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1. Back to Allen Cahn in R2

We consider the functional

J(u) =

∫

R2

(
ε2 |∇u|2

2
+

(1− u2)2

4

)
a(x)dx.

Critical points of J are solutions of

ε2div(a(x)∇u) + a(x)(1− u2)u = 0,

where we suppose 0 < α ≤ a(x) ≤ β. This equation is equal to

(1.1) ε2∆u + ε2∇a

a
(x)∇u + (1− u2)u = 0.

Using the change of variables v(x) = u(εx), we find the equation

(1.2) ∆v + ε
∇a

a
(x)∇v + (1− v2)v = 0.

We will study the problem: Given a curve Γ in R2 we want to find a
solution uε(x) to (1.1) such that uε(x) ≈ w( z

ε
), for points x = y+zν(y),

y ∈ Γ, |z| < δ, where ν(y) is a vector perpendicular to the curve and
w(t) = tanh( t√

2
), which solves the problem

w′′ + (1− w2)w = 0, w(±∞) = ±1.

First issue: Laplacian near Γ, which we will consider as smooth as we
need.

Assume: Γ is parametrized by arc-length

γ : [0, l] → R2, s → γ(s), |γ̇(s)| = 1, l = |Γ|.
Convention: ν(s) inner unit normal at γ(s). We have that |ν(s)|2 = 1,
which implies that 2νν̇ = 0, so we take ν̇(s) = −k(s)γ̇(s), where k(s)
is the curvature.

Coordinates: x(s, t) = γ(s) + zν(s), s ∈ (0, l) and |z| < δ. If we

take a compact supported function ψ(x) near Γ, and we call ψ̃(s, z) =

ψ(γ(s) + zν(s)), then ∂ψ̃
∂s

= ∇ψ · [γ̇ + zν̇] = (1 − kz)∇ψ · γ̇ and ∂ψ̃
∂t

=
1
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∇ψ · ν. Observe that ∇ψ = (∇ψ · γ̇)γ̇(∇ · ν)ν. This means that

∇ψ = 1
1−kz

∂ψ̃
∂s

γ̇ + ∂ψ̃
∂z

ν, and |∇ψ|2 = 1
(1−kz)2

|ψ̃s|2 + |ψ̃z|2. Then

∫

R2

|∇ψ(x)|2dx =

∫∫ (
1

(1− kz)2
|ψ̃s|2 + |ψ̃z|2

)
(1− kz)dsdz

ψ → ψ + tϕ and differentiating at t = 0 we get
∫
∇ψ∇ϕdx =

∫∫
1

(1− kz)
ψ̃sϕ̃s + ψ̃zϕ̃z(1− kz)dsdz

So

−
∫

∆ψϕdx = −
∫∫

1

(1− kz)

((
1

(1− kz)
ψ̃s

)

s

+ (ψ̃z(1− lz))z

)
ϕ̃(1−kz)dsdz

then

∆ψ̃ =
1

(1− kz)

∂

∂s
(

1

1− kz
ψ̃s) + ψ̃zz − k

1− kz
ψ̃z

We just say

∆ψ̃ =
1

1− kz
(

1

1− kz
ψs)s + ψzz − k

1− kz
ψz

Near Γ (x = γ(s) + zν(s)), we have the new equation for u → ũ(s, z)

S[u] = ε2 1

1− kz
(

1

1− kz
us)s+ε2uzz+(1−u2)u− ε2k

1− kz
uz+

ε2

1− kz

as

a
us+

ε2

1− kz

az

a
uz = 0

we want a solution u(s, z) ≈ w( z
ε
).

S[w(
z

ε
)] = ε[

az

a
− k(s)

1− k(s)z
]w′(

z

ε
)

The condition we ask (geodesic condition) is az

a
(s, 0) = k(s). In v

language we want

∆v + ε
∇a

a
(εx) · ∇v + f(v) = 0

transition on Γε = 1
ε
Γ. we use coordinates relative to Γε rather than Γ

Xε(s, z) =
1

ε
γ(εs) + zν(εs), |z| < δ/ε

Laplacian for coordinates relative to Γε are

∆ψ =
1

(1− εk(εs)z)

(
1

(1− εk(εs)z)
vs

)

s

+ψzz− εk(εs)

(1− εk(εs)z)
+ε

as

a

1

(1− εk(εs)z)2
vs+ε

az

a
vz+f(v) = 0

where we use the computation ∂γ(εs)
∂s

= −k(ε)γ̇ε(s), where kε = εk(εs)
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Hereafter we use s̃ instead of s and z̃ instead of z̃. Observation: The
operator is closed to the Laplacian on (s̃, z̃) variables, at least on the
curve Γ, if we assume the validity of the relation

az̃(s̃, 0) = k(s̃)a(s̃, 0), ∀s̃ ∈ (0, l).

We can write this relation also like ∂νa = ka on Γ (Geodesic condition).
This relation means that Γ is a critical point of curve length weighted
by a. Let La[Γ] =

∫
Γ
adl. Consider a normal perturbation of Γ, say

Γh := {γ(s̃) + h(s̃)ν(s̃)|s̃ ∈ (0, l)}, ‖h‖C2(Γ) ¿ 1. We want: first
variation along this type of perturbation be equal to zero. This is

DLa[Γh]|h=0 = 0

This means
∂

∂λ
L[Γλh]|h=0 = 0

or just 〈DL(Γ), h〉 = 0 for all h. Observe that

L(Γλh) =

∫ l

0

a(γ(s̃) + h(s̃)ν(s̃)) · |γ̇(s̃)λh|ds̃

and also γ̇λh(s̃) = γ̇(s̃) + λḣν + λhν̇, and ν̇ = −kγ̇. With the taylor
expansion

(1−2kλh+λ2k2h2+λ2ḣ2)1/2 = 1+
1

2
(−2kλh+λ2k2h2+λ2ḣ2)−1

8
4k2λ2h2+O(λ2h3)

and

a(γ( ˜(s))+λh(s̃ν(s̃)) = a(s̃, λh(s̃)) = a(s̃, 0)+λaz̃(s̃, 0)h(s̃)+
1

2
λ2az̃z̃(s̃, 0)h(s̃)2+O(λ3h3).

we conclude

Lh[Γλh] = La(Γ) = λ

∫ l

0

(−ka+az̃)(s̃, 0)h(s̃)ds̃+λ2

∫ l

0

(a
ḣ2

2
+az̃k

2h2+
1

2
az̃z̃h

2)+O(λ3h3)

This tells us:

∂

∂λ
Lh[Γλh]|λ=0 = 0 ⇔ k(s̃)a(s̃, 0) = az̃(s̃, 0),

the geodesic condition. Also we conclude that

∂2

∂λ2
L(Γλh)|λ=0 =

∫ l

0

(aḣ2−2k2a+az̃z̃h
2)ds̃ = −

∫ l

0

(a(s̃, 0)ḣs̃)′h+(2a(s̃, 0)k2−az̃z̃(s̃, 0)h)h

This can be expressed as D2L(Γ) = Ja, which means D2L(Γ)[h]2 =

− ∫ l

0
Ja[h]h. Ja[h] is called the Jacobi operator of the geodesic Γ. As-

sumption: Ja is invertible.
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We assume that if h(s̃), s̃ ∈ (0, l) is such that h(0) = h(l), ḣ(0) = ḣ(l)
and Ja[h] = 0 then h ≡ 0. Ker(Ja) = {0}, in the space of l−periodic
C2 functions. This implies (exercise) that the problem

Ja[h] = g, g ∈ C(0, l), g(0) = g(l), h(0) = h(l), ḣ(0) = ḣ(l)

has a unique solution φ. Moreover ‖φ‖C2,α(0,l) ≤ C‖g‖Cα(0,l).
Remember that the equation in coordinates (s, z) is

E(v) =
1

(1− εk(εs)z)

(
1

(1− εk(εs)z)
vs

)

s

+ vzz − εk(εs)

(1− εk(εs)z)
vz+

ε
as̃

a

1

(1− εk(εs)z)2
vs + ε

az̃

a
vz + f(v) = 0

Change of variables: Fix a function h ∈ C2,α(0, l) with ‖h‖ ≤ 1 and do
the change of variables z − h(εs) = t and take as first approximation
v0 ≡ w(t). Let us see that v0(s, z) = w(z − h(εs)) so

E(v0) =
1

1− εkz
(

1

1− εkz
w′(−ḣ(εs, εz))s + w′′ + f(w)

+ε(
az̃

a
(εs, εz)− k(εs)

1− k(εs)εz
)w′ − εḣ

ε

(1− εkz)2

as̃

a
w′

Error in terms of coordinates (s, t) z = t + h(εs):

E(v0)(s, t) = εw′(t)
[
az̃

a
(εs, ε(t + h))− k(εs)

1− k(εs)(t + h)ε

]
− ε2w′

(1− kε(t + h))2
h′′

+
1

(1− kε(t + h))2
w′′ḣ2ε2− 1

(1− εk(t + h))3
ε2k̇(t+h)ḣw′(t)−εḣ

ε

(1− εkz)2

as̃

a
w′

In fact

|E(v0)(t, s)| ≤ Cε2e−σ|t|

σ < 1, and

‖eσ|t|E(v0)‖C0,α(|t|< δ
ε
) ≤ Cε2

Formal computation: We would like
∫ δ/ε

−δ/ε
E(v0)(s, y)w′(t)dt ≈ 0. Ob-

serve that

−ε2h′′(εs)
∫

|t|<δ/ε

w′2

(1− kε(t + h))
= −ε2h′′

∫

R
w′2dt + O(ε3)

Also

ḣ2ε2

∫
1

1− εk(t + h)
w′′w′dt = 0 + O(ε3).

ε2ḣ

∫
as

a
(εs, ε(t+h))w′2/(1+ kε(t+h))2 = ε2ḣ

as̃

a
(εs, 0)

∫
w′2 +O(ε3)
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and finally

ε

∫

|t|<δ/ε

w′2(
az̃

a
(εs, ε(t+h))− k(εs)

1− k(εs)(t + h)ε
) = ε2

∫

R
w′(t)2(ε2)((

az̃

a
)(εs, 0)−k2)h(εs)+O(ε3).

Then

− ∫
Ew′dt

ε2
∫

w′2 = h′′ + h′
as̃

a
− (

(az̃

a

)
z̃
(εs, 0)− k2)h + O(ε)

we call s̃ = εs, and we conclude that the right hand side of the above
equality is equal to

1

a(s̃, 0)
((a(s̃, 0))h′(s̃)′ + (2k2a(s̃, 0)− az̃z̃(s̃, 0))h) + O(ε)

and this is equal to
1

a(s̃, 0)
(Ja[h] + O(ε))

We need the equation for v(s, z) = ṽ(s, z − h(εs)). We have

∂v

∂s
=

∂ṽ

∂s
− ∂ṽ

∂t
ḣε

We write z = t + h, so we have

S(ṽ) =
1

(1− εkz)
(

∂

∂s
− εḣ

∂

∂t
)[

1

1− εk(t + h)
(

∂

∂s
− εḣ

∂

∂t
)]ṽ + ṽtt

ε[− k

1− εkz
+

az̃

a
]ṽt + ε

as̃

a

1

1− kεz

2

[ṽs − εḣṽt] + f(ṽ) = 0

The first term of this equation is equal to

1

1− εkz
{ε(εk̇(t + h) + εkḣ)

(1− εk(t + h))2
(ṽs−εḣvt)+

1

1− kε(t + h)
(−ε2h′′vt−2εḣṽts)+

1

1 + εk(t + h)
ṽss}

−εḣ{ εk

(1− εk(t + h))2
(ṽs − εḣṽt) +

1

1− εk(t + h)
(−εḣṽtt)}+ f(ṽ) = 0

Let us observe that for |t| < δ/ε, δ ¿ 1

S[ṽ](s, t) = ṽss+ṽtt+O(ε)∂tsṽ+O(ε̃)∂ttṽ+O(εk(|t|+1))∂ssṽ+O(ε)∂tṽ+O(ε)∂sṽ+f(v) = 0

We will call the operator that appears in the equation B[ṽ]. We look
for a solution of the form ṽ(s, t) = w(t) + φ(s, t). The equation for φ is

φss + φtt + f ′(w(t))φ + E + B(φ) + N(φ) = 0, |t| < δ/ε

where E = S(w(t)) = O(ε2e−σt), N(φ) = f(w + φ) − f(w) − f ′(w)φ,
s ∈ (0, l/ε). We use the notation L(φ) = φss +φtt + f ′(w(t))φ. We also
need the boundary condition φ(0, t) = φ(l/ε, t) and φs(0, t) = φs(l/ε, t).
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It is natural to study the linear operator in R2 and the linear pro-
jected problem

φss + φtt + f ′(w(t))φ + g(t, s) = c(s)w′(t)

where c(s) =
∫
R g(t,s)w′(t)dt∫
R w′(t)2dt

and under the orthogonally condition
∫ ∞

−∞
φ(s, t)w′(t)dt = 0, ∀s ∈ R

Basic ingredient: (Even more general) Consider the problem in Rm×
R, with variables (y, t):

∆yφ + φtt + f ′(w(t))φ = 0, φ ∈ L∞(Rm × R)

If φ is a solution of the above problem, then φ(y, t) = αw′(t) some
α ∈ R. Ingredient: ∃γ > 0 :

∫
R p′(t)2 − f ′(w(t))p(t)2 ≥ γ

∫
R p2(t)dt

for all p ∈ H1 with
∫
R pw′ = 0. ψ(y) =

∫
R φ2(y, t)dt. This is well

defined (as we will see) Indeed: It turns out that |φ(y, t)| ≤ Ce−σt,
σ <

√
2, thanks to the fact that φ ∈ L∞. We use x = (y, t) and we

obtain

∆xφ− (2− 3(1− w(t)2))φ = 0

Observe that 1−w(t)2 is small if |t| À 1. Fix 0 < σ <
√

2, for |t| > R0

we have 2− 3(1− w2(t)) > σ2. Let

φ̄ρ(y, t) = ρ

n∑
i=1

cosh(σyi) + ρ cosh(σt) + ‖φ‖∞eσR0e−σ|t|.

We have that

φ(y, t) ≤ φ̄ρ(y, t), for |t| = R0

also true that for |t|+ |y| > Rρ À 1, φ(y, t) ≤ φ̄ρ.

−∆xφ + (2− 3(1− w(t)2))φ̄ = (2− σ2 − 3(1− w(t)2)φ̄ρ) > 0

for |t| > R0. So is a supersolution of the operator

−∆xφ + (2− 3(1− w(t)2))φ

in Dρ, which implies that φ ≤ φ̄ρ for |t| > R0. This implies that
|φ(x)| ≤ Cφ̄ρ for all x, and we conclude the assertion taking ρ → 0. If
φ solves −∆φ+(1−3w2)φ = 0, then ‖φ‖C2,α(B1(x0)) ≤ C‖φ‖L∞(B2(x0)).
This implies that also

|φy|+ |φyy| ≤ Ce−σt.

Let ˜φ(y, t) = φ(y, t)−
∫

φ(y,τ)w′(τ)dτ∫
w′2 w′. We call β(y) =

∫
φ(y,τ)w′(τ)dτ∫

w′2

∆φ̃ + f ′(w)φ̃ = ∆φ + f ′(w)φ + (∆yβ)w′ + β(∆w′ + f ′(w))w′ = 0
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because ∆yβ = 0 by integration by parts. Let ψ(y) =
∫
R φ̃2dt.

∆yψ =

∫

R
∇y(2φ̃∇yφ̃)dt = 2

∫
|∇yφ̃|2dt+2

∫
φ̃∆yφ̃ = 2

∫
|∇yφ̃|2−2

∫
φ̃[φ̃tt+f ′(w)φ̃]dt

Using 2
∫ |∇yφ̃|2dt + 2

∫
(φ̃2

t − f ′(w)φ̃2) This implies that ∆ψ ≥ 2γψ
which implies −∆ψ + 2γψ ≤ 0, 0 ≤ ψ ≤ c.

We obtain that ψ ≡ 0 and this implies φ̃ = 0. This implies that
φ(t) = (

∫
φw′)w′ = β(y)w′ and ∆β = 0, β ∈ L∞. Liouville implies

that β = constant so φ = constantw′.
Lemma: L∞ a priori estimates for the linear projected problem:

∃C : ‖φ‖∞ ≤ C‖g‖∞.
Proof: If not exists ‖gn‖∞ → 0 and ‖φn‖∞ = 1.

L[φn] = −gn + cn(t)w′(t) = hn(t)

and hn → 0 in L∞. ‖φn‖ = 1 which implies that ∃(yn, tn): |φ(yn, tn)| ≥
γ > 0. Assume that |tn| ≤ C and define φ̃(y, t) = φn(yn + y, t). Then

∆φ̃n + f ′(w(t))φ̃n = h̃n

but f ′(w(t))φ̃n is uniformly bounded and the right hand side goes to 0.

This implies that ‖φ‖C1(Rm+|) ≤ C This implies that φ̃n → φ̃ passing
to subsequence, and the convergence is uniformly on compacts, where
∆φ̃ + f ′(w)φ̃ = 0, φ̃ ∈ L∞. We conclude after a classic argument that

φ̃ = 0. We have also that ‖eσ|t|φ‖∞ ≤ C‖eσ|t|g‖∞, 0 < σ <
√

2. Elliptic
regularity implies that ‖eσ|t|φ‖C2,σ ≤ ‖eσ|t|g‖C0,σ .

Existence: Assume g has compact support and take the weak for-
mulation: Find φ ∈ H such that

∫
Rm+1 ∇φ∇ψ − f ′(w)φψ =

∫
gy, for

all ψ ∈ H, where H = {f ∈ H1(Rm+1)| ∫R ψw′dt = 0, ∀y ∈ Rm}.
Let us see that a(ψ, ψ) =

∫ |∇ψ|2 − f ′(w)ψ2 ≥ γ
∫

ψ2 + ψ2. So
a(ψ, ψ) ≥ C‖ψ‖2

H1(Rm+1) This implies the unique existence solution.

Observe that ∫
(∆φ + f ′(w)φ + g)ψ = 0

for all ψ ∈ H. Let ψ ∈ H1 and ψ = ψ̃ −
∫

ψ̃w′dt∫
w′2 w′ = Π(ψ̃). We have

that ∫
dy

∫
gΠ(ψ̃)dt =

∫
Π(g)ψ

which implies that Π(∆φ + f ′(w)φ + g) = 0 if and only if ∆φ +

f ′(w) + φ + g =
∫
(∆φ+f ′(w)+g)∫

w′2 w′ Regularity implies that φ ∈ L∞ and

‖φ‖∞ ≤ C‖g‖∞. Approximating g ∈ L∞ by gR ∈ C∞
c (RN) locally over

compacts. This implies existence result.
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We can bound φ in other norms. For example if 0 < σ <
√

2, then

‖eσ|t|φ‖∞ ≤ C‖eσ|t|g‖∞.

Indeed, f ′(w) < −σ2 − η if |t| > R, with η = (2− σ2)/2. We set

φ̄ = Me−σ|t| + ρ

n∑
i=1

cosh(σyi) + ρ cosh(σt).

Therefore

−∆φ̄ + (−f ′(w))φ̄ ≥ −δφ̄ + (σ2 + η)φ̄ = ηφ̄ > g̃ = −g + c(y)w′(t)

if M ≥ A
η
‖eσ|t|g‖∞. In addition we have φ̄ ≥ φ on |t| = R if M ≥

‖φ‖∞eσR. By an standard argument based on maximum principle, we
conclude that φ ≤ φ̄. This means, letting ρ → 0, φ ≤ Me−σ|t|, where
M ≥ C max{‖φ‖∞, ‖geσ|t|‖∞}. Since ‖φ‖∞ ≤ C‖g‖∞ ≤ C‖geσ|t|‖∞,
we can take M = C‖geσ|t|‖∞. Finally, we conclude ‖φeσ|t|‖∞ ≤ ‖geσ|t|‖∞.

Reminder: If ∆φ = p implies that

‖∇φ‖L∞(B1(0)) ≤ C[‖φ‖L∞B2(0) + ‖p‖L∞(B1(0))].

Remember that
‖p‖C0,α(A) = ‖p‖∞ + [φ]0,α,A

where [φ]0,α,A = supx1,x2∈A,x1 6=x2

|p(x1)−p(x2)|
|x1−x2|α . Also we have the following

interior Schauder estimate: for 0 < α < 1

‖φ‖C2,σ(B1) ≤ C[‖φ‖L∞(B2(0)) + ‖p‖C0,α(B2(0))].

Conclusion: If φ solves the equation in Rn+1 then

‖φ‖C2,α(Rn+1) ≤ C‖g‖C0,α(Rn+1).

Sketch of the proof of this fact: Fix x0 ∈ Rn+1, then

C[φ]0,α,B1(x0) ≤ ‖∇φ‖L∞(B1(x0)) ≤ C[‖φ‖∞ + ‖g‖∞] ≤ C‖g‖∞
This implies that ‖φ‖C0,α(B1(x0)) ≤ C‖g‖∞, which implies ‖φ‖C0,α(Rn) ≤
C‖g‖∞. Clearly ‖p‖C0,α(B2(x0)) ≤ C‖g‖∞, so ‖φ‖C0,α(B1(x0)) ≤ C‖g‖C0,α(Rn+1),
from where we deduce the estimate.

We also get

‖eσ|t|φ‖C2,α(Rn+1) ≤ C‖eσ|t|g‖C0,α(Rn+1).

The proof of this fact is very similar to the previous one (use that

g ≤ e−σ|t0|‖geσ|t|‖, for |t0| À 1).
Another result is the following

‖(1 + |y|2)µ/2φ‖∞ ≤ C‖(1 + |y|2)µ/2g‖∞
In order to prove this result we define ρ(y) = (1+ |y|µ) and we consider

φ̃ = ρ(δy)φ. Observe that
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∆φ = ρ−1∆φ̃− 2δ∇φ̃∇(ρ−1(δy)) + φ̃δ2∆(ρ−1)(δy) = f ′(w)φ + g − cw′

We get L[φ̃] + O(δ2)φ̃ + O(δ)∇φ̃ = ρ(g − cw′). We get

‖∇φ̃‖∞ + ‖φ̃‖∞ ≤ C[δ2‖φ̃‖∞ + δ‖∇φ̃‖∞ + ‖ρg‖∞].

If δ is small we conclude that

‖φ̃‖∞ + ‖∇φ̃‖∞ ≤ C‖ρg‖∞
and we obtain

‖ρφ‖C ≤ ‖ρg‖.
Our setting:

(1.3) ε2[δu +
∇a

a
· ∇u] + f(u) = 0

We want a solution to (1.3) uε(x) ≈ W (z/ε). Writing x = y + zγ(y),
|z| < δ, we have

∆v +∇a(εx)/a · ∇v + f(v) = 0,

in Γε = 1
ε
Γ: x = y + zν(εy), which means x = 1

ε
γ(εs) + zν(εs).

Remember that |γ̇(s̃)| = 1 which implies ν̇(s̃) = −k(s̃)γ̇(s̃). We also set
z = h(εs)+ t. x = 1

ε
γ(εs)+ (t+h(εs))ν(εs). We assume ‖h‖α,(0,l) ≤ 1,

for 0 < α < 1. We wrote ∆x in terms of this coordinates (t, s) and the
equations S(v) = 0 is rewritten taking as first approximation w(t). We
evaluated S(w(t)) and got that S(w(t)) = 0.

From the expression of ∆x we get (x = 1
ε
γ(εs) + (t + h(εs))ν(εs))

∆xv = ∂ss + ∂tt + ε[bε
1(t, s)∂ss + bε

2∂tt + bε
3∂st + bε

4∂t + bε
5∂s]

|εbi| ≤ Cδ in the region |t| < δ/ε. The coefficients are periodic (same
values at s = 0 and s = l/ε). Our equation reads

∂ssv + ∂ttv + Bε[v] + f(v) = 0, for s ∈ (0, l/ε), |t| < δ/ε.

This expression does not make sense globally. We consider δ ¿ 1. We
define

H(x) =

{ −1 in Ωε
−

+1 in Ωε
+

where Ωε
+ is a bounded component of R2 \ Γ, and Ωε

− the other. For
the equation

∆v + ε
∇a

a
· ∇v + f(v) = 0

we take as first (global) approximation

v0(x) = w(t)η3 + (1− η4)H(x)
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where

ηl(x) =

{
η

(
ε|t|
lδ

)
if |t| < 2δl/ε

0 otherwise

Look for a solution of the form v = v0 + φ̃, so

∆xφ̃ + ε
∇a

a
· ∇φ̃ + f ′(vo)φ̃ + E + N(φ̃) = 0

where E = S(v0) and N(φ̃) = f(v0 + φ̃)− f(v0)− f ′(v0)φ̃.

We write φ̃ = η3φ + ψ. We require that φ and ψ solve the system

∆xψ−2ψ+(2+f ′(v0))(1−η1)ψ+ε
∇a

a
∇ψ+(1−η1)E+(1−η1)N(η3φ+ψ)+∇η3∇φ+∇η3∇φ+ε

∇a

a
∇η3φ = 0

η3

[
∆xφ + f ′(w(t))φ + η1(2 + f ′(w(t)))ψ + η1E + η1N(φ + ψ) + ε

∇a

a
· ∇φ

]
= 0.

We need that the φ above satisfies the equation just for |t| < 6δ/ε. We
assume that φ(s, t) is defined for all s and t (and it is l/ε- periodic in
s). We require that φ satisfies globally

φtt +φss +η6Bε[φ]+f ′(w(t))φ+η1E +η1N(φ+ψ)+η1(2+f ′(w))ψ = 0

and φ ∈ L∞(Rn + 1) and periodic in s. Notice that φtt+φss+η6Bε[φ] =
∆xφ inside the support of η3. Rather than solving this problem directly
we solve the projected problem
(1.4)
φtt+φss+η6Bε[φ]+f ′(w(t))φ+η1E+η1N(φ+ψ)+η1(2+f ′(w))ψ = c(s)w′(t)

and
∫
R φw′(t)dt = 0. We solve (1)-(1.4) first, then we find h such

that c(s) ≡ 0. We consider φ with ‖φ‖∞ + ‖∇φ‖∞ ≤ ε. The operator
−∆ψ+2ψ is invertible L∞(R3) → C1(R2). We conclude that if g ∈ L∞

the exist a unique solution ψ = T [g] ∈ C1(R2) with ‖φ‖C1 ≤ C‖g‖∞ of
equation −∆ψ + 2ψ = g in R2. Observe that (1) is equivalent to

ψ = T [(2+f ′(v0))(1−η1)ψ+ε
∇a

a
∇ψ+(1−η1)E+(1−η1)N(η3φ+ψ)+∇η3∇φ+∇η3∇φ+ε

∇a

a
∇η3φ]

Using contraction mapping in C1 on ‖ψ‖C1 ≤ Cε, we conclude that
there exist a unique solution of the this problem ψ = ψ(φ, h) such that

‖ψ‖ ≤ C[ε2 + ε‖φ‖C1 ].

Even more, ‖ψ(φ1, h)− ψ(φ2, h)‖C1 ≤ Cε‖φ1 − φ2‖C1 .


