we
obtain

App— (2= 3(1 —w(t)*)¢ =0
Observe that 1 —w(t)? is small if [t| > 1. Fix 0 < o < v/2, for [t| > Ry
we have 2 — 3(1 — w?(t)) > o2. Let

Qgp(y, t) = pz cosh(oy;) + pcosh(at) + ||¢||0060R06—0\t|.

i=1
We have that B
¢(y7t) S ¢p(y>t)7 for ’t‘ = RO
also true that for |t| + |y| > R, > 1, ¢(y,t) < QBP.
S+ (2 3(1— ()G = (2 0% — 31— w(t))d,) > 0

for |t| > Ry. So is a supersolution of the operator

—Dpd+ (2= 31— w(t)*)e
in D,, which implies that ¢ < ¢, for |t| > Ro. This implies that
|p(x)| < C¢, for all z, and we conclude the assertion taking p — 0. If
¢ solves —Ap+(1—3w?)¢ = 0, then ||¢]|c2a (Bi(20)) < C|@] Lo (Bs(0))-
This implies that also

|¢y| + |¢yy| < Ce ",

Let 8(7,1) = 3(y 1) — LADEOT 1 e call (y) = Lewnutrie

AG+ f'(w)d = A+ ['(w)d + (A, B)w + B(Aw + f'(w))w' =0
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because A, 3 = 0 by integration by parts. Let ¢(y) = [; P2dt.

Ay = / (209,0)dt =2 [ 1V, dt+2 / 68,6 =2 [ 1V,07 2 [ dléut s tw)dlat

Using 2 [ |V, 0[%dt + 2 [( ¢? — f'(w)$?) This implies that At > 21
which implies —Ay + 279 <0,0<¢ <c.

We obtain that v» = 0 and this implies ¢ = 0. This implies that

= ([ puw')w' = B(y)w' and AS = 0, 3 € L*. Liouville implies

that 3 = constant so ¢ = constantw’'.

Lemma: L* a priori estimates for the linear projected problem:
3C : [9llo < Cllglloo.

Proof: If not exists ||gn|lcc — 0 and ||¢y |l = 1.

L[gbn] = —Ggnt Cn(t>w/(t) = hn(t)
and h,, — 0in L*. ||¢,|| = 1 which implies that I(y,,t,): |O(Yn, tn)| >
v > 0. Assume that |t,| < C and define ¢(y,t) = ¢p(yn + y,t). Then
A¢n + f/(w(t))¢n = hy

but f'(w(t)), is uniformly bounded and the right hand side goes to 0.
This implies that |[¢[|c1gm+1) < C This implies that ¢n — ¢ passing
to subsequence, and the convergence is uniformly on compacts, where
A¢ + f'(w)p =0, ¢ € L®. We conclude after a classic argument that
¢ = 0. We have also that ||e” ¢ < C|le”!g||s0, 0 < o < /2. Elliptic
regularity implies that ||e?l@||c2.0 < [le7flg]|co.0.

Existence: Assume g has compact support and take the weak for-
mulation: Find ¢ € H such that [g,.., VoV — f'(w)¢p = [ gy, for
all v € H, where H = {f € H'(R™")| [yw'dt = 0,Yy € R™}.
Let us see that a(y,v) = [|Vy]? — f(w)y? > v [¢* + 2 So
a(,y) > C ||1/}||§{1(Rm+1) This implies the unique existence solution.
Observe that

/ (Ad+ f/(w)p+ g)p = 0

for all » € H. Let 1 € H' and ¢ = ) — fwﬁw:H@yW@mm

that
/dy/gﬂ P)dt = /()w

which implies that II(A¢ + f'(w)¢ + ¢g) = 0 if and only if A¢ +
flw)y+o+g= W}rf—(w Regularity implies that ¢ € L* and

|6]loe < C|g]|oo- Approximating g € L™ by gr € C°(RY) locally over
compacts. This implies existence result.



8 MANUEL DEL PINO AND JUNCHENG WEI

We can bound ¢ in other norms. For example if 0 < o < /2, then
170 ]|oe < Clle” " g]|oc-
Indeed, f'(w) < —0? —nif [t| > R, with n = (2 — 0?)/2. We set

¢=Me M4 p Z cosh(oy;) + pcosh(ot).
i=1

Therefore

D¢+ (—f'(w)p > —0d + (0® +n)dp =nd > § = —g + c(y)w'(t)
if M > 2]eMglloe. Tn addition we have ¢ > ¢ on [t| = R if M >
|6]|oe”®. By an standard argument based on maximum principle, we
conclude that ¢ < ¢. This means, letting p — 0, ¢ < Me " where
M > Cmax{|[¢[lc, [lge” | }. Since [[¢]c < Cllglloc < Cllge” o,
we can take M = C/||ge?||. Finally, we conclude ||¢e”!! || < [lge”™||oo.

Reminder: If A¢ = p implies that

IVl o510 < CllIGl Lo By0) + 1Pl 22 (8101
Remember that
[pllco.eiay = [[Plloo + [¢lo.a,a

where [¢]o.a,4 = SUD,, 4oe A 20 %. Also we have the following
interior Schauder estimate: for 0 < a < 1

19llc2.o(Br) < ClllBllLoe(Bo(0)) + l|2llcoa(Ba0))]-

Conclusion: If ¢ solves the equation in R™"! then

||¢||C’2va(R"+1) < OHQH@O,a(RnH).
Sketch of the proof of this fact: Fix g € R™! then

Cloloasiw) < VOl (B < Cllldlloc +[glloc] < Cllglloo
This implies that ||¢||co.e(B, () < C|lg]|, Which implies ||p||co.@n) <

Cllglleo- Clearly [[pllco.a(Byaa)) < Cllglloos 50 |9llcoa (s, (20)y < Cligllcoamn+ry,
from where we deduce the estimate.
We also get

e llcnanety < ClleMglcongamn.

The proof of this fact is very similar to the previous one (use that
g S eiU‘tO‘”geolt‘”’ fOI‘ |t0| >> ]_)
Another result is the following

11+ [y 26l < CI+ [y ?glloo

In order to prove this result we define p(y) = (1+|y|*) and we consider

¢ = p(dy)p. Observe that
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Ap = p~ DG = 20VOV (7 (8y)) + 60*A(p™")(dy) = f'(w) + g — cu
We get L[@] + O(62)p + O(6)Vd = p(g — cw’). We get
IV lloo + [8]lo0 < CL0%]1 100 + 8]V lloo + ll0gloc]-

If § is small we conclude that

[16llo + IVl < Clpglloc
and we obtain

1p8]|C < [lpgll.
Our setting:

(1.3) 52[5u—|—%-Vu]+f(u) =0

We want a solution to (1.3) u.(z) ~ W(z/e). Writing z = y + 27(y),
|z| < J, we have
Av+ Va(ex)/a- Vv + f(v) =0,

in . = 1" 2 = y + zv(ey), which means z = Ly(es) + zv(es).
Remember that |¥(5)| = 1 which implies ©(8) = —k(5)¥(5). We also set
z=h(es)+t. & =1y(es)+ (t+h(es))v(es). We assume ||h][q,00) < 1,
for 0 < o < 1. We wrote A, in terms of this coordinates (¢, s) and the
equations S(v) = 0 is rewritten taking as first approximation w(t). We

evaluated S(w(t)) and got that S(w(t)) = 0.
From the expression of A, we get (z = 1v(es) + (t + h(es))v(es))
AI/U = ass + 8tt + €[bi(t, S)ass + b‘;@tt + bgast + biat + bgas]

leb;| < C0 in the region |t| < §/e. The coefficients are periodic (same
values at s = 0 and s = [/¢). Our equation reads

Ossv + Oyv + B.v] + f(v) =0, for s e (0,l/¢e),|t] <d/e.

This expression does not make sense globally. We consider § < 1. We
define

—1 in Q%
H(z) :{ +1 i Q5

where QF is a bounded component of R* \ I', and Q¢ the other. For
the equation

\%
Av—l—e—a-Vv—l—f(v) =0
a
we take as first (global) approximation

vo(z) = w(t)ns + (1 —nu)H(x)
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where

m(z) = { U <%> if |t| < 20l/e

0 otherwise

Look for a solution of the form v = vy + ¢, so
DG+ Vg [ (0)d 4+ B+ N(@) =0
where E = S(vg) and N(¢) = f(vo + &) — f(vo) — f"(v0)o.

We write ¢ = n3¢ + 1. We require that ¢ and ¢ solve the system

A= 20 (24(00)) (L= Ve~ (1) B (L) N (156 +0) + ViV 64 Vs Ve

n3 | Apd 4 f'(w(t)d +m 2+ f(wt)yY +mE +mN(o+ ) +€%-V¢ = 0.

We need that the ¢ above satisfies the equation just for |t| < 65/c. We
assume that ¢(s,t) is defined for all s and ¢ (and it is [/e- periodic in
s). We require that ¢ satisfies globally

G+ bas +116Be [+ [ (w(t)) o +mE+mN (¢ +¢) +m 2+ f(w))y =0
and ¢ € L*(Rn + 1) and periodic in s. Notice that ¢+ ¢ss+16Be[p] =
A, ¢ inside the support of 3. Rather than solving this problem directly
we solve the projected problem

(1.4)

Ot Gsst s Be [0+ [ (w(t)) p+m E+mN (o+)+m (2+f'(w))ih = c(s)w'(t)
and [, ow'(t)dt = 0. We solve (1)-(1.4) first, then we find h such
that ¢(s) = 0. We consider ¢ with ||¢]|e + [[V@||eo < &. The operator
— At +24 is invertible L*(R3) — C*(R?). We conclude that if g € L™
the exist a unique solution ¢ = T'[g] € C'(R?) with ||¢||c1 < C/|g]|eo of
equation —A + 2¢) = g in R%. Observe that (1) is equivalent to

0 =TI+ (00)) (L= Vi (L) B+ (1) N (s +0)+ ViV 64 Vg Ve

Using contraction mapping in C' on [[¢||cn < Ce, we conclude that
there exist a unique solution of the this problem ¢ = 1 (¢, h) such that
1]l < Cle* + ellgll ).

Even more, [[¢(¢1,h) — ¢¥(d2,h)|lcr < Cellpr — ¢alcr.



