INFINITE TIME BUBBLING FOR THE SU(2) YANG-MILLS

HEAT FLOW ON R*
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ABSTRACT. We investigate the long time behaviour of the Yang-Mills heat
flow on the bundle R* x SU(2). Waldron [44] proved global existence and
smoothness of the flow on closed 4—manifolds, leaving open the issue of the
behaviour in infinite time. We exhibit two types of long-time bubbling: first
we construct an initial data and a globally defined solution which blows-up
in infinite time at a given point in R*. Second, we prove the existence of
bubble-tower solutions, also in infinite time. This answers the basic dynamical
properties of the heat flow of Yang-Mills connection in the critical dimension
4 and shows in particular that in general one cannot expect that this gradient
flow converges to a Yang-Mills connection. We emphasize that we do not
assume for the first result any symmetry assumption; whereas the second result
on the existence of the bubble-tower is in the SO(4)-equivariant class, but
nevertheless new.
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1. INTRODUCTION

It is a classical topic in differential geometry to relate and understand the inter-
play between the geometry of submanifolds and the theory of vector bundles. For
example, in the seminal paper [38], Gang Tian exhibited a link between Yang-Mills
connections, which are critical points of the square of the L?-norm of the connec-
tion form on a vector bundle and calibrated minimal submanifolds. In the present
paper, motivated by recent global well-posedness results due to Waldron [44], we
investigate the long time behaviour of the Yang-Mills heat flow.

Let E — M be a vector bundle over a four dimensional Riemannian manifold
without boundary, with compact Lie group G as its structure group. Let T*M
be the cotangent bundle over M and for 1 < p < 4, let QP(M) be the bundle
of p—forms on M with T*M = Q'(M). A connection A on E can be given by
specifying a covariant derivative D4 from C*(E) into C*°(E ® Q'(M)). In a local
trivialization of the vector bundle F, the covariant derivative D4 writes

D:=Dy=d+ A,

where A = (A4 )q 18 a section of T* M ® g where g is the Lie algebra of G embedded
in a large unitary group, i.e. the connection A is a g—valued 1—form. The curvature
F4 of the connection A is given by the tensor D% : Q°(M) — Q2(M), which can
be formally written

Fy=F:=dA+ ANA.

For a connection A, the Yang-Mills functional is
1
YM(A) = 7/ |Fa|?da.
2 J/m

It is well known that the Fuler-Lagrange equation of Y M is then
D3Fs=0

where D% denotes the adjoint operator of D4 with respect to the Killing form of
G and the metric on M. By the second Bianchi identity, it holds that

DaFy =0.

A connection A is Yang-Mills if and only if it is a critical point of Y M, which then
is equivalent to the equation
D3 Fy =0.

In order to obtain Yang-Mills connections on any given bundle E, a natural ap-
proach is to deform a given connection along the negative gradient flow of Y M
which is given by the following evolution equation

0A

ot
starting from any initial connection Ag. This equation plays a fundamental role in
Donaldson’s work (see e.g. [12]).

A gauge transformation is a (sufficiently smooth) map S from M into G. The

gauge group acts on connections as

S(A):=8-A-S'—-ds-S7!

= —D*%Fy, (1.1)
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YM is gauge-invariant in the sense that Y M (S*(D)) = YM(D) for any gauge
transformation and any connection D = d + A. The Yang-Mills equation is there-
fore not elliptic, as the kernel of the linearized operator is infinite dimensionnal.
Similarly, the evolution problem (1.1) is not parabolic, and the methods developed
for parabolic equations cannot be directly applied to prove existence and uniqueness
for the Cauthy problem. For further background material on Yang-Mills equations,
we refer the interested readers to, for instance, [12], [14], [18], [22].

In the seminal work of Taubes [37], the Morse theory for Yang-Mills functional
was established. In [46], nonminimal solutions to the Yang-Mills equation with
group SU(2) on §?xS? and S! xS? are constructed. In [33] Gang Tian was interested
in a compactification of the moduli space of Yang-Mills connections, pursuing the
search of geometric invariants. To do so, one needs to consider singular Yang-
Mills connections, i.e. singular solutions of the PDE Dy Fy = 0 on M. In four
dimensions, it is known since the important work of Uhlenbeck [40,41] that Yang-
Mills connections are smooth up to a discrete set of points on M and that those
connections can be extended to the whole manifold, with a smaller L? norm of the
curvature form. In higher dimensions, the picture is more complicated and Tian [38]
proved that the blow-up set of Yang-Mills connections is closed and H™* rectifiable
where H™ is the m—Hausdorff measure. Thanks to the monotonicity of the rescaled
energy, one has the following bubbling phenomenon: given any sequence A; of
Yang-Mills connections, A; converges up to a subsequence and modulo a gauge
transformation to a Yang-Mills connection A, in the smooth topology outside of
a closed set of codimension at least 4. Furthermore, the energy concentrates in the
sense of measures:

|Faol*dvol — |Fa_ *dvol + OJH"|s.

oo ‘

The limiting connection A, is smooth on M \ S, © > 0 is called the multiplicity
and the set S is the blow-up locus of A;. The achievement of Tian is a deep
understanding of the blow-up locus and hence of the natural compactification of
the Yang-Mills connections in higher dimensions. He showed that the blow-up
locus is (n — 4)-rectifiable and if it arises as a special subclass of connections, then
it is a closed calibrated integral minimizing current, namely the generalized mean
curvature of S is equal to 0, see also [36]. We refers also the reader to the more
recent work by Naber and Valtorta [23].

Long time behavior of the Yang-Mills heat flow. As far as the flow (1.1)
is concerned, the theory is much less developed than its elliptic version. In [30],
the global existence and uniqueness of Yang-Mills flow over 2 or 3 dimensional
manifolds were proved. In spatial dimensions greater than 4, finite time blow-

up solutions were constructed in [24]. The behaviour of the Yang-Mills flow on
Riemannian manifolds of dimension four was not very well understood until recently.
The foundational work of Struwe [35] gives a global weak solution with finitely many

point singularities, in analogy with the harmonic map flow in dimension two. In [33],
Schlatter gave the exact formulation, the proofs of the blow-up analysis and the
long-time behaviour of the Yang-Mills flow in Theorem 2.4 of [35]. In [32], Schlatter
also proved the global existence of four dimensional Yang-Mills heat flow for small
data. Recently, the global well-posedness for any initial data was established by
Alex Waldron in [14] (see also [12,43]). The asymptotic behaviour and the structure
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of the singular set for the Yang-Mills heat flow in dimensions > 4 was analyzed
in [17].

It was already pointed out in [15] that the Yang-Mills heat flow on 4—manifolds
behaves similarly as the degree 2 harmonic map heat flow. In [34], Schlatter and
Struwe showed that the Yang-Mills heat flow of SO(4)-equivariant connections on
a SU(2)-bundle over a ball in R* admits a smooth solution for all times using
the super/sub solution method for two dimensional harmonic map flow developed
in [7]. The infinite time bubbling under radially symmetric assumptions was proved
in Chapter 4 of [42].

In this paper, we prove the existence of infinite time blow-up solutions on the
trivial bundle R* x SU(2) without symmetry assumptions. Even more, we also
prove the existence of bubble-tower solutions as ¢ — +o0. To state our result,
let us recall the well known BPST/ADHM instantons. We identify the field of
quaternions H

T=x1 + a2t + 23] + x4k € H

with elements of R*. Then the following algebraic properties hold:

P=2=k*=-1, ij=k=—ji, jk=i=—kj, ki=j=—ik
and
T = x1— 9l —x3] — T4k, |x\2 = x%+x§+x§+xi =x-T, Imzx=xi+x3j+14k.
It is well known that there is an isomorphism between the Lie algebra su(2) of the
structure group SU(2) and Im H. Note that

dr \Ndx = (dl’l + Zdl’g +]d’l}3 + k’dl‘4) AN (dl’l — Zdl’g - ]dl’g — kdIL’4)

= -2 [Z(d{El A diCQ + d(Eg A d4) +](d$1 AN d.’Eg + d£E4 VAN d2)
+k‘(dl‘1 Adxy + dxo A dg)}

forms a basis for a self-dual 2-form. Considering B(z) = Im(f(x,z)dz), it was
pointed out by Polyakov that, when f(z,z) = ﬁ, then B is nontrivial self-dual
instanton (a solution of the Yang-Mills equations) on the bundle E = R* x SU(2).
In this case, one has

x dx N dT
B =71 —dzx Fp=——-.
(=) m(1+ e “””) 5= T 2Py

See the references [2] and [5].
Our first result is the infinite time bubbling at one point for the flow (1.1):

Theorem 1. Let ¢ be a point in R*. There exist an initial datum Ag(x), Ag €
HY(R*) N C(R*) and smooth functions £(t) — q, 0 < p(t) — 0, as t — +oo, such
that the solution A(x,t) to (1.1) has the following form modulo a gauge transfor-
mation,

x —&(t)
pt)? + |z ¢
where A, (z) = —Im (ﬁdi). Ast — +oo, the differential 1-forms p(x,t) —

0 wniformly away from the blow-up point q. Moreover, the parameter u(t) decays
to 0 exponentially.

Az, t) = Ax(z) + Im ( (t)|2di") + o(x, 1), (1.2)
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In his thesis [42], Waldron proved the existence of infinite time blowing-up so-
lutions for (1.1) in the SO(4)-equivariant case. The method of [12] is based on the
scheme of Raphael and Schweyer [31]. The proof of Theorem 1 (and Theorem 2
below) is based on the inner-outer parabolic gluing method developed in [3] and [9];
we do not need the SO(4)-equivariant assumption in Theorem 1 and this is a main
achievement of our paper . Furthermore, we would like to emphasize that it was
believed that the Yang-Mills flow would be generally converging at +oo towards
a Yang-Mills connection. These constructions show that this is generally not the
case. Theorem 1 is also valid in the multiple bubble case after minor modifications
of the proof.

The heat flow is not the only relevant time-dependent equations for Yang-Mills
connections. In a series of important papers, Oh and Tataru considered the energy-
critical hyperbolic Yang-Mills flow where the heat operator is replaced by the wave
one. They provide a complete picture of global-wellposedness vs finite-time blow-up
(the so-called Threshold conjecture). See [29], [27], [25], [28], [20] and references
therein. Note that the solution in (1.2) has the same form as the one in Theorem
6.1 of [27], Theorem 1.3 of [32] and Theorem 1.2 of [33].

More precisely, there exist sequences Ry \, 0, xx — ¢, tp / 400, such that the
solutions have the following asymptotic form

Ak(x) =d+ RkA(xk + Rk.’t,tk) = A, k— o0,

modulo a gauge transformation in H, b2 where Ay is a Yang-Mills connection on

loc?
R4

The bubble tower solutions of Yang-Mills heat flow. We also construct
a completely new solution in large times for the flow (1.1). Now we restrict our-
selves to SO(4)-equivariant solutions of (1.1), which means that we assume that
the connection A takes the form

Az, t) = Im(=Z4p(r, t)d7)

272
r = |z| ( see e.g. [15] and [34]). In this case the equation (1.1) reduces to
0 1 2
gﬂl—iﬁw-&-;lﬁr - §(¢—1)(¢—2)¢ (13)

Then we prove the following

Theorem 2. (1) There exists a solution of (1.3) having the following form
22

rt) = ——s——

YO = e

Here 1(r,t) is the (one-)bubble solution of (1.3) constructed in Theorem 1 with
form

- 7/}1 (Ta t) + 902(7"7 t)'

2r2 2r2
t) = —
wlrt) =T R e

Moreover, we have the following estimates as t — +o0:

+ p1(r,t).

cit

pa(t) ~e”

and

ege2elt

po(t) ~ e 2



6 Y. SIRE, J. WEI, AND Y. ZHENG

for some constants ¢ > 0 and c. > 0. Furthermore one has of course that
p1(r,t) = 0 and wa2(r,t) = 0 as t — 400, uniformly away from the point r = 0.

Equivalently, we have
(2) There exists a solution A(x,t) to (1.1) of the form

A(z,t) = Im ( ° ) — Ai(2,t) + +¢a(w,1)

————dT
pa(t)? + |x]?
with @2(x,t) = Im (3 p2(r,t)dz) and Ai(z,t) is the one bubble solution of (1.1)
constructed in Theorem 1; Ai(z,t) has the following form

X X
A t)=—1 ——dz I —————dZT D t
1z 1) m<1+x|2 ) * m<m<t>2+|x|2 x)“”l(””’ )

cLe2c1t

Moreover, the parameters satisfy pi(t) ~ e~ and pa(t) ~ e 21 ast — +oo,
c1 > 0 for some constants c1,¢c. > 0. The 1-forms ¢1(z,t) — 0 and $a(x,t) — 0
as t — 400, uniformly away from the point r = Q.

Theorem 2 is new even in the SO(4)-equivariant case. If we use the transforma-
tion 1 = r~24), then (1.3) becomes the following heat equation

0 - 7 o - _ 2.7\, 7,2

with steady solution (1) = Miv (1.4) is an evolution ODE, which enjoys very
similar properties as the six-dimensional energy critical heat equation. However,
despite this analogy, the constructions in [10] and [21] for the nonlinear heat equa-
tion are designed to handle space dimensions > 7. The estimates for the outer
problem (which is the main difficulty in the construction of bubble-tower solutions)
are very hard to apply to the six-dimensional case since the blow-up dynamics are
exponential. Our new idea to adjust the bubble with respect to the exact solution
constructed in Theorem 1. This gives us a uniform scaling parameter for the outer
problem. Using this idea, we write the first approximation of 1 (r,t) as

O(r,t) = Ua(rt) + (fz - ﬁ[] (;J(t)))

2
Ulr)=———
(1) = 5

and U, (r,t) is the one bubble solution of (1.4) constructed in Theorem 1. Then we
use the inner-outer gluing scheme which gives us a solution of (1.4) with form

B(r,t) = Uy(r,t) + (32 B (T>> + oa(r1).

with

p2(t)? \ pa(t)
Observe that % — 9(r,t) is also a solution of (1.4) and this solution has the form
2 - T

i P(rt) = =Uk(r,t) +

ﬁU (M(t)) — pa(r, 1),

which is the desired solution.

The main difficulty and the Donaldson-De Turck trick for Yang-Mills
heat flow. As mentioned above, the gauge group consists of all smooth maps from
M into G C SO(4). The Yang-Mills equations are gauge-invariant, making them
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non-elliptic. Another feature is that for any connection A, there exists a gauge
transformation S such that S(A) is a Coulomb gauge, e.g. >, 0;4; = 0, see [39].
A way to fix the gauge is to consider the Coulomb gauge which turns the equations
into a strongly elliptic system of the form

AA, + terms involving only lower-order derivatives of 4; = 0,

where A 4 is the Bochner laplacian. In the case of the heat flow, one needs to write
the gradient flow of the functional Y M in a gauge-invariant fashion.

We describe now the argument in Section 4 of [35] (see also [11], [12] and [13])
which relies on a version of De Turck’s trick for Ricci flow . For T' € (0, +oc], let
A; be a smooth connection and suppose that A = A; + ¢ is a smooth solution of
the following Cauchy problem

0A . .
Fn + D4 Fs+ DuaDho=00n M x (0,7),
A(0) = Ay.

(1.5)

Through the identification

d
s=S8""1o £S =—-Djo,

the solution ¢ = ¢(t) generates a family of gauge transformations S that can be
readily recovered by solving the initial value problem

d .
£S—Sos7 S(0) = 4d.

Define A := (S~1)* A, then the connection A is a smooth solution of the Yang-Mills
gradient flow
oA
E—&-DAFA =0on M x (0,7),
A(0) = A,.

(1.6)

On the other hand, if A is a solution of the Yang-Mills gradient flow (1.6), then the
connection defined by A := §*A is a solution of the Cauchy problem (1.5).

Furthermore, the connection A — A; belongs to the space C(M x [0,T),T*M ®
g) NC>®(M x (0,T),T*M ® g) if and only if the same is true for the connection
A — Ay. If the initial connection Ay is of class C™ , then the connection A — A;
belongs to the space C*°(M x [0,T),T*M ® g) if and only if the same is true for
the connection A — A;. See Lemma 20.3 in [13] for more regularity results.

2. THE APPROXIMATION

2.1. BPST/ADHM instantons. Recall the following notations. We use the
quaternions

x=x1+ o0+ x3j + x4k € H

for elements of R*. One can then construct an instanton (see [2], [5]) by considering
T dx N dz
B(x)=Im | —2_dz), Fp= 2200
o =i (). o=y
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We recall that dz A dZ is defined by

dx A dz = (dzy + idxe + jdxs + kdxs) A (dxy — idxe — jdxs — kdxy)
= -2 [Z(dl’l A dlL’Q + deg AN d4) +j(d(£1 A d.’ﬂg + diE4 AN d2)
+k(d£t1 Adxy + dxo A dg)} .

Let us write

4
B= ZBidzi, F= ZFijdiﬂz' Ndxj,

i=1 i<j
then we have
T ol + x3] + w4k
B == I =
= tm (57 =
—x —x11 + x3k — x4
B =1 =
o =im (5 hp) = e
—xj —x1] — xok + 241
B =17 =
s =im (5 0e) = e
—xk —x1k + x9j — 231
B =17 =
=m0 =

Based on this solution, 't Hooft constructed the following 5—parameter family of
solutions of the Yang-Mills equation:

¢ ) LER, £cH,

Bue(x)=Im|——""> _d

with curvature
Fs, . = widx A dz .
R e P
It was proved by Atiyah-Hitchin-Singer [3,4] that these are all the self-dual solutions
of Yang-Mills in the first Pontrjagin class. The explicit form of B, ¢ and Fp, , are:

uin =i () =
Buchs = tm OOy L S Z @ (o 6 )
(Bue)s = Im (u;ﬁ;f)gz) _ —(m—&)j ;2(f|:c_f2g)ﬁ+ (w2 = &1)i-

See [1] and [14] for more details and some background.
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2.2. The linearized operator. The full form of the stationary Yang-Mills equa-
tion is

4 4 4 4
i=1 i=1 i=1 i=1

(2.1)
forj=1,---,4.

We denote the linearized equation at the BPST/ADHM instanton as Lp. This
is not an elliptic operator because of the term Z?:l 0;0;¢;. By the Donaldson-
De Turck trick explained in the introduction, we consider the following modified
linearized operator

£[¢] = LB¢+DBD*B¢:VEVB¢_2* [*FB7¢] (22)
The operator Lg¢+Dp D¢ is now (strongly) elliptic. If we write Lgd+DpDh¢ =
Z?:l L;[¢]dx;, then the elliptic linearized operator at the BPST/ADHM instanton

4
E A¢j Zaaj¢l+2 z¢z> Z[asza(bj]
i=1
4 4
+ Z[¢z, asz] + Z[B“ 8i¢j] + Z[Qﬁi, 3iBj — 8jBi + [Bi, BJ]]
=1 =1 =1

4
+ ) [Bi, 0i¢; — 9;i + (¢4, Bj] + [Bi, 5]
=1

4 4 4 4
+0; <Z Di¢i + Z[Bi, @}) + [Bjy, Z ;i + Z[Bi’ ol
i=1 i=1 i=1 i=1

; (2.3)
=Ag; + Z[@Bu 5]
4 = 4 4
+> [65,0:B;]+ > [Bi,0i¢;] + Y s, 0:B; — 0;Bi + [Bi, Bj]]
=1 =1 =1

4 4
+ Y [Bi, 0id; — 0;¢i + 60 Byl + [Bi 651 + Y _[By. [Bi, ]
=1 =1

+Za By, 6]

forj=1,--- ,4.
The elements in the kernel of this operator are (see [0])

Tot + x3] + x4k —x1t + x3k — x4J

ZV =2 . Z9=2 ,

! (14 [z[*)? ? (1+ [z[*)?
—581j—332k‘+334i 0 —.731]€+.732j —$3i

Z9=2 . Z9=2

’ (14 |z[*)? ! (I+|z[*)?
and
71— 0 Z21 _ 21 1 2j 1 2k
11— % -

71 1 L12\20 Z. = 7T o Z = T o
L+ )2 72 @+ )2 7 L+ f2?)?
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—2i ) 2k ) —2j

Zi= s, Z3=0, Zi=—"—"0, Zi=-—""—.
PP 7 ST AH P T A+ o)
—2j —2k 2i
Zi=— T Zi=— e Z3=0, Zj=-—"——,
P2 T @) At faP)?
74 = —2k 4 25 4 _ —2i 4

A (A A A (e P ER

Z} = x1Fio + a3Fia — 24Fys,  Z5 = —22Fo1 + 33F0s — x4 F3,
73 = 21 F39 — xoF3y +13F34, Z = 21Fy9 — 12Fy1 — 14Fy3,
79 = w1 Fiz + 2oF1y — w4F12, 2§ = x1Fs — 23F5 + 12 Foy,

78 = —w3F31 + 22F3y — 24 Fse, 7§ = 21 F43 — 23Fy1 — 24 F)o,
Z{ = v Fiy + 20F13 — 23F10,  Z3 = 21F24 — 24Fo1 + 2203,
73 =1 Fyy — 24F31 — 23F30, 7] = —24Fy + 22Fy3 — 23F)s.
Here we have used the notation Z° = Ejzl Zidz;. Note that [Z°] ~ ﬁ and

|Z¢| ~ ﬁ as |z| — +oo, i = 1,2,3,4. There are also three kernel Z¢, i = 5,6,7,

with decays like 5 at infinity due to gauge invariance; these kernels can be written

EIR
0
F — .
B <9p0'x0' 85Up7 >

for some 6 is a suitable 2-form. See Proposition 2.7 in [6].
As we explained in the elliptic case, we consider the following modified parabolic
linearized operator at the BPST/ADHM instanton,

as

4 4 4
Ordj = Adj+ Y [6:,0:Bj] + Y [Bi, 0i5) + > _[¢1,0:B; — 0;B; + [Bi, By]
=1 =1 =1

4
+ Z[Buaz‘%' — 0j¢i + [bi, Bj] + [Bi, ¢5]] (2.4)
- 4 4
+0; > [Bi,¢i] + > _[B;,[Bi, 6]
i=1 i=1
for 5 =1,---,4. We denote
) 4 4 4
Lilg] == Z[(% 9;B;] + Z[Bz', di¢5] + Z[@, 9;B; — 0;B; + [B;, Bjl|
i=1 i1 i=1
4
+ > [Bi, 0ip5 — 0;¢i + @i, Bi] + [Bi, ¢5]]
- 4 4
+9; Z[Bi, ¢il + Z[Bj [Bi, ¢i]]-
i1 i1
Also we define the nonlinear term as
4 4
Nj[]: = 60, 0:05] + > 63, 0icb — 05 + (¢4, By ]
i=1 i=1
4 4 4

+ > [60,0i6; — 056+ [Bi, &3]l + Y _[Bis [0, 8511 + D[, [0, 5]

=1 =1 i=1
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and N[g] = i, Nj[g]da;.

2.3. The ansatz. For u(t) € RT, £(t) € R, we define the approximate solution as
follows

Apcolat): = B o(at) + Fp, . (0pa<t><x O ) (2.5)
with

. B _ z —&(t) _ T4
Bu,g(x,t) =B, ¢(z,t)—B1 4(x) =Im <M(t)2 T f(t)de> —Im (1+|$—q|2dx>

and 0(t) a suitable 2-form.
. . 4 s
Denoting B}, ((z,t) = > ,_, B}, ¢ ;(v,t)dz;, we have

_ (@2 —&@))i + (3 — &(1)J + (w2 — &(t))k

Buga(e:1) = WP +1a— EOP
(@2 — )i+ (w3 — g3)j + (x4 — qu)k
1+ [z —qf? ’
B ¢ olut) = — (w1 — gl(t))it—:t;fi?fg(?()f |; (w4 —&a(t))]
(@ —@)it (23— gz)k — (24— qu)j
1+ |z —qf? ’
. (@ = &(#)) — (w2 — L)k + (xa — ()i
Paaseit) = KO+ T~ €0
(@ —@)) = (@2 — ge)k + (34 — qa)i
1+ |z —q|? ’
B y(at) = (w1 = &)k + (22 — &(1)d — (x5 — &(H))i

u(t)? + |z — &(1)[?
@ gkt (2 — g2)j — (23 — g3)i
1+ ]z —q|? '
In the sequel, we compute the contributions of each term involving B, ¢ in the
error:

4

x —§(t) - . & ;
—(B, =21 d t)p(t == (t)2" c—g(t
(Bpue) m <(M(t)2 RO :L’) p(t)u(t) + ;:1 MQ( ) (y)|y:%t<>>
And the linear error of Fp, <9pa t)(x —£&(t) o2 ) can be computed as follows,

o
(=0 +Lp, ) (FBM (epg(t)(x — E(t))ga% ))

=01 (Fi, . (B 0o~ €O )

o)
T,
)
P

= _FBmé (épo(t)(x - f(t))ai’ >
0
0

+ Fp, (fm(t)é(t) 0 )

st ) = e (B (0 = €D

Oz,
0

R O O o )

)
Oz,
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2.4. Improvement of the error. The key point of this paper is solving the lin-
earized problem near the blow-up point with the error of approximation solution
as a perturbation term. From the linear theory for the inner problem (see Proposi-
tion 3.1), we need an approximate solution with error decaying faster than ﬁ at
infinity.

Observe that the terms —(B,, ¢); and

00+ L8, (P, (alt)(o - 0)r 5 ))

decay like ﬁ as |x| = 4o0. Inspired by ideas of [9], we improve the approximation
by adding nonlocal terms to cancel the main part of the error for A, ¢ 4.
The main terms in — (B, ¢): and

(<01t Lo,) (P, (o =€) )
2m ((u(t)2 i

_ ) j e, 2
= B2, g + P (ol = €D

We look for a differential 1-form ®(z,t) that satisfies the following equation

x —&(t)
(1(t)? + [x = £(8)?)

+ Fp (a',m(t)(x - g(t))aai, > = 0in R* x (to, +00)

_ . : 0
t)?)? dx) u(t)it) + Fo,, . (9190@(37 —&(t)o 75— )

0y,

— O(z,t); + (d*d + dd*)P(x,t) + 2Im < 3 d:?) w(t)n(t)

at main order. Set ®(x,t) := ®o(z,t) + P1(z, 1),

Do, 1) == Im ((@ = £ (=(7), 1)) da,

Oy (z,t) := dz A dZ <¢(P")(z, t)(z — (1)) 0 ) :

o
0z,

D=

, 7= |z — &|, where ¥(9)(z,t) and 1(P?) (2, ) satisfies

500 p©
ol =@ 4 2y T 0 = gy, (26)

2(F) = (7 + p?)

. 5ipLPT) (po) (¢ )
w7 = i) + 2 P00 ) = g0, (27)
which are the radially symmetric forms of an inhomogeneous linear heat equation
in R®. By the Duhamel’s principle, we know that

POz, 1) = / (20(3)/u(3)) R (¢ — 5, 2)d5,

to

PP (2,1) = /t (épa(g)) ki(t — 3,2)ds

to
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B
provide bounded solutions for (2.6) and (2.7) respectively; here k1 (¢, z) = 1_64;74%
Then we define an improved approximation as

AZ,&,G - AH7§79 + (DO + (I)l.
Now the linear error £* of AZ,Eﬁ becomes

0

~ (B 00, ) (Bt P (8o 0 = €0 ) ) (-0, @+ 22)
P

Then further computations give us the following

g* = — (B“7£)t + (—8t + ;CB‘L’&) (BL‘Z + FBu,S <9pg(t)($ — f(t))o'a%7 ) + (I’o + @1)
P
4
= —Li[B1g) + Li[®o] + Li[@{V] + Li[@] + Li[®V] + > &(1) 27 (9)],_a-e0

1 (t
=1 w(t)

o nds (40906005
p

2z —€) £ —2up 0 >

z Oz,

+dz A dZ <6z¢<9")(z, t)(z —&(t))s

‘P (9pa<t>é<t>ajyp, ) = - i (B0 - €0)o 5 )

9 . ) .
e (0 0o ) = Doetans
Here

8 = do nde (9090~ 60N + 00— O
2

oY = do nd (w<13><z,t><x — €0 + V)@ — €0 ) :
2

Y = do nd (w<14><z,t><x — €0 + V) — €O ) .

We refer the reader to the Appendix for the computations of the terms £; [Bi,q)s
Lil®o], L[], Li[277), Li[@17).
2.5. The blow-up rate. We compute

4 . B
gy — L [HERG) ) (BN L 24
/Zg Zar =1ty [ (t—§>29<t_g>d =

0

2
400 +oo 1 -7l po+1 2
o= [T gLt = [ T

0 T+ 0 @17 1+
The blow-up rate is determined by the equation,

4
/ > & Z)dx =0,
R 1
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which reduces to

t—3 i '
We claim that by choosing i = e~"t for suitable ko > 0, we have

t s 2
pEE) o (1B - -
144 Q ds = —144Zkp(1 1 2.8
| e (52 Ro(1+ (1)) (2.9
for a constant = < 0. Indeed, for a small constant § > 0, we decompose the integral

/t: lzié)ﬂg(;)g <u(§)2> oy
into

t—s

144% /t: /zigzé()i)g<”(§)2>d~ 2472

u8~>d§:/ MO (152
= L@

) t—s

/té (i_jus()? (t@;)dg =1 + L.

For the term I, t — 5§ > &, we have the following estimate

0< 1) < Ko /tt(S (M(5)2 0 (u(§)2

t—3 1T

t —

5 ~)d.§§Cl€O/ U ) LA P
t—3)7 \t—3 5 Jio p(3)
— 6% <€72N0t076_2'{0(t_6)) S 6%67250150
~ 1
For the term I = ft s t—§ (”t(f) ) ds, we use change of variables (;(?)2 =3,
then it holds that
ds = —- LGB
Lt—5) F+ ()3
and
t - 2
I = / M(S)A{(SQ)Q (u(s)N) s
t—s (t—38) t—35
53
[ it (1) e
o t—57 \&) 3-8t ()3
Note that for § > 0 small enough, (¢t — 577 + (3)8 = (t—38)" 2(1 — 2kg) >
(t— §)"2(1 - 2k0), d5 = %(1 + 0(9))ds, therefore it holds that
S 2

§2) dé+o(1) | = -

f =9 is sufficiently large. Here E = fo

" / p(E)G) (u(5)2

e b S) d5 = —144Zk0(1 + o(1))

Ero + o(1)

)ds € (—00,0). Therefore we have
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if ¢y is large enough. This proves (2.8). From (2.8), we know that one can choose
the main order term of pu(t) as

2
o = e~ with kg = ——.

=

—

Similarly, we have

£E~0, 6,(t)~=0.
Therefore, we choose we choose £ = 0 and 920(15) =0.

2.6. The final ansatz. Let us fix the parameter functions f(t), £o(¢) defined in
the previous subsection. Then we write

1(t) = po(t) + At).
We will find a small solution ¢ of
E = 0o+ Lp, () + N[Aco— Buc+¢] =0 (2.9)
with A, ¢ ¢ defined in (2.5). In other words, let ¢y > 0, the connection
A(J?,t) = :;7579(xvt) +@(xat)

will solve the problem

94 = —D3Fa+DaDy (Al co— Bue+¢)  in R x [to,00),

A(', to) = AO in ]R4
when tg is sufficiently large. Then we use the Donaldson-De Turck trick described

at the end of the introduction to obtain a solution of (1.1).

2.7. The inner-outer gluing system. Let 79(s) be a smooth cut-off function
satisfying 79(s) = 1 for s < 1 and 79(s) = 0 for s > 2. We define a sufficiently large
constant of form

R = eflo

for a sufficiently small positive real number p. Set
|z — &)
t) == —_— .
UR(% ) Mo ( R,Uz()(t)
We consider ¢(z,t) with following form

pla,t) = nrd(w,t) +1(z,1) (2.10)
for a 1-form ¢(x,t) = ¢ (ﬁ;ﬁg?,t) and ¢(-,t9) = 0. Let us recall that (2.9) can be
expressed explicitly by

4
O = Apj+ > [0:B;, ¢)]
i=1
4 4 4
+ Z[%v 9 Bj] + Z[Bu dips] + Z[%‘, 9iBj — 0;B; + [B;, Bjl|
i=1 i=1 i=1
4 4
+ Y [Bi, dip; — 0501 + [0i By] + [Bi,oill + > _[By, [Bi, il
=1 =1

4
+ > 0i[Bi, il + Nj[Afco — Bue + ¢ + €
=1
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with

& =—(Buge), + (=0 +Lp, ) <Bl,q + Fp, <epa(t)(z - f(t))gg, ) + ®q + <1>1>
P

4
i=1

and

N;[A} c0 — Bue + ¢

4 4
Z[@za zSDJ + Z SOM ZSDJ aj‘»oi + [@iv A,u,éﬁ.,j - Bué,j + (I)OJ' + (I)l,j]]
i=1 =1
4
+

[pi, Oipj — 050i + [Ape,0 — Bugi + Po,i + @1y 5]
1

%

'

4
+ 3 (A — Bugi+ o + P, [on il + D _ois [0 93]
i=1 1=1

(2.11)
Then ¢ defined in (2.10) solves (2.6) if the pair (¢, 1) satisfies the following system

of parabolic equations

4

4 4
po(t)0d; = A + > [¢i,0;B;1 + Y _[Bi, 0id;] + Y [6i,0:B; — 0;B; + [Bi, By
i=1 i=1 =1
4 4 4

+ Z[Bi, 9i¢j — 0;0i + [¢i, Bjl + [Bi, ¢;]] + 9; Z[Bi, ¢i) + Z[Bj, [Bi, ¢i]]

=1 =1 =1
4 1 4
+ Y i, 0iBy) + > [Bi, i) + > [i, :B; — 9;B; + By, By]]
i=1

i=1 i=1

4
+ 1 Y [Bi, st — 0jhi + [, By] + [Bi, 5] + pd s Z B;, i)
=1

4
+ /’[/8 Z[B]7 [Bi, ,(/)’L]] + Mgg]* (f + HoY, t) in B2R X [tO; +OO>7
(2.12)
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and

4 4
Oy = Ay + (L =nr) Y _[¥i,0iBues) + (L =nr) Y _[Buei, Oity]
=1 i=1

4

+(L=nr) D [0 iByue,; — 0;Buei + [Buei Buesll
i=1
4

+ (1 =nr) Z[Bu £y 0ithj — 05bi + [Vi, Bue il + [Buear ]l (2.13)

=1

4 4
1_77R8JZ uﬁzawz 1_77RZ u&]a u,ﬁ,zﬁlpi”

+ Nj[AL e 0 — Bm& +l+ (1 —nr)E; (% t)
+ VT]RV(Z;J‘ + (l;j (A — 8t)nR in R* x [to, +00).
forj=1,--- 4.
3. PROOF OF THE MAIN THEOREM

3.1. The inner problem. To find a pair of solutions (¢, ) satisfying the inner
problem (2.12) and the outer problem (2.13), we rewrite the inner problem (2.12)
as

M%(t)at(bj = Ej [¢] + HJ [)‘? ga 9, ).‘7 éa éa ¢> w](ya t)7 RS B2R(O) (31)
for j =1,2,3,4 and t > to, where H;[\, €,6,A,€,0 ¢ Y](y, t) is defined by

4
H,[N 6, 0,0,6,0,6,0] := > [, 0:B;] +quBz,&%
=1

4
+ Y [thi, 0:B; — 0;B; + [Bi, Bj|

=1

+ 11 Z Bi, 0itpj — 0jbi + [1bi, Bj] + [Bs, 5]

4
+u06 Z Bi, i) + o Z [Bi, ¥il]
=1

+ €5 (E + poy, t).
We use change of variables

dt
t=t(r), o= ()

it is easy to see that the inner problem (3.1) becomes
0-¢5 = Lj[¢] + H,[N,€,0,7,€,0,0,9](y, (7)) (3.3)

for y € Bar(0), 7 > 79. Here 79 the unique positive number satisfying t(m9) = to.
We will find a solution ¢ to the following problem

{8T¢j = ‘Cj[¢] + Hj[)\7£,9, }‘7évév¢7¢](yat(7-))7 Y < BQR(O>7 T > 70,

3.4
¢j(ya7—0) = 07 Yy S B?R(O>7 .7 = 1727?”4' ( )
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We will prove that problem (3.4) is solvable for ¢ when % is in some weighted spaces
and the parameters A, &, 6 are chosen so that the right hand side

H] [Aa 57 07 Xa év éa d)a w}(y7 t(T))
of (3.4) satisfies the following L?—orthogonality conditions

/B SHINE 0,5, E,0,6.0)(y. 1)) Z}(y)dy = 0, (3.5)

2R =1
forall 7 > 19, L = 0,1,2,---,7. To obtain a solution ¢, we apply the Schauder

fixed-point theorem. First, we need a linear theory for problem (3.4).
For R > 0, let us consider the following initial value problem

0-¢; = Lj[¢] + h;(y,7), y € B2r(0), T > o, (36)
(b(ya TO) =0. ’
We define the weighted norm for a differential form h = Z?Zl hjdz; as follows,

4
il =Y I1Ajlla, with [Ajlla, == sup sup (1 + [y|*)[h;(y, 7).

j=1 T>To yEB2R

Then we have the following estimates for problem (3.6).

Proposition 3.1. Suppose o >0, v > 0, ||h||34q0,, < +00 and

4
/ Zhi(y)Zf(y)dy =0 forall 7€ (r9,00), 1=0,1,---,7.

Bor j—1

Then there exist a differential 1-form ¢ = ¢[h](y, ) satisfying problem (3.6). For
T € (109, +00), y € Bar(0), it holds that

L+ yDIVys(y, D+ 165w, DI S 777 (1 + ) T Allstaw 5= 1,2,3,4.

(3.7)
The proof of Proposition 3.1 will be given in Section 4. Assuming that
1] 45,140,140 < ce” "
for some small € > 0. Here ||¢)]|«s,140,1+ is the least M > 0 such that
H(%-HT r—§ -1
TP ] < Mo s
L+ [yt* o
[z, )] < M e (3.8)
pp Tyl = " > pip !
Ho

holds. Then we have the following estimates for H;[A, €, 0, N €0, &, ¥](y,t) in the
inner problem (3.4).

(1)
4 2+o0
Ko Y i, 0iBj — 0;Bi + [Bi, Byll| $ 67€t°||1/1\|**,1+a,1+a1+(|)w' (3.9)
=1
(2)
1+o 2+o
WBER(E + noy, )] S 0 S emeto O (3.10)

R 17 14 [y[3+e’
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3)
/’l/ wzga B _5 0||wH**,1+U,1+a 2 Tta
i=1 1+|y| 1+|y| (311)
e 1 -
56 to”d’“w,l+a,l+awﬂg+
(4)
iB drs)| S ey L m”
(] ~ € *k o @
0Pt TR g
e 1 -
56 t0‘|w||**,1+o,l+awug+
(5)
4
3 D Bi, 0ty — Oty + [, By + (B, vy
=1
_ 1 M2+a B 1 /L2+J
< e €to o - o 0 +e eto " " N 0
S s P = L RO e b e
e 1 -
SJ e t0||w|‘**71+g71+awug+
(3.13)
(6)
4
i=1
_ 1 ,u,2+‘7 _ 1 ,LL2+U
Se =t Hx o 0 +e eto *k o o
S 9] sex, 14 e T TR T |g[ite 19 ||, 14 T T g
—e 1 -
56 to”d’”**@+o,1+amﬂ%+
(3.14)
(7)
4 240
_ 1 o
Ko Z R 137;[}2 EtOHw”**,l-‘ra,l—i-a 2 Tra
i=1 L+ [yl 1+ |yl (3.15)

1 2+o

Se ||¢||**,1+o,1+awﬂo

3.2. The orthogonality conditions. To apply Proposition 3.1, we choose the
parameters A, £ and r satisfying the orthogonality conditions (3.5). Fixa o € (0,1),
for a functional h(t) : (tp,00) — RF and positive number § > 0, the weighted
L —norm is defined as follows,

1hlls == 110 (&)~ R(E) | Lo (19,00 -
In the following, o > 0 will always be a small constant. We also assume the
parameters A, &, 0, A\, £ and 0 belong to the following sets,

A 140 + 1B 110 + 16 14+0 < ¢, (3.16)
IAO140 + 11€(E) = dlliso + 100140 < ¢, (3.17)
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here ¢ > 0 is a constant independent of R, t and ty. We define the norm ||¢[/1+a,1+40
of ¢ as the least number M > 0 such that the following estimate

2+o0

(L4 W) IVyes (00 + Iy . < Mfes for j=12.8.4 (318)

holds. For some small € > 0, we also suppose ¢ and v satisfy the constraints

[6ll14a,240 < ce™ (3.19)

and

€[l x 110140 < ce™,

respectively. Then we have the following result.

Proposition 3.2. The orthogonality conditions (3.5) are equivalent to the system

A 260\ =TI [\, €, 0, A, €, 6, ¢, ) (1),
§=T0L[\E0,)8,0,0,0](t), 1=1,--- 4,

612 = pg 'TI5[N, €, 0, A, €, 6, 6,9 (t), (3.20)
613 = pg 'Tle[N, €, 6, A, 6,6, 6,](1),

614 = pg 'TI7[A, €, 6,1, €, 6, 6, 9](1).

Here kg = fg—; > 0; the right hand side terms of (3.20) can be written as

LA €,60,0,€,6,0,9](t)
— e_EtDM[1)+a(t)fl(t) + €_€t091 |:A7 év /,Loé, )‘7 (6 - q)a MOea ¢7 Moiﬁ} (t)a

forl =0,1,--- .7, where fi(t) and O;[---](t) (I = 0,---,7) are bounded smooth
functions for t € [ty,00).

Proof. Step 1. We compute the integral
4 . . .
[N 0466wl t(r) 20 )y,
Bar =1

for H(y,t(r)) defined in (3.2). Observe that the main contribution to this integral
comes from the term L[®¢ — By 4]. As we computed in Section 2.6, we have

PP B 40711 P07 W Vo
/Bm;/;z[% Bl,q]Zi(y)dy_144M(t) /t (t_§)29(t_§)d =
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Then using the arguments as in Section 2.6, we have

/B Zﬁ Do — Bi1,g 2] (y)dy = 144u/t ’é‘s_)’z(;)sz (’:(f)z) ds — 247y

2R j—1 to

o [ (1)
+p144 / FABAEG) (/:(s)2> 45 + 144 /t /z(g)ﬂ(i) o (u(g)f) 20(3)N3) o
t —S w (t—3

o (t—3)° —3) t—35 t—3§
+p144 /tt /f_)A;;)Q (?@2) ds

—247% (p1o + A)

Sy ECENTER

ulad /tt lzgi()? o (?@j) 2ut(§))\~(§) 45 + uldd /tt ;Eis_)ks(;)g <¢;(j)j> s

—247% )\
= 1445 koA + 1442) — 2472 X + O(MA + A?).
The other terms in me Zle Hi[A,f,G,}\,é,é,qﬁ,1/}](y,t(7))Z?(y)dy can be dealt

with similarly. Thus we obtain the equation for A.
Step 2. For j = 1,2, 3,4, we compute the integral

[ S e 0 A0l )

2R =1
for H(y,t(7)) defined in (3.2). Observe that the main contribution to this integral
comes from the term %(t)Zl (y)lyim—g(t) . Similarly to Step 1, we have

= u(

L Z fz ZZ ZZ( )dy = Hl[Aagvov).Héaéad)aw](t)a

2RJ1

Thus we have the equation for &;.
Step 3. For j =5, we compute the integral

4
/B D HINE0,0,E,60,6,9](y, (7)) 2] (y)dy,

2R =1
for H(y,t(7)) defined in (3.2). Observe that the main contribution to this integral
comes from the term L[¢] with
0 0
Y = do ndr (W) (2 ) = E(0)ag~ + W0 ()@~ E0)ag ).
(9562 82133
As we computed in Section 2.5, we have

/ zj: O] 25 (y)dy = 144 /t élz(é)jj)g;(é)g <,:(_§);> d§

to

= I[N, &0, M €,0,0,0)(t),




22 Y. SIRE, J. WEI, AND Y. ZHENG

Since 6 satisfies 015(t) = 034(t), we thus have the equation for ;5. O

3.3. The outer problem. To apply the Schauder fixed-point theorem to the outer
problem (2.13) and obtain a solution v, we consider the following linear problem
first,

8#/’ :A’L/)—F‘/I,"&(SL',t)?//—Ff(l’,t) in R4 X (to,OO), (3 21)
lim| g 400 Y(2,1) = 0 for all ¢t € (tp, 00), '
where f(z,t) is a smooth function. Here V,, ¢ ~ (1 — nR)u(jQﬁ with y = %ﬁ(g?
Using the heat kernel ( see e.g [17]), we know the function defined by
+oo m(s t) Jz—z?
t) s=t dzd .22
wi= [ [ e S s (322)

is a solution of (3.21); k > 0 is a small constant. Now we assume that for a, 5 > 0,
f(z,t) satisfies the following estimate

plMpg () x—E(t)
MR Y 29

and the least number M > 0 satisfying (3.23) is denoted as || f||«.5,2+a-

[f(z, 1) <

< 400 for some constants 3 > 0, a > 0.
Let ¢ = o[ f] be the solution of (3.21) given by the Duhamel formula (3.22), then
it holds that

M x—£ _
I lepzea 2 ol =] ] <

(. )] S Y “Og (3.24)

« T — _

Il szvan ™0, bl = || >

Ho
and
o !

Vi (z,t)] S Hf”*ﬁ,%aW for ly| < 2R. (3.25)

We will give the proof of Proposition 3.3 in Section 5. This result will be applied
to the outer problem (2.13) with

4 4
ij(‘ft 1_77R Z"/}MaBufj 1_77R Z w,€,1 Z’L/}j
i=1 i=1

4
+(L=nr) Y _[$i,0;Byug; — 9 Busei + [Buir Bugill
1=1
4

+(L=nr) > _[Bugir 0ith; — 05i + [hi, Bug,j] + [Bue.i )]
i=1
4 4
+(1_77R)8j Z[ ufszz l_nR Z ,u&,ja ,u,&,iawi]]
i=1 i=1

and
Fi(@t) = Nj[AS ¢ o — Bue + ¢l + (1 = nr)&; (x,t) + Vnr Ve,

+ (A —08)nr, j=1,2,3,4.
Proposition 3.4. For j =1,2,3,4, we have the following estimates.
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(1)

_ /-I/_2M1+U
0 Mo
|6 (A = 9 )nr| S 1+ ]y 16ll1+a,240
(2)
-2 140
7 Ko Mo )
|V77RV¢J| 5 1 ¥ |y|3+a ||¢]||1+04’2+0'7
3)
M_2M1+U
* 2 2
|Nj[AM,5,0 - Buaf + QDH S./ 1 _?_ |yi)3+a (||¢j||1+o¢,2+a + ||w‘|**,1+0',1+a) )
(4)
-2 140
* — Ko Ho
1-— EX(x,t)]| S el L0 0
|( 77R) _](xa )|we 1+‘y|3+a
Proof. Proof of (1): We have
- U oo pgte po He T
|¢JA77R| 5 ﬁ 1+ |y|1+a ||¢j||1+a’2+0' S 1+ |y|3+a ||¢j||1+a’2+0
and
—2 140 —2 140
g Ho Ho Ho Ho Mo
. < =0 7Y . < 70 70 .
‘¢Jat77R| ~R1 T |y|1+a ||¢J||1+0472+0 ~1 T |y|3+a ||¢J||1+0472+0'
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Proof of (3): From the definition in (2.11), we have
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Proof of (4): We have
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3.4. Proof of Theorem 1: Solving the inner-outer gluing system. We now
reformulate the existence to the inner problem (2.12) and the outer problem (2.13)
as a fixed point problem; then we will use Schauder fixed point theorem to find a
solution.

Step 1. Suppose h is a function satisfying the assumption ||A|11, < e to.
Then it is well known that the solution of

A+ (ko 4 co)A = h(t) (3.26)
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is given by
t
A(t) = e~ (roteot {(H / eRo+e) Ty (1) | (3.27)

to
here d is an arbitrary constant. Therefore, we can estimate as follows,

e ND ] Lox 10,000 S €T d A |[Rl|140

and _
A [[140 < €707 00 d 4 ||h]1 44

~

when the positive constant ¢ is chosen in the interval (0, £2).

Denoting A(t) = A(t), we have the following relation
A + (/’{() + (,'()) / A(S)dS = h(t), (328)
¢

from which we know that there exists a bounded linear operator £; : h — A
by assigning the solution A of (3.28) to any function h satisfying the assumption
[Ih]l140 < +o00. Furthermore, £; is continuous between the linear space L (tg, 00)
endowed with || - ||1+,-topology.

For any vector function h : (tg, 00) — R™ satisfying the condition ||h||1+, < 400,
the solution of the following equation

£ = h(t) (3.29)
can be expressed as follows,
0= €0+ [ ns)is (3.30)
t
with
) =q

Then we have
£(t) — gl S e b1y,
and o
1€ = o S NAlli4o-

Now we define Z(t) = £(t) — £°, then (3.30) gives us a bounded linear operator
Lo : h — = between the linear space L>(tg, 00) endowed with the || - ||1+s-topology.
Similarly, from Proposition 3.2, there exists a bounded linear operator L3 : h —
T := 0(t) between the linear space L™ (ty,c0) endowed with the || - ||o-topology.

Observe that (X, &, 7) is a solution of (3.20) if (A = A(t), B = £(t)—£°(t), T := 0(1))
is a fixed point of the following problem

(AZ,7T) = To(AZ,T) (3.31)
where

76 = ('CO(ﬂl[AvE'vT»¢vw]7£2(ﬂ1[AanT7¢7 7/1})7 v 752(ﬂ4[A»E»T,¢»¢D,

Lo M5 (8,2, 0, 6,0, L (115 T[N Z, X, 6,08, Lty TIo[A, 5, T, 6,1
= (Ao(AE,T,0,9), A2(AE, T, 0,9), -+, A7(A,E, T, ¢,))
with
LA, B, Y, ¢, 9] =1, UOOA,H/OOE,/OO T,A,E,T,¢,¢]
forl=0,1,---,7. t t t
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Step 2. From Proposition 3.1 we know that there is a bounded linear operator
T1 assigning to any function h(y,7) with ||A||34a,0-bounded the solution of (3.6).
Therefore the solution of problem (3.3) is a fixed point of the following problem

¢ =Ti(HNE0,7,€,0,0,¢](y,4(r))). (332)

Step 3. From Proposition 3.3 we know that there is a bounded linear operator
T2 assigning to any given differential 1-form f(z,¢) the solution ¥ = Ta(f) for
problem (3.21). Therefore, 1) is a solution of the outer problem (2.13) if ¢ is a fixed
point of the operator

A(p) = Ta(f),
with
fi(z,t) = N; [A;7€79—BM,§+<p]+(1—nR)5;‘(x,t)+vnRva3j+gz§j (A=0y)nr, (3.33)

j=1,2,3,4and f = Ejzl fijdz;. Equivalently, we need to solve the following fixed
point problem
¥ ="Ta(f) (3.34)
From Step 1-3, to obtain a solution, we need to solve the following fixed point
problem with unknown functions (¢, ¥, A, £, 0),

(AET) =To(AE,T),
¢ =Ti(H[NE0,ME0,6,9](y,t(1))), (3.35)
¥ = Ta(f).

To this aim, we use the Schauder fixed-point theorem in the following set
B= {<¢,w,A,§797A,é,é> HIAD s + 1@ 140
+ 10Ol + IAON11+0 + 1EE) = alliro + 1015 + e en140,14a

+e°[[Bll21 0,140 < 0}

for a fixed but large enough constant ¢ > 0.
Let

K = max{[| follr+o, [ f1llios - s [ f7llieo}

where fy, f1, -+, f7 are the functions defined in Proposition 3.2. Then we have
the following estimate

€(1+U)K0tAi(A7E7 T? ¢7’(/}>
S e (070G |l a2t0 + 111 ta + K + Ao + [Ellito + 1T llo-

This implies that, if we choose the constant d satisfying the condition e~ (co=7%0)to g <
K, we have Ty(B) C B (the constant p in (2.7) is chosen sufficiently small).
On the set B, from the estimates at the end of Section 3.1, we know
. . . MlJrU
HINE,0,),6,0,0,0](y,t(1)| S e 00—
XE0.3,E.0.6. (01| S e
Using Proposition 3.1, it holds that 7;(B) C B. Similarly, Proposition 3.3 and
Proposition 3.4 ensure 73(B) C B. From these we know that the operator T defined
in the inner-outer gluing system (3.35) maps the set B into itself. Since \, &, 6,
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5\, f , 9, ¢ and 1 decay uniformly as t — 400, standard parabolic estimates ensure
that 7 is compact. Therefore by the Schauder fixed-point theorem, the inner-outer
gluing system (3.35) has a fixed point in B. Thus we find a solution to the system
of (2.12) and (2.13), which gives us a solution of

94 — D3 Fa+ DaD (Afe0 — Bu+ ) in R x [to,00),
A(',to) = AO in R4
when ¢y > 0 is large enough. By the Donaldson-De Turck trick as discussed at the

end of the introduction, there exists a unique solution S € C*°(R* x [ty, o0)) of the
following problem
108

e = —D} (A% g — Bue +¢) on R* x [tg,00),5(0) = idpaysu(2)-

Now we define A := (S71)* A, then A is a strong solution to the Yang-Mills gradient
flow

ot
A(‘,to) = AQ in R4.

Therefore A(-,t) = A(-,t + to) is a solution of (1.1). This completes the proof of
Theorem 1.

{ 94 — _prF;in R* x [to, 00),

4. PROOF OF PROPOSITION 3.1

In this section, we prove Proposition 3.1. Consider the solvability of the following
linear problem

0rdy = Lj[6] + by
4 4
= Ag¢; + Z i, 0iBj] + Y _[Bi, 0051 + Y _[$i,0:B; — 0;Bi + [Bi, Bj]
=1 i=1 i=1
4
+ ) [Bi,0i6; — 9;6i + (¢4, Bj] + [Bi, 5]
- 4 4 4
+0; Z[Bi7 b + Z[Bj,ai¢i] + Z[Bj7 [Bi, ¢il] + hj(y, 7)
i=1 i=1 i=1
in R* x [rg, +-00)
(bj('vTO) =0in R47 .7 = 17 74'

(4.1)
Here h(y,7) = Z?Zl hi(y,7)dx; : R* x [r9,4+00) — ImH dz with support in the
ball Bagr(0). First, we have the following property.

Lemma 4.1. Suppose ||h||3+q,, < +00 and

/ Zh Y, T )y =0 forj=0,1,2,--- 7. (4.2)
RY;

Then we have

/ Z(bz Y, T y)dy =0 for j =0,1,2,---,7, T € [19,+00). (4.3)
B

2R =1
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Proof. Let us test equation (4.1) with the functions

Zin,  n(y) =m(lyl/R)

and sum for index i = 1,2,3,4, where 79 is a smooth cut-off function satisfying
no(r) =1 for r < 1, no(r) =0 for » > 2 and R > 0 is a large constant. Using the
fact that £ is self-adjoint, we have the following relation

/ Z@ T Z]ndy—/ ds/R4 (Zqﬁz ,8) - Li[nZ’] +Zh Zr])dy

i=1 i=1

On the other hand,

/ (qu . 8) - Li[nZ7) +Zh Z]>

i=1

4
/Z@ (ZIAn+Vn-VZ) = hi-ZI(1-n)
R i=1

4
=1
=O0(R™)
uniformly in 7 € (79,71 ), where 71 > 0 is an arbitrary large constant and ¢ > 0 is a
small constant. Now let R — 400 to obtain the relation (4.3). |

Lemma 4.2. Suppose a€ (0,1), v>0, ||h|s+ar < +oo and

/ Zh (y, 7)Z) (y)dy = 0 for j =0,1,2,--- 7. (4.4)

Then, for 1 € (7'07—1—00) large enough, any solution of (4.1) satisfies the estimate
oy Dlli+a,r S Pls+a,m-
Here, ||glle,r, = SUPre g7y 77N (1 + [y1°) gl Low r3) -

Proof. Suppose ||A||34+a,, < +00 and ¢ is a solution of problem (4.1). Given 11 > 79,
we then have ||¢[/14a,-, < +00 and from Lemma 4.1, there holds

/ Zq&l (y,7)Z!(y)dy =0 for all 7 € (10,71), j=0,1,2,---,T. (4.5)
B

2R =1

Therefore we need to prove that there is a constant C' > 0 such that, if 71 > 79
is large enough, then any solution ¢ of (4.1) with properties ||@||14+a,- < +oo and
(4.5) satisfies the estimate

||¢||1+0¢77'1 < C||h||3+0477'1 .

By contradiction, we assume that there exist sequences 7{* — +o00, ¢™ and A"
satisfying the following

9-¢" = L[¢"] + 1™ in R* x [ro,77"),
4
/ > ¢y, ) Zidy=0forall T € (ro,7]"), §=0,1,2,---,7,
R* ST

@"(y,70) =0 in R*.
and
6" l14arr =1, IR |I340,.» — 0. (4.6)
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First, we claim that there holds

sup  77[¢"(y,7)| = 0 (4.7)

To<T< T

uniformly on compact subsets of R%.
Indeed, if (4.7) is not true, then there is a sequence of points {y,, } on R* satisfying
lyn| < M and a sequence {73'} satisfying 7o < 73 < 7', such that

(73)" [y "™ (Y 73)] =
Then we have 738 — 4+00. Now we define
O (y.t) = (13)"¢" (y, 73 + 1)
Then ¢" satisfies the following equation
0d™ = L["] + k™ in R* x (19 — 72,0].

Here h"(y,t) = (t3)"h"(y, 7% +t) — 0 uniformly on compact subsets of R* x
(=00, 0], furthermore, there holds

6" (y,8)] < |y|*T" in R* x (10 — 73", 0].

N | =

Using the dominated convergence theorem, we know that there exists ¢ such that
@™ — ¢ # 0 uniformly on compact subsets of R* x (—oco, 0] and satisfies the relations,

0y = L[@] in R* x (=00, 0],

4
/ S Gilyt) - Z(y)dy = 0 for all ¢ € (—00,0], j =0,1,2,+- .7,
"3 (15)

|6y, )] < ly[*** in R x (—00,0],
(g(y7t0) = 07 Yy e R4-
Now we prove that ¢ = 0, which is a contradiction. Indeed, there holds
1 _ o
58:‘./ |¢)t|2+B(¢t7¢t) =0,
R4
with
B6.0) = [ £ by
Since [p4 Z?:l di(y,t) - Zij(y)dy =0 for all t € (—00,0], j = 0,---,7, and the
quadratic form is nonnegative B(¢, ) > 0, we know 0; ™ |¢¢|?dy < 0. Also, there
holds that

[ 1oy = ~305(.5)

0
/ dt/ |p¢|?dy < +o0.
— 0 R4

Therefore ¢; = 0, ¢ is independent of ¢ and it holds that L£[¢] = 0. Since ¢ satisfies
the estimate |p(y,t)| < |y|**!, using the non-degeneracy result of Atiyah-Hitchin-
Singer [1] (see also [0]), ¢ is a linear combination of the 1-forms Z7 defined in
Section 2, j = 0,---,7. But since we also have [p, Z?Zl é(y,t) - Zl-j(y)dy =0,
j=0,---,7, we get ¢ = 0. This is a contradiction, therefore (4.7) holds.

Hence we have
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From the assumption (4.6), there exists a sequence {y,} satisfying |y,| — oo
and

N | =

(7)Y [yl (6™ (g, 5)| >

Now we define

¢"(2,7) = (15)" ynl ¢ (lynl2, lyn| =7 + 73')
then we have R ~ ~ ~ ~

87¢n = Az¢n + bn . v¢n + Cn¢n + hn(sz)

with ~

W' (z,7) = (13 [yn PR ({yn 2, lyal 727 + 73).
By assumption (4.6), there holds

1™ (2, 7)| < o(1)] 2|73 ((13) "yl 2T + 1)

Hence h"(z,7) — 0 uniformly on compact subsets of R*\ {0} x (—c0,0]. Similarly,
we have b, — 0 and ¢,, — 0 uniformly on compact subsets of R*\ {0} x (—o0,0].

Furthermore, there holds |¢"( Y 0)| > 5 and

6" (2, 7)| < |27 (73) "yl P+ 1)

Therefore we have ¢" — ¢ # 0 uniformly on compact subsets of R4\ {0} x (—o0, 0]
and ¢ satisfies the following

¢r = (d*d+ dd*)¢ in R*\ {0} x (—o0, 0],
|6(z,7)| < |2/ in R*\ {0} x (—o00,0].
Let us set ¢ = Zle qgi(z,t)dxi, then for 7 = 1,2, 3, 4, q?)i(z,t) satisfies
(61)r = Ag; in R*\ {0} x (—00,0]

and ~

|6i(2,7)] < |2 —€[7°7" in R*\ {0} x (~00,0].
Then from Theorem 5.1 of [19], we know that ¢;(z,t) = 0 hence ¢ = 0, which a
contradiction. This completes the proof. O

Proof of Proposition 3.1 Let ¢(y,7) be the unique solution of the following
Cauchy problem
¢(y7 TO) =0, Y€ R47

hm |¢(y77—)| — O fOI‘ all T Z T0-
ly|—-+o0

For any 7 > 79, by Lemma 4.2, there holds
6y, I S 777+ [y) ™" Allssan forall 7 € (r0,7), y € R™.

From the assumption that ||A||s4q,, < 400, we have ||A|lz1a,n < ||R||3+a,, for
any 1 > 79. Therefore

lo(y, 7)| S 777 (1 + |y|)_“_1||h||3+a,l, for all 7 € (0,71), y € R
Since 7 is arbitrary, we have
lo(y, 7)| S 777 (1 + |y|)_“_1Hh||3+a,l, for all 7 € (79, +00), y € R

The estimate for the gradient of ¢ follows from standard parabolic regularity results
and a scaling argument, thus we get (3.7). O
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5. PROOF OF PROPOSITION 3.3

¢ - _
Since | f(z,t)| < M%, where y = xﬂf(g) and i(t?(t)q = o(1), we have

rz—qg |24+a”
L+ |

-2 B

o (t)ﬂo(t)
z,t)| < * e T ™ * a
101 < o2 ~ U s

Then using the heat kernel estimates (see, for example, [17]), we have

+oo n(s t) P— #72(8)#15(8)
T N B e e L
(s —t)2 14

uo(s)

41 n(s t) w2 _
*,03, 2+a/ / ‘S—t %duds

471' S — t u—q
1+ ‘.uo(s

e ez s 2(s)ul(s)
+ Hf||*52+a/ / In(s — 12 e duds
R4 1+ )ﬁ

=1/l

=11 + L.

Here k > 0 is a small constant. To estimate the term I;, we use the variable

transformation p = ljitl, 2(Sst) %dp7 then we have

1 o P B
Cla—ul? g (8) pg ()
h= L 52+a/ / P - = OTQOQMdudS

t+1 erl 2 o s
_lz—ul? Mo (5).“0(5)
_ e dud
= || fll« ,B2+a/ / dm(s —t)? et (s) + Ju — g|2+e o

t+1 2
N P Jz—ul 1
< " S (t t ———e¢ st duds
= Hf” 6,2+ MO( )MO( )/t /]R4 471.(5 _ t)2 M(Q)Jra(t + ]_) + |’LL _ q|2+a

5 1 +oo R
= 1 lepzrarG OHE) / du /| pe " dp

re |2 —ul(ug "+ 1) + Ju—g2e) Sy

1
5 f * « o t 'B t / du
L f1,8,24am5 (8) o (2) i |2 — u|2(ﬂ(2)+a(t+ 1)+ |u— ¢>+)

1 .
Term fR4 |x7u\2(1*")(Hg+a(t+1)+\ufq|2+0‘)du can be estimated as follows,

1
du
/R4 |z —u? (g (t+ 1) + |u— g[>+)

1 1 1
= pa+e / 2ra dU
(t+1) Jra o —ul? 1+ |ty 2o

o (t+1)
1 1 1
= 2(t+1)d
T gt 1) /R4 |5?—u|21+\u|2+a“0( +1)du

1 / 1 1 d
= U
pe(t+1) Jpa |2 —uf> T+ Juf2re
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T—

q .
SR Now we estimate

where z =

/ 1 1 d
u
ra [T —ul? 1+ |u|?te

Fix point Z (we assume |Z| > 2) and separate R* as

yuse.5hu (R (56

i )UB(O,'Z'))) .= B, U B, U Bs.

2

|z

Bz L
(. >

Then we have
1 1 1 1
du = d
/W iz — w21+ [uz+e ™ /B iz — w21+ [ure ™

+/ 1 1 d +/ 1 1 d

U U
gy T —ulP T a2 T fp, 7= a2 T+ [u?+
= Kl + K2 + Kg.

If uw € By, then %‘ < ul < @, therefore

1 1 1 1
= :/ Z—ull+ |u|2+°‘du§/ F—uP 15 (e
B B 1+ ()

1 1 1 ER 1
< — / - du = — / rdr < —.
|Z[>T Jp, |2 — ul? [Z[>t Jo ||

If u € By, then 2l < |z — u| < 32

1 1 1 1
Kg:/ . dugf —
5, [t — uP? L+ [ufFe 5, 2P 1+ [uPFe

|Z|
1 2z 1 1 1
< - Pdr< — 1+ ———).
~ W/o sy 7"~|x|2< +|ac|042>

We estimate the term K3 as follows,

1 1 1 1
K3 = dus | ———s—du
’ /33 T —u? 1 Juf?te ™ /33 u> 1+ Jul>*e

o0
</ Ldr<i.
~ Jial e Y|zl

2

From the above estimates, we get

1 1 1 1 1
du<— (1+—— ) <(1+—).
/w Z —uP T [ure ™ IEIQ( - Iflaz) N( - fl“)

Hence we have

1
du
/R4 2 —u2 (g (E+ 1) + |u — g>+)

1 1 1 1 1
= = — D) 2+adu§ o 1+*704
pg(t+1) Jra |2 —ul? 1+ |ul pg(t+1) |Z|
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and
1

I < |If]l zau“t/ﬁt/
Ol M vz o ramerizery

1 1
<117l ,2+aw<t>uﬁ<t>( +) 1 e s 2t (@) (1+).
B 0 0 pg(t+1) EE | B,2+alp EE

Now we estimate the second term
n(e t) [T U()_2(5)U§(5) duds

= Uflsaea | [ N
N 4m(s —t)2 Zta
1+

r—ul2 [e3 B
— L ‘ Ho (S)MO (S) duds

I, = f « a/ / s—t
2= Wlszte | TGP T () + fu— g
i / / e—\x—u\2 Mo (S)Mg (S)en(s_t) duds
AT Jitq Jra M(%Jra(s) + (Vs —t)2reul2te
48 (8)pf (£)e"~

8,2+ L /00/ elemul
b 9 @
A Jiiq |u|>2|z| M(2)+a( )+ (Vs — t)2+a|u|2+a

= ||l
+ 111l 8 2+ai /oo / e—\z—u\z HS(S)Mg(S)e“(S_t)
AT S <2l ot (s) + (Vs — t)2Heful2te

= Iy + I

Ho(s)

We have

duds

duds

and
a B K(s—t)
0 (s)mg (s)e duds

By = fllpzsage [ N [ e
S N o)+ (Vs =D

o tul? /4 18 (8)ptg ()€™
S ll,p.2 / / Jul*/4 duds
AR S Juf>+e

£ 11,240t () (2) 3 Jy| > pgt

||J ||” ﬁZ o ( )
K I ‘y|0¢

if |y| :u‘O ’

122:\|f||*.,32+ai/°°/ ol 13
AT i Ju<2)al 1210 (s) + (Vs — f)2+e|ul2te

Lo 6 () (s)e—Y
< * o g 0 d d
S I lls2+ay /t+1 /|u<2|ac| (V5 = f)zrafupra 1
O g (s)pg (s)en =Y

S Wflhszra [
Wlesasa | =ty

(t) if [yl > pg ',

118,20kt () (¢
S e

) . 1
||f||*»5’2+011 +‘ |a if |y| < Ho -
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6. EXISTENCE OF BUBBLE TOWER SOLUTIONS

In the SO(4)-equivariant case, which means that we assume that
T _
Az, t) = Im(ﬁ#’(ﬁ t)dz),

with 7 = |z|, the Yang-Mills heat flow takes the following form,

0 1 2
D= Y 10— 0~ 1~ 29 (61)
This equation has a one-parameter family of finite energy stationnary solutions,
namely
272
r2 4+ A2’
In this section, we construct a bubble tower solution for (6.1).

AERT. (6.2)

6.1. Construction of approximate solutions. If we use the transformation 1) =
r~24, then (6.1) becomes the following heat equation

0 T ?’ _ 2,7\, 7,2
aw - ¢rr + Twr + (6 2r ¢)¢ (63)

with steady solution v (r) = ﬁ We write the first approximation of 1(r,t) as
- 2 1 T
Ot =tr) + (5 - v ()
0= 0005 5 i e
with 5
U =
) = s

and U, (r,t) is the one bubble solution of (6.1) constructed in Theorem 1. Then
U, (r,t) has the following form

Us(r.t) = uyU (

Ml(t)> + (. 1),

with g1 = et +o0(e 1) := gy +o(e”1?) for a positive number ¢; > 0 and ¢(r, t)
is a perturbation term.
In the following, we also set

Us(r,t) := % —ny A (OU (M;(t)) = ,uzgt)QW <N2T(t)>

with W(r) = ﬁ Observe that Us(r,t) is a steady solution of (6.3) for each

time ¢ > 0. Let us define fig2(t) := /o1 /toz (We also define fig; = t° with § > 0 be
a small constant.) and the following cut off functions

x(rt)=mn (&) :

Note that x(r) = 1 for r < 1fga(t) and x(r,t) = 0 for r > fig2(t). We are looking
for a correction term of the form

wo(r, t) = 3 o (w)t) X(T,t) = oo (r, )x(r, 1),

which will be suitably determined later. Let us write

S(U + o) = S(U) + Lyleol + No o]
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where

S ot

(po)r + QI(U)%,

U)o — g(U)

0
Li[po] = —awo + (¢0)rr +

Ngleol = g(U + @) — ¢

—~

and

S(U) = =8,Uz + g(U) — g(Us) — g(U.),
g(U) := (6 — 2r2U)U>.
Observe that

5
Li[eo] = (¢o2)rrX + ;(%z)rx + 9'(U)gpo2x

5 0
+2(po2)rXr + ~Po2Xr — a(@OQX)-
Therefore, we have

S(U + ¢o)

= ((9002)rr + 2(9002)7' + ¢ (U2) o2 — 0Us + 9/(U2)U*(0)> X

+ Fn + (QI(U) - 9/(U2)) vo02X + Nglwo] + 2(po2)rxr + ;@02)(7‘ - %(SOOQX)-
Here the term E; is defined by
B = —(1=x)0:Uz + g(U) = g(U2) — g(Us) = g'(U2)Us (0)x.
Let us define

El¢o, p2] := (po2)rr + g(woz)r + ¢'(Ua) o2 — 0,Us + ¢’ (U2)U.(0)

- Hi%[wo)yy + §<¢o>y (120 (y) — 6522 (y)) o + paiin Z(y)

+ (12W (y) — 65> W2(y)) (Zj) UO0)]ly=z7-

Here Z(y) := W To solve this equation, we need the following orthogonality
condition

+oo 2
/ <M2ﬂ2Z(y) + (12W (y) — 6y°W?(y)) (Zj) U(0)> Z(y)y’dy = 0,
0
which is equivalent to
2 +o0 2 2 5
12W (y) — 692 W2(y))U(0)Z(y)y>d
u2p2+c*<“2> Lo e = b T12WW) — 6PWEW)UO) W)y dy

Foo 0.
o ZW)Z(y)y°dy

The solution to this equation is

cpe2e1t

poz(t) = e~ 7

Finally, we set po = po2 + p12. Here the parameters p12 is to be determined for
some small but fixed o > 0,

y o Ho2
poz|finz] < Mo (W) uga(t), oz := o~
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which implies lim; 4 o % = 0. It is convenient to write Az(t) := pat) _ o, (t) +

A12(t). Then we have

E[éf’o, Hz]

= -5 (oo = poafon) Z200) + (120 (5) = 6220 ()"~ a)”) U10)]

1 1
= D2+ 06,
s I

with

Dy = (fioap12 + pozfn2) Z(y) + 2(12W (y) — 65°W3(y)) (Ao2) %U(O)

O 1 = 0i(uia) Z(y) + (12W (y) — 6y° W (1)) (Ao2)” (Z;i) U(0).

We also define
ut = 17 + $0,
with oo (r,t) = py 2o (ﬁ, t) x(r,t) and ¢g(y,t) satisfies the following equation

(00)yy + Z(fbo)y + (12W (y) — 63> W?>(y))do + ozfu02Z(y)

(120 () — 62W(y) (Z) U(0) =0,

6.2. The inner-outer gluing system. Let R be a t-independent, slowly growing
function compared with g1, say R = e, t > tq where o > 0 is a sufficiently
small constant. Consider the cut-off functions 7; defined by

ni(r,t) =1 (QRJO(t))
G(rt)=n (Ru;(t)) I (ujzt)> ’

G(r,t)=n <Ru:2(t)) :

We set
o =p1m + pane + ¥,

where

1 T
wi(rt :¢>-<,t>.
i(r:1) PACAN
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With these notations, we have

S[u™ + ¢]
=i <001+ () + 200, + (12 ()~ G 01))0n
+C(12W (1) — 6y W2 (y1))i v]
+napy [—u%at@ + (@2)rr + §(¢2)r + (12W (y2) — 655 W2 (y2)) b2
+C2(12W (y2) — 6y3 W2 (y2)) 3V + D]
O+ (W), (0, VI BIG N (0, i) + B

Here

2
» 5 )
Bl@| =Y (=0 + Oren)j + 2(0)r () + ~(3)ees = g By P
J

j=1
+ ((12u* — 6r2(u*)?) — (12Us — 6r2U3)) pa1o
+ ((12u* — 6r%(u*)?) — (12U, — 6r°U2)) p1m1,

N(¢, W, p) = Nu= (11 + pam2 + V),
V = (12u* — 6r%(u*)?) — (12U, — 6r2U2) — (1 (12U, — 6r°U2),
B = S[u*] = napy ' Ds.
Then S[u* + ¢] = 0 if the following system is satisfied,

—M%5t¢1+(¢1)rﬁ-g(¢1)r+(12W—6Z/%W2)¢1+C1 (12W =6y W?) 13 U+c(t) Z (y1) = 0,
(6.4)

5
— 130162+ (D2)rr+ —(d2)r + (12W = 6y3 W) o + (o (12W — 6y3W?)u3 ¥ + Dy = 0,

(6.5)
and

—8t\If+(\If)rr+§\I/T+V\IJ+B[$] +N(o, \I/,u)+E0“t—n1uf4c(t)Z(y1) =0. (6.6)

Observe that U, (r,t) is the one bubble solution of (6.1) constructed in the one-
bubble case, Problem (6.4) is the linearized problem around U, (r,t). We adjust the
small parameter ¢(t) to obtain orthogonality.

6.3. Linear theory for the inner and outer problem. For the inner problem,
we consider the following problem

=0+ (@)t 2 () +(12W 62294 [(r,m) =0, (r,7) € (0,2R) X [, +00).

(6.7)
Then we have
Lemma 6.1. Suppose o € (0,1), v >0, || fll24a,r < +00 and

2R
f(r,7)- Z(r)rSdr =0 for all T € [19,+00). (6.8)
0
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Then, there exists a solution of (6.7) satisfying

B R6—o¢
lo(r, )| S 1 fll24a,0T T (6.9)
For the outer problem, we consider the following problem
5
— U 4+ (9),. + ;\I/T +g(r,t) =0, (rt) € (0,+00) x [tg, 00). (6.10)
Assume that for «, o > 0, the function g(r,t) satisfies the following estimate
—2
t)ug(t
gt o) < a2 B0 (6.11)

9 y -
1+ [yt pa(t)

and we denote the least number M > 0 such that (6.11) holds as ||g||«,¢,24+«. Then
we have the following lemma.

Lemma 6.2. Suppose ||g]«.0,2+0 < +00 for some o >0 and o > 0. Let U(r,t) be
the solution of (6.10) given be the Duhamel formula

U(r,t) _/+°<>/ ¥67|m:ﬂtl2 (lul, s)duds
R re 4m(s —t)3 gusl, '

Then, for all (r,t) € (0,400) X [tg,00), there holds

13 (t)
U(r, )| < Nlglvoosa—tia, 6.12)
[U(r, )] < Ngllso2r o (

forv = i

The proof of Lemma 6.1 is a minor modification of Proposition 7.1 in [8] and
Proposition 7.1 in [9] (the radially symmetric case). Lemma 6.2 can be proved as
Proposition 3.3.

6.4. Estimates for outer problem. We have the following estimates for the outer
problem. Suppose

(21 yualm, ) + 62,0 S =5 0) (2200 ) o)

then we have .
Step 1. Estimates for B[¢]:

e We have
ﬂ28iu2‘%72772 S Jitaps® (202 (y2,t) + y2 - Vi, d2(y2, 1)) 12
—eto # ’ o /Lg(t) ’ —a
e (m(ﬂm(ﬂ) M2(t)(u1(t)> )
st () () s
e We have

1 2
|§02| 5 eistolug(t) <M1(t)) Ria fOI' 2R S |y2| S 4R
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1 2
0rrmipa] S €5 (Rian) 25 1) (w) -
et ( ) ( L pS (t)R™27% for 2R < |yo| < 4R.
pa (t t)
Eto 1 2 —a—1
[(n2)r(02)r| S €7 (Rpu2) (ul(t ) ( )>R

< e—eto (

1 2
o) Se o R 5? ( ) R~
|0km2p2] pg ~| 2| (t o)

2
1 —2—a
e~ Rlfuia|pg 3 (t <u1(t> R™?

) ( (t> ps (t)R™27% for 2R < |ya| < 4R.
H2

1 \? 1\’
< e~ Ry (¢ ( ) a(t <) R™27%for 2R < <4R.
~ /’(/2( ) ,ul(t)2 M2( ) HJZ(t) - |y2| -
e Since
(120" — 6r%(u*)?) — (12U — 6r203)) | < s 2 ()™,
We have
| (120" — 612 (u*)?) — (1202 — 6r°U%)) pane|

< €—€t0u52<y2>_4ﬂg(t) (,uf(t)) R @

From the linear theory for the outer problem, we have

o t)
| < e—sto M2( —a
| | m (t)2 <y2>
And from the linear theory for the inner problem, we have
|61] S e™0ug (t)(y2) "

Then we have the following estimates:

[ )
—eto -2 ,ng(t) —a
|0rrmon| S e (Ruy) IOE (y2)
_ LN pg) , o
<esto( > 2 2=a for 2R < < 4R.
S o) ,ul(t)2<y2> <l <
[ ]

Eto /U‘g(t) —a—
[(m)r(01)r] S e™0ps (Rpn) ™ 1M1(t)2<y2> !

1\ 5
Se (uz(t)> u12(t)2 (yo) 77 for 2R < [yn| < 4R.
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ety o1, —2y- | M5 (1) —a
O] S e R py |M1|W<y2>

o t)
< e—stOR—l —1 /’62( —a
~ Hq ,Ufl(t)z <y2>

2
- L\ 180 o
< e floR t( ) 2 272 for 2R < < 4R
< pa (t) @) M(t)2<yz> Y1

S ipr® (201 +y1 - Vi, é1) m|

0
H1 5,“1 w1

Sem o ||yt (y2) ™"

5 e—sto (Rﬂl(t))2 (N;(t)) Mg(t) <y2>—2—a.

e Since
(120" = 67 (w*)?) — (12U, — 6r°U2)) | S g 2 (wn) ™ (A2 (y2) ™" + Aa)
We have
|((12u* — 6r2(u*)?) — (12U, — 6r°U2)) g1mi |
Semour ) T (AT () T 4 A2) S (8) (y2)
< emeto ( 1 )2 15 (t) <y2>—2—a

pa(t) ) pi(t)?

e @R () A e

1\ pg(t)
< e (14 puy () Lo (t) R < ) 2 ya) 2O
( 1) () pa(t) Ml(t)2<
We continue the estimates of the outer problem as follows.
Step 2. Estimates for 1, c(t)Z(y;1): We have
[mpttet) Z(y))|
 faf2e

< e (1) 5 (1) (Z) e ) 20

o 2
<o 2 (Y

—eto 13 (1) 1 —2-a
s (o) o7

Step 3. Estimates for E°“: We decompose the error term E°“! as follows.
°

|(12U; — 6r2U3) (U, — U.(0)) x|

< 72 —4 —2A < AouZ%(t
S o 7 (Y2) T Ty T Aex S Aapy 7 (1) 12 ()
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|((6 —2r°0)U? — (6 — 2r°U,)U? — (6 — 2r*Uz)U; — (12U3 — 6r°U3)U,.) x|

<6 —2r2U0)UZX| S pitx

su2“<t><u2<t>>22“<m<t>>“f( ! ) 15 (1)

e Since

o 1 S
IatUzlﬁ\uzuz?’Z(szS( ) (ya)~1,

we have in the region {|z| > 2,/u1p2},

ol <ZT8>22Q(m<t>1u2<t>)2’“‘2“)<y2>

|((6 —2r°0)U? — (6 — 2r°U,)UZ — (6 — 2r*U2)U3) (1 — x)|

—0o /’LQ(t)l_% 1 ? o —2—a
S 1000 =01 £ 57O 28y (s ) k)

4
_ H2 _
INgleoll S leol® Szt (m) (y2)~"x*

1

< 13 (Oa(t) 2 (1) (;mm) (1) (y2) 2.

2
—1 ( M2 _ _
10r 000k Xr| S /112 <M1) M23<yz> 8

S a7 (t) <M2(t)) N (M)Q ps () (y2) 2~

2 2
10s00x| + [00dix| < ( ) )<M2) p1y 2 (ya) 72

—0 M?(t) 1 1 2 o —2—a
ACON m()uz()( ) A0

Step 4. Estimates for the term V:
e Let us recall that

V = (12u* — 6r%(u*)?) — (12U, — 6r2U3) — (1 (12U, — 6r°U2),
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In the region {r > Rug1}, we have

1 2 ug(t
Vg e L ] 5 M1 )

St (Y
—eto M1 (t)Z 1 ° o —2—a
Se r2 (Nl Oz () ) 13 () (y2)

1 1 2
< e_Etl)i < > o(t —2—a.
~ R2 I (t)/JQ(t) IMQ( )<y2>
In the region {\/fio1fioz < r < 2R 101}, we have

2
VoIS e 108 D () 0
1251 pi \ g (t)pa(t)
< ,—€to 1 1 2 I(t —2—a
~ € 2 m 3 () (y2) .

In the region {Rpugs < r < /10102 }, we have

2
I T = Al (R N NP ATAREE S
~T A T (et ) TR

1 1 2
< B*Etoi (> (¢ —2—a
~ R2 m (t),UQ(t) lu’2( )<y2>
We also have

|G (ub™! = (12U, — 6r°U2)) V|

2
<“|\11<“( 1 ) g (1))
~C AT nom® )

and

pi

75t0i 1 ? o —2—a
s () MO

Step 5. Estimates for the term N(¢, U, u):
e Observe that

2 2 2
|Nux (1 + w2n2 + V)| S lor|" m + |g2]” n2 + [V]7,

we have

720,( —etg )2

e

/~L1(t)1/~"2(t)) M%U (t) <y2>_2_a(e—st0)2

2 —
1" m < 137 (8)(y2)
S pp g R (

S (1@)2u5<t><y2>“,

p (t) o
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2

- o Nz(t) 2 —a _—etg
|902|2772§N24<N2(75) (Ml(t)) (y2) e ) 72

2
< ) s

p1 () pa(t)
—eto 1 1 2 o —2—a
Se Rr2 (m(t)uz(t)) 15 () (y2)
2 lug(t) —a —¢tg ?
A

< g min{r®=, 1345 (1) (

and

2
M) Mg(t) <y2>72*“(eﬂ:t0)2

—stoi 1 2 o —2—a
Se R2 <M1(t),u2(t)) 15 () (y2) .

6.5. Proof of Theorem 2. We apply Lemma 6.1 to the inner problem (6.5). To
this aim, we need to choose the parameter p12 such that the orthogonality condition

2R
[ (2w = 63w)iv + Do) - Z()yidue =0 (6.13)
0
holds. Recall that
Dy = (fuo2 12 + po2fu2) Z(y) + 2(12W (y) — 6°W2(y)) (Ao2)? wU(O)v

Ho2
_exe®c1? ! X 22
poa(t) = e E o, B2 o et = o 202
Ho2 Mo
u 2
o202 + Cx (02) =0,
Ho1
and the fact that
2R
12W (y) — 6y°W2(y))U(0)Z(y)y°d
Jo"(2W(y) = 6" WAV O Z W)™y _ -\ sy

2R

Jo " ZW)Z(y)yody
we know, the orthogonality condition (6.13) can be reduce to the following ODE of
H12;,

2R
fuz + e g = —H—g o (G(12W — 6y3W>)T) - Z(y2)y3dys

. M12 -2
Ho2 o Z(y2) 23 dy T o
(6.14)
Let h be a function of ¢ satisfying condition ||h||%, 1= sup,s,, |[tos 7 (¢)pd (O)R(E)] <
e~ct. Observe that the solution of

12 + cee® g = h(t) (6.15)

can be expressed by the formula,

cpe2elt t cae2e1T
pi2(t) =e 2 [d—l—/ e %1 h(T)dT], (6.16)
t

0




INFINITE TIME BUBBLING FOR THE SU(2) YANG-MILLS HEAT FLOW ON R* 43

+oo 0*62C17

with the constant d be chosen as d = — [, e > h(r)dr. Therefore, we have
(1+0) e2gott
Izl = e 75 s (Dana(t) | .0
cpe2c1t ) +oo cle2elT
Ssup e’ e p (t/ e 2 |h(7)|dT
Lo | (o) (6.17)
c +oo ey
< e sup egc*gfllt / efc"c*zil1 e2aTdr| < e~Eto,
t

t>to

This gives us a bounded linear operator T; : h — puj2 by assigning the solution
w12 of (6.15) given by (6.16) to any given h satisfying ||h||f, < +oco. Thus uio is a
solution of (6.14) if it is fixed point of the problem

Hi2 = 71 (G[le, ¢)27 \117 MlQ](t))

with
f (C2(12W 693W2) ) (y2)312dy2 H12 —2
Glo1, ¢, 0, t) (= ——= —=0O(R™%).
(61,62, %, ] (£) Ho2 f02 Z(y2)2y5dys * 02H02 ( )

Once the orthogonality condition is satisfied, from Lemma 6.1 we know that
there is a bounded linear operator 72 mapping from a function h(y,7) satisfying
|h]|24a,0 < +00 to a solution ¢ of (6.7) satisfying the estimate (6.9). Therefore the
solution of (6.4) is a fixed point of the problem

¢1 =Tz (Hild1, b2, ¥, pa2](y, t(7))),
while the solution of (6.5) is a fixed point of the problem

¢2 - 75 (H2[¢17 ¢27 \Ijv ,UlQ](y, t(T))) .
Here, Hi[¢1, 2, U, u1o] and Ha[p1, d2, U, 12] are defined as

[
Hy[pr, ¢2, 9, 2 (y, 1(7)) := CL(12W — 6y W?)uf ¥ + () Z(y1) = 0,
(7

Hy g1, 62, W, 2] (y, 1(7)) = ((12W — 6y W?)u3 ¥ + Do = 0,
Similarly, the solution ¥ of (6.6) is a fixed point of the problem

U = To(Fp1, ¢2, ¥, p12](, 1)),

F[¢1a ¢27 \Ilv /1‘12](]"7 t) =V + B[(E] + N(¢7 \I’a ,u) + Eout - 771Mf4c(t)Z(yl)
Here 73 is the solution operator given by Lemma 6.2.
From the above argument, we know that (¢, ¥, u12) is a fixed point of the fol-
lowing problem,

pi2 = Ti (Gd1, ¢2, ¥, p12](1)),

¢1 = T2 (Hi[o1, ¢, ¥, u12](y, t(7)))

$2 = T2 (Ha[o1, p2, ¥, u12](y, (7)),
)-

U= E(F[d)la ¢2’ \Ila MlQ](xa t)
Let us apply the Schauder fixed-point theorem in the following set

(6.18)

= {(¢17¢27 U, p12) : (61|58 + 162018) + 1]l a0 + llpazlly < 06_“0}
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for a fixed positive constant ¢ large enough. Here |||, 4,0 is the least M > 0
satisfying the following

o) < 2220 )

Similarly, ||¢1||£12,, ||¢>2||((12¢), are the least M > 0 satisfying
W)V 01(y1, )| + o1 (yr, )| S Mp3(£) (y2) ™,

and
oo (120N, .
(W2) [V, 02(y2, )| + [d2(y2, 1) S Mp3(t) () (y2)"",
respectively. On the set B, from the estimates in Section 6.4, we have
140
t
G[p1, P2, ¥, pag]| S e toz " ( ),
11 ()

[Hi[f1, b2, W, po]| S €705 ™ (H)pg * (8) (1) "2,

2
|Ha[¢1, ¢2, U, p1a]] S e Poug (t) (Z?Eg) (y2) "2,

e S Y
Flo, 9, U, iz]] < e tm(ggij(ﬂzw 2,

From Lemma Lemma 6.1, Lemma 6.2 and estimate (6.17), the operator T defined
in (6.18) maps B into B. Since ¢1, ¢2, ¥, p12 decay uniformly as ¢t — 400, standard
parabolic estimate ensures that 7 defined in (6.18) is a compact operator. From
the Schauder fixed-point theorem, there is a fixed point of 7 in the set 5. This
provides a solution of (6.3) with form

G(r,t) = Uu(r,t) + (fQ - ﬁU (;J(t))) + oa(r, 1)

Observe that % — (r,t) is also a solution of (6.3) and this solution has form

% —ah(r,t) = —Us.(r,t) + ) — p2(r, 1),

1 r
(02 (m

which is our desired solution.

APPENDIX: SOME USEFUL COMPUTATIONS

Here we give the detailed expressions for the terms —£;[By 4], £i[®o], L; [(b(l)]
L; [<I>(2)] L; [@(3)] in Section 2.4. First, we compute L[] = 2?21 Li[p)dz; for the
differential 1-form ¢ we introduced before. By direct computations, for By 4(z) =

Im<1+\1 q|2dx) we have

. _ 24¢° Y IR B
Bl = =g i — g v e (02 7 @) (0 m el (e =)k,
C = 24457 —(z1 —q1)t — (x4 — |+ (23 —

'C’Q[Bl,q] - (|$ — q|2 i 1)(|$ — C]|2 —|—,LL2)2 ( ( 1 ql) ( 4 q‘l)J +( 3 (]3)]€),

L3[By4) = 2 (xa —qa)i — (w1 — q1)j — (2 — 2)k),

(lz = g + D)(jz — ¢|* + p2)?
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~ 2412

L4[Bi,q] = T Y AL (—(z3 — @3)i+ (x2 — q2)j — (1 — q)k).
Similarly, we have the following computations.
(1) For
6 = @o(x,t) = Im (& — €)Y (=(7), )d)
we have

2o (Vie— P+ 20)

19l = 5 z9 —&2)i + (w3 — &3)7 + (x4 — 1)),
¢ e —¢E 1) (( E2)i+ (w3 —&3)5 + ( §a)k)
2w (Ve =P+ a20) | |
Lo[p] = 5 (—(x1 = &1)i — (w4 — &4)j + (z3 — §3)K)
(|z — &2 + p?)
o 2ef (Ve P+ 20) , ,
Ls[¢] = 52 (za = &a)i — (w1 = &1)j — (z2 — §2)k) ,
(|z — &2 + p?)

22 fo (Ve =P +1200)

alg] =

(= (23 = &3)i+ (22 — &2)j — (z1 — &1)k)

(|lz — &2 + p2)?
with
t
Vg =2+ 120t)) = | 2u(3)u3)ki(t — 5, 2)ds
o (VI 120) = | 2@~ 5, )i
Jz—€2+u2(5) 2, 25
t N 1—e 4(t—35) (14_%) )
=2 ) O T e
o [ rBaB) L (B
‘2A)u—évr<t—é>d
Here and in the following I'(7) = 1*€7Tp(::+(11;79 1)
(2) For
0 0
¢ = dw A dz (W’(z, (@ —EM)2 g~ + Y (2, 1) (@ — (g, ) ,
we have
i 2 (2la — £ — u2(0)) VIe — P + 2O 11 (VIe— P+ #2(0)
£1[¢] =4 5/2
(Jz — &2+ 12)

e — €2+ p2)° £ (VI — €7 + 12(t)
v 74 ( . ))C%m—&ﬁ)

(e — &2 + )"
() (VI =€+ 120)
(o — &2 + p2)?

+24 (—(xa— &) J+ (x3 — &)k),
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