
File: DISTL2 327101 . By:CV . Date:22:07:98 . Time:10:09 LOP8M. V8.B. Page 01:01
Codes: 3565 Signs: 1833 . Length: 50 pic 3 pts, 212 mm

journal of functional analysis 157, 292�325 (1998)

On Conformal Deformations of Metrics on Sn

Juncheng Wei

Department of Mathematics, Chinese University of Hong Kong,
Shatin, Hong Kong, People's Republic of China

E-mail: wei�math.cuhk.edu.hk

and

Xingwang Xu

Department of Mathematics, National University of Singapore, Singapore 0511

E-mail: matxuxw�math.nus.edu.sg

Received November 17, 1997; accepted January 19, 1998

On Sn, there is a naturally metric defined n th order conformal invariant operator
Pn . Associated with this operator is a so-called Q-curvature quantity. When two
metrics are pointwise conformally related, their associated operators, together with
their Q-curvatures, satisfy the natural differential equations. This paper is devoted
to the question of which function can be a Q-curvature candidate. This is the
so-called prescribing Q-curvature problem. Our main result is that if Q is positive,
nondegenerate and the naturally defined mapping associated with Q has nonzero
degree, then our problem has a solution. This is the natural generalization of
prescribing Gaussian curvature on S 2 into S n. � 1998 Academic Press

Key Words: Conformally invariant operators; Qn -curvature; higher order elliptic
differential equations.

1. INTRODUCTION

On a general Riemannian manifold M with metric g, a metrically defined
operator A is said to be conformally invariant if, under the conformal
change in metric gw=e2wg, the pair of corresponding operators Aw and A
are related by

Aw(.)=e&bwA(eaw.) (1.1)

for all . # C�(M) and some constants a and b.
One such well-known second-order conformally invariant operator is the

conformal Laplacian which is closely related to the Yamabe problem and,
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more generally, to the problem of prescribing scalar curvature: Given a
smooth positive function K defined on a compact Riemannian manifold
(M, g0) of dimension n�2, does there exist a metric g conformal to g0 for
which K is the scalar curvature of the new metric g?

If g=e2ug0 for n=2 or g=u4�(n&2)g0 for n�3, our problem is reduced
to finding solutions to the following nonlinear elliptic equations:

2g0
u+Ke2u=k0 (1.2)

for n=2, or

{
4(n&1)

n&2
2g0

u+Ku(n+2)�(n&2)=k0u
(1.3)

u>0 on M

for n�3. (Here 2g0
denotes the Laplace�Beltrami operator of (M, g0), k0

is the Gaussian curvature of g0 when n=2 and the scalar curvature of g0

when n�3.)
The problem of determining which K admits a solution to (1.2) (or (1.3))

has been studied extensively. See [1, 5, 18] and the references therein.
In search for a higher order conformally invariant operator, Paneitz

[16] discovered an interesting 4th-order operator on a compact 4-manifold

P4.=22.+2( 2
3RI&2 Ric) d.

where $ denotes the divergence, d the differential, and Ric the Ricci
curvature of the metric g. Under the conformal change gw=e2wg, P4 under-
goes the transformation (P4)w=e&4wP4 (i.e., a=0, b=4 in (1.1)). See
[2, 4, 8, 10, 11] for a discussion of general properties of Paneitz operators.

On a general compact manifold of dimension n, the existence of such an
operator Pn with (Pn)w=e&nwPn for even dimension is established in [12].
However Pn 's form is known explicitly only for Euclidean space Rn with
standard metric (Pn=(&2)n�2) and hence only for the sphere Sn with
standard metric g0 . The explicit formula for Pn on Sn which appears in [2]
and [3] is

Pn={
`

(n&2)�2

k=1

(&2+k(n&k&1)), for n even,

\&2+\n&1
2 +

2

+
1�2

`
(n&3)�2

k=0

(&2+k(n&k&1)), for n odd.

Analogous to the second-order case there exists some naturally defined
curvature invariance Qn of order n which, under the conformal change
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of metric gw=e2wg0 , is related to Pnw through the following differential
equation

Pnw+(Qn)0=(Qn)w enw on M. (1.4)

Stimulated by the problem of the prescribing Gaussian curvature on S2,
we pose the following prescribing Qn -curvature problem on Sn: Given a
smooth function Q on Sn, find a conformal metric gw=e2wg0 for which
(Qn)w=Q.

We remark that there is a similar problem for general compact Riemannian
manifolds. But since, in this case, the explicit expression for the operator Pn

is unknown, we will not address the general prescribing Qn curvature
problem.

Clearly the above question is equivalent to finding a solution of the
differential equation

Pnw+(n&1)!=Qenw on Sn. (1.5)

The purpose of this paper is to determine for which Q Eq. (1.5) admits
a solution. By simple integration (1.5) on S n, we observe that Q must be
positive somewhere on S n. Thus without loss of generality, we restrict our-
selves to the case where Q>0 on Sn. We then observe that the well-known
Kazdan�Warner obstruction holds (see Lemma 2.4 or [8]);

|
Sn

({Q, {xj) enw d_=0, j=1, ..., n+1. (1.6)

Thus functions of the form Q=� b xj , where � is any monotonic function
defined on [&1, 1], do not admit solutions. Finally, motivated by the
prescribing Gaussian curvature case, we expect that the conditions Q>0
and (1.6) are insufficient to solve Eq. (1.5). We hope to return to this point
in the future.

To state our main result, we define a map G associated to the function
Q by using the action of the conformal group of Sn. As in [5], we consider
the following set of conformal transformations of Sn(n�2): given x # S n,
t�1, using y as the stereographic projection from Sn&[x] (where x is the
north pole) to the equatorial plane y1 , y2 , ..., yn . Let .x, t be the conformal
map of S n given by .x, t( y)=ty. The totality of all such conformal trans-
formations comprises a set which is diffeomorphic to the unit ball Bn+1 in
Rn+1, with the identity transformation identified with the origin in Bn+1

and ,x, t W ((t&1)�t) x= p # Bn+1 in general. We construct the map
G : Bn+1 � Rn+1 by setting

G( p)=G \t&1
t

x+=�|
Sn

(Q b .x, t) } x� d_
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For large values of t, the asymptotic behavior of G( p) is determined by
the leading coefficient of the Taylor series development of Q near the point
&x. In general, G( p) is non-zero for large values of t if the low order
Taylor series coefficients at &P are suitably non-degenerate. In particular,
if the function Q satisfies the following non-degeneracy condition

2Q(x){0 whenever {Q(x)=0, (nd )

the map G does not vanish for large values of t (so that deg (G, Bn+1, 0)
is well defined).

The following is the main result of this paper.

Main Theorem. On Sn, suppose Q>0 is a smooth function satisfying
the non-degeneracy condition (nd) and deg (G, Bn+1, 0){0, then equation
(1.5) has a solution.

Remark. There are similar results for the problem of prescribing scalar
curvature problem on Sn. In [6] (where they studied Eq. (1.2) on S2) and
[1] (where they studied Eq. (1.3) on S 3), it is assumed that the curvature
function K is positive, has only isolated non-degenerate critical points and
in addition satisfies 2K(Q){0 at critical points, as well as the index count
condition:

:
Q critical, 2K(Q)<0

(&1) ind(Q){(&1)n.

We point out that these conditions alone are insufficient to ensure a solu-
tion to the problem of prescribing scalar curvature in general dimension n.
Our question has a solution under these conditions alone, yet we do not
know what the real reasons are.

Our main theorem here was motivated by the results of [5] and [7]
where they generalized the above results of [6] and [1]. Under a similar
condition to (nd) on the curvature function K and a similar degree
condition, they proved the existence of solutions for Eq. (1.2) on S2 and
Eq. (1.3) on S3.

In the remaining part of this section, we outline our proof of the main
theorem. We first introduce some notation. Let

S#{w # H n�2, 2(S n) } �|Sn
enwxj d_=0, j=1, 2, ..., n+1=

and

S0 #{w # S } �|Sn
enw d_=1= .
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Our proof is divided into two parts. In the first part, we derive a pertur-
bation result. Given x # S n, t # [1, �), let p=((t&1)�t) x # Bn+1. For each
Qn -curvature candidate Q, we consider the new candidate Qp=Q b .p and
the functional

Fp[w]=log �|
Sn

Qpenw d_&
n

2(n&1)!
Sn[w]. (1.7)

where Sn[w]=��Sn (Pn w) wd_+2(n&1)! ��Sn wd_.
Let

Mp= sup
w # S0

Fp[w].

Under the condition that =Q=&Q&(n&1)!&� is very small, we show that
Mp is achieved by an extremal function wp . The Euler equation for wp is
written as

Pnw+(n&1)!=(Qp&49 p } x� ) enw. (1.8)

We show that, given p # Bn+1, wp is uniquely determined and wp , as well
as the Langrange multiplier 49 p , vary continuously in p. Hence, we may
consider 49 : Bn+1 � Rn+1 as a continuous map. We will show that, as
t � � (or equivalently r=(t&1)�t � 1), 49 restricted to .Bn+1

r has the
same degree as G |.Br

n+1 , provided there is a neighborhood of .Bn+1
r where

49 has no zero. Therefore, under the hypothesis of the theorem we have deg
(0, 49 .Br

n+1 , 0){0 and hence the Langrange multiplier 49 p must vanish for
some p, | p|<r. By a simple conformal transformation this means that the
original Eq. (1.5) has a solution when =Q=&Q&(n&1)!&� is very small.

In the second part, we use a continuity method. We join the curvature
function Q to the constant function Q0=(n&1)! by one parameter family
of functions

Qs=sQ+(1&s) Q0 (0�s�1)

and consider the family of differential equations

(Qs) Pnw+(n&1)!=Qs enw.

We show that under the hypothesis of nondegeneracy (nd), all solutions of
the Eq. (Qs) are uniformly bounded by a constant independent of s and Qs .
This provides a continuity argument needed to verify the invariance of the
Leray�Schauder degree as one moves along the parameter s in the
continuity scheme. A topological degree argument then completes the proof
of the main theorem.
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We briefly outline the organization of the paper. In Section 2, we prove
an improved Beckner inequality which allows the rest of our argument to
follow. In Section 3, we obtain a priori estimate for solutions of Eq. (1.5)
with Q satisfying condition (nd) by a blow up argument and Kazdan�
Warner obstruction. In Section 4, we finish the first part of our proof��the
perturbation argument. Finally in Section 5 we complete the proof of the
main theorem by a continuity argument.

2. IMPROVED BECKNER INEQUALITY

In this section, we set up some basic facts about the solutions of
Eq. (1.5). Let (x1 , x2 , ..., xn+1) denote the ambient coordinates of S n.
Denote

S#{w # H n�2, 2(Sn) } �|
Sn

enwxj d_=0, j=0, 1, 2, } } } , n+1= (2.1)

S0 #{w # S } �|
Sn

enw d_=1= (2.2)

Lemma 2.1. Given w # Hn�2, 2(Sn) satisfying (1.5), there exists a confor-
mal transform .=.p, t of Sn for some p # S n, t # [1, +�) such that
e2vg0=.*(e2wg0) with v # S. In addition, v satisfies the equation

&Pnv+(Q b .) env=(n&1)! on S n. (2.3)

Proof. The first statement follows by the fixed-point theorem. The
details of this argument can be found in the proof of Lemma 1 of [8] or
[20]. The second statement can be verified by a change of variable argu-
ment and noticing that Pn is conformally invariant. We leave these to
reader. K

Lemma 2.2. Denote Sn[w]=(Pn w, w) +2(n&1)! ��Sn w d_, where
(Pn w, w) =��Sn (Pn w) w d_. Then Sn[w] is a conformally invariant quantity
in the sense that if v and w are related as in Lemma 2.1, then Sn[v]=Sn[w].

Proof. This statement was proved by Chang and Yang in their
fundamental work [9]. See step 1 in their proof of Theorem 4.1. K

Lemma 2.3 (Beckner's Inequality [3, 9]). We always have

�|
Sn

enw d_�exp { n
2(n&1)!

Sn[w]= for all w # Hn�2, 2(S n) (2.4)
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with equality if and only if g0=.*(e2wg0) for some conformal transformation
. of Sn, i.e., if and only if w=1�n log(det(.*)).

Proof. See [3, 9] for details. K

Lemma 2.4 (Kazdan�Warner Condition). Let M be a compact
Riemannian manifold of dimension n without boundary. Let Pm be a well-
defined conformally invariant operator on M and let Qn be the certain
quantity for which (1.4) holds for any two conformally related metric
g=e2wg0 . If X is a conformal vector field, then the quantity Q associated
with the metric g satisfies the condition

�|
M

({Q, X) enw d_0=�|
M

({Qn , X) d_0 , (2.5)

where d_0 is the volume form with respect to the metric g0 .

Proof. If X is a conformal vector field on a compact Riemannian
manifold (M, g0) without boundary, then LXg0=2wg0 for some function
w. In fact, w has to be divg0

X�n, where n is the dimension of the manifold.
By conformal invariance, Pm satisfies

Pm \X+
n&m

2
w+ f =\X

n+m
2

w+ Pm f, (2.6)

for all smooth function f on M. Applying this to the constant function 1,
we get

n&m
2

Pm(w)=\X+
n+m

2
w+ n&m

2
Q.

Here we have used the following convention on what Q is. Pm=
� ak {k+((n&m)�2) Q, so that Pm1=((n&m)�2) Q. This gives

Pmw=\X+
n&mw

2
w+ Q=\X+

n+m
2n

div X+ Q (2.7)

in dimension other than 1, 2, m.
For dimension m, one uses the trick of checking that the aforementioned

relation (2.6), divided by (n&m)�2 still holds, then argues that the calcula-
tion takes place in differential polynomials with coefficients rational in n, so
one is entitled to cancel the factor (n&m)�2. In any event, we get

Pm(divg0
X)=n(X } Q0+divg0

XQ0) (2.8)

in dimension n=m.
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Now let g=e2ug0 be a metric conformally related to go. Then Qg and Q0

satisfies the relation

Qg=e&nu(&Pnu+Q0). (2.9)

If , is a conformal transformation, then

Qg b ,=Q,*(e2ug0)=Qe2wg0
, (2.10)

with w=u b ,+1�n log det(,
*

).
We evaluate the derivative for the flow (!t)t # R of a conformal vector

field at t=0. Clearly, we have

d
dt

(Qg b !t) } t=0

X } Qg . (2.11)

On the other hand, we also have

d
dt

(Qe2wtg0
) | t=0=e&nu _&Pn \X } u+

1
n

divg0
X+

&n(&Pnu+Q0) \X } u+
1
n

divg0
X+& . (2.12)

Combining (2.10), (2.11), and (2.12) we get

X } Qg=e&nu _&Pn \X } u+
1
n

divg0
X+

&n(&Pnu+Q0) \X } u+
1
n

divg0
X+& . (2.13)

Since M is compact, we can integrate this identity against d_g , the
volume element of g. (Recall that d_g=enu d_0 .) We get

�|
M

X } Qg d_g=n �|
M

X } uPn u d_0+�|
M

X } Q0 d_0 . (2.14)

That the first integral on the right side of (2.14) is zero can be seen from
the conformal invariance of the integral

�|
M

(Pnu) u d_0 . K
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Corollary 2.5. If w satisfies equation (1.5), then it satisfies the condition

�|
Sn

({Q, {xj) enw d_=0, for all j=1, 2, ..., n+1. (2.15)

Proof. Letting M=Sn, X={xj and recalling that Q0=(n&1)! is a
constant, the corollary follows. K

We shall prove the following theorem, the main result of the present
section.

Theorem 2.6. There exists a constant a<1 such that

log �|
Sn

enw d_0�
n

2(n&1)! _a(Pnw, w)+2(n&1)! �|
Sn

w d_0& (2.16)

for all w # S.

Proof. Let us consider for each a�1, the functional

Ja(w)=log �|
Sn

enw d_0&
n

2(n&1)! \a(Pnw, w)+2(n&1)! �| Sn w d_0+
(2.17)

and let Ma=supw # S Ja(w). Then by Lemma 4.6 of [8], for each a>1�2, Ma

is achieved by some function wa # S0 which satisfies:
For each '>0, there exists a constant C' with the following property:

(Pnwa , wa)�C' for 1�a� 1
2+'. (2.18)

&aPnwa+(n&1)! enwa=(n&1)!+ :
n+1

j=1

(:a
j xj) enwa on Sn (2.19)

for some constants :a
j , j=1, 2, ..., n+1.

We claim that

wa #0 for a sufficiently close to 1. (2.20)

It is clear that our theorem follows from (2.20). Therefore, we only need
to show (2.20). To this end, we divide our proof into several steps.

Step 1. In this part, we show that all constants :a
j are zero. This can

be done by our Corollary 2.5 above. In fact, for a�1, we rewrite Eq. (2.19)
as

&Pnwa+Qenwa=(n&1)!, (2.21)
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where Q=1�a((n&1)!&�n+1
k=1 :a

kxk)&(1�a&1)(n&1)! e&nwa. Applying (2.5)
to (2.21), we get

0=�|
Sn

({Q, {xj) enwa d_0

=
1
a

�|
Sn

:
n+1

k=1

:a
k({xk , {xj) enwa d_0

+n \1
a

&1+ (n&1)! �|
Sn

({wa , {xj) d_0 . (2.22)

By integrating by parts, using identity (2.8) and the fact that {xj is a
conformal vector, we can rewrite the second term as

�| Sn ({wa , {xj) d_0=&�|
Sn

wa(div {xj) d_0

=&
1
n !

�|
Sn

Pn(div {x j) wa d_0

=&
1
n !

�|
Sn

(div {xj) Pn wa d_0

=&
1

an !
�|

Sn
div {xj[&(n&1)!]

& :
n+1

k=1

:a
kxkenwa&(n&1)! enwa d_0

=
1

a(n&1)!
�|

Sn
xj :

n+1

k=1

:a
kxkenwa d_0 , (2.23)

since div {xj=&nxj .
Plugging (2.23) into (2.22) we get

1
a

�|
Sn

({xj , :
n+1

k=1

:a
k{xk) enwa d_0=n

1
a \1&

1
a+ �|

Sn
xj :

n+1

k=1

:a
kxkenwa d_0 .

(2.24)

Multiplying both sides of (2.24) by :a
j and summing from j=1 to

j=n+l, we get

1
a

�|
Sn } :

n+1

k=1

:a
k{xk } enwa d_0=

n
a \1&

1
a+ �|

Sn \ :
n+1

k=1

:a
kxk+

2

enwa d_0 . (2.25)
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When a<1, the left hand side of (2.25) is always positive while the right
hand side is always negative (or zero when a=1) unless �n+1

k=1 :a
k xk #0,

i.e., :a
k=0 for all k=1, 2, ..., n+1.

Step 2. Applying Step 1 to Eq. (2.19), we have that wa (a�1)
satisfies

&aPnwa+(n&1)! enwa=(n&1)!. (2.26)

We now derive some pointwise estimates for wa .

Claim 1. wa satisfies

�|
Sn

e2n(wa&��Sn wa d_0 d_0=1+o(1) as a � 1. (2.27)

Proof of Claim 1. Assuming the contrary, there will be an =>0 and a
sequence ak � 1 with

vk=wak
&�|

Sn
wak

d_0

satisfying

�|
Sn

e2nvk dv0�1+=

as k � �. From (2.18), there is some v # Hn�2, 2(S n) with vk � v weakly in
Hn�2, 2. Thus ��Sn ecvk d_0 � ��Sn ecv d_0 for any real number c. Also vk # S

implies that v # S. Thus

J(v)=J1(v)=log �|
Sn

env d_0&
n

2(n&1)!
Sn[v]

�lim sup
k

J1(vk)

=lim sup
k \Jak

(vk)&(1&ak)
n

2(n&1)!
(Pnvk , vk)+

=lim sup
k \Mak

&(1&ak)
n

2(n&1)!
(Pnvk , vk)+

�0. (2.28)
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On the other hand J1(v)�M1=0 by Beckner's inequality. Thus J1(v)=0
and hence v satisfies the equation

&Pnv+(n&1)!
env

��Sn env d_0

=(n&1)!.

This together with the fact that v # S with ��Sn v d_0=0 implies v#0, which
contradicts our assumption that

�|
Sn

e2nv d_0=lim
k

�|
Sn

e2nvk d_0�1+=

and hence establishes Claim 1.

Claim 2. ��Sn wa d_0=o(1) as a � 1.

Proof of Claim 2: We know that ��Sn enwa d_0=��Sn d_0 by Eq. (2.26).
By Ho� lder's inequality and the convexity of the exponential function, we
have ��Sn wa d_0�0 and ��Sn e2nwa d_0���Sn d_0 . Therefore, by Claim 1, we
have

1�(1+o(1)) e2n ��Sn wa d_0�1+o(1), (2.29)

from which Claim 2 follows.

Claim 3. Actually wa(x)=o(1) as a � 1.

Proof of Claim 3. This is routine by combining Claims 1, 2 and Green's
identity for Pn (see Lemma 4.8 of [8]).

Step 3. Set va=wa&��Sn wa d_0 . By Claims 2 and 3 above, we easily
see that

enva&1
nva

=1+o(1) as a � 1. (2.30)

We also know that ��Sn va d_0=0 and ��Sn vax j d_0=0 for all j=1, 2, ...,
n+1 which can be seen from Eq. (2.26) since wa # S. However the second
eigenvalue of operator Pn is (n+1)!. Therefore we have
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(n+1)! �|
Sn

v2
a d_0��|

Sn
vaPnva d_0

=
(n&1)!

a
�|

Sn
(enwa&1) va d_0

=
(n&1)!

a
en ��Sn wa d_0 ��Sn (enva&1) va d_0

=
n !(1+o(1))

a
en ��Sn wa d_0 �|

Sn
v2

a d_0 (2.31)

Thus as a � 1, ��Sn v2
a d_0=0, i.e., va #0 as a � 1. But by definition, wa=

��Sn wa d_0 as a � 1. From (2.26), we have wa #0 as a � 1, which finishes
the proof of Claim (2.20) and hence Theorem 2.5. K

3. A PRIORI ESTIMATES ON SN

In this section, we prove the following

Theorem 3.1. (a) Suppose wk is a sequence of functions satisfying
Eq. (1.5) with 0<m�Q�M. Then there exists some constant C1=
C1(m, M)>0 with |Sn[wk]|�C1 .

(b) Suppose Q is a smooth function on Sn satisfying the non-
degeneracy condition (nd) with 0<m�Q�M. Then there exists a constant

C2=C2(M, m, min[ |2Q(x)| : {Q(x)=0])>0

such that for all functions w satisfying Eq. (1.5), |w|�C2 .

Proof. The proof of part (a) is given in [8] Theorem 5.3. Since we need
a stronger version of this result, we prove the following

Lemma 3.2. Suppose w # S is a function with Q-curvature Q satisfying
0<m�Q�M. Then

(w, Pn w) �C(m, M)

and

&w&��C(m, M), &{kw&��C(m, M) for k�n&1.
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Proof of Lemma 3.2. Since Pn is divergence free, by integrating
Eq. (1.5), we have

�|
Sn

Qenw d_=(n&1)!.

Hence,

(n&1)!
M

��|
Sn

enw d_�
(n&1)!

m
. (3.1)

Denote w~ =w&1�n log �Sn enw d_. Then w~ # S0 and we can apply
Theorem 2.6 to conclude that

n(1&a)
2(n&1)!

�|
Sn

(w, Pnw) d_

=
n(1&a)
2(n&1)!

�|
Sn

(w~ , Pnw~ ) d_

=
n

2(n&1)! _Sn[w~ ]&\a �|
Sn

(w~ , Pnw~ ) d_+2(n&1)! �|
Sn

w~ d_+&
�

n
2(n&1)!

Sn[w~ ]=
n

2(n&1)! \Sn[w]&
2(n&1)!

n
log �|

Sn
enw d_+

�C(m, M) (3.2)

by Theorem 5.3 [8] and above fact (3.1).
It follows that

�|
Sn

(w, Pnw) d_�C(m, M). (3.3)

Thus we have the estimate

}2(n&1)! �|
Sn

w d_ }�_ |Sn[w]|+
2(n&1)!

n
�|

Sn
(w, Pn w) d_&

�C(m, M). (3.4)

Notice that for any p>1, we may then apply Beckner's inequality to
conclude

�|
Sn

e pw d_�exp { n
2(n&1)! _

p2

n2 �|
Sn

(w, Pnw) d_+
2(n&1)!

n
p �|

Sn
w d_&=

�C(m, M, P). (3.5)
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It then follows from Green's identity that

}&w(x)+�|
Sn

w d_ }= } �|Sn
G(x, y)(Pnw)( y) d_y }

�\|Sn
|G(x, y)|2 d_y+

1�2

\|Sn
(Qenw&1)2 d_y+

1�2

(3.6)

where G(x, } ) is the Green's function for the operator Pn on Sn with pole
at x. The last inequality follows from (3.5) by choosing p=2n. Since
{k

xG(x, y) is L2 integrable for all k�n&2 with respect to y, the same
argument establishes the remaining estimates stated in Lemma 3.2. This
finishes the proof of Lemma 3.2. K

Proof of Theorem 3.1 (continued ). We now prove part (b) of our
Theorem 3.1. We will prove the result by contradiction.

Given Q>0 satisfying the nondegeneracy condition (nd), suppose the
statement of Theorem 3.1(b) does not hold. Then there exists a sequence
wk satisfying

Pnwk+(n&1)!=Qenwk on S n (3.7)

with maxSn wk � +�. Applying Lemma 2.1, we got a sequence of conformal
transformations .k=.xk, tk

with e2vkg0=.k*(e2wkg0), vk # S satisfying

Pnvk+(n&1)!=Q b .kenvk on S n.

Applying Lemma 3.2, we have &vk&��C(m, M) and ��Sn (vk , Pnvk) d_�
C(m, M). Hence, we may conclude that some subsequence of tk � �. For
if not, i.e., tk�t0 for all k, for some t0 , then wk b .k=vk&1�n log det(d.k)
is uniformly bounded, which contradicts our assumption that maxSn

wk � �. Thus, after passing to a subsequence, we may assume that
tk � �, xk � x0 # S n and vk � v� in Cn&1, : for some : # (0, 1). The last
fact follows from the pointwise estimates on vk and the equation above
along with the Sobolev Imbedding Theorem. Notice that Q b .k � Q(x0)
uniformly on compact subsets of Sn"[&x0] and hence v� satisfies

Pnv�+(n&1)!=Q(x0) env�, (3.8)

at least weakly on S n"[&x0]. But after applying standard arguments from
elliptic theory, one sees that in fact v� satisfies (3.8) on all of Sn. By the
uniqueness of solutions of (3.8) belonging to S [9], [14] and [19], we
conclude that v�=&1�n log Q(x0). Normalizing vk (by rotating xk to x0
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and adding a suitable constant), we may assume that Q(x0)=(n&1)! and
that vk satisfies

Pnvk+(n&1)!=Q b .kenvk (3.9)

with .k=.x0, tk
. Also, by our estimates in Lemma 3.2, we have

&vk&�=o(1) as k � � (3.10)

&{kvk &�=o(1) as k � � for k=1, 2, ..., n&2. (3.11)

Applying the Kazdan�Warner condition (Corollary 2.5) to (3.9), we
have

�|
Sn

({(Q b .k), {xj) envk d_=0, j=1, 2, ..., n+1 (3.12)

where .k=.x0, tk
and tk � �. Therefore, the conclusion of Theorem 3.1(b)

can be obtained by showing that (3.12) contradicts the non-degenerate
assumption (nd). To see this, we denote the left hand side of (3.12) by Ak

and using integration by parts, we rewrite Ak as the sum of two other terms
Bk , Ck , i.e.,

Ak=Bk+Ck

where

B j
k=�|

Sn
({(Q b .k), {x j) d_=n �|

Sn
(Q b .k&(n&1)!) xj d_

and

C j
k=n �|

Sn
(Q b .k&(n&1)!) x� (envk&1) d_

&n �|
Sn

(Q b .k&(n&1)!)({xj , {vk) envk d_,

where j=1, 2, ..., n+1.
We now estimate B j

k and C j
k . We use the stereographic projection coor-

dinates of Sn to compute B9 k and C9 k in terms of the Taylor series expansion
of Q. To do this, we denote x=(x1 , x2 , ..., xn+1) # Sn and let y=
( y1 , y2 , ..., yn) be the stereographic projection from S n to the equatorial
hyperplane Rn sending the north pole N=(0, 0, ..., 0, 1) to �. We can also
identify the point x0 as the north pole N. Thus x i=2y i�(1+| y|2) for
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i=1, 2, ..., n and xn+1=(| y|2&1)�( | y|2+1). We assume that the Taylor
series expansion of Q around N is given by

Q(x1 , x2 , ..., xn+1)=Q( y1 , y2 , ..., yn)

=Q(N)+ :
n

i=1

ai yi+ :
n

i, j=1

bij yi yj+o( | y| 2). (3.13)

and (3.13) holds in the neighborhood D� =[ y # Rn, | y|�M] of N for
some M>0 large. Notice in this notation, .k( y)=tk y. Denote
Dk=[ y # Rn | y|�M�tk], then .k(Dk)=D� . To estimate Bk , we let
d_y=(1�|)(rn&1 dr�(1+r2)n) d% denote the volume form, then

|
Rn"Dk

d_y=n |
M�tk

0

rn&1

(1+r2)n dr�n |
M�tk

0
rn&1 dr=\M

tk+n=O \ 1
tn

k+
as tk � �.

Thus

B9 k=n �|
Sn

(Q b .k&(n&1)!) x� d_

=n |
Dk

(Q b .k&(n&1)!) y� d_y+O \ 1
tn

k+ .

Next, notice that by circular symmetry,

|
Dk

x i (tk y) xj ( y) d_y=0 if i{ j, 1�i, j�n+1.

Hence

B j
k=n |

Dk

ajx j (tk y) x j ( y) d_y

+n |
Dk
\ :

n

i, l=1

bilxi (tk y) xl (tk y)+ xj ( y) d_y+E j
k+O \ 1

tn
k+

for j=1, 2, ..., n

where

E j
k=O \|Dk

\ |tk y|
1+|tk y|2+

3

|x j ( y)| d_y+ , j=1, 2, ..., n+1
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and

Bn+1
k =n |

Dk
\ :

n

j, l=1

bjlxj (tk y) x l (tk y)+ xn+1( y) d_y+E n+1
k +O \ 1

tn
k+

Then by direct calculation, we have

|
Dk

x i (tk y) xi ( y) d_y t
1
tk

as tk � �

and

|
Dk

xi (tk y) x l (tk y) xj ( y) d_y={
0, if 1�i, j, l�n,
0, if j=n+1, i{l,

C
1
t2

k

, if j=n+1, 1�i=l�n.

for some constant C.
Moreover,

|E j
k |=O \ 1

t2
k + if 1� j�n;

|E n+1
k |={

O \ 1
t3

k

log tk+
O \ 1

t3
k +

when n=3,

when n�4.

Thus,

B j
k=caj

1
tk

+O \ 1
t2

k+ , for j=1, ..., n when n�3;

Bn+1
k ={

c$ \ :
n

i=1

b ii+ 1
t2

k

+O \ 1
t3

k

log tk+
c$ \ :

n

i=1

b ii+ 1
t2

k

+O \ 1
t3

k+

when n�3;

when n>3.
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In the above formulas, the constants c and c$ depend only on n and M.
Using the same argument, we can also conclude that

C i
k=o \ |a|

tk ++0 \ 1
t2

k + , 1�i�n+1

where |a|=�n
i=1 |a i |. Combining above relations, we obtain:

ai=0 for 1�i�n and :
n

i=1

bii=0.

That is,

{Q(x0)=0 and 2Q(x0)=0.

This finishes the proof of Theorem 3.1. K

4. THE MAP 4

Again we begin by setting some notation. Given x # Sn, t # [1, �), let
p=((t&1)�t) x # Bn+1. For each Q-curvature candidate Q, we consider the
new candidate Qp=Q b .p and the functional

Fp[w]=log �|
Sn

Qpenw d_&
n

2(n&1)!
Sn[w]. (4.1)

Let

Mp= sup
w # S0

Fp[w].

If Mp is achieved by an extremal function wp , the Euler equation is written
as

Pnw=(n&1)!=(Qp&49 } x� ) enw. (4.2)

Comparing this with (1.5), we see that the Q-curvature Qwp
, of the new

metric e2wpg0 is given by

Qwp
=(Qp&49 } x� ). (4.3)

We now state the first result in this section.
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Proposition 4.1. There exists a constant =$(n) such that, if =Q=
&Q&(n&1)!&��=$(n), then Mp is achieved at a conformal factor wp with
Lagrange multiplier 49 p satisfying

&wp&��O(=Q) and &{kwp&��O(=Q) with k�n&1,

and

&49 p&��O(=Q).

Proof. Since the proof is very long, we divide it several parts.

Part A. Given w # S, by Theorem 2.6, we have

Fp[w]�log(max Q)&\(1&a) �|
Sn

(w, Pn w) d_+ n
2(n&1)!

. (4.4)

But since w # S, �Sn (w, Pnw) d_�0. Thus

log �|
Sn

Qp d_=Fp[0]�Mp�log(max Q). (4.5)

Moreover, for a sequence of wk # S with Fp[wk] � Mp , we have, by (4.4)

n(1&a)
2(n&1)!

�|
Sn

(wk , Pn wk) d_�log(max Q)&(Mp&=k)

�log(max Q)&log �|
Sn

Qp d_+=k (4.6)

for some =k � 0. Thus if we normalize as w~ k=wk&��Sn wk d_, then w~ k is
uniformly bounded in H n�2, 2. A standard argument then indicates that
w~ k � w~ p weakly in Hn�2 , 2 with Fp[w~ p]=Mp . The regularity of w~ p here is
easy by elliptic theory. Since the functional Fp is scale invariant, we may
assume, after some rescaling, that wp of w~ p satisfies ��Sn Qpenwp d_=(n&1)!
with Fp[wp]=Mp .

Part B. Set

=p=log �|
Sn

Qpenwp d_&log _Q(x0) �|
Sn

enwp d_& , (4.7)

$p=log �|
Sn

Qp d_&log Q(x0). (4.8)
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Then we have

|$p |= } log �|
Sn

Qp d_&log Q(x0) }
= } log _�|

Sn
Qp d_&Q(x0)+Q(x0)&&log Q(x0)}

�
1

minQ } �|
Sn

[Qp( y)&Q(x0)] d_y

=O(&Qp&Q(x0)&L2). (4.9)

Setting w~ p=wp&��Sn wp d_, we have

log �|
Sn

Qp d_=Fp[0]�Fp[wp]=Fp[w~ p]

=log �|
Sn

Qpenw~ p d_&
n

2(n&1)!
�|

Sn
(w~ p , Pnw~ p) d_. (4.10)

It follows from (4.10) that

min Q��|
Sn

Qp d_��|
Sn

Qpenw~ p d_�max Q �|
Sn

enw~ p d_. (4.11)

Notice that, by Beckner's inequality,

n
2(n&1)!

Sn[wp]+log Q(x0)=log Q(x0)&(Mp&log(n&1)!)

�log Q(x0)&log �|
Sn

Qp d_+log(n&1)!

(4.12)

and

Fp[wp]=log �|
Sn

Qpenwp d_&
n

2(n&1)!
Sn[wp]

=log(Q(x0) �|
Sn

enwp d_)&
n

2(n&1)!
Sn[wp]

+log �|
Sn

(Qp&Q(x0)) enwp d_

�log Q(x0)+log �|
Sn

enwp d_&log _Q( 0) �|
Sn

enwp d_& . (4.13)
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It follows from (4.12) and (4.13) that

n
2(n&1)!

Sn[wp]+log _ Q(x0)
(n&1)!&

�log Q(xO) �|
Sn

enwp d_&log �|
Sn

Qp enwp d_. (4.14)

Combining (4.12) and (4.14) we get

&=p�
n

2(n&1)!
Sn[wp]+log _ Q(x0)

(n&1)!&�&$p , (4.15)

and

|=p |=log �|
Sn

Qpenwp d_&log Q(x0) �|
Sn

enwp d_ }
=log �|

Sn
Qpenw~ p d_&log _Q(x0) �|

Sn
enw~ p d_&}

=O(&Qp&Q(x0)&L2). (4.16)

Therefore we have shown that

Sn[wp]+log
Q(x0)

(n&1!)
�C &Qp&Q(x0)&L2 (4.17)

for all t�1 and some constant C>0 (depending on max Q, min Q and a
where a is defined in Theorem 2.6).

Part C. Applying (4.17) and the fact that

|
Sn

Qpenwp d_=(n&1)!,

we conclude that

n(1&a)
2(n&1)!

�|
Sn

(wp , Pnwp) d_�=p+O(&Qp&Q(x0)&L2). (4.18)

It follows that

�|
Sn

(wp , Pnwp) d_=O(&Qp&Q(x0)&L2). (4.19)
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Part D. From Part A, wp is an extremal solution of Fp for each t,
( p=t&1�tx) and we have

Pnwp+(n&1)!=_Qp& :
n+1

j=1

* j
px j& enwp (4.20)

for some constants * j
p , 1� j�n+1.

Applying the Kazdan�Warner condition, we obtain

�|
Sn

({Qp , {x i) d_= :
n+1

j=1

* j
p �|

Sn
enwp({x j , {xi) d_ (4.21)

for each i=1, 2, ..., n+1.
Denoting

49 p=(*1
p , *2

p , ..., *n+1
p ),

A9 p=�|
Sn

enwp({Qp , {x� ) d_,

and

Cp=(C p
ij) (n+1)_(n+1)

where

C p
ij =�|

Sn
enwp({xi , {x j) d_,

we can rewrite the Kazdan�Warner condition as

A9 p=Cp49 p ,

or equivalently,

49 p=C &1
p A9 p . (4.22)

Part E. Since Sn[wp]�0 by Beckner's inequality,

&�|
Sn

wp d_�
1

2(n&1)!
�|

Sn
(wp , Pnwp) d_.
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Hence, we have the following estimate:

�|
Sn

e&nwp(x� , x� ) d_

�\�|
Sn

e&2nwp d_+
1�2

\�|
Sn

(x� x� ) d_+
1�2

�C \�|
Sn

e&2nwp d_+
1�2

�C exp
n

(n&1)! _�|
Sn

(wp , Pnwp) d_&(n&1)! �|
Sn

wp d_&
�C exp

3n
2(n&1)! _�|

Sn
(wp , Pn wp) d_&

�C exp
3n

2(1&a)(n&1)!
Sn[wp].

Notice that, from (4.17) and Part C, Sn[wp]�C(m, M). Thus there exists
a constant C=C(m, M)>0 such that

�|
Sn

e&nwp(x� , x� ) d_�C. (4.23)

This implies that

(Cp a� , a� ) d_=�|
Sn

enwp }: aixi }
2

d_

=|
Sn

enwp(x� , x� ) d_ with x� =: a ix i

�\|Sn
(x� , x� ) d_+

1�2

\�|
Sn

e&nwp(x� , x� ) d_+
&1

�
1

C(n+1)2>0. (4.24)
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Part F.

&A9 p&2�2 :
n+1

j=1
\�|

Sn
|({Qp , {x j) | 2 d_+\�|

Sn
(enwp&1)2 d_+

+2n2 :
n+1

j=1
} �|Sn

Qp&(n&1)!) xj d_ }
2

�C �|
Sn

(enwp&1)2 d_+2n2O(&Qp&(n&1)!&L2)

since

�|
Sn

|({Qp , {x j) |2 d_�- n \�|
Sn

|{Q|n d_+
2�n

=- n \�|
Sn

|{Q|n d_+
2�n

�- n C

and by (4.11),

�|
Sn

enwp d_ � if &Q&(n&1)!&� � 0.

Also using Beckner's inequality and Parts B and C, we have

�|
Sn

e2nwp d_�exp _ 2n
(n&1)! \�|

Sn
(wp , Pnwp) d_+(n&1)! �|

sn
wp d_+&

�C(=Q)

where C(=Q) is of order e= when &Q&(n&1)!&��=. Hence

&A9 p&2�C(=Q) (4.25)

with C(=Q)=O(=Q) when &Q&(n&1)!&��=Q .
Combining (4.22), (4.25), and Part E, we obtain

&49 p&2
��C(=Q). (4.26)

Part G. The rest of the proof of Proposition 4.1 follows from the
proof of Lemma 3.2. This completes the proof of Proposition 4.1. K

Proposition 4.1 gives us a natural map 4 : p # Bn+1 � 4p # Rn+1. The
next proposition demonstrates that 4 is a well-defined map.
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Proposition 4.2. For =Q=&Q&(n&1)!&� sufficiently small, the func-
tional Fp has a unique maximum in the class S0 which we denote by wp . The
map p � wp is, in fact, continuous from Bn+1 to S.

Proof. To verify uniqueness, we assume to the contrary that there is a
p # B where Fp has two distinct maxima w0 and w1 . Join w0 to w1 by a one-
parameter family of conformal factors wt which satisfy enwt=tenw0+
(1&t) enw1. For each t, let

w* t=
1
dt

wt=&
1
n

e&nwt(enw0&enw1)

so that

w� t=
dw* t

dt
=&

1
n

e&nwt(enw0&enw1)(nw* t)=&nw* 2
t .

It follows from wt # S that

�|
Sn

enwtw* t xj d_=0

and hence we have

}�|Sn
w* txj d_ }= } |Sn

(1&enwt) w* t xj d_ }=O(=Q &w* t &L2)

by Proposition 4.1.
Resolving w* t into �+xt where xt is the orthogonal projection of w* t

(with respect to the standard metric) onto the first order spherical
harmonic functions, we find that &xt &L2=O(=Q &w* t &L2) and that

(1+O(=Q)) �|
Sn

(w* t , Pnw* t) d_=�|
Sn

(�, Pn �) d_�(n+1)! �|
Sn

�2 d_

=((n+1)!&O(=Q)) �|
Sn

w* 2
t d_

and

(1+O(=Q)) �|
Sn

|{w* t |2 d_=�|
Sn

(�, (&2) �) d_�2(n&1) �|
Sn

�2 d_

=(2(n&1)&O(=Q)) �|
Sn

w* 2
t d_.
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Here we have used the fact that the second eigenvalue of Pn is (n+1)!.
Now we consider the function

g(t)=Fp[wt]. (4.27)

Clearly g(t) is twice differentiable functions and we have

g$(t)=DFp[wt](w* t) (4.28)

and

g"(t)=D2Fp(wt)(w* t , w* t)+DFp(wt)(w� t)

=n \��Sn Qpenwtw� t d_
��Sn Qpenwt d_ +

&
n

(n&1)! \�|
Sn

(w� t , Pnwt) d_+(n&1)! �|
Sn

w� t d_+
+n {��Sn Qp enwtw* 2

t d_
��Sn Qpenwt d_

&\��Sn Qpenwtw* t d_
��Sn Qpenwt d_) +

2

=
&

n
(n&1)!

�|
Sn

(w* t , Pnw* t) d_

=(n&n2) _��Sn Qp enwtw* 2
t d_

��Sn Qpenwt d_ &
+

n2

(n&1)! _�|
Sn

(w* 2
t , Pnwt) d_+(n&1)! |

Sn
w* 2

t d_&
&n \��Sn Qp enwtw* t d_

��Sn Qp enwt +
2

&
n

(n&1)!
�|

Sn
(w* t , Pnw* t) d_

=
n2

(n&1)!
�|

Sn
((n&1)!&Qpenwt) w* 2

t d_

+
n2

(n&1)! _�|
Sn

({w* 2
t , P$nwt) d_&

1
n

�|
Sn

(w* t , Pn w* t) d_&
&

n
((n&1)!)2 _\�|

Sn
Qpenwtw* t d_+

2

&(n&1)! �|
Sn

Qpenwtw* 2
t d_& ,

(4.29)
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where we have used the fact that ��Sn Qpenwt d_=(n&1)! and that

P$n={
`

(n&2)�2

k=1

(&2+k(n&k+1)), if n is even

\&2+\n&1
2 +

2

+
1�2

`
(n&3)�2

k=1

(&2+k(n&k+1)), if n is odd.

Since

(n&1)! �|
Sn

Qpenwtw* 2
t d_&\�|

Sn
Qp enwtw* t d_+2

=(((n&1)!)2+O(=Q)) �|
Sn

w* 2
t d_, (4.30)

by Proposition 4.1, the equation for w0 and w1 and the fact that
&{P$nwt&�=O(=Q), we obtain

g"(t)=
n2

(n&1)!
O(=Q) �|

Sn
w* 2

t d_+n(1+O(=Q)) �|
Sn

w* 2
t d_

&
n2

(n&1)!
�|

Sn
(w* t , Pnw* t) d_

�(n+O(=Q)) �|
Sn

w* 2
t d_&

n
(n&1)!

(n+1)!&O(=Q)
1=O(=Q )

�|
Sn

w* 2
t d_

�n(&n(n+1)+1&O(=Q)) �|
Sn

w* 2
t d_�0. (4.31)

This means that g(t) is a concave function, which contradicts the
assumption that g(0)= g(1) are both maxima of g unless w0=w1 .

Now a simple calculation shows that

DFp[w](.)=n
��Sn Qp enw. d_
��Sn Qp enw d_

&
n

(n&1)!
�|

Sn
[(wPn.)+(n&1)! .] d_. (4.32)

Then the second derivative D2Fp is D(DFp), where we view DFp as a map
Hn�2, 2 � L(Hn�2, 2, R). First we calculate a directional derivative of DFp in
the direction � at w:
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D�[DFp][w](.)=
d
dt } t=0

[DFp(w+t�))(.)]

=n2 _��Sn Qpenw.� d_
��Sn Qpenw d_

&
��Sn Qpenw. d_ ��Sn Qpenw� d_

(��Sn Qpenw d_)2 &
&

n
(n&1)! _�|

Sn
(�, Pn.) d_& . (4.33)

Writing D�(DFp)[w](.)=D2Fp(�, .), we observe that the Beckner's
inequality implies that the map

w � D2Fp( } , } ) # L2(Hn�2, 2_H n�2, 2, R) (4.34)

is continuous, so that Fp is a C2 functional.
Therefore, if wp is the unique maximum of Fp , then for any . # Tw(S0),

we have

D2Fp[wp](., .)=&
n

(n&1)!
�|

Sn
(., Pn.) d_

+n2 _��Sn Qpenwp.2 d_
��Sn Qpenwp d_

&
��Sn Qp enwp. d_)2

��Sn Qpenwp d_)2 &
=&

n
(n&1)!

�|
Sn

(., Pn.) d_

+n2 _�|
Sn

Qp

(n&1)!
enwp.2 d_&\�|

Sn

Qp

n&1)!
enwp. d_+

2&
=(n2+O(=Q)) �|

Sn
.2 d_&

n
(n&1)!

�|
Sn

(., Pn .) d_

�_n2+O(=Q)
(n+1)!

&
n

(n&1)!& �|
Sn

(., Pn .) d_

=
n

(n+1)! _
1

n+1
&1+O(=Q)& �|

Sn
(., Pn.) d_. (4.35)

Since D2Fp[wp](., .) is the quadratic form associated with the linear
transform D(DFp)[wp], the map w � DFp[wp] has nonsingular derivatives
at wp . We now recall the following implicit function theorem [15, 59].

Implicit Function Theorem. Let X, Y, Z be Banach spaces and f a
continuous mapping of an open set U/X_Y � Z. Assume that f has a
Frechet derivative with respect to x, fx(x, y), which is also continuous in U.
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Let (x0 , y0) # U and f (x0 , y0)=0. If A= fx(x0 , y0) is an isomorphism of X
onto Z, then there is a ball Br( y0) and a unique continuous map
w : Br( y0) � X such that w( y0)=x0 and f (w( y), y)=0.

We apply the theorem to the situation X=S0 , Y=parameter space
Bn+1, Z=Hn�2, 2 and f (w, p0)=DFp0

[w] # Hn�2, 2 (by duality). Take
x0=wp0

the unique maximum for the functional Fp0
=log ��Sn Qp enwp0 d_

&n�(2(n&1)!) Sn[wp0
]. Then the conditions of the theorem are satisfied,

and we obtain a continuous branch of critical points wp of the functional
Fp in the fixed space S0 for p sufficiently close to p0 . But since the second
derivative D2Fp is continuous, it follows that the nearby wp are local max-
ima of Fp and satisfy the same conditions in Proposition 4.1. Hence the
same argument in the uniqueness assertion can be applied to show that wp

must be the unique maximum for the functional Fp for p sufficiently close
to p0 . This proves Proposition 4.2.

Under the assumption that the extremal solutions wp of the parametric
problems Fp have non-vanishing Lagrange multipliers 4p , we want to com-
pare 4p with Gp for p sufficiently near boundary point x of Bn+1

1 . (Recall
that p=((t&1)�t) x. It follows from the equation

Pnw+(n&1)!=(Qp&4p } x� ) enw (4.36)

and the Kazdan�Warner condition

�|
Sn

({(Qp&4p } x� ), {xj) enw d_=0 (4.37)

that

:
n+1

j=1

4 j �|
Sn

({xj{x i) d_=�|
Sn

({Qp , ({xi) d_. (4.38)

Adopting the notation from Part D of the Proof of Proposition 4.1, we
rewrite this as

Cp4p=A9 p . K (4.39)

Hence we have the following:

Proposition 4.3. (i) *p=0 if and only if A9 p=0.

(ii) deg(4p , [( p, t) | t=t0], 0)=deg(A9 p , [( p, t) | t=t0], 0).

(iii) If we define another map G : p # Bn+1 � Rn+1 by

G \ p=
t&1

t +=�|
Sn

(Q b .p) x� d_, (4.40)
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and if Q is non-degenerate of order :�n at p, we have

G(x, t) } A9 (x, t)�0. (4.41)

Proof. (i) and (ii) are clearly true. (iii) follows from the same argument
as in the P2 case in [7]. K

5. PROOF OF THE MAIN THEOREM

In this section we apply the a priori estimates developed in the previous
sections to give the basic existence result. To apply the a priori estimates,
we use the Leray�Schauder degree theory (as developed in Nirenberg's
Courant Lecture notes [15] on nonlinear functional analysis) to prove the
main theorem stated in the introduction.

To set up the continuity method, we join the curvature function Q to the
constant function Q0=(n&1)! by an one parameter family of functions

Qs=sQ+(1&s) Q0 (5.1)

and consider the family of differential equations

Pnw+(n&1)!=Qs enw. (5.2)

For any s0>0, there is a uniform bound for the C2 norm of the function
Qs , as well as a uniform positive lower bound for |2Qs(x)| at all critical
points x of the function Qs for s # [s0 , 1]. Thus according to the a priori
estimates of Theorem 3.1, all solutions of the Eq. (5.2) satisfy a uniform
bound

&w&n, :�C, for all 0<:<1. (5.3)

We rewrite the differential Eq. (5.2) in the form

w+P&1
n 9s[w]=0 (5.4)

where 9[w]=(n&1)!&Qsenw. Let 0c be the open set in X=
[w # Cn, :(Sn), ��Sn Qenw d_=(n&1)!]:

0c=[w # X, &w&n, :<C]. (5.5)

In 0c , define the map �s(w)=w+P&1
n 9s[w]. Since P&1

n 9s , is a
Fredholm map: 0c � Cn, :(Sn) and is continuous in s and 0 � �s(�0c) for
s�s0 , we see that deg(�s , 0c , 0) is defined and independent of s for s�s0 .
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For S0 sufficiently small, Qs0
is close in C2 to the constant function

(n&1)!. For such a Q- curvature function Qs , we carried out the perturba-
tion argument given in the last section and by Proposition 4.3, we have
deg(4, Bn+1, 0)=deg(G, Bn+1, 0). Therefore, to finish the proof of our
main theorem, it suffices to show that deg(4, Bn+1, 0)=deg(�s , Bn+1, 0)
for some sufficiently small positive s0 .

If s0 is sufficient small, each zero of the map �s0
is contained in the set

B=[wx, t , x # S n and t�1], which is homeomorphic to the unit ball
Bn+1/Rn+1, according to our discussion in the previous section. First we
notice that, by a simple transversality argument of the continuity of degree
under small perturbation, we may assume that �s0

and 4 have only isolated
non-degenerate zeros so that the corresponding degrees are actually sums
of local degrees of zeros of the corresponding maps. We recall that the local
degree of �s , at an isolated zero w0 is given by taking a neighborhood O
of w0 where 0 � �s0

(�O) and then taking an approximation k= of P&1
n 9s0

mapping into a finite dimensional subspace Y of X so that �s0 , =(w)=
w&k=(w){0 on �O. Now consider the map

�s, = |Y & O� : Y & O� � Y.

We have

deg(�s , O, 0)=deg(�s, = | Y & O� , Y & O� , 0). (5.6)

In our problem, the natural space Y we can take is the linear space of
E1 �E2 � } } } �Em , where Ek denotes the space of the k th order spherical
harmonic functions. To study the local degree of �s at w0 , it will be
convenient to transform w0 so that w~ 0=w0 b .0+ 1�n log(det(d.0)) # S0 .
For any w # B=[wx, t | x # Sn, t�1], let T0w=w b .+1�n log(det(d.0))
and if Q� =Q b .0 , we see that

Pnw+(n&1)! Qenw (5.7)

if and only if

Pn(T0w)+(n&1)!=Q� enT0w. (5.8)

Hence if we set �� s b T &1
0 , O� T0(0), we have

deg(�s , O, 0)=deg(�� s , O� , 0).

Thus, without loss of generality, we may assume a given solution w0

belongs to the symmetric class S when we calculate its local degree. So
suppose w0&P&1

n 9s[w0]=0. The linearization of the map �s around w0
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is given by �$s(w0)[v]=v&nP&1
n (Qsenw0v) when &Qs&(n&1)!&�<=. Thus

we have &enw0&1&��C= , so that the linearization is approximated by

�$s0
(w0)[v]=v&n ! P&1

n (v)+O(=+C=) &P&1
n v&. (5.9)

Since w0 is the unique element in both B and S, span[Tw0
(B), Tw0

(S)]=
L2. Now if Q0 denotes a constant function, then Y & T0(S)=E2 �E3

� } } } �Em . Our estimate w0&��C= implies that Y & Tw0
(S)=

E1 �E2 � } } } �Em �V, where v # V implies that &v&n<$(m, =) and
$(m, E) � 0 as m � � or = � 0. Calculating �s(w0) in the direction of an
element v # Y & Tw0

(S) is relatively straightforward. Since the tangent
space Tw0

(B) is transverse to the spaces Ek for each k{1, we want to use
Eq. (4.36) to compute the derivative �$s in the direction Tw0

B. To this end,
we have

�s(wx, t)=P&1
n (4 } (x� b .&1

x, t ) enwx, t). (5.10)

Hence in the direction Tw0
B, we have �$s(w0)=4$(w0) } P&1

n (x� enw0).
Next observe that we can find a basis for Tw0

(B) consisting of
[;i : i=1, 2, ..., n+1] where ; i=x1+e i+=i with ei bounded and
contained in the span E2 �E3 � } } } �Em and |=i | � 0 as = � 0. Thus x i=
;i&ei&= i , so that we can express the derivative of �s in terms of a matrix
with respect to the natural decomposition Y=E1 �E2 � } } } �Em to be a
small perturbation of the following matrix:

4$ 0 0 } } } 0

x 1&
n !

(n+1)!
0 } } } 0

x 0 1&
n !
a3

} } } 0 (5.11)

} } } } } } }

x 0 0 } } } 1&
n !
am

where am are the m th eigenvalues of Pn (we do not count the repeated
eigenvalues). This finishes the proof of the main theorem.
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