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Abstract

In this paper, we study the following N-coupled nonlinear Schrödinger system
−∆uj + uj = µju

3
j +

∑
i 6=j

βiju
2
iuj , in Rn,

uj > 0 in Rn, uj(x)→ 0 as |x| → +∞, j = 1, 2, · · · , N

where n ≤ 3, N ≥ 3, µj > 0, βij = βji > 0 are constants and βjj = µj , j =

1, 2, · · · , N. There have been intensive studies for the system on existence/non-existence

and classification of ground state solutions when N = 2. However fewer results about

the classification of ground state solution are available for N ≥ 3. In this paper, we

first give a complete classification result on ground state solutions with Morse indices

1, 2 or 3 for three-coupled Schrödinger system. Then we generalize our results to N -

coupled Schrödinger system for ground state solutions with Morse indices 1 and N .

We show that any positive ground state solutions with Morse index 1 or Morse index

N must be the form of (d1w, d2w, · · · , dNw) under suitable conditions, where w is the

unique positive ground state solution of certain equation. Finally, we generalize our

results to fractional N-coupled Schrödinger system.

Keywords: nonlinear Schrödinger system; unique ground state solution; varia-

tional method; Morse indices

1 Introduction

In this paper, we study the following N-coupled nonlinear Schrödinger system−∆uj + uj = µju
3
j +

∑
i 6=j

βiju
2
iuj , in Rn,

uj > 0 in Rn, uj(x)→ 0 as |x| → +∞, j = 1, 2, · · · , N
(1.1)
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where n ≤ 3, N ≥ 3, µj > 0 are constants and βi,j = βj,i > 0 are coupling parameters
(βjj = µj). This paper is concerned with the uniqueness of ground state solution in the
general case N ≥ 3.

This system arises as standing wave solutions of the time-dependent N-coupled Schrödinger
systems of the form−

√
−1 ∂

∂tΦj = ∆Φj − Vj(x)Φj + µjΦj |Φj |2 +
∑
i 6=j

βijΦ
2
jΦj , in Rn,

Φj = Φj(x, t) ∈ C, t > 0, j = 1, 2, · · · , N

and these systems are also known as coupled Gross-Pitaevskii equations. In the past
fifteen years, a great attention has been focused on the study of two coupled systems
with nonlinear terms, both for their interesting theoretical structure and their concrete
applications, such as in nonlinear optics and in Bose-Einstein condensates for multi-species
condensates. By using variational methods or Lyapunov-Schmidt reduction methods, there
are lots of results about existence, multiplicity and qualitative properties of nontrivial
solutions of two coupled elliptic system. Since it seems almost impossible for us to provided
a complete list of references, we refer the readers only to ([1, 2, 3, 7, 8, 20, 4, 5, 6, 9, 10,
11, 18, 19, 25, 26, 27]) and reference therein.

For two coupled Schrödinger system with β12 = β21 = β, B.Sirakov [24] showed that if
0 ≤ β < min{µ1, µ2} or β > max{µ1, µ2}, then (

√
kw,
√
lw) is ground state solution, where

k, l satisfies µ1k+βl = 1, µ1l+βk = 1 and they conjecture that under the above hypotheses
(
√
kw,
√
lw) is the unique positive solution. For this conjecture, by the ODE method, J.

Wei and W. Yao, [[27], Theorem 4.2] proved this conjecture in case β > max{µ1, µ2},
and [[27], Theorem 4.1] proved it in case 0 < β < β1 where β1 is an unknown small
constant. When β < min

{
µ1, µ2

}
, Z. Chen and W. Zou [10] gave a complete answer to this

conjecture and obtained the asymptotic behavior of ground state solution. However, the
above work are for purely attractive and purely repulsive cases, there have been few results
in the case of mixed couplings, i.e., the case having both positive and negative coupling
constants. For the systems in the entire space with mixed couplings was considered by
T. Lin and J. Wei [16], in which a 3-system was considered with two coupling constants
positive and one coupling constant negative.

For N-coupled system with mixed couplings, J. Wei and T. Lin [16] established some
general theorems for the existence and nonexistence of ground state solution and showed
that when all βij are positive and the matrix B is positively definite, there exist a ground
state solution which is radially symmetric. However, if all βij are negative, or one of
βij is negative and the matrix B is positively definite, there is no ground state solution.
Recently, J. Wei and Y. Wu [28] gave a systematic and an (almost) complete study on the
existence of ground state solution for N-coupled system when the system admits mixed
couplings. By dividing this system into repulsive-mixed and total-mixed cases, they proved
the nonexistence of ground state solution for repulsive-mixed case and gave an necessary
condition for the existence of ground state solution for total-mixed cases. Peng et. al [21]
use a construction argument for singularly perturbed elliptic problems to obtain vector
solutions with some of the components synchronized between them while being segregated
with the rest of the components simultaneously.

Inspired by the above-mentioned works, especially by [28, 14, 22], in this paper our
goal is two-folds. One is to give a complete classification of ground state solution with
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different Morse indices for three-coupled Schrödinger system under suitable conditions.
Another goal of the paper is to give a different approach from [14] to get the exis-
tence of ground state solutions for N-coupled system. The difficulty is that we can’t
use the method introduced in [14], where the authors considered the ground state so-
lution with Morse index N on bounded domain of RN , when the parameter satisfies
−λ1(Ω) < λ1 = λ2 = · · ·λN = λ < 0. The novelty is that in order to obtain the unique
minimum point of g(τ1, τ2, · · · , τN )(2.6), it is not feasible to use the method in [22] by
directly calculate the second derivative to determine the unique minimum values, so we
use the method of Lagrange’s multiplier, implicit function theorem and the Cramer’s Rule
to show there exists a unique (τ1,min, τ2,min, · · · , τN,min), τi,min > 0, i = 1, 2, · · · , N such
that g(τ1,min, τ2,min, · · · , τN,min) = g(t1, t2, · · · , tN )min. (See details in Lemma 3.3). Then
we give a complete classification of ground state solutions with Morse index 1 for system
(1.1) under suitable conditions. We prove that all the ground state solutions of (1.1) must
be the form of (c1w, c2w, . . . , cNw), where w is the unique positive ground state solution
of (1.6). Finally, we generalize our results to fractional N -coupled Schrödinger system.
Before we state our main results we introduce our work space and some notations.

Before we state our main results we introduce some notations. Let H1(Rn) be the
Hilbert space of function in Rn endowed with the standard scalar product and norm

〈u, v〉 =

∫
Rn

(∇u∇v + uv) dx, ‖u‖2H1(Rn) = 〈u, u〉.

The energy functional associated with (1.1) is given by

E(u) =
N∑
j=1

[
1

2

∫
Rn

(|∇uj |2 + u2j )dx−
1

4
µj

∫
Rn

u4jdx

]
− 1

4

N∑
i 6=j

βi,ju
2
iu

2
jdx.

Define two Nehari manifolds

M1 =

{
u ∈ H\{(0, 0, · · · 0, 0)} :

N∑
j=1

∫
Rn

|∇uj |2dx+

∫
Rn

u2jdx (1.2)

=

N∑
j=1

µj

∫
Rn

u4j +

N∑
i,j=1,i 6=j

βi,j

∫
Rn

u2iu
2
jdx

}
,

MN =

{
u ∈ H\{(0, 0, 0)} :

∫
Rn

|∇uj |2dx+

∫
Rn

u2jdx (1.3)

= µj

∫
Rn

u4j +
N∑
i,i 6=j

βi,j

∫
Rn

u2iu
2
jdx, j = 1, 2, · · ·N

}

and the associated minimization problems

aj := inf
u∈Mj

E(u) = inf
u∈Mj

N∑
j=1

1

4

[∫
Rn

|∇uj |2dx+

∫
Rn

u2jdx

]
, j = 1, N, (1.4)
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for u = (u1, u2, · · · , uN ) ∈ H and H = (H1(Rn))N .
We say that u is a ground state solution of (1.1), if uj > 0, j = 1, ..., N , u solves (1.1)

and E(u) = ai, i = 1, N . If u is a nontrivial solution of (1.1), then u is in Ml, l = 1, N .
It is easy to see that Ml 6= ∅. In fact, if we take ϕj ∈ C∞c (Rn), j = 1, 2, · · · , N with ϕj 6≡ 0
and supp(ϕj)

⋂
supp(ϕk) = ∅ for j 6= k, then there exists t1, t2, · · · , tN > 0 such that

(t1ϕ1, t2ϕ2, · · · , tNϕN ) ∈Ml.
To state our results, we introduce the matrix B and B− as following, where B− is the

inverse matrix of B

B =


β11, β21, · · · βN1

β12, β22, · · · βN2
...

. . .
...

β1N , β2N , · · · βNN

 ,B− =


β1,1, β1,2, · · · β1,N

β2,1, β2,2, · · · β2,N

...
. . .

...
βN,1, βN,2, · · · βN,N

 . (1.5)

Let w be the unique positive solution of following problem{
−4u+ u = u3, in Rn,
u > 0 in Rn, u(x)→ 0 as |x| → +∞.

(1.6)

By Lemma 1 and Lemma 2 in [16], w is also the unique positive ground solution of above
problem.

2 Statement of main results

Before we present the results in the general case N ≥ 3, we first explain the key ideas and
main results when N = 3.

We first study the following three-coupled nonlinear Schrödinger system
−∆u1 + u1 = µ1u

3
1 + β12u

2
2u1 + β13u

2
3u1, in Rn,

−∆u2 + u2 = µ2u
3
2 + β21u

2
1u2 + β23u

2
3u2, in Rn,

−∆u3 + u3 = µ3u
3
3 + β31u

2
1u3 + β32u

2
2u3, in Rn,

ui > 0 in Rn, ui(x)→ 0 as |x| → +∞, i = 1, 2, 3,

(2.1)

where n ≤ 3, µj > 0 are constants and βij = βji > 0, i, j = 1, 2, 3. By the method of
moving plane, we can assume that all solutions to (2.1) are radially symmetric.

We first give an almost complete classification of ground state solution with different
Morse indices for 3-coupled system under suitable conditions. We will show that any posi-
tive ground state solution with different Morse indices must be the form of (c1w, c2w, c3w),
where w is the unique positive ground state solution of (1.6). As far as we know, there
are some results about the existence and nonexistence of ground state solution. J. Wei
and Y. Wu [28] gave an (almost) complete study on the existence and nonexistence of
ground state solution with different Morse indices of (2.1) under different conditions by
the idea of block decomposition and measure the total interaction between different blocks
for 3-coupled system when the system admits mixed couplings. For other results about
the existence and nonexistence of ground state solution for three-coupled system, see
[16, 17, 23] and references therein.
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We state our main results now. By the the definition of Morse index, it is well-known
that if the ground state solution of (2.1) is defined on Nehari manifold M1(see(1.2)), then
the ground state solution has Morse index 1. If the ground state solution of (2.1) is defined
on Nehari manifold M3 (see (1.3)), then the ground state solution has Morse index ≤ 3.
If the ground state solution of (2.1) is defined on Nehari manifold M2 defined below

M2 =

{
u ∈ H\{(0, 0, 0)} :

2∑
j=1

∫
Rn

(|∇uj |2 + u2j )dx (2.2)

=

2∑
j=1

µj

∫
Rn

u4jdx+ 2β1,2

∫
Rn

u21u
2
2dx+ β1,3

∫
Rn

u21u
2
3dx+ β2,3

∫
Rn

u22u
2
3dx;

∫
Rn

(|∇u3|2 + u23)dx = µ3

∫
Rn

u43dx+ β3,1

∫
Rn

u21u
2
3dx+ β3,2

∫
Rn

u22u
2
3dx

}
then the ground state solution has Morse index ≤ 2.

For ground state solution with Moser index 1, we define a multivariate function

f(τ1, τ2, τ3) =
τ21 + τ22 + τ23(

3∑
i=1

µiτ4i + 2
3∑

i,j=1,i<j
βi,jτ2i τ

2
j

) 1
2

. (2.3)

We first prove that if f(τ1, τ2, τ3) has a unique positive minimum point (τ1,min, τ2,min, τ3,min)
under suitable conditions, then we show that (ηminτ1,minw, ηminτ2,minw, ηminτ3,minw) is
the unique positive ground state solution of (2.1) (where ηmin is some positive constant
defined later). For ground state solution with Morse index 3, the key step is to show
(d1w, d2w, d3w) is a ground state solution of (2.1)when matrix B and B− (see(1.5)) satisfy
suitable conditions, where di, i = 1, 2, 3 satisfy

β11d
2
1 + β12d

2
2 + β13d

2
3 = 1,

β21d
2
1 + β22d

2
2 + β23d

2
3 = 1,

β31d
2
1 + β32d

2
2 + β33d

2
3 = 1.

Then by the same arguments as above step, we can show that if (u1,0, u2,0, u3,0) be any
positive ground state solution of (2.1), then (u1,0, u2,0, u3,0) = (d1w, d2w, d3w).

For ground state solution with Morse index 2, we first prove (d1w,md1w, d3w) is a
ground state solution of (2.1), where d1, d3 satisfy following equation,

(µ1 + β12m
2)d21 + β13d

2
3 = 1,

(µ2m
2 + β21)d

2
1 + β23d

2
3 = 1,

(β31 + β32m
2)d21 + µ3d

2
3 = 1.

Then we prove that if (u12,0,mu12,0, u3,0) be any positive ground state solution of (2.1)
with Morse index 2 on Nehari manifold M2, then (u12,0,mu12,0, u3,0) = (d1w,md1w, d3w).

Let the matrix B and B− be defined at (1.5) and f(τ1, τ2, τ3) be defined at (2.3).
Our first result on three-component system is the following on classification of ground

state solutions with Morse index 1.
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Theorem 2.1. If (τ1,0, τ2,0, τ3,0) satisfies ∇f(τ1, τ2, τ3) = 0, then (η0τ1,0w, η0τ2,0w, η0τ3,0w)

is a positive solution of (2.1), where

η0 =
1(

βi1τ21,0 + βi2τ22,0 + βi,3τ23,0

) 1
2

, i = 1, 2, 3.

Conversely, under the condition that β∗j < 2, for all j = 1, 2, 3 and that detB 6= 0, f

has a unique global minimum (τ1,min, τ2,min, τ3,min), τi,min > 0, i = 1, 2, 3, and

(ηminτ1,minw, ηminτ2,minw, ηminτ3,minw), τi,min > 0, i = 1, 2, 3

is the unique positive ground state solution of (2.1) with the Morse index 1, where

ηmin =
1(

βi1τ21,min + βi2τ22,min + βi,3τ23,min

) 1
2

, i = 1, 2, 3

and

β∗j = inf


∫
Rn

(|∇φ|2 + φ2)dx | φ ∈ H1(Rn),

∫
Rn

3∑
i=1,i 6=j

2βi,ju
2
iφ

2dx = 1

 . (2.4)

Furthermore all ground state solutions to (2.1) must be (ηminτ1,minw, ηminτ2,minw, ηminτ3,minw).

The next theorem classifies ground state solutions with Morse index 3.

Theorem 2.2. Assume βi,j ≥ 0, βk,k > 0, ∀ k, i 6= j, detB 6= 0 and
3∑
i=1

βi,k ≥

0, for all k = 1, 2, 3. Then (d1w, d2w, d3w) is a positive ground state solution of (2.1) with

Morse index 3, where di > 0 for all i = 1, 2, 3 and satisfy
β11d

2
1 + β12d

2
2 + β13d

2
3 = 1,

β21d
2
1 + β22d

2
2 + β23d

2
3 = 1,

β31d
2
1 + β32d

2
2 + β33d

2
3 = 1.

(2.5)

Conversely, (d1w, d2w, d3w) is the unique positive ground state solution of (2.1) with

Morse index 3.

The last result on three-component system classifies the ground state solutions with
Morse index 2.

Theorem 2.3. Assume βi,j ≥ 0, βk,k > 0, ∀ k, i 6= j, detD 6= 0, D− is an inverse

matrix of D and (1 +m2)D11 +D21 ≥ 0, (1 +m2)D12 +D22 ≥ 0. If (u12,0,mu12,0, u3,0) be
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any positive ground state solution of (2.1) with Morse index 2 on Nehari manifold M2,

then (u12,0,mu12,0, u3,0) = (d1w,md1w, d3w), where d1, d3 satisfy following equation,
(µ1 + β12m

2)d21 + β13d
2
3 = 1,

(µ2m
2 + β21)d

2
1 + β23d

2
3 = 1,

(β31 + β32m
2)d21 + µ3d

2
3 = 1,

and

D =

(
µ1 + µ2k

4 + 2β1,2m
2, β1,3 + β2,3m

2

β31 + β32m
2, µ3

)
,D− =

(
D11 D12

D21 D22

)
.

Theorem 2.1 can be extended to N -component system as follows.

Theorem 2.4. If (τ1,0, τ2,0, · · · , τN,0) satisfies ∇g(τ1, τ2, · · · , τN ) = 0, then

(η0τ1,0w, η0τ2,0w, · · · , η0τN,0w)

is a positive solution of (1.1), where

η0 =
1(

βi1τ21,0 + βi2τ22,0 + · · ·+ βi,Nτ2N,0

) 1
2

, i = 1, 2, · · · , N,

and

g(τ1, τ2, · · · , τN ) =

N∑
i=1

τ2i(
N∑
i=1

µiτ4i + 2
N∑

i,j=1,i<j
βi,jτ2i τ

2
j

) 1
2

. (2.6)

Conversely, under the condition that β∗j < 2, for all j = 1, · · · , N and that detB 6= 0,

g has a unique global minimum (τ1,min, τ2,min, · · · , τN,min), τi,min > 0, i = 1, 2, 3, · · · , N ,

and

(ηminτ1,minw, ηminτ2,minw, ηminτ3,minw, · · · ηminτN,minw), τi,min > 0, i = 1, 2, 3, · · · , N

is the unique positive ground state solution of (2.1) with the Morse index 1, where

ηmin =
1(

βi1τ21,min + βi2τ22,min + βi,3τ23,min + · · ·+ βi,Nτ2N,min

) 1
2

, i = 1, 2, 3, · · · , N

and

β∗j = inf


∫
Rn

(|∇φ|2 + φ2)dx | φ ∈ H1(Rn),

∫
Rn

N∑
i=1,i 6=j

2βi,ju
2
iφ

2dx = 1

 . (2.7)

Furthermore all ground state solutions to (2.1) must be

(ηminτ1,minw, ηminτ2,minw, ηminτ3,minw, · · · ηminτN,minw).
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Similarly Theorem 2.2 can be extended to N−component systems:

Theorem 2.5. Assume βi,j ≥ 0, βk,k > 0,∀ k, i 6= j, detB 6= 0 and
N∑
i=1

βi,k ≥

0, for all k = 1, 2, · · ·N. Then (d1w, d2w, · · · dNw) is a positive ground state solution of

(1.1) with Morse index N , where di > 0 for all i = 1, 2 · · ·N and satisfy

β11d
2
1 + β12d

2
2 + · · ·+ β1Nd

2
N = 1,

β21d
2
1 + β22d

2
2 + · · ·+ β2Nd

2
N = 1,

β31d
2
1 + β32d

2
2 + · · ·+ β3Nd

2
N = 1,

...

βN1d
2
1 + βN2d

2
2 + · · ·+ βNNd

2
N = 1.

(2.8)

Conversely (d1w, d2w, · · · dNw) is the unique positive ground state solution of (1.1) with

Morse index N .

Remark 2.1. The similar results as Theorem 2.5 can be found in Guo et.al in [14],

where the authors considered the ground state solution with Morse index N for N-coupled

system on bounded domain of Rn when the parameter satisfy −λ1(Ω) < λ1 = λ2 =

· · ·λN = λ < 0.

Remark 2.2. We should point out that Theorem 2.1 to Theorem 2.5 are also true

for corresponding fractional Laplacian system, since for the following subcritical fractional

equation

(−∆)su+ u = uq−1 in Rn

R.L. Frank and E. Lenzmann [12] showed the unique positive radial least energy solutions

for one dimension case and R.L. Frank, E. Lenzmann and L. Silvestre [13] showed the

general unique ground state solution for dimension greater than one.

Remark 2.3. In order to obtain the unique minimum point of g(τ1, τ2, · · · , τN )(2.6),

it is not feasible to use the method in [22] by directly calculate the second derivative

to determine the unique minimum values, so we use the method of Lagrange’s multi-

plier, implicit function theorem and the Cramer’s Rule to show there exists a unique

(τ1,min, τ2,min, · · · , τN,min), τi,min > 0, i = 1, 2, · · · , N such that g(τ1,min, τ1,min, · · · , τ1,min) =

g(t1, t2, · · · , tN )min. (See details in Lemma 3.3).

The paper is organized as follows. In section 3, we introduce some preliminaries that
will be used to prove theorems. In section 4, we prove Theorem 2.1 and Theorem 2.4. In
section 5, we prove Theorem 2.2 and Theorem 2.5. Finally, Theorem 2.3 will be proved in
section 6.
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3 Some Preliminaries

The energy functional associated with (2.1) is given by

E(u) =
3∑
j=1

[
1

2

∫
Rn

(|∇uj |2 + u2j )dx−
1

4
µj

∫
Rn

u4jdx

]
− 1

4

3∑
i 6=j

βi,ju
2
iu

2
jdx.

Recall the Nehari manifolds M1,M2,M3 as defined in (1.2), (1.3) and (2.2) respectively.
Consider the minimization problems

ci := inf
u∈Mi

E(u) = inf
u∈Mi

3∑
j=1

1

4

[∫
Rn

|∇uj |2dx+

∫
Rn

u2jdx

]
. (3.1)

Define

S = inf
u∈H1(Rn)\{0}

∫
Rn(|∇u|2 + u2)dx(∫

Rn u4dx
) 1

2

, (3.2)

and

SN = inf
u∈H\{0,0,··· ,0}

N∑
i=1

∫
Rn(|∇ui|2 + u2i )dx(

N∑
i=1

∫
Rn µi|ui|4dx+ 2

N∑
i,j=1,i<j

βi,j
∫
Rn u2iu

2
jdx

) 1
2

. (3.3)

We first have the following lemma.

Lemma 3.1.

S3 = f(τ1, τ2, τ3)minS, SN = g(τ1, τ2, · · · τN )minS,

where f(τ1, τ2, τ3)min = minτi>0 f(τ1, τ2, τ3), g(τ1, · · · , τN )min = minτi>0 g(τ1, · · · , τN ).

Proof. For any ϕ ∈ H1(Rn) \ {0}, let f(τ1,min, τ2,min, τ3,min) = f(τ1, τ2, τ3)min and

(u1, u2, u3) = (τ1,minϕ, τ2,minϕ, τ3,minϕ).

Then by the definition of S3, we have

3∑
i=1

τ2i,min(
3∑
i=1

µiτ4i,min + 2
3∑

i,j=1,i<j
βi,jτ2i,minτ

2
j,min

) 1
2

∫
Rn(|∇ϕ|2 + ϕ2)dx(∫

Rn |ϕ|4dx
) 1

2

= f(τ1, τ2, τ3)min

∫
Rn(|∇ϕ|2 + ϕ2)dx(∫

Rn |ϕ|4dx
) 1

2

≥ S3.
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Hence

f(τ1, τ2, τ3)minS ≥ S3. (3.4)

On the other hand, let (u1,n, u2,n, u3,n) ∈ H be a minimizing sequence of S3. Let zi,n =

ti,nui,n, i = 1, 2, 3, where ti,n =
( ∫

Rn |w|
4dx∫

Rn |ui,n|4dx

) 1
4
, then∫

Rn

|zi,n|4dx =

∫
Rn

|w|4dx, i = 1, 2, 3. (3.5)

By Hölder inequality and (3.5), we have∫
Rn

|zi,n|2|zj,n|2dx ≤
∫
Rn

|w|4dx, i, j = 1, 2, 3. (3.6)

Therefore, by (3.6) and zi,n = ti,nui,n, i = 1, 2, 3, we can deduce that

3∑
i=1

∫
Rn(|∇ui,n|2 + u2i,n)dx(

3∑
i=1

∫
Rn |ui,n|4dx+ 2

3∑
i,j=1,i<j

βi,j
∫
Rn u2i,nu

2
j,ndx

) 1
2

≥

3∑
i=1

τ−2i,n(
3∑
i=1

µiτ
−4
i,n + 2

3∑
i,j=1,i<j

βi,jτ
−2
i,n τ

−2
j,n

) 1
2

∫
Rn(|∇w|2 + w2)dx(∫

Rn |w|4dx
) 1

2

≥ f(τ−11,n, τ
−1
2,n, τ

−1
3,n)S ≥ f(τ1, τ2, τ3)minS.

Let n→ +∞. We have that

S3 ≥ f(τ1, τ2, τ3)minS. (3.7)

By (3.4) and (3.7), we get

S3 = f(τ1, τ2, τ3)minS.

The case of N ≥ 4 is similar.

To prove the existence and uniqueness of ground state solution, we study the properties
of f(τ1, τ2, τ3). To this end we first have following simple lemma

Lemma 3.2. If ∇f(τ1, τ2, τ3) = 0, and

η =
1(

βi1τ21 + βi2τ22 + βi,3τ23
) 1

2

, i = 1, 2, 3

then (ητ1w, ητ2w, ητ3w) is a positive solution of (2.1).
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Similarly, if ∇g(τ1, τ2, · · · , τN ) = 0, and

η =
1(

βi1τ21 + βi2τ22 + · · ·+ βi,Nτ2N
) 1

2

, i = 1, 2, · · · , N,

then (ητ1w, ητ2w, · · · , ητNw) is a positive solution of (1.1).

Proof. By direct calculation, we have

fτ1(τ1, τ2, τ3) =
2τ1H1(τ1, τ2, τ3)(

3∑
i=1

µiτ4i + 2
3∑

i,j=1,i<j
βi,jτ2i τ

2
j

) 3
2

,

where

H1(τ1, τ2, τ3)

=
3∑
i=1

µiτ
4
i + 2

3∑
i,j=1,i<j

βi,jτ
2
i τ

2
j −

(
τ21 + τ22 + τ23

) 3∑
j=1

β1,jτ
2
j


= τ22

 3∑
j=1

(β2,j − β1,j)τ2j

+ τ23

 3∑
j=1

(β3,j − β1,j)τ2j

 .

Similarly, we have 
fτ1(τ1, τ2, τ3) = 0⇔ H1(τ1, τ2, τ3) = 0,

fτ2(τ1, τ2, τ3) = 0⇔ H2(τ1, τ2, τ3) = 0,

fτ3(τ1, τ2, τ3) = 0⇔ H3(τ1, τ2, τ3) = 0,

where

H2(τ1, τ2, τ3) = τ21

 3∑
j=1

(β1,j − β2,j)τ2j

+ τ23

 3∑
j=1

(β3,j − β2,j)τ2j

 ,

H3(τ1, τ2, τ3) = τ21

 3∑
j=1

(β1,j − β3,j)τ2j

+ τ22

 3∑
j=1

(β2,j − β3,j)τ2j

 .
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Thus Hi(τ1, τ1, τ3) = 0, i = 1, 2, 3. which implies that

3∑
j=1

(β2,j − β1,j)τ2j = 0,

3∑
j=1

(β3,j − β1,j)τ2j = 0,

3∑
j=1

(β1,j − β2,j)τ2j = 0,

3∑
j=1

(β3,j − β2,j)τ2j = 0,

3∑
j=1

(β1,j − β3,j)τ2j = 0,

3∑
j=1

(β2,j − β3,j)τ2j = 0.

(3.8)

If (ητ1w, ητ2w, ητ3w) is a positive solution of (2.1), then
β1,1(ητ1)

2 + β1,2(ητ2)
2 + β1,3(ητ3)

2 = 1,

β2,1(ητ1)
2 + β2,2(ητ2)

2 + β2,3(ητ3)
2 = 1,

β3,1(ητ1)
2 + β3,2(ητ2)

2 + β3,3(ητ3)
2 = 1.

(3.9)

It is easy to see that (3.8) and (3.9) are equivalent. Hence, we complete the proof of

Lemma 3.2.

The proof in the case of g(τ1, · · · , τN ) is similar and thus omitted.

Let β∗j be defined at (2.7). Then we have

Lemma 3.3. Under the condition of β∗j < 2, for all j=1,2,3, there exists a unique

(τ1,min, τ2,min, τ3,min), τi,min > 0, i = 1, 2, 3 such that f(τ1,min, τ2,min, τ3,min) = f(t1, t2, t3)min.

Similarly, under the condition of β∗j < 2, for all j = 1, 2, · · ·N there exists a unique

(τ1,min, τ2,min, τ3,min, · · · τN,min), τi,min > 0, i = 1, 2, · · · , N such that

g(τ1,min, τ2,min, τ3,min, · · · τN,min) = g(t1, t2, · · · , tN )min.

Proof. Let

h3 = inf
P3

G3(τ1, τ2, τ3),

where

G3(τ1, τ2, τ3) =
3∑
i=1

(
τ2i
2
− µiτ

4
i

4
)− 1

4

3∑
i,j=1,i<j

βi,jτ
2
i τ

2
j ,
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and

P3 = {(τ1, τ2, τ3) ∈ R3 \ {(0, 0, 0)}|
3∑
i=1

(τ2i − µiτ4i )−
3∑

i,j=1,i<j

βi,jτ
2
i τ

2
j = 0}.

Then

h3 = inf
P3

1

4

3∑
i=1

τ2i = inf
P3

1

4

 3∑
i=1

µiτ
4
i +

3∑
i,j=1,i<j

βi,jτ
2
i τ

2
j

 .

By a standard argument, we can see that

4h3 = inf
(τ1,τ2,τ3)∈R3\{(0,0,0)}

(
3∑
i=1

τ2i

)2

(
3∑
i=1

µiτ4i +
3∑

i,j=1,i<j
βi,jτ2i τ

2
j

) = f(τ1, τ2, τ3)
2
min.

Thus, h3 can be attained by some τi,min ≥ 0 for all i = 1, 2, 3 and τi,min > 0 for some

i. By the method of Lagrange’s multiplier, τi,min ≥ 0 for all i = 1, 2, 3 also satisfies the

following system
τi,min = µiτ

3
i,min +

∑
i 6=j

βijτi,minτ
2
j,min for all i = 1, 2, 3,

τi,min ≥ 0 and
N∑
i=1

τi,min > 0 for all i = 1, 2, 3.

(3.10)

Next, we prove τi,min > 0 for all i = 1, 2, 3.

To show that τ3,min > 0 we just need to prove that c < c2 := E(u1, u2, 0). In fact, by

the implicit function theorem, there exists a unique

t(s) = 1−

∫
R4

2∑
i=1

2βi,3u
2
iφ

2dx−
∫
R4(|∇φ|2 + φ2)dx

2∑
i=1

∫
R4(|∇ui|2 + u2i )dx

s2 + o(s2)

such that (t(s)u1, t(s)u2, t(s)sφ) ∈M1 for s > 0 small enough.

Recall the definition of β∗j at (2.7). β∗3 can be attained by some φ∗3. Thus, we have

t(s) = 1−
(1− β∗i,3)

∫
R4

2∑
i=1

2βi,3u
2
i |φ∗3|2dx

2∑
i=1

∫
R4(|∇ui|2 + u2i )dx

s2 + o(s2) as s→ 0.
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So,

c ≤ E(tu1, tu2, tsφ)

=
t2(s)

4

(
2∑
i=1

∫
R4

(|∇ui|2 + u2i )dx+ s2
∫
R4

(|∇φ∗3|2 + |φ∗3|2)dx

)

=
1

4

(
2∑
i=1

∫
R4

(|∇ui|2 + u2i )dx

)
−

(2− β∗i,3)
4

s2
∫
R4

2∑
i=1

βi,3u
2
i |φ∗3|2dx

+ o(s2) < E(u1, u2, 0) := c2,

for β∗3 < 2 and s > 0 is small enough. Thus, we have τ3,min > 0.

Similarly we can use the condition that β∗j < 2, for all j = 1, 2, 3 to show that τi,min > 0

for all i = 1, 2, 3.

Let si = τ2i,min. Then (3.10) is equivalent to the following linear system
1 = µisi +

∑
i 6=j

βijsj for all i = 1, 2, 3,

si ≥ 0 for all i = 1, 2, 3.

(3.11)

By the Cramer’s Rule and the fact that detB 6= 0, the linear system (3.11) has a unique

solution s = (s1, s2, s3).

The proof of second part of this lemma are similar to the first part of this lemma.

To show τi,min > 0 for all i = 1, 2, · · · , N , we let m = 1, 2, · · · , N − 1 and lm =

{l1, l2, · · · , lm} ⊂ {1, 2, · · · , N − 1} with l1 < l2 < · · · , lm. We define

clm,m = inf
u∈Mlm,m

Elm,m(u) = inf
u∈Mlm,m

m∑
i=1

1

4

[∫
Rn

|∇uli |
2dx+

∫
Rn

u2lidx

]
,

where

Elm,m(u) =

m∑
i=1

[
1

2

∫
Rn

(|∇uli |
2 + u2li)dx−

1

4

∫
Rn

u4lidx

]
− 1

4

m∑
i 6=j

βi,ju
2
li
u2ljdx,

and

Mlm,m =

{
u ∈ H\{(0, 0, · · · 0, 0)} :

m∑
i=1

∫
Rn

|∇uli |
2dx+

∫
Rn

u2lidx

=
m∑
i=1

µi

∫
Rn

u4li +
m∑

i,j=1,i<j

2βi,j

∫
Rn

u2liu
2
lj
dx, i = 1, 2, · · · ,m

}
.

If we can show

cN < clm,m for all m = 2, 3, · · · , N − 1,
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and

lm = {l1, l2, · · · , lm} ⊂ {1, 2, · · · , N − 1},

with

l1 < l2 < · · · , lm,

then we can see that τi,min > 0 for all i = 1, 2, · · · , N. Without loss of generality, we

assume cN−1 = min{clm,m} and it is attained by (u1, u2, · · · , uN−1). By the implicit

function theorem, there exists a unique

t(s) = 1−

∫
R4

N−1∑
i=1

2βi,Nu
2
iφ

2dx−
∫
R4(|∇φ|2 + φ2)dx

N−1∑
i=1

∫
R4(|∇ui|2 + u2i )dx

s2 + o(s2)

such that (t(s)u1, t(s)u2, · · · , t(s)uN−1, t(s)sφ) ∈M1 for s > 0 small enough.

So,

EN (tu1, tu2, · · · , tuN−1, tsφ)

=
t2(s)

4

(
N−1∑
i=1

∫
R4

(|∇ui|2 + u2i )dx+ s2
∫
R4

(|∇φ∗N |2 + |φ∗N |2)dx

)

=
1

4

(
N−1∑
i=1

∫
R4

(|∇ui|2 + u2i )dx

)
−

(2− β∗i,N )

4
s2
∫
R4

N−1∑
i=1

2βi,Nu
2
i |φ∗N |2dx

+ o(s2) < EN−1(u1, u2, · · · , uN−1)

since β∗i,N < 2 and s > 0 is small enough. Thus, we have τN,min > 0. The other cases are

similar.

4 Proof of Theorem 2.1 and Theorem 2.4

Proof of Theorem 2.1 and Theorem 2.4 . By Lemma 3.2, (η0τ1,0w, η0τ2,0w, η0τ3,0w) is a

positive solution of (2.1), where

η0 =
1(

βi1τ21,0 + βi2τ22,0 + βi,3τ23,0

) 1
2

, i = 1, 2, 3,

and (τ1,0, τ2,0, τ3,0) satisfies ∇f(τ1, τ2, τ3) = 0.

Next, we show that (ηminτ1,minw, ηminτ2,mimw, ηminτ3,minw) is the unique positive

ground state solution of (2.1), where

ηmin =
1(

βi1τ21,min + βi2τ22,min + βi,3τ23,min

) 1
2

, i = 1, 2, 3,
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and (τ1,min, τ2,min, τ3,min) satisfies

f(τ1,min, τ2,min, τ3,min) = f(τ1, τ2, τ3)min.

Since (ηminτ1,minw, ηminτ2,minw, ηminτ3,minw) is a positive solution of (2.1), we have

(ηminτ1,minw, ηminτ2,minw, ηminτ3,minw) ∈M1

and
1

4

∫
Rn

(|∇w|2 + w2)dx =
1

4
S2.

Since ∇f(τ1,min, τ2,min, τ3,min) = 0, from (3.8) in Lemma 3.2, we have

3∑
j=1

(β2,j − β1,j)τ2j,min = 0,

3∑
j=1

(β3,j − β1,j)τ2j,min = 0,

3∑
j=1

(β1,j − β2,j)τ2j,min = 0,

3∑
j=1

(β3,j − β2,j)τ2j,min = 0,

3∑
j=1

(β1,j − β3,j)τ2j,min = 0,

3∑
j=1

(β2,j − β3,j)τ2j,min = 0.

(4.1)

Thus, by (4.1) and direct calculation, we have

3∑
i=1

µiτ
4
i,min + 2

3∑
i,j=1,i<j

βi,jτ
2
i,minτ

2
j,min

= τ21,min
(
β11τ

2
1,min + β12τ

2
2,min + β1,3τ

2
3,min

)
+ τ22,min

(
β21τ

2
1,min + β22τ

2
2,min + β2,3τ

2
3,min

)
+ τ23,min

(
β3,1τ

2
1,min + β3,2τ

2
2,min + β3,3τ

2
3,min

)
=

3∑
i=1

τ2i,min
(
β3,1τ

2
1,min + β3,2τ

2
2,min + β3,3τ

2
3,min

)
=

3∑
i=1

τ2i,min
(
β21τ

2
1,min + β22τ

2
2,min + β2,3τ

2
3,min

)
=

3∑
i=1

τ2i,min
(
β11τ

2
1,min + β12τ

2
2,min + β1,3τ

2
3,min

)
.
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So

f(τ1,min, τ2,min, τ3,min) (4.2)

=

3∑
i=1

τ2i,min(
3∑
i=1

µiτ4i,min + 2
3∑

i,j=1,i<j
βi,jτ2i,minτ

2
j,min

) 1
2

=

(
3∑
i=1

τ2i,min

) 1
2

(
β3,1τ21,min + β3,2τ22,min + β3,3τ23,min

) 1
2

.

On the one hand, for any (u1, u2, u3) ∈M1 and by the definition of S3 (see (??)), we have

1

4

3∑
i=1

∫
Rn

(|∇ui|2 + u2i )dx ≥
1

4
S2
3 .

Hence

c ≥ 1

4
S2
3 .

On the other hand, by (4.2) and (ηminτ1,minw, ηminτ2,minw, ηminτ3,minw) ∈M1, we have

c ≤ E(ηminτ1,minw, ηminτ2,minw, ηminτ3,minw)

=
1

4

(
3∑
i=1

τ2i,min

)
η2
∫
Rn

(|∇w|2 + w2)dx

=
1

4

3∑
i=1

τ2i,min

βi,1τ21,min + βi2τ22,min + βi,3τ23,min

∫
Rn

(|∇w|2 + w2)dx

=

3∑
i=1

τ2i,min

βi,1τ21,min + βi2τ22,min + βi,3τ23,min

1

4
S2

=
1

4
f(τ1,min, τ2,min, τ3,min)2S2 =

1

4
S2
3 .

So,

E(ηminτ1,minw, ηminτ2,minw, ηminτ3,minw) =
1

4
S2
3 .

Consequently, (ηminτ1,minw, ηminτ2,minw, ηminτ3,minw) is a positive ground state solu-

tion of (2.1). If (τ1,min, τ2,min, τ3,min) is the unique minimum point of f(τ1, τ2, τ3), then

(ηminτ1,minw, ηminτ2,minw, ηminτ3,minw) is the unique positive ground state solution of

(2.1) of the form (c1w, c2w, c3w).
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By Lemma 3.3 and above arguments, we complete the proof. The proof of Theorem

2.4 are similar to Theorem 2.1, we only need to replace i = 3 to i = N and use the second

part of Lemma 3.2, we omit the details here.

Next, we prove the second part of Theorem 2.1 and Theorem 2.4. Let (ηminτ1,minw, ηminτ2,minw, ηminτ3,minw)

be the unique positive ground state solution of (2.1) of the form (c1w, c2w, c3w) and let

(u1,0, u2,0, u3,0) be any positive ground state solution of (2.1) of Morse index 1. We first

claim that ∫
Rn

|ui,0|4dx = η4minτ
4
i,min

∫
Rn

|w|4dx, i = 1, 2, 3, (4.3)

∫
Rn

|ui,0|2|uj,0|2dx = η4minτ
2
i,minτ

2
j,min

∫
Rn

|w|4dx for i, j = 1, 2, 3. (4.4)

To prove (4.3) and (4.4), we use implicit function theorem. We first consider the

following 3-coupled system, where µ1 is replaced by µ in system (2.1):

−∆u1 + u1 = µu31 + β1,2u
2
2u1 + β1,3u

2
3u1, in Rn,

−∆u2 + u2 = µ2u
3
2 + β2,1u

2
1u2 + β2,3u

2
3u2, in Rn,

−∆u3 + u3 = µ3u
3
3 + β3,1u

2
1u3 + β3,2u

2
2u3, in Rn,

ui > 0 in Rn, ui(x)→ 0 as |x| → +∞, i = 1, 2, 3,

(4.5)

and the following function

fµ(µ, τ1, τ2, τ3) =
τ21 + τ22 + τ23(

µτ41 +
3∑
i=2

µiτ4i + 2
3∑

i,j=1,i<j
βi,jτ2i τ

2
j

) 1
2

. (4.6)

By the similar arguments as Lemma 3.2 and Lemma 3.3, there exists a small 0 < ε < 1

such that (τ∗1,min(µ), τ∗2,min(µ), τ∗3,min(µ)) is unique for µ ∈ (µ1 − ε, µ1 + ε) and

(τ∗1,min(µ), τ∗2,min(µ), τ∗3,min(µ))

satisfies

fµτi(µ, τ1, τ2, τ3) =
2τiH

µ
i (µ, τ1, τ2, τ3)(

µτ41 +
3∑
i=2

µiτ4i + 2
3∑

i,j=1,i<j
βi,jτ2i τ

2
j

) 3
2

= 0, i = 1, 2, 3,
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where

Hµ
1 (µ, τ1, τ2, τ3)

=
3∑
i=1

µiτ
4
i + 2

3∑
i,j=1,i<j

βi,jτ
2
i τ

2
j −

(
τ21 + τ22 + τ23

) 3∑
j=1

β1,jτ
2
j


= τ22

(β2,1 − µ)τ21 +
3∑
j=2

(β2,j − β1,j)τ2j

+ τ23

(β3,1 − µ)τ21 +
3∑
j=2

(β3,j − β1,j)τ2j

 ,

Hµ
2 (µ, τ1, τ2, τ3) = τ21

(µ− β2,1)τ21 +

3∑
j=2

(β1,j − β2,j)τ2j

+ τ23

 3∑
j=1

(β3,j − β2,j)τ2j

 ,

Hµ
3 (µ, τ1, τ2, τ3) = τ21

(µ− β3,1)τ21 +

3∑
j=2

(β1,j − β3,j)τ2j

+ τ22

 3∑
j=1

(β2,j − β3,j)τ2j

 .

Thus Hµ
i (µ, τ1, τ2, τ3) = 0, i = 1, 2, 3, which implies that

(β2,1 − µ)τ21 +
3∑
j=2

(β2,j − β1,j)τ2j = 0,

(β3,1 − µ)τ21 +
3∑
j=2

(β3,j − β1,j)τ2j = 0,

(µ− β2,1)τ21 +
3∑
j=2

(β1,j − β2,j)τ2j = 0,

(µ− β3,1)τ21 +
3∑
j=2

(β1,j − β3,j)τ2j = 0,

3∑
j=1

(β3,j − β2,j)τ2j = 0,

3∑
j=1

(β2,j − β3,j)τ2j = 0.

(4.7)

Since (τ1,min, τ2,min, τ3,min) is the minimum point of f(τ1, τ2, τ3)(see(2.3)), we have

fµτi(µ1, τ1,min, τ2,min, τ3,min) =
2τi,minH

µ
i (µ1, τ1,min, τ3,min, τ3,min)(

µ1τ41,min +
3∑
i=2

µiτ4i,min + 2
3∑

i,j=1,i<j
βi,jτ2i,minτ

2
j,min

) 3
2

= 0.

By direct calculation, we have

fµτiτj (µ1, τ1,min, τ2,min, τ3,min) =
Gi,j(

µ1τ41,min +
3∑
i=2

µiτ4i,min + 2
3∑

i,j=1,i<j
βi,jτ2i,minτ

2
j,min

) 3
2

,

19



where

Gi,j = 4τi,minτj,min

(
3∑

k=1

(2βj,k − βi,k − βi,j)τ2k,min)

)
.

By (4.7), we have

Gi,j = 4τi,minτj,min

(
3∑

k=1

(βj,k − βi,j)τ2k,min)

)
.

Since (τi,min, τ2,min, τ3,min) is the minimum point of f(τ1, τ2, τ3)(see(2.3)), then

fµτi(µ1, τ1,min, τ2,min, τ3,min) = 0, i = 1, 2, 3

Let G = [Gi,j ]3×3 be the matrix defined above, then detG 6= 0 and so

∇fµτi(µ1, τ1,min, τ2,min, τ3,min) 6= 0, i, j = 1, 2, 3.

By the implicit function theorem, we know

(τ∗1,min(µ), τ∗2,min(µ), τ∗3,min(µ))

is also C1 for µ ∈ (µ1 − ε, µ1 + ε). Thus, the energy functional associated with (4.5) is

given by

E(µ,u) =
3∑
j=1

1

2

∫
Rn

(|∇uj |2 + u2j )dx−
3∑
j=2

1

4
µj

∫
Rn

u4jdx−
1

4
µ

∫
Rn

u41dx

− 1

4

∫
Rn

3∑
i 6=j

βi,ju
2
iu

2
jdx

and

c1(µ) := E(µ, η∗minτ
∗
1,min(µ)w, η∗minτ

∗
2,min(µ)w, η∗minτ

∗
3,min(µ)w)

=

3∑
j=1

(η∗min)2(τ∗j,min)2
1

4

[∫
Rn

|∇w|2dx+

∫
Rn

w2dx

]
.

Next, we show that

c1(µ) = inf
(u1,u2,u3)∈H\{(0,0,0)}

max
t>0

E(µ, tu1, tu2, tu3). (4.8)

Indeed, by the definition of c1(µ), for any ε > 0, we can take a (u1, u2, u3) 6≡ (0, 0, 0), such

that

3∑
j=1

∫
Rn

(|∇uj |2 + u2j )dx =

3∑
j=2

µj

∫
Rn

u4jdx+
1

4
µ

∫
Rn

u41dx+

∫
Rn

3∑
i 6=j

βi,ju
2
iu

2
jdx (4.9)
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and

E(µ,u) < c1(µ) + ε.

By (4.9), we have

E(µ,u) = max
t>0

E(µ, tu1, tu2, tu3) ≥ inf
(u1,u2,u3)∈H\{(0,0,0)}

max
t>0

E(µ, tu1, tu2, tu3).

Thus,

c1(µ) ≥ inf
(u1,u2,u3)∈H\{(0,0,0)}

max
t>0

Eµ(tu1, tu2, tu3).

On the other hand, by the definition of inf
(u1,u2,u3)∈H\{(0,0,0)}

max
t>0

E(µ, tu1, tu2, tu3), for any

ε > 0, we can take a (u1, u2, u3) 6≡ (0, 0, 0) such that

E(µ, tuu1, tuu2, tuu3) = max
t>0

E(µ, tu1, tu2, tu3)

< inf
(u1,u2,u3)∈H\{(0,0,0)}

max
t>0

E(µ, tu1, tu2, tu3) + ε

and (tuu1, tuu2, tuu3) satisfies (4.9), which implies that

(tuu1, tuu2, tuu3) ∈M1,µ,

where M1,µ is a Nehari manifold when µ1 was replaced by µ in Nehari manifold M1. Thus

c1(µ) ≤ inf
(u1,u2,u3)∈H\{(0,0,0)}

max
t>0

Eµ(tu1, tu2, tu3).

So the proof of (4.8) is complete. Thus, there exists t(µ) > 0 such that

E(µ, t(µ)u1,0, t(µ)u2,0, t(µ)u3,0) = max
t>0

E(µ, tu1, tu2, tu3),

where t(µ) > 0 satisfies F (µ, t(µ)) = 0 and

F (µ, t) = t2

µ∫
Rn

u41,0dx+

3∑
j=2

µj

∫
Rn

u4j,0dx+

∫
Rn

3∑
i 6=j

βi,ju
2
i,0u

2
j,0dx


−

3∑
j=1

[∫
Rn

(|∇uj,0|2 + u2j,0)dx

]
.

Since F (µ1, 1) = 0, ∂F∂t (µ1, 1) > 0, by implicit function theorem, there exists δ > 0 such

that t(µ1) = 1, t(µ1) ∈ C1(µ1 − δ, µ1 + δ) and

t′(µ1) = −
∫
Rn |u1,0|4dx

2

(
3∑
j=1

µj
∫
Rn u4j,0dx+

∫
Rn

3∑
i 6=j

βi,ju2i,0u
2
j,0dx

) . (4.10)
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By Taylor expansion, we have

t(µ) = 1 + t′(µ1)(µ− µ1) + o(|µ− µ1|2),

thus,

t2(µ) = 1 + 2t′(µ1)(µ− µ1) + o(|µ− µ1|2). (4.11)

Since

3∑
j=1

[∫
Rn

(|∇uj,0|2 + u2j,0)dx

]
(4.12)

=
3∑
j=1

µj

∫
Rn

u4j,0dx+

∫
Rn

3∑
i 6=j

βi,ju
2
i,0u

2
j,0dx = 4c(µ1),

then, by (4.10), (4.11) and (4.12), we have

c1(µ) ≤ Eµ(t(µ)u1,0, t(µ)u2,0, t(µ)u3,0) =
1

4
t2(µ)

3∑
j=1

[∫
Rn

(|∇uj,0|2 + u2j,0)dx

]

= c1(µ1)t
2(µ) = c1(µ1)− c1(µ1)

∫
Rn |u1,0|4dx(

3∑
j=1

µj
∫
Rn u4j,0dx+

∫
Rn

3∑
i 6=j

βi,ju2i,0u
2
j,0dx

)(µ− µ1)

+ o(|µ− µ1|2) = c1(µ1)−
1

4

∫
Rn

|u1,0|4dx(µ− µ1) + +o(|µ− µ1|2).

Thus
c1(µ)− c1(µ1)

µ− µ1
≥ −1

4

∫
Rn

|u1,0|4dx+ o(|µ− µ1|2), as µ↗ µ1,

so

c′1(µ1) ≥ −
1

4

∫
Rn

|u1,0|4dx.

Similarly,
c1(µ)− c1(µ1)

µ− µ1
≤ −1

4

∫
Rn

|u1,0|4dx+ o(|µ− µ1|2), as µ↘ µ1

and

c′1(µ1) ≤ −
1

4

∫
Rn

|u1,0|4dx.

Hence

c′1(µ1) = −1

4

∫
Rn

|u1,0|4dx.

Since (ηminτ1,minw, ηminτ2,minw, ηminτ3,minw) is the ground state solution of (2.1), we

have

c′1(µ1) = −
η4minτ

4
1,min

4

∫
Rn

w4dx.
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Thus, ∫
Rn

|u1,0|4dx = η4minτ
4
1,min

∫
Rn

w4dx.

By the similar arguments as above, that is, by computing c′1(µ2), c
′
1(µ3), we obtain∫

Rn

|ui,0|4dx = η4minτ
4
i,min

∫
Rn

|w|4dx, i = 2, 3.

Thus, we get (4.3). Similarly, by computing c′(βi,j), we obtain∫
Rn

|ui,0|2|uj,0|2dx = η4minτ
2
i,minτ

2
j,min

∫
Rn

|w|4dx for i < j = 1, 2, 3.

Thus, by (4.3), (4.4), we have∫
Rn

|ui,0|2|uj,0|2dx = τ−2i,minτ
2
j,min

∫
Rn

|ui,0|4dx for i < j = 1, 2, 3. (4.13)

Next, we prove

(u1,0, u2,0, u3,0) = (ηminτ1,minw, ηminτ2,minw, ηminτ3,minw).

Since (ηminτ1,minw, ηminτ2,minw, ηminτ3,minw) is a ground state solution of (2.1), we have
µ1η

2
minτ

2
1,min + β12η

2
minτ

2
2,min + β13η

2
minτ

2
3,min = 1

β21η
2
minτ

2
1,min + µ2η

2
minτ

2
2,min + β23η

2
minτ

2
3,min = 1

β31η
2
minτ

2
1,min + β32η

2
minτ

2
2,min + µ3η

2
minτ

2
3,min = 1.

(4.14)

Let (u1, u2, u3) = (
u1,0

ηminτ1,min
,

u2,0
ηminτ2,min

,
u3,0

ηminτ3,min
), then, by (4.13) and (4.14), we have∫

Rn

(|∇ui|2 + u2i )dx =
1

η2minτ
2
i,min

∫
Rn

(|∇ui,0|2 + u2i,0)dx

=
1

η2minτ
2
i,min

∫
Rn

(µiu
4
i,0 +

∑
i 6=j

βiju
2
i,0u

2
j,0)dx

=
1

η2minτ
2
i,min

(µi +
∑
i 6=j

βijτ
−2
i,minτ

2
j,min)

∫
Rn

|ui,0|4dx

=
1

η4minτ
4
i,min

∫
Rn

|ui,0|4dx =

∫
Rn

|ui|4dx, i = 1, 2, 3.

Hence, ∫
Rn

(|∇ui|2 + u2i )dx ≥
∫
Rn

(|∇w|2 + w2)dx, i = 1, 2, 3.
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Since (u1,0, u2,0, u3,0) and (ηminτ1,minw, ηminτ2,minw, ηminτ3,minw) are both the ground

state solution of (2.1), we obtain

1

4

3∑
i

η2minτ
2
i,min

∫
Rn

(|∇w|2 + w2)dx =
1

4

3∑
i

∫
Rn

(|∇ui,0|2 + u2i,0)dx

=
1

4

3∑
i

η2minτ
2
i,min

∫
Rn

(|∇ui|2 + u2i )dx

≥ 1

4

3∑
i

η2minτ
2
i,min

∫
Rn

(|∇w|2 + w2)dx

which implies that∫
Rn

(|∇ui|2 + u2i )dx =

∫
Rn

(|∇w|2 + w2)dx, i = 1, 2, 3.

So, ui, i = 1, 2, 3 are positive ground state solutions of (1.6). Since (u1,0, u2,0, u3,0) satisfies

(2.1) and µ1η
2
minτ

2
1,min + β21η

2
minτ

2
2,min + β31η

2
minτ

2
3,min = 1, we have

−∆u1 + u1 = µ1η
2
minτ

2
1,minu

3
1 + β2,1η

2
minτ

2
2,minu

2
2u1 + β31η

2
minτ

2
3,minu

2
3u1 = u31.

So

u31 = u2iu1 and ui = u1, i = 2, 3.

Since (1.6) has a unique positive ground state solution w, thus, we have

(u1,0, u2,0, u3,0) = (ηminτ1,minw, ηminτ2,minw, ηminτ3,min).

The proof is thus complete. The proof of second part of Theorem 2.4 is similar to the

proof second part of Theorem 2.1. We choose auxiliary function as following

gµ(µ, τ1, τ2, · · · , τN ) =

N∑
i=1

τ2i(
µτ41 +

N∑
i=2

µiτ4i + 2
N∑

i,j=1,i<j
βi,jτ2i τ

2
j

) 1
2

.

So

gµτi(µ, τ1, τ2, · · · , τN ) =
2τiH

µ
i (µ, τ1, τ2, · · · , τN )(

µτ41 +
N∑
i=2

µiτ4i + 2
N∑

i,j=1,i<j
βi,jτ2i τ

2
j

) 3
2

= 0,
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where

Hµ
i (µ, τ1, τ2, · · · , τN )

= µτ41 +
N∑
i=2

µiτ
4
i + 2

N∑
i,j=1,i<j

βi,jτ
2
i τ

2
j

−
(
τ21 + τ22 + · · ·+ τ2N

) N∑
j=1

βi,jτ
2
j



= τ21

(µ− βi,1)τ21 +
N∑
j=2

(β1,j − βi,j)τ2j

+ τ22

 N∑
j=1

(β2,j − βi,j)τ2j


...

+ τ2i−1

 N∑
j=1

(βi−1,j − βi,j)τ2j

+ τ2i+1

 N∑
j=1

(βi+1,j − βi,j)τ2j


...

+ τ2N−1

 N∑
j=1

(βN−1,j − βi,j)τ2j

+ τ2N

 N∑
j=1

(βN,j − βi,j)τ2j

 .

Thus Hµ
i (µ, τ1, τ2, · · · , τN ) = 0, i = 1, 2, · · · , N. which implies that

(µ− βi,1)τ21 +
N∑
j=2

(β1,j − βi,j)τ2j = 0,

N∑
j=1

(β2,j − βi,j)τ2j = 0,

...
N∑
j=1

(βi−1,j − βi,j)τ2j = 0,

N∑
j=1

(βi+1,j − βi,j)τ2j − 0,

...
N∑
j=1

(βN−1,j − βi,j)τ2j = 0,

N∑
j=1

(βN,j − βi,j)τ2j = 0.

The other part of the proof is similar as the proof of the second part of Theorem 2.1.
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5 Proof of Theorem 2.2 and Theorem 2.5

Proof of Theorem 2.2 and Theorem 2.5. We follow some ideas from [10] and recent work

[29], where two-coupled system was considered. Indeed, by Lemma 1 and Lemma 2 in

[16], w is the unique function attaining S. Thus,∫
Rn

(|∇w|2 + w2)dx =

∫
Rn

w4dx = S2.

On the one hand, if d1, d2, d3 satisfy (2.5), it is easy to see that

(d1w, d2w, d3w)

satisfies (2.1) and belongs to M3. So

c3 ≤ E(d1w, d2w, d3w) =
1

4

3∑
j=1

d2j

∫
Rn

(|∇w|2 + w2)dx =
1

4

3∑
j=1

d2jS
2. (5.1)

On the other hand, let (u1,n, u2,n, u3,n) ∈M3 be a minimizing sequence for c3, that is

E(u1,n, u2,n, u3,n)→ c3 as n→ +∞.

Define

qj,n =

(∫
Rn

u4j,ndx

) 1
2

, j = 1, 2, 3,

then by the definition of S(see(3.2)) and Hölder inequality, we have

S

(∫
Rn

u41,ndx

) 1
2

≤
∫
Rn

(|∇u1,n|2 + u21,n)dx = µ1

∫
Rn

u41,ndx+
3∑
j 6=1

β1,j

∫
Rn

u21,nu
2
j,ndx

≤ µ1
∫
Rn

u41,ndx+
3∑
j 6=1

β1,j

(∫
Rn

u41,ndx

) 1
2
(∫

Rn

u4j,ndx

) 1
2

.

Thus

S ≤ µ1q1,n + β1,2q2,n + β1,3q3,n. (5.2)

Similarly, we have

S ≤ µ2q2,n + β2,1q1,n + β2,3q3,n. (5.3)

S ≤ µ3q3,n + β3,1q1,n + β3,2q2,n. (5.4)
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Since

E(u1,n, u2,n, u3,n) =
1

4

3∑
j=1

∫
Rn

(|∇uj,n|2 + u2j,n)dx,

we have

S
3∑
j=1

qj,n ≤
3∑
j=1

∫
Rn

(|∇uj,n|2 + u2j,n)dx = 4E(u1,n, u2,n, u3,n) + o(1)

= 4c3 + o(1) ≤
3∑
j=1

d2jS
2 + o(1).

Thus

3∑
j=1

qj,n ≤
3∑
j=1

d2jS + o(1). (5.5)

By (2.5), (5.2) to (5.5), we obtain

µ1(q1,n − d21S) + β1,2(q2,n − d22S) + β1,3(q3,n − d23S) ≥ 0,

β2,1(q1,n − d21S) + µ2(q2,n − d22S) + β2,3(q3,n − d23S) ≥ 0,

β3,1(q1,n − d21S) + β3,2(q2,n − d22S) + µ3(q3,n − d23S) ≥ 0,

(q1,n − d21S) + (q2,n − d22S) + (q3,n − d23S) ≤ o(1).

(5.6)

We claim

(q1,n − d21S) + (q2,n − d22S) + (q3,n − d23S)→ 0 as n→ +∞.

Indeed, from (5.6), we have

BX ≥ 0,

where

B =


µ1, β12, β13

β21, µ2, β23

β31, β32, µ3

 ,X =


q1,n − d21S
q2,n − d22S
q3,n − d23S

 ,0 =


0

0

0

 .

Next, we show

(q1,n − d21S) + (q2,n − d22S) + (q3,n − d23S) ≥ 0.

Since B− is the invertible matrix of B , we let

BX = C ≥ 0⇒ X = B−C,

where

B− =


β1,1, β1,2, β1,3

β2,1, β2,2, β2,3

β3,1, β3,2, β3,3

 ,C =


C1

C2

C3

 ,
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then, if
3∑
i=1

βi,k ≥ 0, for all k = 1, 2, 3, we have

3∑
i=1

(qi,n − d2iS) =
3∑
i=1

3∑
k=1

βi,kCk = (
3∑

k=1

Ck)(
3∑
i=1

βi,k) ≥ 0. (5.7)

By (5.6) and (5.7), we have

(q1,n − d21S) + (q2,n − d22S) + (q3,n − d23S)→ 0 as n→ +∞.

Thus,
3∑
j=1

qj,n →
3∑
j=1

d2jS as n→ +∞.

So

c3 = lim
n→+∞

E(u1,n, u2,n, u3,n) ≥ 1

4
S

3∑
j=1

qj,n =
1

4

3∑
j=1

d2jS
2. (5.8)

Combining (5.1) with (5.8), we have

c3 =
1

4

3∑
j=1

d2jS
2 = E(d1w, d2w, d3w).

Thus, (d1w, d2w, d3w) is a positive ground state solution of (2.1). The proof of Theorem

2.5 are similar to above proof.

To proof the uniqueness of positive ground state solution of (2.1), we show that if

(u1,0, u2,0, u3,0) be any ground state solution of (2.1), then

(u1,0, u2,0, u3,0) = (d1w, d2w, d3w).

Let (u1,0, u2,0, u3,0) be any ground state solution of (2.1), then by strong maximum

principle, we have uj,0 > 0, j = 1, 2, 3. We claim∫
Rn

u4i,0dx = d4i

∫
Rn

w4dx for i = 1, 2, 3. (5.9)

∫
Rn

u2i,0u
2
j,0dx = d2i d

2
j

∫
Rn

w4dx for i, j = 1, 2, 3. (5.10)

To proof the claim, we consider the following system, where µ1 is replaced by µ in system

(2.1). 

−∆u1 + u1 = µu31 + β1,2u
2
2u1 + β1,3u

2
3u1, in Rn,

−∆u2 + u2 = µ2u
3
2 + β2,1u

2
1u2 + β2,3u

2
3u2, in Rn

−∆u3 + u3 = µ3u
3
3 + β3,1u

2
1u3 + β3,2u

2
2u3, in Rn

ui > 0 in Rn, ui(x)→ 0 as |x| → +∞, i = 1, 2, 3
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The corresponding energy functional is given by

Eµ(µ, u1, u2, u3) =

3∑
j=1

1

2

∫
Rn

(|∇uj |2 + u2j )dx−
1

4

3∑
i 6=j

βi,ju
2
iu

2
jdx.

− µ
∫
Rn

u41dx−
3∑
j=2

1

4
µj

∫
Rn

u4jdx.

It is easy to see

c1(µ) = inf
(u1,u2,u3)∈H\{(0,0,0)}

max
t>0

Eµ(µ, tu1, tu2, tu3).

The next steps are same as the proof of Theorem 2.1 and Theorem 2.4 . Thus, we have

proof

(u1,0, u2,0, u3,0) = (d1w, d2w, d3w).

6 Proof of Theorem 2.3

Proof of Theorem 2.3. Step1 When d2
d1

= m, then (d1w, d2w, d3w) is a positive ground

state solution of (2.1). On the one hand, if d1, d3 satisfy following equation,
(µ1 + β12m

2)d21 + β13d
2
3 = 1,

(µ2m
2 + β21)d

2
1 + β23d

2
3 = 1,

(β31 + β32m
2)d21 + µ3d

2
3 = 1.

So (µ1 + µ2k
4 + 2β12m

2)d21 + (β13 + β23m
2)d23 = 1 +m2,

(β31 + β32m
2)d21 + µ3d

2
3 = 1,

(6.1)

it is easy to see that (d1w,md1w, d3w) satisfies (2.1) and belongs to M2. So

c2 ≤ E(d1w,md1w, d3w) =
1

4

(
(1 +m2)d21 + d23

) ∫
Rn

(|∇w|2 + w2)dx (6.2)

=
1

4

(
(1 +m2)d21 + d23

)
S2.

On the other hand, let (u12,n,mu12,n, u3,n) ∈M2 be a minimizing sequence for c2, that is

E(u12,n,mu12,n, u3,n)→ c2 as n→ +∞.
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Define

q12,n =

(∫
Rn

u412,ndx

) 1
2

, q3,n =

(∫
Rn

u43,ndx

) 1
2

,

then by the similar arguments as (5.2), we have

S ≤ µ3q3,n + (β3,1 + β3,2m
2)q12,n, (6.3)

(1 +m2)S ≤ (µ1 + µ2k
4 + 2β1,2m

2)q12,n + (β1,3 + β2,3m
2)q3,n. (6.4)

Since

S((1 +m2)q12,n + q3,n) ≤ (1 +m2)

∫
Rn

(|∇u12,n|2 + u212,n)dx+

∫
Rn

(|∇u3,n|2 + u23,n)dx

= 4E(u12,n,mu12,n, u3,n) + o(1)

= 4c2 + o(1) ≤
(
(1 +m2)d21 + d23

)
S2 + o(1).

So

(1 +m2)(q12,n − d21S) + (q3,n − d23S) ≤ o(1). (6.5)

Thus, by (6.1), (6.3), (6.4) and (6.5), we have
(1 +m2)(q12,n − d21S) + (q3,n − d23S) ≤ o(1),

(µ1 + µ2k
4 + 2β1,2m

2)(q12,n − d21S) + (β1,3 + β2,3m
2)(q3,n − d23S) ≥ 0,

(β31 + β32m
2)(q12,n − d21S) + µ3(q3,n − d23S) ≥ 0.

(6.6)

Next, we claim

(1 +m2)(q12,n − d21S) + (q3,n − d23S)→ 0 as n→ +∞.

From (6.6), we have

DX ≥ 0,

where

D =

(
µ1 + µ2k

4 + 2β1,2m
2, β1,3 + β2,3m

2

β31 + β32m
2, µ3

)
,X =

(
q12,n − d21S
q3,n − d23S

)
,0 =

(
0

0

)
.

Next, we show

(1 +m2)(q12,n − d21S) + (q3,n − d23S) ≥ 0.

Since D− is the invertible matrix of D , we let

DX = C ≥ 0⇒ X = D−C,
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where

D− =

(
D11, D12

D21, D22

)
,C =

(
C1

C2

)
.

If we let (1 +m2)D11 +D21 ≥ 0,

(1 +m2)D12 +D22 ≥ 0,

then

(1 +m2)(q12,n − d21S) + q3,n − d23S

= ((1 +m2)D11 +D21)C1 + ((1 +m2)D12 +D22)C2 ≥ 0.

So,

(1 +m2)(q12,n − d21S) + q3,n − d23S → 0 as n→ +∞.

Thus,

(1 +m2)q12,n + q3,n → (1 +m2)d21S + d23S as n→ +∞.

So,

c2 = lim
n→+∞

E(u12,n,mu12,n, u3,n) ≥ 1

4
S((1 +m2)q12,n + q3,n) =

1

4
((1 +m2)d21 + d23)S

2.

Thus, c2 = 1
4((1 +m2)d21 + d23)S

2. So when d2
d1

= m, (d1w, d2w, d3w) is a positive ground

state solution of (2.1).

Step 2, We show that if (u12,0,mu12,0, u3,0) be any ground state solution of (2.1), then

(u12,0,mu12,0, u3,0) = (d1w,md1w, d3w).

The next steps are similar as we proof Theorem 2.1, for readers conveniences, we give

the details here.

Let (u12,0,mu12,0, u3,0) be any ground state solution of (2.1), then by strong maximum

principle, we have u12,0 > 0, u3,0 > 0. We claim∫
Rn

u412,0dx = d41

∫
Rn

w4dx for. (6.7)

∫
Rn

u43,0dx = d43

∫
Rn

w4dx for. (6.8)

∫
Rn

u212,0u
2
3,0dx = d21d

2
3

∫
Rn

w4dx for. (6.9)
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To proof the claim, we consider the following system, where µ1 is replaced by µ in system

(2.1). 

−∆u1 + u1 = µu31 + β1,2u
2
2u1 + β1,3u

2
3u1, in Rn,

−∆u2 + u2 = µ2u
3
2 + β2,1u

2
1u2 + β2,3u

2
3u2, in Rn

−∆u3 + u3 = µ3u
3
3 + β3,1u

2
1u3 + β3,2u

2
2u3, in Rn

ui > 0 in Rn, ui(x)→ 0 as |x| → +∞, i = 1, 2, 3

The corresponding energy functional is given by

Eµ(µ, u1, u2, u3) =
3∑
j=1

1

2

∫
Rn

(|∇uj |2 + u2j )dx−
1

4

3∑
i 6=j

βi,ju
2
iu

2
jdx.

− µ
∫
Rn

u41dx−
3∑
j=2

1

4
µj

∫
Rn

u4jdx.

It is easy to see

c2(µ) = inf
(u1,mu1,u3)∈H\{(0,0,0)}

max
t>0

Eµ(µ, tu1, tmu1, tu3).

Thus, there exists t(µ) > 0 such that

Eµ(µ, t(µ)u12,0, t(µ)mu12,0, t(µ)u3,0) = max
t>0

Eµ(µ, tu1, tmu1, tu3),

where t(µ) > 0 satisfies F (µ, t(µ)) = 0 and F (µ, t) is defined as following

F (µ, t) = t2
(
µ

∫
Rn

u412,0dx+ µ2m
4

∫
Rn

u412,0dx+ µ3

∫
Rn

u43,0dx

+

∫
Rn

2β1,2m
2u412,0dx+

∫
Rn

(2β1,3 + 2β2,3m
2)u212,0u

2
3,0dx

)
−
[
(1 +m2)

∫
Rn

(|∇u12,0|2 + u212,0)dx+

∫
Rn

(|∇u3,0|2 + u23,0)dx

]
,

then

F (µ1, 1) = 0,
∂F (µ, t)

∂t
(µ1, 1) > 0,

by implicit function theorem, there exists δ > 0 such that t(µ1) = 1, t(µ1) ∈ C1(µ1 −
δ, µ1 + δ) and

t′(µ1) = (6.10)

−
∫
Rn |u12,0|4dx

2
(

(µ1 + µ2m4 + 2β1,2m2)
∫
Rn u412,0dx+

∫
Rn(2β1,3 + 2β2,3m2)u212,0u

2
3,0dx+ µ3

∫
Rn u43,0dx

) .
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By Taylor expansion, we have

t(µ) = 1 + t′(µ1)(µ− µ1) + o(|µ− µ1|2),

thus,

t2(µ) = 1 + 2t′(µ1)(µ− µ1) + o(|µ− µ1|2). (6.11)

Since

4c2(µ1) = (1 +m2)

∫
Rn

(|∇u12,0|2 + u212,0)dx+

∫
Rn

(|∇u3,0|2 + u23,0)dx (6.12)

=

(
(µ1 + µ2m

4 + 2β1,2m
2)

∫
Rn

u412,0dx+

∫
Rn

(2β1,3 + 2β2,3m
2)u212,0u

2
3,0dx+ µ3

∫
Rn

u43,0dx

)
,

then, by (6.10), (6.11) and (6.12), we have

c2(µ) ≤ Eµ(t(µ)u12,0, t(µ)ku12,0, t(µ)u3,0)

=
1

4
t2(µ)

(
(1 +m2)

∫
Rn

(|∇u12,0|2 + u212,0)dx+

∫
Rn

(|∇u3,0|2 + u23,0)dx

)
= c3(µ1)

−
c3(µ1)

∫
Rn |u12,0|4dx.(µ− µ1)(

(µ1 + µ2m4 + 2β1,2m2)
∫
Rn u412,0dx+

∫
Rn(2β1,3 + 2β2,3m2)u212,0u

2
3,0dx+ µ3

∫
Rn u43,0dx

)
+ o(|µ− µ1|2) = c3(µ1)−

1

4

∫
Rn

|u12,0|4dx(µ− µ1) + o(|µ− µ1|2).

Thus
c2(µ)− c2(µ1)

µ− µ1
≥ −1

4

∫
Rn

|u12,0|4dx+ o(|µ− µ1|2), as µ↗ µ1,

so

c′2(µ1) ≥ −
1

4

∫
Rn

|u12,0|4dx.

Similarly,
c2(µ)− c2(µ1)

µ− µ1
≤ −1

4

∫
Rn

|u12,0|qdx+ o(|µ− µ1|2), as µ↘ µ1

and

c′2(µ1) ≤ −
1

4

∫
Rn

|u12,0|4dx.

Hence

c′2(µ1) = −1

4

∫
Rn

|u12,0|4dx.

Since (d1w, kd1w, d3w) is the ground state solution of (2.1), we have

c′2(µ1) = −d
4
1

4

∫
Rn

w4dx.

Thus, ∫
Rn

|u12,0|4dx = d41

∫
Rn

w4dx.
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By the similar arguments as above, that is, by computing c′3(µ2), c
′
3(µ3), we obtain∫

Rn

|u3,0|4dx = d43

∫
Rn

|w|4dx.

Thus, we get (6.8). Similarly, by computing c′3(βi,j), we obtain∫
Rn

|u12,0|2|u3,0|2dx = d21d
2
3

∫
Rn

|w|4dx.

Thus, by (6.7), (6.9), we have∫
Rn

|u12,0|2|u3,0|2dx = d−21 d23

∫
Rn

|u12,0|4dx. (6.13)

Next, we prove

(u12,0,mu12,0, u3,0) = (d1w,md1w, d3w).

Since (d1w,md1w, d3w) is a ground state solution of (2.1), we have
(µ1 + β12m

2)d21 + β13d
2
3 = 1,

(µ2m
2 + β21)d

2
1 + β23d

2
3 = 1,

(β31 + β32m
2)d21 + µ3d

2
3 = 1.

(6.14)

Let (u12,mu12, u3) = (
u12,0
d1

,
mu12,0
d1

,
u3,0
d3

), then, by (6.13) and (6.14), we have∫
Rn

(|∇u12|2 + u212)dx =
1

d21

∫
Rn

(|∇u12,0|2 + u212,0)dx

=
1

d21

∫
Rn

((µ1 + β12m
2)u412,0 + β13u

2
12,0u

2
3,0)dx

=
1

d21
(µ1 + β12m

2 + β13d
−2
1 d23)

∫
Rn

|u12,0|4dx

=
1

d41

∫
Rn

|u12,0|4dx =

∫
Rn

|u12|4dx.

Similar, we have ∫
Rn

(|∇u3|2 + u23)dx =

∫
Rn

|u3|4dx.

Hence, ∫
Rn

(|∇u12|2 + u212)dx ≥
∫
Rn

(|∇w|2 + w2)dx,∫
Rn

(|∇u3|2 + u23)dx ≥
∫
Rn

(|∇w|2 + w2)dx.
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Since (u12,0,mu12,0, u3,0) and (d1w,md1w, d3w) are both the ground state solution of (2.1),

we obtain

1

4
((1 +m2)d21 + d23)

∫
Rn

(|∇w|2 + w2)dx

=
1

4

∫
Rn

(1 +m2)(|∇u12,0|2 + u212,0) + (|∇u3,0|2 + u23,0)dx

=
1

4

[
(1 +m2)d21

∫
Rn

(|∇u12|2 + u212)dx+ d23

∫
Rn

(|∇u3|2 + u23)dx

]
≥ 1

4
((1 +m2)d21 + d23)

∫
Rn

(|∇w|2 + w2)dx,

which implies that ∫
Rn

(|∇u12|2 + u212)dx =

∫
Rn

(|∇w|2 + w2)dx,

∫
Rn

(|∇u3|2 + u23)dx =

∫
Rn

(|∇w|2 + w2)dx.

So, u12, u3 are positive ground state solutions of (1.6). Since (u12,0,mu12,0, u3,0) satisfies

(2.1) and (µ1 + β12m
2)d21 + β13d

2
3 = 1, we have

−∆u12 + u12 = (µ1 + β12m
2)d21u

3
12 + β31d

2
3u

2
3u12 = u312.

So

u312 = u23u12 and u3 = u12.

Since (1.6) has a unique positive ground state solution w, thus

(u12,0,mu12,0, u3,0) = (d1w,md1w, d3w).
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