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Abstract

In this paper, we study the following N-coupled nonlinear Schrédinger system

—Au; +uj = pjui + 32 Bijuiuy, in R™,
i#]
u; > 01in R", uj(z) - 0 as |z| = 400, =1,2,--- | N

where n < 3, N > 3, u; > 0,8;; = Bj; > 0 are constants and B;; = pu;, j =
1,2,---, N. There have been intensive studies for the system on existence/non-existence
and classification of ground state solutions when N = 2. However fewer results about
the classification of ground state solution are available for NV > 3. In this paper, we
first give a complete classification result on ground state solutions with Morse indices
1,2 or 3 for three-coupled Schrodinger system. Then we generalize our results to V-
coupled Schrodinger system for ground state solutions with Morse indices 1 and V.
We show that any positive ground state solutions with Morse index 1 or Morse index
N must be the form of (dyw, dsw, - -+, dyw) under suitable conditions, where w is the
unique positive ground state solution of certain equation. Finally, we generalize our
results to fractional N-coupled Schrédinger system.

Keywords: nonlinear Schrédinger system; unique ground state solution; varia-

tional method; Morse indices

1 Introduction

In this paper, we study the following N-coupled nonlinear Schrodinger system

—Auj +uj = pjud + Y Bijuiug, in R”
i#j (1.1)
uj > 0in R™, uj(z) - 0 as |z] = 400,j =1,2,--- | N
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where n < 3, N > 3, u; > 0 are constants and 3; ; = 3;; > 0 are coupling parameters
(Bj; = pj). This paper is concerned with the uniqueness of ground state solution in the
general case N > 3.

This system arises as standing wave solutions of the time-dependent N-coupled Schrodinger
systems of the form

—\/—1%@j =Ad; — Vj({L‘)(I)j + Mj(I’j‘(I)j‘Q + ; ﬂijCI’jz-(I)j, in R,
i#j
(I)j :q)j(l‘,t) eCt>0,j=1,2,---,N

and these systems are also known as coupled Gross-Pitaevskii equations. In the past
fifteen years, a great attention has been focused on the study of two coupled systems
with nonlinear terms, both for their interesting theoretical structure and their concrete
applications, such as in nonlinear optics and in Bose-Einstein condensates for multi-species
condensates. By using variational methods or Lyapunov-Schmidt reduction methods, there
are lots of results about existence, multiplicity and qualitative properties of nontrivial
solutions of two coupled elliptic system. Since it seems almost impossible for us to provided
a complete list of references, we refer the readers only to ([1, 2, 3, 7, 8, 20, 4, 5, 6, 9, 10,
11, 18, 19, 25, 26, 27]) and reference therein.

For two coupled Schrodinger system with f12 = f2;1 = 3, B.Sirakov [24] showed that if
0 < B < min{ps, uo} or B > max{u, u2}, then (vVkw, Viw) is ground state solution, where
k,l satisfies u1 k4Bl = 1, u1l+ Bk = 1 and they conjecture that under the above hypotheses
(\/Ew, \ﬁw) is the unique positive solution. For this conjecture, by the ODE method, J.
Wei and W. Yao, [[27], Theorem 4.2] proved this conjecture in case f > max{u1, pa},
and [[27], Theorem 4.1] proved it in case 0 < < (1 where (; is an unknown small
constant. When 8 < min {,ul, ,ug}, Z. Chen and W. Zou [10] gave a complete answer to this
conjecture and obtained the asymptotic behavior of ground state solution. However, the
above work are for purely attractive and purely repulsive cases, there have been few results
in the case of mixed couplings, i.e., the case having both positive and negative coupling
constants. For the systems in the entire space with mixed couplings was considered by
T. Lin and J. Wei [16], in which a 3-system was considered with two coupling constants
positive and one coupling constant negative.

For N-coupled system with mixed couplings, J. Wei and T. Lin [16] established some
general theorems for the existence and nonexistence of ground state solution and showed
that when all 3;; are positive and the matrix B is positively definite, there exist a ground
state solution which is radially symmetric. However, if all ;; are negative, or one of
Bij is negative and the matrix B is positively definite, there is no ground state solution.
Recently, J. Wei and Y. Wu [28] gave a systematic and an (almost) complete study on the
existence of ground state solution for N-coupled system when the system admits mixed
couplings. By dividing this system into repulsive-mixed and total-mixed cases, they proved
the nonexistence of ground state solution for repulsive-mixed case and gave an necessary
condition for the existence of ground state solution for total-mixed cases. Peng et. al [21]
use a construction argument for singularly perturbed elliptic problems to obtain vector
solutions with some of the components synchronized between them while being segregated
with the rest of the components simultaneously.

Inspired by the above-mentioned works, especially by [28, 14, 22|, in this paper our
goal is two-folds. One is to give a complete classification of ground state solution with



different Morse indices for three-coupled Schrodinger system under suitable conditions.
Another goal of the paper is to give a different approach from [14] to get the exis-
tence of ground state solutions for N-coupled system. The difficulty is that we can’t
use the method introduced in [14], where the authors considered the ground state so-
lution with Morse index N on bounded domain of RY, when the parameter satisfies
—A1(2) < A1 = Xy =--- Ay = A < 0. The novelty is that in order to obtain the unique
minimum point of g(71,72, -+ ,7n)(2.6), it is not feasible to use the method in [22] by
directly calculate the second derivative to determine the unique minimum values, so we
use the method of Lagrange’s multiplier, implicit function theorem and the Cramer’s Rule
to show there exists a unique (Timin, T2,min,*** » TN,min), Timin >0, i =1,2,--- N such
that g(T1mins T2mins -+ > TN.min) = 9(t1,t2, -+ ,tN)min. (See details in Lemma 3.3). Then
we give a complete classification of ground state solutions with Morse index 1 for system
(1.1) under suitable conditions. We prove that all the ground state solutions of (1.1) must
be the form of (cjw, cow,...,cyw), where w is the unique positive ground state solution
of (1.6). Finally, we generalize our results to fractional N-coupled Schrodinger system.
Before we state our main results we introduce our work space and some notations.
Before we state our main results we introduce some notations. Let H'(R™) be the
Hilbert space of function in R"™ endowed with the standard scalar product and norm

(u,v) = /n (VuVu 4+ w) dz, HUH%P(]RH) = (u,u).

The energy functional associated with (1.1) is given by

N N
1 1 1
E(u) =) [2 /Rn(|vuj|2 +uf)dr — e /Rn u;%dx] - Y Bijuiuida.

i=1 i#]

Define two Nehari manifolds

N
Mlz{ueﬂ\{(o,o,...o,o)}:§ / \vuj|2dx+/ uids (1.2)
j:1 Rn Rn

uj + g: Bm‘/

R”

n

2,2
u; ujdm},
j=1 ij=Li#

My :{u € H\{(0,0,0)} : /R Vu,Pda + /R u2d (1.3)

N
s [t [

u?u?da:, j= 1,2,---N}
i R

and the associated minimization problems
N

: : 1 ,
a; == ulenl\gle(u) = ulenl\glj 2 1 [/Rn |Vuj|*dx + /Rn u?dx} ,j=1,N, (1.4)



for u = (u1,ug, - ,un) € H and H = (H(R"))V.

We say that u is a ground state solution of (1.1), if u; > 0,5 =1,..., N, u solves (1.1)
and E(u) = a;, ¢ = 1, N. If u is a nontrivial solution of (1.1), then u is in M;,l = 1, N.
It is easy to see that M; # (). In fact, if we take p; € C°(R™),j =1,2,--- , N with ¢; # 0
and supp(¢;) () supp(pr) = 0 for j # k, then there exists t1,t2, - ,txy > 0 such that
(trp1,tapa, -+, tnoN) € My,

To state our results, we introduce the matrix B and B~ as following, where B~ is the
inverse matrix of B

Bi1, P21, -+ B pghtph? ... 51’N
B— ﬂ127'522, : 51'\/2 B = ﬂ2’17./32’2, ) 52.’N (1.5)
BN, Ban, -+ BNN prot g2 gl
Let w be the unique positive solution of following problem
{—Au+u:u3, in R™, (1.6)
u>0in R" u(z) = 0 as |z| = +oo.

By Lemma 1 and Lemma 2 in [16], w is also the unique positive ground solution of above
problem.

2 Statement of main results

Before we present the results in the general case N > 3, we first explain the key ideas and
main results when N = 3.
We first study the following three-coupled nonlinear Schrodinger system

—Auy +up = pud + Broudug + Prsuiug, in R,
—Aug + ug = poul + Barudug + Pagudug, in R, (2.1)
—Augz +uz = paui + Baudug + Bsgudus, in R,

u; > 01in R™ u;(z) = 0 as |z| = +o00,i=1,2,3,

where n < 3, p; > 0 are constants and §;; = B > 0, 4,5 = 1,2,3. By the method of
moving plane, we can assume that all solutions to (2.1) are radially symmetric.

We first give an almost complete classification of ground state solution with different
Morse indices for 3-coupled system under suitable conditions. We will show that any posi-
tive ground state solution with different Morse indices must be the form of (c;w, cow, czw),
where w is the unique positive ground state solution of (1.6). As far as we know, there
are some results about the existence and nonexistence of ground state solution. J. Wei
and Y. Wu [28] gave an (almost) complete study on the existence and nonexistence of
ground state solution with different Morse indices of (2.1) under different conditions by
the idea of block decomposition and measure the total interaction between different blocks
for 3-coupled system when the system admits mixed couplings. For other results about
the existence and nonexistence of ground state solution for three-coupled system, see
[16, 17, 23] and references therein.



We state our main results now. By the the definition of Morse index, it is well-known
that if the ground state solution of (2.1) is defined on Nehari manifold M (see(1.2)), then
the ground state solution has Morse index 1. If the ground state solution of (2.1) is defined
on Nehari manifold Mg (see (1.3)), then the ground state solution has Morse index < 3.
If the ground state solution of (2.1) is defined on Nehari manifold Mg defined below

2
=45 u . U'2 ’LL2 X .
Mz —{u € 2((0.0,0) jz;/wuv P+ ) (2.2

2
:Z,uj/ u?dx-f—?ﬂlg/
=1 JR"

/ (|Vus|? + u%)d:c = ,ug/ ugda: + Bg,l/ u%u%d:c + /33,2/
Rn R'n n

utuidr + 51,3/ u%ugdm—{—BQ,g/ uduide;

n n n

u%ugdl‘}

n

then the ground state solution has Morse index < 2.
For ground state solution with Moser index 1, we define a multivariate function

712+T22+T§

f(r1,72,73) = (2.3)

3 3 2
(Z w2 > ,Bi,jTZ-ZT]?)
i=1 i,j=1,i<j
We first prove that if f(71, 72, 73) has a unique positive minimum point (71 min, 72,mins 73,min,)
under suitable conditions, then we show that (DminTi minW, MminT2minW, MminT3 minW) is
the unique positive ground state solution of (2.1) (where 7, is some positive constant
defined later). For ground state solution with Morse index 3, the key step is to show
(d1w, daw, dzw) is a ground state solution of (2.1)when matrix B and B~ (see(1.5)) satisfy
suitable conditions, where d;,i = 1,2, 3 satisfy

Bi1d; + Br2d3 + Prsd3 = 1,
Ba1di + Bad3 + Pozd3 = 1,
Bs1d? + Baads + Pasd3 = 1.

Then by the same arguments as above step, we can show that if (u1,u2,0,us0) be any
positive ground state solution of (2.1), then (u1,9,u2,0,u30) = (diw, dow, dgw).

For ground state solution with Morse index 2, we first prove (djw, mdjw,dsw) is a
ground state solution of (2.1), where di, ds3 satisfy following equation,

(p1 + 512m2)d% + ﬁlgdg =1,
(Hom? + Bo1)d2 + Pasd3 = 1,
(B31 + Bzam?)d? + psd3 = 1.

Then we prove that if (u12,0, mui20,us3,0) be any positive ground state solution of (2.1)
with Morse index 2 on Nehari manifold Mg, then (u12,0, mu12,0,us,0) = (diw, mdiw, dsw).
Let the matrix B and B~ be defined at (1.5) and f (71,72, 73) be defined at (2.3).
Our first result on three-component system is the following on classification of ground
state solutions with Morse index 1.



Theorem 2.1. [f (7—1,07 7’2’0, ’7’3,0) satisﬁes Vf(Tl, T2, 7’3) = O, then (?707‘17011], 7707'27011], 7707'3’0’LU)

is a positive solution of (2.1), where

1

1
2
(51‘1712,0 + BiaT3 o + 5@‘,373?,0)

Mo =
Conversely, under the condition that Bj* <2, forall j =1,2,3 and that det B # 0, f
has a unique global minimum (T1 min, T2,mins T3.min)s Ti,min > 0, © =1,2,3, and
(nminTl,minwa NIminT2,minW, 77min7—3,minw)7 Ti,min > 0,:=1,2,3

is the unique positive ground state solution of (2.1) with the Morse index 1, where

1
TNimin = l’i:17273
(8172 min + B 3 i + BT i)
and
3
B} = inf / (Vo2 + ¢*)dz | ¢ € HI(R”),/ > 28 uidide =1 . (2.4)
Rn

R™ i=1,i#j
Furthermore all ground state solutions to (2.1) must be (NminT1LminW, Mmin T2, minW, MminT3,minW) -

The next theorem classifies ground state solutions with Morse index 3.

3.
Theorem 2.2. Assume B;; > 0, Brx > 0,V k,i # j, detB # 0 and ) poF >
i=1
0, for allk =1,2,3. Then (diw, daw, dsw) is a positive ground state solution of (2.1) with

Morse index 3, where d; > 0 for all i =1,2,3 and satisfy

B11d? + Brad3 + B13d: = 1,
Bo1d? + Baad3 + Bozd: = 1, (2.5)
631(1% + 532(1% + 533(1% =1.

Conversely, (diw,dsw, dsw) is the unique positive ground state solution of (2.1) with

Morse index 3.

The last result on three-component system classifies the ground state solutions with
Morse index 2.

matriz of D and (1+m?)Dt + D >0, (1+m?)D2+ D > 0. If (u12,0, muia0, uzp) be

Theorem 2.3. Assume 3;; > 0, By > 0,V k,i # j, det D # 0, D™ is an inverse



any positive ground state solution of (2.1) with Morse index 2 on Nehari manifold Ma,
then (u12,0, mui2,0,us o) = (diw, mdiw, dgw), where di, ds satisfy following equation,

(11 + Biam?)d? + Bi3d3 = 1,

(om? + Bo1)d? + Bosd} = 1,

(Bs1 + Bsam?)di + pad3 = 1,

p_ (™ + pokt +2B19m2,  Bi3 + Bazm? D- — DY pi2
Ba1 + Bzam?, 3 ’ D% D22

and

Theorem 2.1 can be extended to N-component system as follows.
Theorem 2.4. If (110,720, - ,7n0) satisfies Vg(Ti, T2, - ,7n) = 0, then
(77071,0107 ToT2,0W, * -+ ,7707'N,0w)

is a positive solution of (1.1), where
1

o = 17i:172)"'7N7
2 2 2 )2
<5i17'170 + ﬂz’27'270 +-+ BinTN,())
and
N
Ti2
i=1
g(7—177_27"' 77—N): L 1 (26)
N N 2
ST +2 Y BiTiTs
=1 i,7=1,1<j
Conversely, under the condition that ﬂ]* <2, forallj=1,--- N and that det B # 0,
g has a unique global minimum (T1 min, T2.mins*** » TN.min)s Tijmin >0, 1 =1,2,3,--- | N,
and
(nminTl,minw7 NminT2,minW, NMminT3,minW, * * nminTN,minw)y Ti,min > 0,:=1,2,3,---,N

is the unique positive ground state solution of (2.1) with the Morse index 1, where

1
Nmin = l’i:1’2’3""’N
(BilTIQ,min + ﬂi27—22,min + ﬂi737—§,min +ot BivNTJ%f,min> ’
and
N
B; = inf / (IVo|? + ¢*)dx | ¢ € Hl(R”),/ > 28 ui¢ide =1 . (2.7)
R™ R™

i=1,i#j

Furthermore all ground state solutions to (2.1) must be

(nmin'rl,minwa NminT2,minW, NMminT3,minW, * * * nminTN,minw)-



Similarly Theorem 2.2 can be extended to N—component systems:

N .
Theorem 2.5. Assume B;; > 0, Brx > 0,V k,i # j, detB # 0 and Y BoF >
i=1

0, forall k =1,2,---N. Then (dyw,dow,---dyw) is a positive ground state solution of
(1.1) with Morse index N, where d; > 0 for alli=1,2--- N and satisfy

B11d3 + Br2d3 + - + Bind% =1,
B21d3 + Bogds + -+ + Bandz = 1,
Ba1d? + Baadi + - + Bandi =1, (2.8)

Bn1d? + Bn2d3 + -+ + Byndy = 1.

Conversely (dyw, dow, - - - dyw) is the unique positive ground state solution of (1.1) with

Morse index N.

Remark 2.1. The similar results as Theorem 2.5 can be found in Guo et.al in [14],
where the authors considered the ground state solution with Morse index N for N-coupled
system on bounded domain of R™ when the parameter satisfy —A1(2) < A\ = Ao =
AN =A<

Remark 2.2. We should point out that Theorem 2.1 to Theorem 2.5 are also true
for corresponding fractional Laplacian system, since for the following subcritical fractional
equation

(=AYu+u=ul"t inR"

R.L. Frank and E. Lenzmann [12] showed the unique positive radial least energy solutions
for one dimension case and R.L. Frank, E. Lenzmann and L. Silvestre [13] showed the

general unique ground state solution for dimension greater than one.

Remark 2.3. In order to obtain the unique minimum point of g(m1, 72, - ,7n5)(2.6),
it is not feasible to use the method in [22] by directly calculate the second derivative
to determine the unique minimum values, so we use the method of Lagrange’s multi-

plier, implicit function theorem and the Cramer’s Rule to show there exists a unique

(Tl,mina T2,min, " " ° 77—N,min)a Timin > 0,:=1,2,---, N such thatg(Tl,mina T1,min, """ 77—1,min) =

g(ti,ta, -+ JtN)min. (See details in Lemma 3.3).

The paper is organized as follows. In section 3, we introduce some preliminaries that
will be used to prove theorems. In section 4, we prove Theorem 2.1 and Theorem 2.4. In
section 5, we prove Theorem 2.2 and Theorem 2.5. Finally, Theorem 2.3 will be proved in
section 6.



3 Some Preliminaries

The energy functional associated with (2.1) is given by

3 3
1 1 1
E(u) = E [2 /Rn(|Vuj’2 +u§)d:p — M /]R" u?da:] 1 E Bi7ju?uj2~dx.

j=1 i#£]

Recall the Nehari manifolds M, My, M3 as defined in (1.2), (1.3) and (2.2) respectively.
Consider the minimization problems

3

. . 1 2 2
ci = uler%\f/'LE(u) = ulenl\t;li 2 1 [/n |Vuj|“de + /Rn ujda:] . (3.1)
Define
2 (IVul? +u?)d
S= Jer IV “1) ’ (3.2)
weH B0} ([ yddr)?
and
N
> Jon (IVuil? 4+ uf)dz
Sy = inf =1 . 3.3
N = aern 0.0, .0} N N 3 (3:3)
> fRn piluil*de +2 Y Bij fR" ufu?da:
i=1 i j=1.4<]
We first have the following lemma.
Lemma 3.1.
Sz = f(71, T2, 73)minS, SN = 9(T1, T2, * - TN )minS,
where f(T1, T2, T3)min = ming o f(71,72,73),9(T1,*+ , TN )min = ming, >0 g(71, -+ , 7N).

PTOOf. For any ¢ € H? (Rn) \ {O}a let f(Tl,mirw T2,min T3,min) = f(Tla T2, T3)min and
(u1> uz, U3) = (Tl,minSDa T2,minP; Ts,mz'nsD)-

Then by the definition of S3, we have

3
2

T4
= fRn(W(P‘Q + p?)da
(Jan lplAda)

N
N

N

3 3
4 L2 2
Z Iu”LTi,min +2 Z B@JTi,minTj,min
i=1 1,j=1,i<j

fRn(’vSOP + ‘Pz)dx
(Jon lo|*dz)

= f(7_137_277_3)min > Sg.

N



Hence
f(71,72, 73)minS > Ss. (3.4)

On the other hand, let (u1p,u2n,usn) € H be a minimizing sequence of S3. Let z;, =

1
. 1
tinUin,® =1,2,3, where t; , = (M) * , then

Jen [tin]tdz

/ |zi,n|4dl‘:/ lw|*dz, i =1,2,3. (3.5)

By Hoélder inequality and (3.5), we have

/ |zi,n\2yzj,n|2d:c</ wlide, i, = 1,2,3. (3.6)
R R

Therefore, by (3.6) and z; 5, = tipuin,? = 1,2,3, we can deduce that

3
> fRn(|vui,n’2 + uin)daj
=1

1
3 3 2
(Z; fRn [uin|tde+2 > Bij fRn u%nuindx)

1,j=1,1<j

3
2
T.
Z; L fRn(|Vw|2 + w?)dw

)5 (Jow hutda)?

3 3

—4 -2 -2
Z MiTi,n +2 Z ﬁiiji,n Tj,n
=1 1,j=1,1<j

> f(Tl_;iy 7_2_,717 7_3_,7%)5 > f(Tla T2, 7—3>minS-
Let n — +00. We have that

Ss > f(71, T2, T3)minS. (3.7)

By (3.4) and (3.7), we get
S3 = f(11,72, 73)minS-
The case of N > 4 is similar. ]

To prove the existence and uniqueness of ground state solution, we study the properties
of f(71,72,73). To this end we first have following simple lemma

Lemma 3.2. If Vf(r,72,73) =0, and

1
n= 17i:1a273

(Bt + BiaT3 + BisTs)?

then (nTiw, nrew, NT3w) is a positive solution of (2.1).

10



Similarly, if Vg(ri,72, -+ ,7n) = 0, and
1

n= 17i:1a27"'

(Ba7i + BiaTs + -+ + BinTR)
then (nTiw,nrow, -+ ,nTNW) 1S a positive solution of (1.1).

Proof. By direct calculation, we have

21 Hy (71,2, 73)

fr(T1,m2,73) =

1,j=1,1<j

where

Hi(11,72,73)

—Z,uﬂ' + 2 Z B” (71+T2+T3

1,J=1,1<g
3 3

=75 [ D (B = Bi)7] | +73 [ D _(Bay — Buy)T
7=1

J=1

Similarly, we have

frn(m,m2,m3) =0 Hi(1,m7,13) =0,
fro(T1,72,73) =0 Ha(m,m2,73) =0,
fTs(Tl,TQ,Tg) =0 H3(7’1,7’2,7’3) = 0,

where

3
3 3 2
Z :U'iTZ'4 +2 Z ﬂz ]T T
=1

)

3 3
Hy(71,72,73) = 71 Z(Bl,j Bog)i | + 73 2(53,]

Jj=1 Jj=1

NE

3
2 2 2
H3(7_177—2a7—3) =T Z BLJ 6373 + T2
J=1

<.
Il
_

11

(62,]

7N7

)

2
52,1‘)73‘

2
63,]‘)7]'



Thus H;(m1,71,73) =0, i = 1,2, 3. which implies that

,

e

(B2.j — Brj)m7 =0,

<.
Il
-

e

(B3 — Brj)m7 =0,

<.
Il
A

e

(Brj — B2j)i =0,

<.
Il
A

(3.8)

e

(B3, — B2.4)77 =0,

<.
Il
R

e

(Brj — B34)7m7 =0,

<.
Il
R

(/827] /637j)7—j2 =0.

”M“

,

If (nmw,nmow, nT3w) is a positive solution of (2.1), then

B11(n1)? + Br2(nm2)? + Brs(nTs)? =1,
B21(n71)? + Ba2(nm2)? + Bas(nTs)? =1, (3.9)
Bs1(nm1)? + Bs2(nm2)* + Bss(nTs)? = 1.

It is easy to see that (3.8) and (3.9) are equivalent. Hence, we complete the proof of

Lemma 3.2.

The proof in the case of g(71,--- ,7n) is similar and thus omitted.

Let 3} be defined at (2.7). Then we have

Lemma 3.3. Under the condition of B;’f < 2, for all j=1,2,3, there exists a unique
(T1mins T2mins T3min)s  Tigmin > 0, 1 = 1,2,3 such that f(T1 min, T2,min, T3min) = f(t1,12,13)min-
Similarly, under the condition of B; < 2, forallj =1,2,---N there exists a unique

(Tl,minv T2,mins T3,min, " * 'TN,min)7 Timin > 0, 2=1,2,--- ,N such that

g(Tl,mina T2, min, T3,min, " ° TN,min) = g(t17t2u c ,tN)min-

Proof. Let
hs = inf G3(m1, 72, 73),
Ps3

where

7'2-2 ,uﬂf
G3(T1,72,73) = Z( 5 T) -7 Z 5@]% T
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and

3 3
Py = {(71’7—2’ 7-3) S R? \ {(07 0, O)H Z(TE - ,uiTi4) - Z B@jTETf = O},

i=1 i,j=1,i<j
Then
3 3 3
mf Z 1nf - Z,uﬂf + Z 51,;7127']2
i=1 i=1 J=1,i<j
By a standard argument, we can see that
3 2
4hs = inf =1 T, T2, T .
T mnmeooo) (3 @ = S, B
Yo+ X BigTiTs
i=1 i,j=1,i<j

Thus, hz can be attained by some 7, > 0 for all ¢ = 1,2,3 and 7; ynin > 0 for some
i. By the method of Lagrange’s multiplier, 7;,,;, > 0 for all ¢ = 1,2, 3 also satisfies the

following system

Ti,min ,u‘l 7, min + Z 61‘77—1 mzn’rj min fOI“ all /L — 1 2 3
i (3.10)

Ti,min = 0 and Z Timin > 0 for all : = 1,2,3.
i=1

Next, we prove 7; i, > 0 for all 7 = 1,2, 3.
To show that 73 i, > 0 we just need to prove that ¢ < ¢z := E(uy,ug,0). In fact, by

the implicit function theorem, there exists a unique

2
Jos 22 2Bi3ui6*dx — [pu(|Vol* + ¢?)da
t(s) =1- —1— s% 4 o(s?)
> Jea (Vi |? + uf)de
i=1

such that (t(s)u1,t(s)ug,t(s)s¢) € M; for s > 0 small enough.
Recall the definition of 57 at (2.7). 3 can be attained by some ¢3. Thus, we have

2
(1= B3) Jpa 2o 285 3ui|d5 |2 da
t(s)=1-— 5 =1 s> 4 o(s%) as s — 0.

> Jra(IVuil? + uf)dw
=1

13



So,

¢ < E(tuy, tug, tso)
t*(s) - 2., .2 2 12 12
\% 7 i d \Y% d
. (?f/w(' wh oo+ s [ (V5P +165)do

2 2 2 (2_523> 2 2 2| %2
S [ (VP s utide | - S S Bl
=1 /R* R* 55

+ 0(32) < E(u1,u2,0) := co,

B~ =

for B3 < 2 and s > 0 is small enough. Thus, we have 73 y,in, > 0.
Similarly we can use the condition that B}‘ < 2, for all j = 1,2, 3 to show that 7; ;in > 0
for all = 1,2, 3.

Let s; = 72

i'min- Then (3.10) is equivalent to the following linear system

1= pisi+ ) Bijsj forall i =1,2,3,
i (3.11)
s; >0 foralli=1,23.

By the Cramer’s Rule and the fact that det B # 0, the linear system (3.11) has a unique
solution s = (s1, $2, $3).

The proof of second part of this lemma are similar to the first part of this lemma.
To show 7mim > 0 for all ¢ = 1,2,--- N, we let m = 1,2,--- N —1 and 1, =
{li,lg, - ln} C{1,2,--- ,N =1} with l; <lp <---,l,,. We define

m

) . 1 2 2
pmm = ueli/?lfn,m Elm,m(u) - Ueﬁ/%fn,m zz; 4 |:/R" ‘VUIZ’ do /R" uz1d$:| ’
where
B =3 [5 [ (9 ity = [ utate] = 53 st
=1 i#]
and

m
M., m :{u e #\{(0,0,---0,0)} : Z/ Vg, |2da —|—/ uidw
— Jrn R™
m m
:Zm/ uf+ Y 2@',3‘/ wi, i de, i:172°""m}'
-1 JR" ij=1,i<j R

If we can show

en < c,m forall m=2,3,--- N —1,

14



and
lm:{l17l2)"' 7lm}C{1727 7N_]-}7

with

lh<ly <+ lm,
then we can see that 7, > 0 for all ¢ = 1,2,--- | N. Without loss of generality, we
assume cy_; = min{¢,, »} and it is attained by (ui,us2, -+ ,un—1). By the implicit

function theorem, there exists a unique

N—-1
o X 26ivu6%de  [ua (V9P + %)

t(s)=1— 5% 4 o(s?)

N=1
> Jra(IVus? + uf)de
=1

such that (t(s)uy,t(s)ug, - ,t(s)un—1,t(s)s¢) € My for s > 0 small enough.
So,

En(tuy, tug, - ,tun—_1,ts¢)
t%(s) — 2, 2 2 « |2 . (2
==\ 2 [ (Vul® +ud)ydz+ 5 | (Vi [+ |on]*)da
=1 /R R

1 (&= 2 2 2-Fin) 2 = 2 2
=1 ;/WUV%J + ug)dz - /]12{4;252',NU¢|¢N| dx

+o0(s?) < Ex_1(u1,u2, - ,un—1)

since 37y < 2 and s > 0 is small enough. Thus, we have 7n ,,;, > 0. The other cases are

similar. O

4 Proof of Theorem 2.1 and Theorem 2.4

Proof of Theorem 2.1 and Theorem 2.4 . By Lemma 3.2, (no7T1,0w, noT2,0w, 1MoT30w) is a
positive solution of (2.1), where

1 )
Mo = l7Z:1>2’37

2
(51‘17'12,0 + BiaTio + 51,37'3?,0)

and (TLO’ 7’270,7'370) satisfies Vf(Tl, T2, 7'3) =0.

Next, we show that (NminT1min®W, NminT2,mimW, NminT3,minW) is the unique positive
ground state solution of (2.1), where

1 .
Thmin = 17221,2,3,

L2 2 o2 2
BllTl,min + 6127_2,m'm + 61’3T3,min>
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and (71, min, T2,min, T3,min) Satisfies
F(T1,mins T2,mins T3.min) = f(T1, T2, T3) min.-
Since (NminT1,minW; MminT2,minW; MminT3,minW) is a positive solution of (2.1), we have

(nminTl,minwy TminT2,minW, nminT&minw) e M;

and
1 1
: /n(|Vw|2 FuP)de = 157

Since V f (71 mins T2,min, T3,min) = 0, from (3.8) in Lemma 3.2, we have

( 3

Zl(/BQ,j - /817j)7-j'2,min =0,
]:

3

Z (/83,j - /817j)Tj'2,min =0,
]:

Mee It

(/Bl,j - /827j)7-j’2,min =0,

<.
—_

(4.1)

e

(/83,j - /827j)7-j’2,min =0,

<.
Il
A

[Mes

(/81,] /837j)7-j'2,min = 0’

.
Il
A

(/82,] /837j)Tj'2,min =0.

i 1 ]ee

,

Thus, by (4.1) and direct calculation, we have

3 3
4 2 2
Z HiTi min +2 Z 5i:j7—i,min7—j,min
=1

1,j=1,i<j
2 2 2 2
= T1,min (ﬁllTl,min + 5127_2,min + B1,37—3,min)
2 2 2 2
+ T2 min (5217'1,mz'n + 82275 ppin, + 52,37'3,mm)

2 2 2 2
+ TS min (/83 171, min + ﬂ3,27—2,min + /83737—3,min)

2 2 2

= Z Ti min 53717_1,min + 183,27-2,min + 53,37—3,min)
2 2 2

= Z T4, min 5217-1,min + 5227—2,min + 52,37—3,min)

2 2 2
- Z Ti,min BllTl,min + B127_2,min + 51737—3,min) .
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So

f(Tl,mina T2 min> T3,min) (42)

N|=

3 3
4 L2 2
(Z lU’ZTi,m'in +2 Z /Blvai,minTj,min>

i=1 i,j=1,i<j

1
3 9 2
Z Ti,min
=1

= T-

2 2 2 2
</63»1T1,min + 63727—2,m'm + /83’37—3,7711'11)

On the one hand, for any (u1, u2,us) € M; and by the definition of S3 (see (??)), we have

3

1 1

) g /]Rn(|Vui|2 +ul)dr > 1532,
i=1

Hence
1
> - 62
c> 158

On the other hand, by (42) and (nmin'rl,minwy TiminT2,minW, ?7mmT3,mmw) € My, we have

c< E(nmin'rl,minwy NminT2,minW, nminT3,minw>

3
1
=< m> [ Vol +u?)do
4 ’ R™

i=1
3

2

i,min

1 i=1 / 2 2
=- (IVw|* + w*)dz
4 Bi717—12,min + BiQTZZ,min + Biv37—32,min "

5 2
Z Ti,min 1
o =1 82
T3 2 o2 2 A
ﬁllel,min + 512T27min + 5173T3,min 4

1 1
- Zf(Tl,mi’mTZ,min77'3,min)2SQ = ng

So,
I o
E(T/minTl,minwa NIminT2,minW, nminTE’),minw) = 153
Consequently, (nminTl,mmwanmin7—2,minw777min7—3,minw) is a positive ground state solu-
tion of (2.1). If (T1,min, T2,min> T3,min) is the unique minimum point of f(71,72,73), then
(MminT1 minW, MminT2,minW, NMminT3,minW) is the unique positive ground state solution of

(2.1) of the form (cjw, cow, czw).

17



By Lemma 3.3 and above arguments, we complete the proof. The proof of Theorem
2.4 are similar to Theorem 2.1, we only need to replace ¢ = 3 to ¢ = N and use the second
part of Lemma 3.2, we omit the details here.
Next, we prove the second part of Theorem 2.1 and Theorem 2.4. Let (NminT1,minW, MminT2,minW, MminT3,minW)
be the unique positive ground state solution of (2.1) of the form (cjw, cow, c3w) and let
(u1,0,u2,0,us,0) be any positive ground state solution of (2.1) of Morse index 1. We first

claim that

/R” ’ui,0’4dl‘ = nﬁlinﬂ%min /R” ]w|4dx, 1= 17 2737 (43)

/R ‘ui70’2|uj,0‘2dx = n;lninTz%minsz,min/R |w\4d:1: for Z?] = 11 27 3. (44)

To prove (4.3) and (4.4), we use implicit function theorem. We first consider the
following 3-coupled system, where p; is replaced by p in system (2.1):

4
_ .3 2 2 .
—Aug +up = puy + Brpuzur + B zusug, in R”,

_ 3 2 2 .
—Aug + ug = pous + Po1uius + P guzug, in R”,

(4.5)
—Aug + uz = p3ui + B3 uiug + B3 2udug, in R,
u; > 0 in R™ u;(z) — 0 as |z| — +o0,i = 1,2, 3,
and the following function
2,2, .2
T+ 715+ T
iy 1,72, m3) = L= (4.6)

i=2 i,j=1,i<j

.
3 3 2
(MTf‘ + 2 T2 Y @',jTiQsz)

By the similar arguments as Lemma 3.2 and Lemma 3.3, there exists a small 0 < € < 1

such that (77,5, (1) 75 yin (10)s T3 i (1)) is unique for pu € (u1 — €, p1 + €) and

(Timin (M) ’ 7—2*,min (M) ’ Tg,min (M))

satisfies

20, H! (p, 11,72, 73)

fr(ps 1,72, 73) = ; =0,i=1,2,3,

3 3 2
(L”'fl T2 Bi,jTZ'QTjQ>
=2 i j=1,i<]

18



where

Hf(ﬂ; T17T277'3)

_Z/’LZT +2 Z BZJTT _(T1+TQ+T3

1,7=1,1<J

3 3
=75 | Boa =W+ (Bay = Br)ms | +73 | (Baa — w7 + > _(Bsy — Buj)Ts

Jj=2

3
HY (1, m2,m3) = 71 | (10— Bo,1)7i + Z(ﬁl,j = Bag)} | + 73

Jj=2

3
HY (p,m,72,73) = 70 | (0= Ba)7i + (B — Bs)7i | +73

=2

3
2
> BT
=

Thus H!(p, 71, 72,73) =0, i =1,2,3, which implies that

3

(Bag — )78 + 22(»3271'
‘7:
3

(Bs,1 — p)Ti + 22(53,3'
j:
3

(= Boa)T? + 22(51,3'
‘7:

3
(= B3)1 + > (B

7j=2
3
21(63,]‘ - ﬁz,j)TjQ =0,
j=
3
21(52,]‘ — 63,]‘)73'2 = 0.
j=

Since (T1,mins T2,min, T3,min) 1s the minimum point of f(7, 72, 73)(see(2.3)), we have

— Brj)T; =0,
— Brj); =0,
— Baj)T} =0,
— Bs,)77 =0,

m
QTi,minHi (Nl, T1,mins T3,min, 7—3,min)

3
Z 53,] ﬁ2,j

2
= B3,5)7;

f'lrj (/J,l, T1,mins T2,min, 7—3,mm) =

By direct calculation, we have

fhe (B2, T min, T2,mins T3,min) =

=0.
A 3 4 3 2
lu’lTl,min + Z MiTi,min + 2 . Z ﬂZJ 1,min ] min
=2 1,7=1,1<j
Gij
3
2

3
4 4
MlTl,min + Z:Q'uﬂ-i,min +2 o
1=

19
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where

w

Gij = 4Ti minTjmin (E(%j,k — Bik — Bi,j)ﬁ?,mm)> :

k=1
By (4.7), we have

3
k:l

Since (Timins T2,mins T3,min) 1 the minimum point of f(7, 72, 73)(see(2.3)), then
TE (11, T min, T2mins T3ymin) = 0, 4 =1,2,3
Let G = [G; j]3x3 be the matrix defined above, then det G # 0 and so
V fE (11, T1mins T2,mins T3,min) 7 0,4, = 1,2,3.

By the implicit function theorem, we know

(Tik,min (M) ’ TZ*,m'in (M) ’ T?T,m'in (M))

is also C1 for u € (1 — €, u1 + €). Thus, the energy functional associated with (4.5) is

given by
°1 °1 1
u) = Z: 3 /Rn(|Vuj|2 +u§)dm - JZ; 1H /R" u?da: — 4M/Rn ufdz
1
4/ Zﬂ”u uj 2dx
i#£]
and

€1 (lu) = E(M? n:ninTl* min(:u’)w7 n:ninTQ*,min(:U’)wv n:ninTg,min(M)w)
L Ll
Z T’mzn ]mzn)QZ |:/l‘§” |vw‘2dw + /n w2da:} .

Next, we show that

— f E(u, tuy, tus, t 4.8
c1(p) = . W,m)l&\{(o 0.0 T (1, tus, tug, tug). (4.8)

Indeed, by the definition of ¢;(u), for any € > 0, we can take a (u1,u2,u3) Z (0,0,0), such
that

3 3

1
g /(!VujZ—i-u?)da::E Mj/ u?d:c+4u/ u‘fdx—i—/ E ﬂ”uudx (4.9)
o /Re = e R™ R

n
i#j
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and

E(p,u) <ci(p) +e.

By (4.9), we have

E(u,w) = max E(u, tuy, tus, t f E(u, tuy, tus, t
(1) = g By fun B, ) 2 s (00,0 e E b i i, i),
Thus,
> inf E,(tuq, tus, tus).
AU 2 s B (00,0 o Bt i, tus)
On the other hand, by the definition of inf max F(u, tuy, tug, tus), for any

(ul,u2,U3)€H\{(0 0,0)} t>0
€ > 0, we can take a (u1,uz2,u3) # (0,0,0) such that

E(u, tyuy, tyug, tyug) = max E(u,tuy, tug, tug)
>

f E ) tu ) tu Pl tu +
(w1 ,Uz,ug)e?-[\{(o 0,0)} t>0 (M 1 2 3) €

and (tyuq,tyusg, tyug) satisfies (4.9), which implies that
(tuulu tuus, tuu3) S Ml,,uy
where M ,, is a Nehari manifold when p; was replaced by p in Nehari manifold M;. Thus

c < inf max ), (tuy, tug, tus).
1) (u1,uz,u3)€H\{(0,0,0)} t>0 u(tus, tuz, tus)

So the proof of (4.8) is complete. Thus, there exists ¢(x) > 0 such that
E(:“’a t(M)Ul,m t(:u)UQ,O’ t(:u’)u&o) = 1?38( E(M? tuy, tug, tu3)’
where t(u) > 0 satisfies F'(u,t(u)) = 0 and

3
F(/.L,t) = t2 M/Rn uiodl' + Z'u‘] / j Od:L‘ +/ ZB@ j'LL,L Ouj OdZE

=2 i#]

23: [/ (IVujol? + ujo)dx] .

Jj=1

Since F'(u1,1) = 0, %—};(ul, 1) > 0, by implicit function theorem, there exists § > 0 such
that t(u1) = 1, t(u1) € CY(u1 — 6, 1 + 9) and

) = (4.10)

3 3 .
2 <E1 1 fgn u}{od:n + Jgn ; ﬁi,juiouio‘il)
Jj= 7

21



By Taylor expansion, we have

t(p) =1+t (1) — pa) + ol — pua %),

thus,
(1) = 1+ 26/ (1) (1 — 1) + ol — uu ). (4.11)

Since

3
[/RnﬂVuj,[ﬂ2 + uio)dx] (4.12)
=1

3
= Z ,uj/R u;{odx + /R Z ﬁmuiouioda: = 4e(pr),
N n n ’L#]

J=1

<

then, by (4.10), (4.11) and (4.12), we have

r(1) < Byt otz uae) = 1200 3 | [ (Vo + i)
j=1 LR

4dx

n JU1,0
= 1 (u)t* (1) = c1 () — () ; Je ; (1 — )
(Zl 15 Jgn 03 002 + fgn ; 5@;‘“?,0“?,0“)
J= 1%£]

(= ) + +ollp — m?).

1
+o(lp — pu[*) 261(M1)—4/ |u1,0
RTL

Thus
— 1
cn) — ea(p) > _/ lur ol*dz + o(|u — p1|?), as p 7 pa,
f— 4 Jgn
SO
1
) =~ [ ol
Similarly,
— 1
alw) = alm) < _/ uro| da + o[ — paf?), as p\
B 4 Jgn
and
1
i) < =5 [ ool
Hence

1
A(p) = —4/]1{" |uy,0|*da.

Since (MminT1,minW, MminT2,minW, MminT3minW) is the ground state solution of (2.1), we

have
4

4
. T .
Cll(,UJ) _ _nmzn4l,mzn /n w4dx.
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Thus,

4 4 4 4
/ ’Ul,o‘ dr = nminTl,min/ widz.
Rn n

By the similar arguments as above, that is, by computing ¢} (u2), ¢} (us), we obtain
/ luio|*de = nfnmﬁfmm/ lw|*dz, i = 2,3.
Thus, we get (4.3). Similarly, by computing ¢/(3; ), we obtain
/]R” lui o]?|wj0l*de = nfninTiQ,minTj%min /R" lw|*dz for i < j =1,2,3.
Thus, by (4.3), (4.4), we have
/n i ol*ujol*dr = ;TimTfmm /Rn luio|*dx for i < j =1,2,3. (4.13)
Next, we prove
(11,0, 42,0, 3,0) = (MminTLminW, MminT2,minW; MminT3,minW)-

Since (MminT1minW, MminT2,minW, NMminT3,minW) is a ground state solution of (2.1), we have

2 2 2 2 2 2 _
lu’lnminTl,min + BlQnminTQ,min + Bl3nmin7—3,min =1
2 2 2 2 2 2 _
521nmin7—l,min + IU’QnminTQ,min + 523nmin7—3,min =1 (414)

2 2 2 2 2 2 _
531nmin7—1,min + ﬂ32nmin7—2,min + Iu’3nmin7—3,min =1

Let (u1,ug,us) = (nmi::l(?min7 nmi:igmm’ nmi:i;'min)7 then, by (4.13) and (4.14), we have
1
[ 9ul 4 e = oy [ (Vugl + o)
n minTi,min n
1
o [ o+ Y Aol

nmznTz min JR" itj

1
"2 2 (bi + Z BU i,min’j, mzn) / |Ui70’4d$
nmznTz,m i#j Rn

—

= 44/ |u1:,0|4d$=/ ug|*de, i =1,2,3.
Ninin i,min m R

\]

Hence,

/(!Vui\Q—l—u?)dxz/ (IVol? + w?)de,i = 1,2,3.
Rn R~
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Since (u1,0,u2,0,u3,0) and (MminT1minW, MminT2,minW; TminT3,minW) are both the ground

state solution of (2.1), we obtain

3 3
1 1
12 it [ (V0P +uf)de = 130 [ (Fusol? +udo)ds
7 %
1 3
%

3
1
> Z ;U?mnﬂ%mm /Rn(‘VwP 4 w2)d:1:
which implies that

So, uj,i = 1,2, 3 are positive ground state solutions of (1.6). Since (u1,0, u2,0, u3 ) satisfies

2 2 2 2 2 .2
(21) and MlnminTl,min + ﬁanminTQ,mm + ﬁ31nmin7—3,min - 17 we have
_ .2 2 3 2 2 2 2 2 2. _ 3
—Aur + U1 = 05 T min¥T + B2,1Mmin Tamin¥2U1 + B31Mmin T3 minUsU1 = uj.

So

u:{’ = u?ul and u; = u1, 1 = 2,3.
Since (1.6) has a unique positive ground state solution w, thus, we have
(u1,0, u2,0, U3,0) = (nminTl,minwy NminT2,minW, 77mmT3,mm)-

The proof is thus complete. The proof of second part of Theorem 2.4 is similar to the

proof second part of Theorem 2.1. We choose auxiliary function as following

N
gu(:uleaT%"' 7TN): = 1
I 4 ul 2,2 ’
pri D T +2 0 3. BT
i=2 i,j=1,i<j
So
2T‘HH(/’L7T177-27'” 7TN)
b (p, T, T2y, TN) = G + =0,
i, & 4 N 2,2 ’
BTE Do T 2 D0 BTt
i=2 i,j=1,i<j
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where

H-“(M,Tl,w,“' ™)

—,uTl+Z,un + 2 Z BWTT

1,7=1,1<7g

— (7’12—1-722+~--+T12V) Zﬁi,ﬂ'jg

N
= 7—12 (:U' 521 1 +Z ﬂl] 61] 32 +TQ Z 52,] ﬁzy

Jj=2 Jj=1

N N
2 2 2
+ T Z Bi— 1,5 — 52,) + T E /BH'LJ BM
j=1 J=1

N N
+ 7—]2\7—1 Z(BN—I,] B’L,j T Z ﬁNJ /BZ,J
7=1

j=

—_

Thus H (p, 71,72, -+ ,78) =0, i =1,2,--- , N. which implies that

N

(1 — Bin)Ti + 22(51,3' — Big)Ts =0,
‘7:

N

> (B2 — Big)Ti =0,

7=1

'N

Zl(ﬁz 1j = Bij)T =0,
=

N

Zl(/BH-l,] Bz’7j)7'j2 — 0,

=

'N

leN L7 — 52‘,]‘)7]'2:07
j=

N

2_:(/6]\77] 52',]')7']2 = 0.

The other part of the proof is similar as the proof of the second part of Theorem 2.1. [
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5 Proof of Theorem 2.2 and Theorem 2.5

Proof of Theorem 2.2 and Theorem 2.5. We follow some ideas from [10] and recent work
[29], where two-coupled system was considered. Indeed, by Lemma 1 and Lemma 2 in

[16], w is the unique function attaining S. Thus,

/n(|Vw\2 + w?)dx = /n wlde = 52
On the one hand, if dj, da, ds satisfy (2.5), it is easy to see that
(d1w, daw, dsw)
satisfies (2.1) and belongs to M3. So

3
1
3 < BE(dyw, dyw, dsw) = Zd2/ (IVw|? + w?)dz = 1 > dis? (5.1)
=1

On the other hand, let (u1p, u2n,us,) € M3 be a minimizing sequence for cs, that is

E(Ul,n, U2 n, U37n) — C3 as n — +0o0.

4 2
Qjn = (/ U]’ndﬂ’j) 7j = 172737

then by the definition of S(see(3.2)) and Holder inequality, we have

1 3
2
S(/ u‘indaz> §/ (|Vu17n|2+uin)da::u1/ ufndm+ g Bl,j/ u? nu dx
R" n R™ R™

Define

|—=

i1
; ; ;
< ,ul/ uindx + Zﬁl,j </ u‘indx> </ uj ndx) .

Thus

S < pqin + Bi2a2,0 + £1,303,0- (5.2)
Similarly, we have

S < poqan + B21q1,m + B2,3¢3,n- (5.3)

S < pu3qsn + B3,1q1,0 + 83,2420 (5.4)
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Since

3
1
E(u1n, ugn, ugn) = 1 Z/ ([Vujnl® + uj 2 )dz,
we have
3 3
53 < 32 [ (002 2, ) = 4B(u 11110, + 000
j=1 j=17R"
3
=4z +o(1 }: 257 +o(1).
Thus

3 3
D gin <> _diS +o(1)
j=1 j=1

By (2.5), (5.2) to (5.5), we obtain

11 (g — d2S) + Bra2(gen — d3S) + Bi3(gzn — d35) > 0,
Boi(q1n — diS) + p2(gen — d3S) + Bos(asm — d3S) > 0,
Bsi(qin — d3S) + B32(q2,n — d3S) + p3(gzn — d35) > 0,
(q10 — d7S) + (g2, — d35) + (g3.0 — d3S) < o(1).

v

We claim

(g1 — d%S) + (g2.n — d%S) + (g3n — ng) —0as n— +oo.

Indeed, from (5.6), we have

BX >0,
where
i, B2, B3 qn—diS
B=1 o, pz, Pz | X=| qn—diS |[,0=
Bs1, B32, W3 g3 — d3S

Next, we show
(QLn - d%S) + (QQ,n - d%‘s’) + (Q3,n - d?,S) > 0

Since B~ is the invertible matrix of B , we let

BX=C>0=X=8C,

where
51,1’ 61,2, 61,3 Cl
B_ = /82’17 /82727 52’3 7C = CQ )
53,1’ ﬁ?),?7 53,3 03
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3.
then, if 3> %% >0, for all k = 1,2,3, we have
i=1

3

Z(Qi,n

=1 s

By (5.6) and (5.7), we have

3 3

3
> BFC = > ) =o. (5.7)

1 k=1 k=1 i=1

Moo

(qin — d2S) + (g2, — das) + (g3, — d3S) — 0 as n — 4o0.

Thus,
3 3

quyn — Zd?S as n — +oo.

Jj=1 Jj=1
So

1< 1< 5o
c3 = nll)r_ir_looE(ul s U205 U3 ) = 452%,” =1 Z;djS i (5.8)
j= j=

Combining (5.1) with (5.8), we have
Zd282 E(dyw, dyw, dsw).

Thus, (dyw, dow, dsw) is a positive ground state solution of (2.1). The proof of Theorem
2.5 are similar to above proof.
To proof the uniqueness of positive ground state solution of (2.1), we show that if

(u1,0,u2,0,us,0) be any ground state solution of (2.1), then
(w1,0,u2,0,u3,0) = (diw, dow, dzw).

Let (u1,0,u2,0,us,0) be any ground state solution of (2.1), then by strong maximum

principle, we have u;o > 0,5 = 1,2,3. We claim

/ u;ljodx = df/ whdz for i = 1,2, 3. (5.9)
Rn n

/ ug gu oda = d2d2/ whdz for 4,5 =1,2,3. (5.10)
R n

To proof the claim, we consider the following system, where 1 is replaced by u in system
(2.1).

—Auy +uy = puf + Broujuy + B1zujur, in R”,

—Auy + uy = ppui + Pouiuy + Pozuiuy, in R”

3 2 2 .
—Auz + uz = pguz + B3 1uiuz + B3 puzuz, in R”

u; > 01in R™ u;(z) — 0 as |z| — +o00,1=1,2,3
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The corresponding energy functional is given by

3 3
1 1
By (p, w1, ug,uz) = 3 /Rn(IVUjI2 +uf)da — 1 Y Bijuiuide.
j=1 7]

3
1
—u/ ulde — E 4,uj/ u?d:z:.

It is easy to see

- inf B, (u, tu, tus, tus).
) = 0.0y e ot bz, Tus)

The next steps are same as the proof of Theorem 2.1 and Theorem 2.4 . Thus, we have

proof

(u1,0,u2,0,us,0) = (diw, dow, dsw).

6 Proof of Theorem 2.3

Proof of Theorem 2.3. Stepl When % = m, then (djw,dow,dsw) is a positive ground

state solution of (2.1). On the one hand, if dj, ds satisfy following equation,
(1 + Bram?)d? + Prsd3 =1,

(pam?® + Ba1)d} + ﬁzgd% =1,
(B31 + Baam?)d? + psd3 = 1.

So
(1 + pok? + 2B19m?)d3 + (Brs + Pazm?)d3 = 1 +m?, (6.1)
(B31 + Bz2am?)di + psd3 =1,
it is easy to see that (dyw, mdyw, dsw) satisfies (2.1) and belongs to My. So
1
co < E(djw, mdyw, dsw) = 1 (1 +m?)d; +d3) / ([Vw|? + w?)dx (6.2)
Rn
1
=3 (1 +m?)d; +d3) S>.

On the other hand, let (w125, Mu12.4,u3,) € Ma be a minimizing sequence for ¢y, that is

E(u12n, muign, usy) — 2 as n — +00.
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Define

1 1
3 3
4 4
Q12,0 = (/ u12,nd$> y43,;n = (/ Ug,nd$> )
Rn R'n

then by the similar arguments as (5.2), we have

S < u3qzn + (831 + Bzom?)qiam, (6.3)

(1+m?)S < (p1 + pok + 2B1.0m%)qran + (Br3 + B23m*) g3 n- (6.4)
Since
S((L + 1) q1zn + @) < (1+m?) / (Vuran? +udy,)dz + / (Vg nl? +12,)de
R” R™

= 4E(u12,n, Mu12,n,u3n) + o(1)

=dey +o(1) < (1 +m?)d; + d3) S + o(1).
So
(1 +m*)(q12,0 — diS) + (43,0 — d3S) < o(1). (6.5)
Thus, by (6.1), (6.3), (6.4) and (6.5), we have

(1 + mz)(QH,n - d%S) + (Q3,n - d?’,S) < 0(1)’
(1 + p2k® +2B812m?) (qran — d3S) + (B1,3 + Ba,zsm?)(gsn — d3S) > 0, (6.6)
(B31 + Bsam?)(qr2.n — d3S) + p3(gs.n — d3S) > 0.

Next, we claim
(L4 m?) (q1o,n — diS) + (g3,0 — d35) — 0 as n — +o0.

From (6.6), we have

DX >0,
where
p_ (M + pokt 4+ 2B10m?, P13+ Bozm? x - [ Q2n— dis 0— 0
Bs1 + Bzam?, M3 7 a3n — d%S ’ 0

Next, we show
(14 m*)(qi2;n — diS) + (g3 — d35) > 0.

Since D~ is the invertible matrix of D , we let
DX=C>0=X=D"C,
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where

Dll D12 C
D = ’ c=( ").
D21, D22 02

If we let
(1+m2)D' + D2 > 0,
(1+m2)D2 + D2 > 0,
then
(14 m?)(qr2,n — diS) + 3.0 — d35
= (L +m?) D" + DYy + (1 + m?)D'? + D*?)Cy > 0.
So,
(1+m?)(q12.n — d3S) + g3 — d3S — 0 as n — +oo.
Thus,
(1+ m2)¢hz,n +q3n— (1+ m2)d%5 + d%S as n — +oo.
So,

) 1 1
co = lim E(uign, muion, usn) > ZS((l +m*)qron + g3n) = ~((1+m?)d} + d3)S>.

n—-+o0o 4

Thus, ¢z = 1((1 +m?)d} 4+ d3)S%. So when % =m, (diw, dsw, dsw) is a positive ground
state solution of (2.1).

Step 2, We show that if (u12,0, mui2,0, us,0) be any ground state solution of (2.1), then
(w12,0, mu12,0,us,0) = (diw, mdiw, dzw).

The next steps are similar as we proof Theorem 2.1, for readers conveniences, we give
the details here.
Let (u12,0, mui2,0,us,0) be any ground state solution of (2.1), then by strong maximum

principle, we have w129 > 0,u39 > 0. We claim

/R utyode = dj / widz for. (6.7)
/R uéod:n = dg‘/ wdz for. (6.8)
/IR u%zoug’odx = d%d%/ wdz for. (6.9)
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To proof the claim, we consider the following system, where 1 is replaced by p in system
(2.1).

—Aug +uy = pud + Br2udug + B sudug, in R,

—Auy + ug = pgul + Pa,1ufus + Pazuiug, in R”

3 2 9.
—Aug + uz = pguz + B3 1uiuz + B3 uzugz, in R"

u; > 01in R™ u;(x) — 0 as |z| — +o00,1=1,2,3

The corresponding energy functional is given by

3 3
1 1
By (pyur, ug, uz) = Z B /R (IVuy|? + uf)de — 1 Zﬁidu%“azdﬂ
j=1 " i#j

3
1
4 4
—,u/ ujdx — ,u-/ usdx.
Rn z; 4" Jgn 7
ji
It is easy to see
c = inf max F,, (p, tug, tmug, tus).
20 = o 000y 55 Farlp b, o L)
Thus, there exists t(u) > 0 such that
B, (p, t(p)ua2,0, t(p)muiz o, t(p)uso) = max E, (@, tuy, tmuy, tug),
where t(u) > 0 satisfies F'(u,t(p)) = 0 and F'(u,t) is defined as following
F(u,t) =t (,u/ u%zod:c + ,u2m4/ u‘llz’odx + ug/ ug,odaz
RTL RTL Rn

+/ 25172m2u‘f270d:€+/ (2ﬂ1,3+26273m2)u%270u§70da:)

=) [ (Yool + oo+ [ (Tusol? + o]
then 5
Fu,t
F(ﬂb 1) =0, g:)(:ula 1) > 0,

by implicit function theorem, there exists 6 > 0 such that t(u1) = 1, t(u1) € C'(u1 —
d, 1 + 0) and

() = (6.10)
Jgn [u12,0|*dz

2 <(M1 + pam® 4 281 9m?) [, uly od + [on (2613 + 282 3m2)uy gu3 odr + 43 [ u§70d$>
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By Taylor expansion, we have

t(p) =1+t (1) (e — ) + ol — pa]?),

thus,
() = 142 (1) (= ) + ol — ). (6.11)
Since
deg(py) = (1 + m2)/ (|Vuig,0/? +u%270)d:c+/ (IVusol® + u3 o) da (6.12)
Rn Rn

= <(u1 + pam* + 251,27”2)/}1% Ui od +/R (2813 + 2B2,3m% Jufy gu gda + Ms/R U§,0d1‘> ;
then, by (6.10), (6.11) and (6.12), we have
ca(p) < Eu(t(p)uizo, t(p)kuiz,o, t(p)usp)

1
=120 (@) [ (Vo + udsgdo s [ (Fusol +80)de ) = cal)
Rn Rn

c3(p1) Jgn luazol*de.(u — p1)

((Ml + pam® + 261 2m?) [pn uly odz + [n (2813 + 282 3m2)uiy gu3 odx + p3 [pn U%,od»”ﬂ)

1
+o(lp— m*) = es(pa) — 1 /R lurz,ol*dz (i — p1) + o(|p — g |*).
Thus
— 1
c2(u) = calpm) > —/ luiz,0|dz + ol — pu|?), as p 7,
B 4 Jrn
SO
/ 1 4
cy(pn) = —4/Rn |u12,0/ d.
Similarly,
— 1
e2lp) = o) < —/ urz,0/%dx + o(|p — pal?), as g\
= 4 Jrn
and
1
(1) < —4/n lur2,0| da.
Hence

1
ch(p1) = —4/n 12,0/ da.

Since (dyw, kdjw, dsw) is the ground state solution of (2.1), we have

di

() = — 1 whdz.

Rn

/ |u1270|4da::d111/ whdz.
n Rn
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By the similar arguments as above, that is, by computing c5(u2), c5(p3), we obtain

/ |U370|4d33:d§/ lw|*dz.
R7 R™

Thus, we get (6.8). Similarly, by computing c4(5; ;), we obtain

R7 -
Thus’ by (67)7 (69), we have

/ |U1270’2|U370’2dl' = d1_2d§/ \u1270]4dx. (6.13)
R™ R™

Next, we prove

(u12,0, Mu12,0,u3,0) = (diw, mdiw, dzw).
Since (dyw, mdyw, dsw) is a ground state solution of (2.1), we have
(1 + B1am?)d3 + Bi3d3 = 1,

(n2m?® + Ba1)di + fa3di = 1, (6.14)
(B31 + Baam?)d? + psd3 = 1.

Let (u12, mujg, us) = (uz’o, mzlf’o, “%;)), then, by (6.13) and (6.14), we have

1
/ (|Vuia|* + udy)dx = / (|Vuiz,0/? + U%zo)dff

a3 Jr
1

= dQ/R (1 + 5127”2)’“[112,0 + Brauy gu3o)da
1 n

1 _
= — (1 + Bram? + Biad; ng)/ lu12,0|*dx
R’ﬂ

dt

1
= d4/ ]u1270|4d33:/ |u12|4d:1:.
1 JR» Rn

/(|W3|2+u§)dx=/ s |
n Rn

Similar, we have

Hence,

/ (IVusaf? + wdy)de > / IVl + w?)da,
R” R™

/ (\VU3]2+ug)da:2/ ([Vw]? + w?)dz.
n Rn
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Since (u12,0, mu12,0, u3,0) and (diw, mdyw, dzw) are both the ground state solution of (2.1),

we obtain

1
Z((l + m2)d% + d%) / (|Vw|2 + w2)d:v
RTL

1
=1 @A)l + ubso) + (Vusol? + 1 g)da

1
=7 [(1 —|—m2)d%/ (|Vu12\2 +u%2)dﬂc+d§/ (|Vug|2 —i—u%)dx
n Rn

1
> {( A+ &) [ (Tul o+ u)ds,

which implies that

/ (IVusal? + uy)da = / (IVwl? + w*)de,
R” R™

/ (|Vus|* + u?)dx :/ (|Vw|? + w?)dz.
n Rn

So, u12,ug are positive ground state solutions of (1.6). Since (u12,0, mui2,0,us3,) satisfies
(2.1) and (py1 + Bi1am?)d3 + Bi3d3 = 1, we have

—Auig +upg = (Hl + 612m2)d%u§’2 + ﬂgldgugulg = U?Q.

So

ui’Q = u%ulg and ug = uq9.

Since (1.6) has a unique positive ground state solution w, thus

(u12,0, mu12,0,u3,0) = (diw, mdiw, dzw).
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