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Abstract. We study the quantitative stability for the classical Brezis-Nirenberg problem as-

sociated with the critical Sobolev embedding H1
0 (Ω) ↪→ L

2n
n−2 (Ω) in a smooth bounded domain

Ω ⊂ Rn (n ≥ 3). To the best of our knowledge, this work presents the first quantitative stability
result for the Sobolev inequality on bounded domains. A key discovery is the emergence of un-
expected stability exponents in our estimates, which arise from the intricate interaction among
the nonnegative solution u0 and the linear term λu of the Brezis–Nirenberg equation, bubble for-
mation, and the boundary effect of the domain Ω. One of the main challenges is to capture the
boundary effect quantitatively, a feature that fundamentally distinguishes our setting from the
Euclidean case treated in [21, 31, 23] and the smooth closed manifold case studied in [15]. Our
proof refines and streamlines several arguments from the existing literature while also resolving
new analytical difficulties specific to our setting.

1. Introduction

1.1. Backgrounds. The Brezis-Nirenberg problem is one of the most celebrated problems in
nonlinear analysis. It is formulated as

−∆u− λu = up in Ω,

u ≥ 0 in Ω,

u = 0 on ∂Ω,

(1.1)

where λ ∈ R, p := 2∗ − 1 = n+2
n−2 , and Ω ⊂ Rn (n ≥ 3) is a smooth bounded domain.1 Equation

(1.1) was first introduced by Brezis and Nirenberg in their groundbreaking work [11], which is
closely linked to the critical Sobolev embedding via the Rayleigh quotient

Qλ(u) :=

∫
Ω(|∇u|2 − λu2)dx

∥u∥2
Lp+1(Ω)

, u ∈ H1
0 (Ω) \ {0},

with associated energy threshold

Sλ := inf
u∈H1

0 (Ω)\{0}
Qλ(u).

When λ = 0, the constant S0 coincides with the best constant of the Sobolev inequality in Rn

S0

(∫
Rn

|u|p+1dx

) 2
p+1

≤
∫
Rn

|∇u|2dx for all u ∈ D1,2(Rn), (1.2)
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and u = 0 on ∂Ω. This paper is primarily concerned with its non-negative solutions, that is, solutions to (1.1).
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where D1,2(Rn) is the closure of the space C∞
c (Rn) with respect to the norm ∥∇u∥L2(Rn). It is

well-known that S0 is achieved if and only if u is a constant multiple of the Aubin-Talenti bubbles
[3, 55] defined as

Uδ,ξ(x) = an

(
δ

δ2 + |x− ξ|2

)n−2
2

, ξ ∈ Rn, δ > 0, an := (n(n− 2))
n−2
4 . (1.3)

The constant an > 0 is chosen so that U := U1,0 solves the associated Euler-Lagrange equation

−∆u = |u|p−1u in Rn. (1.4)

In view of the Sobolev inequality, all solutions to (1.4) are critical points of the energy functional

J(u) =
1

2

∫
Rn

|∇u|2dx− 1

p+ 1

∫
Rn

|u|p+1dx for u ∈ D1,2(Rn),

and all Aubin-Talenti bubbles share the same energy level: J(Uδ,ξ) =
1
nS

n
2
0 .

A key role is played by the critical parameter

λ∗ := inf {λ > 0 : Sλ < S0} . (1.5)

In their seminal work [11], Brezis and Nirenberg demonstrated that if n ≥ 4, then λ∗ = 0 and
positive least energy solutions exist for all λ ∈ (0, λ1), where λ1 is the first Dirichlet eigenvalue of
−∆ on Ω. The situation is drastically different when n = 3: They showed that λ∗ > 0, computed
λ∗ = λ1/4 for the unit ball Ω = B(0, 1), and established the existence of positive least energy
solutions for λ ∈ (λ∗, λ1). Later, Druet [27] proved that

λ∗ = sup{λ > 0 : min
Ω

φλ > 0}, (1.6)

where φλ is the Robin function of the operator −∆− λ in Ω with Dirichlet boundary condition
(defined by (2.8) below).

Nonexistence results emerge from various mechanisms: Testing the equation against the first
eigenfunction eliminates the possibility of positive solutions when λ ≥ λ1, and Pohozaev’s identity
[51] prohibits nontrivial solutions for λ ≤ 0 in star-shaped domains. Conversely, Bahri and Coron
[4] illustrated that certain topological features can allow for existence even at λ = 0.

Apart from these existence results, the Brezis-Nirenberg problem (1.1) serves as a fundamental
model for understanding bubbling phenomena in nonlinear PDEs.

For n ≥ 4 and λ → 0+, Han [35] and Rey [52] characterized single-bubble blow-up profiles.
The existence of single- or multi-bubble solutions concentrating at distinct isolated points was
studied by Rey [52] and Musso and Pistoia [45] for n ≥ 5, and by Pistoia, Rago, and Vaira [50]
for n = 4. Furthermore, Cao, Luo, and Peng [12] investigated the number of bubbling solutions
for n ≥ 6, and König and Laurain [40] carried out a refined analysis of bubbling phenomena for
n ≥ 4.

In the case n = 3, Druet [28] described single-bubble blow-up profiles as λ → λ∗, del Pino,
Dolbeault, and Musso [25] constructed single bubble solution, and Musso and Salazar [46] con-
structed multi-bubble solutions concentrating at distinct isolated points as λ tends to a certain
value λ0 ∈ (0, λ1). Moreover, Druet and Laurain [29] examined the Pohozaev obstruction, and
König and Laurain [41] conducted a fine analysis in this setting.

It is worth noting that the existence or nonexistence of positive cluster or tower solutions for
the Brezis-Nirenberg problem remains not fully understood, although Cerqueti [14] established
the nonexistence of such solutions in symmetric domains for n ≥ 5 as λ → 0. For the results
concerning sign-changing solutions, we refer interested readers to the recent papers [43, 54] and
the references therein.
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In this paper, we aim to investigate the quantitative stability of the Brezis-Nirenberg problem,
a topic that has attracted considerable attention of researchers, with numerous generalizations
and refinements in various directions.

One prominent line of research concerns the stability of functional inequalities. The study
of sharp functional inequalities naturally proceeds through three stages: Identifying optimal
constants, characterizing extremal functions, and understanding quantitative stability. Once
extremal functions are established, a fundamental question arises: How does the deficit–the
difference between the two sides of the inequality at the sharp constant–influence the distance
to the set of extremals? This stability question was initially posed by Brezis and Lieb [10] and
subsequently resolved for the critical Sobolev inequality (1.2) by Bianchi and Egnell [7], who
provided a quantitative estimate regarding the distance to Aubin-Talenti bubbles in D1,2(Rn).
Extending the Bianchi-Egnell stability result to general Lp-Sobolev inequalities has required the
development of novel techniques, with major contributions from Cianchi, Figalli, Fusco, Maggi,
Neumayer, Pratell and Zhang [20, 32, 47, 33]. Related advances have been developed for a variety
of Sobolev-type inequalities [26, 56, 58], and so on. Furthermore, a recent progress has also been
achieved in geometric contexts, including product spaces [34] and general Riemannian manifolds
[30, 49, 48, 1, 8]. Notably, König’s recent breakthroughs [37, 39, 38] on the attainability of the
sharp Bianchi-Egnell constant represent a significant milestone in the pursuit of optimal stability
constants.

Another significant direction focuses on stability through the viewpoint of the Euler–Lagrange
equation induced by a sharp inequality. This perspective refines the classical concentration–
compactness principle (refer to Theorem A) by providing explicit convergence rates. In a seminal
work [21], Ciraolo, Figalli, and Maggi established the sharp stability result near a single-bubble
for the Sobolev inequality in dimensions n ≥ 3, with extensions to multiple-bubble configurations
by Figalli and Glaudo [31] and Deng, Sun, and Wei [23]. Specifically, suppose that ν ∈ N and u is

a nonnegative element in D1,2(Rn) with (ν− 1
2)S

n/2
0 ≤ ∥u∥2D1,2(Rn) ≤ (ν+ 1

2)S
n/2
0 and sufficiently

small Γ(u) := ∥∆u + u
n+2
n−2 ∥(D1,2(Rn))∗ , where (D1,2(Rn))∗ is the dual space of D1,2(Rn). Then

there is a constant C > 0 depending only on n and ν such that

∥∥∥∥∥u−
ν∑

i=1

Ui

∥∥∥∥∥
D1,2(Rn)

≤ C


Γ(u) if n ≥ 3, ν = 1 (by Ciraolo, Figalli and Maggi [21]),

Γ(u) if 3 ≤ n ≤ 5, ν ≥ 2 (by Figalli and Glaudo [31]),

Γ(u)| log Γ(u)|
1
2 if n = 6, ν ≥ 2 (by Deng, Sun, and Wei [23]),

Γ(u)
n+2

2(n−2) if n ≥ 7, ν ≥ 2 (by Deng, Sun, and Wei [23])

(1.7)

for some bubbles U1, . . . , Uν and this estimate is optimal. These results have been further gener-
alized to a broad range of inequalities, including the fractional Sobolev inequality [2, 24, 16], the
Caffarelli-Kohn-Nirenberg inequality [56, 59], the logarithmic Sobolev inequality [57], Sobolev
inequalities involving p-Laplacian [22, 44], the subcritical case [18], as well as settings on the
hyperbolic spaces [5, 6], general Riemannian manifolds [15, 17], the Heisenberg group [19], and
so forth.

Beyond their intrinsic interest, quantitative stability estimates have powerful applications in
nonlinear PDE dynamics, such as the asymptotic behavior of solutions to the Keller-Segel system
[13] and the fast diffusion equation [21, 31, 24, 42].

Our present work is interested in the latter direction, devoted to the quantitative stability of
almost solutions to the Euler-Lagrange equation associated with the inequality H1

0 (Ω) ↪→ L2∗(Ω)
in bounded domains Ω. We begin with a well-known global compactness result associated with
the functional corresponding to (1.1), commonly referred to as Struwe’s decomposition. This
result was established in [53, Proposition 2.1], [9, Theorem 2] and [4, Proposition 4], which we
restate below.
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Theorem A. Let Ω be a smooth open bounded domain in Rn with n ≥ 3 and λ1 > 0 be the first
eigenvalue of −∆ with Dirichlet boundary condition in Ω. For λ ∈ (0, λ1), we endow the Sobolev
space H1

0 (Ω) with the norm

∥u∥H1
0 (Ω) :=

[∫
Ω

(
|∇u|2 − λu2

)
dx

] 1
2

,

and denote by (H1
0 (Ω))

∗ its dual space.
Let {um}m∈N be a sequence of nonnegative functions in H1

0 (Ω) such that

∥um∥H1
0 (Ω) ≤ C0 and ∥∆um + λum + upm∥(H1

0 (Ω))∗ → 0 as m → ∞

for some constant C0 > 0. Then, up to a subsequence, there exist a nonnegative function

u0 ∈ C∞(Ω), an integer ν ∈ N ∪ {0} satisfying ν ≤ C2
0S

−n/2
0 , and a sequence of parameters

{(δ1,m, . . . , δν,m, ξ1,m, . . . , ξν,m)}m∈N ⊂ (0,∞)ν × Ων such that the followings hold:

- u0 is a smooth solution to (1.1). By the strong maximum principle, we have either u0 > 0
or u0 = 0 in Ω.

- For all 1 ≤ i ̸= j ≤ ν, we have that δi,m → 0 and

d(ξi,m, ∂Ω)

δi,m
→ ∞,

δi,m
δj,m

+
δj,m
δi,m

+
|ξi,m − ξj,m|2

δi,mδj,m
→ ∞ as m → ∞.

- It holds that ∥∥∥∥um −
(
u0 +

ν∑
i=1

Uδi,m,ξi,m

)∥∥∥∥
H1

0 (Ω)

→ 0 as m → ∞.

1.2. Main results. Our objective is to derive a quantitative version of above decomposition. To
this end, we consider the following two auxiliary equations:{

−∆u = Up
δ,ξ in Ω,

u = 0 on ∂Ω,
(1.8)

and {
−∆u− λu = Up

δ,ξ in Ω,

u = 0 on ∂Ω.
(1.9)

Before presenting our main results, we introduce the following assumption:

Assumption B. Given any open bounded set Ω ⊂ Rn with n ≥ 3 and any λ ∈ (0, λ1). Suppose
that a nonnegative function u in H1

0 (Ω) satisfies∥∥∥∥u−
(
u0 +

ν∑
i=1

Uδ̃i,ξ̃i

)∥∥∥∥
H1

0 (Ω)

≤ ε0 (1.10)

for some small ε0 > 0 and ν ∈ N. Here, u0 is a solution of (1.1) and (δ̃i, ξ̃i) ∈ (0,∞)×Ω satisfies

max
i=1,...,ν

δ̃i + max
i=1,...,ν

δ̃i

d(ξ̃i, ∂Ω)
≤ ε0

and

max


(
δ̃i

δ̃j
+

δ̃j

δ̃i
+

|ξ̃i − ξ̃j |2

δ̃iδ̃j

)−n−2
2

: i, j = 1, . . . , ν, i ̸= j

 ≤ ε0.

If u0 > 0 in Ω, we further assume that u0 is non-degenerate in the sense that the only H1
0 (Ω)-

solution to ∆ϕ+ λϕ+ pup−1
0 ϕ = 0 in Ω is identically zero in Ω. For later use, we define Γ(u) :=

∥∆u+ λu+ up∥(H1
0 (Ω))∗ .
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We note that the condition maxi
δ̃i

d(ξ̃i,∂Ω)
≤ ε0 admits two possibilities: Either ξ̃i is away from

∂Ω or close to ∂Ω. Accordingly, we divide our main results into two theorems.

Our first theorem addresses the case where ξ̃i is away from the boundary of Ω, covering both
single and multi-bubble cases.

Theorem 1.1. Let λ∗ ≥ 0 be the number in (1.5) and φ3
λ(x) = H3

λ(x, x) be the function defined
by (2.4) below. Under the Assumption B, we further assume the followings:

- Each ξ̃i lies on a compact set of Ω for i = 1, . . . , ν.
- If n = 3 and u0 > 0, then λ ∈ (λ∗, λ1), which ensures the existence of such u0.

- If n = 3, u0 = 0, and ν ≥ 2, then λ ∈ (λ∗, λ1) and φ3
λ(ξ̃i) < 0 for each i = 1, . . . , ν.2

Then, by possibly reducing ε0 > 0, one can find a large constant C = C(n, ν, λ, u0,Ω) > 0 and
functions PU1 := PUδ1,ξ1 , . . . , PUν := PUδν ,ξν satisfying (1.8) if either [n = 3, 4 and u0 > 0] or
n ≥ 5, and satisfying (1.9) if n = 3, 4 and u0 = 0, such that∥∥∥∥u−

(
u0 +

ν∑
i=1

PUi

)∥∥∥∥
H1

0 (Ω)

≤ Cζ(Γ(u)), (1.11)

where ζ ∈ C0([0,∞)) satisfies

ζ(t) =


t if [n = 3, 4, ν ≥ 1] or [n = 5, ν ≥ 1, u0 > 0] or [n ≥ 7, ν = 1],

t
3
4 if [n = 5, ν ≥ 1, u0 = 0],

t| log t|
1
2 if [n = 6, ν ≥ 1],

t
n+2

2(n−2) if [n ≥ 7, ν ≥ 2]

(1.12)

for t > 0.
The estimate above is optimal in the sense that the function ζ cannot be improved.

Before we proceed further, we leave some remarks.

Remark 1.2.

(1) Compared to the Euclidean case summarized in (1.7), the new exponents appear when [n =
5, u0 = 0, ν ≥ 1] or [n = 6, ν = 1].

(2) Solutions to certain specific perturbation of the equation ∆u+λu+up = 0 in Ω cannot exhibit
boundary blow-up, thereby fulfilling the first additional assumption in Theorem 1.1. Moreover,
in some cases, only one of the conditions u0 = 0 or ν = 0 is permitted; refer to e.g. [41, 28].

(3) When u0 > 0, the non-degeneracy assumption on u0 is generic; see [36, Lemma 4.9]. In the
case u0 = 0 and n = 3 or 4, defining PUi via solutions to (1.9) rather than (1.8) turns out to
be more natural; see Subsection 1.3(2). Similar observation was made in constructing positive
solutions to the Brezis-Nirenberg-type problem in low dimensions; see e.g. [25].

(4) For n = 3, u0 = 0, and ν ≥ 2, we use the condition φ3
λ(ξ̃i) < 0 so that no sign competition

occurs between the terms
∫
Ω I2PZ0

j in Lemma 2.8 and
∫
Ω I3PZ0

j in Lemma 2.7.

(5) If n = 5, u0 = 0, and ν ≥ 1, the linear term λu is the dominant factor determining ζ(t) = t3/4

in (1.12). In this case, one may instead choose the projected bubble PUδ,ξ as in (1.9) rather
than (1.8). Since (1.9) already incorporates the effect of the linear term, it leads to the stability

function ζ(t) = t, as opposed to t3/4, and this improved rate can again be shown to be sharp.
Such a sensitive dependence on the choice of the test function is a distinctive characteristic of the

2Using (2.8)–(2.9), Druet’s characterization (1.6) of the number λ∗ in (1.5) can be rewritten as λ∗ = sup{λ >
0 : minΩ φ3

λ > 0}.
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Brezis-Nirenberg problem in Ω, and does not appear in the Euclidean setting or in the Yamabe
problem.

Our second main result concerns the boundary effect when ξ̃i may approach ∂Ω. We fully
characterize the single-bubble case in this setting.

Theorem 1.3. Under the Assumption B, we further assume that ν = 1 and ξ̃1 ∈ Ω. If n = 3
and u0 > 0, we also need λ ∈ (λ∗, λ1). Then, by possibly reducing ε0 > 0, one can find a large
constant C = C(n, λ, u0,Ω) > 0 and a function PU1 := PUδ1,ξ1 satisfying (1.8) if either [n = 4, 5
and u0 > 0] or n ≥ 6, and satisfying (1.9) if either n = 3 and [n = 4, 5 and u0 = 0], such that

∥u− (u0 + PU1)∥H1
0 (Ω) ≤ Cζ(Γ(u)), (1.13)

where ζ ∈ C0([0,∞)) satisfies

ζ(t) =


t if n = 3 or [n = 4, u0 = 0],

t
n−2
n−1 if [n = 4, u0 > 0] or n = 5,

t| log t|
1
2 if n = 6,

t
n+2

2(n−1) if n ≥ 7

(1.14)

for t > 0. The above estimate is also optimal.

Remark 1.4.

(1) Even in single-bubble case, the surprising new exponents in (1.14) emerge due to the possibility

that d(ξ̃1, ∂Ω) is small. This phenomenon occurs exclusively in domains with nonempty boundary.
The multi-bubble case remains an open problem due to a serious technical issue. See Subsection
1.3(6).

(2) Unlike in Theorem 1.1, we choose PU1 to satisfy (1.9) for the cases [n = 3, u0 > 0] or
[n = 5, u0 = 0] to avoid difficulties arising from the boundary effects. We believe that this choice
is nearly unavoidable.

(3) Similar to Remark 1.2(4), when [n = 4, u0 > 0] or [n = 5, u0 > 0], choosing PUδ,ξ as
in (1.9) again yields the optimal stability function ζ(t) = t. In both cases, the sharp stability
function depends explicitly on the choice of the projected bubble PUδ,ξ within the framework of
this theorem.

As an application of Theorem 1.3 and Struwe’s profile decomposition Theorem A, we obtain
the following corollary.

Corollary 1.5. Let S0 > 0 be the sharp Sobolev constant in (1.2). We assume that every positive
solution to (1.1) is non-degenerate.

If u is a nonnegative function in H1
0 (Ω) with

∥u∥2H1
0 (Ω) ≤

3

2
S

n
2
0 , (1.15)

then there exists a constant C > 0 depending only on n, λ,Ω such that

inf

{∥∥∥∥u−
(
u0 +

ν∑
i=1

PUδi,ξi

)∥∥∥∥
H1

0 (Ω)

: u0 solves (1.1), PUδi,ξi ∈ B, ν = 0, 1

}
≤ Cζ(Γ(u)),

where ζ(t) satisfies (1.14) for t ∈ [0,∞) and

B :=
{
PUδ,ξ : PUδ,ξ satisfies (1.8) for n ≥ 6 or [n = 4, 5, u0 > 0]

and satisfies (1.9) for n = 3 or [n = 4, 5, u0 = 0], (δ, ξ) ∈ (0,∞)× Ω
}
.
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Here
∑0

i=1 PUδi,ξi = 0.

Remark 1.6. In this corollary, we modify the class of admissible functions u in (1.10) to those
with uniformly bounded energy as in (1.15). This necessitates assuming the non-degeneracy for
all positive solutions to (1.1), since u0 cannot be determined a priori. The proof proceeds by
contradiction, following an argument similar to that in [15, Section 6], and is therefore omitted.

1.3. Comments on the proof. Our proof is primarily inspired by the approaches developed
in [21, 31, 23, 15, 16]. To clarify the new technical challenges involved in our setting, we begin by
outlining a general strategy for proving quantitative stability of sharp inequalities in the critical
point setting:

(i) The starting point is that the infimum inf ∥u− (u0 +
∑ν

i=1 Vδ̃i,ξ̃i
)∥H1 can be achieved by

Vδi,ξi where Vδ,ξ is an appropriate bubble-like function, then ρ := u − (u0 +
∑ν

i=1 Vδi,ξi)
satisfies an auxiliary equation (e.g. (2.1)) along with certain orthogonality conditions, at
least in a Hilbert space framework.

(ii) By testing the equation of ρ with ρ itself, one can derive a estimate ∥ρ∥H1 ≲ ∥f∥(H1)∗ +
∥I∥(H1)∗ := ∥f∥(H1)∗ +J1 where f := −∆u− λu− up, I is an error term (in our setting,
I := I1 + I2 + I3 given by (2.2)), and J1 is a small quantity.

(iii) By choosing suitable test functions originated from bubbles (see Subsection 1.3(7) below),
one can find another small quantity J2 such that J2 ≲ ∥f∥(H1)∗ . If one can determine

a function ζ̃ such that J1 ≲ ζ̃(J2), the final stability function will be determined as

ζ(t) := max{t, ζ̃(t)} for small t > 0.
(iv) Once one finds special parameters (δi, ξi) and functions ρ and f satisfying ∥ρ∥H1 ≳

ζ(∥f∥(H1)∗), then the nonnegative function u∗ = (u0 +
∑ν

i=1 Vδi,ξi + ρ)+ usually provides
an optimal example.

Although our proof could follow the procedures outlined above, several non-trivial and novel
challenges arise in our specific setting. We now present the new strategies devised to overcome
or mitigate these difficulties.

(1) Due to the presence of u0 and the linear term λu, more precise computations are needed for
the interactions among bubbles with various powers, as well as those between a bubble and u0,
for all dimensions n ≥ 3.

(2) The selection of bubble-like functions is subtle. For our problem, depending on the dimension
n and the solution u0 of (1.1), we make appropriate use of two different projected bubbles given
by (1.8) and (1.9).

Let us explain why we must define PUi via solutions of (1.9) in deducing Theorem 1.1 for
n = 3 or 4 and u0 = 0:

If n = 3 and u0 = 0, then the function PUi defined via (1.8) fails to produce any quantitative
estimates even in the single-bubble case due to the excessive size of ∥Uδ,ξ∥L6/5(Ω).

If n = 4, u0 = 0, and ν = 1, then such a definition yields a valid but a non-sharp estimate.
If n = 4, u0 = 0, and ν ≥ 2, then the use of the above-defined PUi fails completely, because

the interaction terms
∫
UiUj are not negligible compared to the presumably dominant term

maxi
∫
U2
i .

In Lemmas 2.1 and B.1, we rigorously analyze the behavior of the function PUδ,ξ defined via
(1.9), which may be independent of interests.

As previously noted, there seems be no results on positive cluster or tower solutions for the low-
dimensional Brezis-Nirenberg problem. Our calculations take into account all possible bubbles
and may be helpful for constructing such solutions, should they exist.

(3) In [23, 16], the authors derive a pointwise estimate for the main part ρ0 of ρ across all bubble
configurations in all dimensions n ≥ 6. Instead, our proofs of stability estimates (1.11) and its
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optimality make full use of the definition of ∥ · ∥(H1
0 (Ω))∗-norm, which can simplify the argument

of [23, 16]. Part of the idea is influenced by [19, Lemma 5.4]. See Subsections 2.3, 3.1 and 3.2.

(4) In Step (ii), many seminal works in the critical regime (see [21, 31, 23] and their generaliza-
tions, e.g., [6, 15, 16]) devote substantial effort to deriving appropriate coercivity inequalities. In
[23, Section 6], such inequalities play a crucial role in deducing a Sobolev norm estimate for the
term ρ1 := ρ − ρ0. In contrast, our approach provides a direct derivation of the Sobolev norm
estimate for ρ1 based solely on blow-up analysis (refer to Subsection 3.1). As a result, the proof
avoids coercivity inequalities entirely, greatly shortening the argument again.

(5) Regarding the sharpness of our results, we conduct a comprehensive analysis of all admissible
forms of the function ζ, dealing with the linear (ζ(t) = t) and sublinear (ζ(t) ≫ t) regimes
through two distinct strategies. In the linear case, sharpness is verified by constructing a smooth
perturbation of u0 +

∑ν
i=1 PUi. For the sublinear case, a more delicate analysis is required for

the multiple bubble scenario whose idea differs from that in Rn, and it is important to identify
which of the dominant factors–interactions among u0, the boundary effect, the bubbles, and the
linear term λu–govern the exponent of ζ.

(6) In the proof of Theorem 1.3, the scenario in which d(ξ, ∂Ω) is small introduces a crucial
challenge: The projection of I1 + I2 + I3 in the direction of the dilation derivative δi∂δiVi of the
bubble-like function Vi has a negative leading term of the form −δn−2/d(ξ, ∂Ω)n−2; see (4.4). In
the single-bubble case, we address this projection by carefully analyzing all possible scenarios,
as detailed in Section 4. The reason that one primarily uses δi∂δiVi as a test function in both
Euclidean and manifold settings–instead of using a spatial derivative δi∂ξki

Vi–is that the latter

generally lead to weaker estimates. However, in our setting, it is sometimes necessary to consider
the projections of I1 + I2 + I3 in the direction δi∂ξki

Vi, since the dilation projection may suffer

from sign cancellations among its leading-order terms, weakening their overall effect. As such,
precise term-by-term estimates like (4.4) and (4.5) are indispensable.

In the multi-bubble case ν ≥ 2, these challenges become significantly more difficult. We
currently lack a clear strategy to effectively handle the competition between the negative term
involving d(ξi, ∂Ω) and the interaction between different bubbles. Additionally, integrals such
as
∫
Ω[(PUi)

p − Up
i ]Uj for i ̸= j and

∫
Ω[(
∑ν

i=1 PUi)
p −

∑ν
i=1(PUi)

p]PZ0
j (when n ≥ 3) pose

formidable analytical obstacles.

Our structure of this paper is described as follows: In Section 2, we present some necessary
estimates for proving our main theorems. In Sections 3 and 4, we provide the detailed proofs
of Theorem 1.1 and Theorem 1.3, respectively. In Appendix A, we include several elementary
estimates that are frequently used throughout the main text. In Appendix B, we give a proof for
an important lemma used in Section 4.

Notations. Here, we list some notations that will be frequently used later.

- N denotes the set of positive integers.

- Let (A) be a condition. We set 1(A) = 1 if (A) holds and 0 otherwise.

- For x ∈ Ω and r > 0, we write B(x, r) = {ω ∈ Ω : |ω−x| < r} and B(x, r)c = {ω ∈ Ω : |ω−x| ≥
r}.

- We use the Japanese bracket notation ⟨x⟩ =
√

1 + |x|2 for x ∈ Rn.

- Unless otherwise stated, C > 0 is a universal constant that may vary from line to line and even
in the same line. We write a1 ≲ a2 if a1 ≤ Ca2, a1 ≳ a2 if a1 ≥ Ca2, and a1 ≃ a2 if a1 ≲ a2 and
a1 ≳ a2.
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2. Setting and analysis of bubbles

2.1. Problem setting. By (1.10), there exist parameters (δ1, . . . , δν , ξ1, . . . , ξν) ⊂ (0,∞)ν × Ων

and ε1 > 0 small such that ε1 → 0 as ε0 → 0,∥∥∥∥u−
(
u0 +

ν∑
i=1

PUi

)∥∥∥∥
H1

0 (Ω)

= inf

{∥∥∥∥u−
(
u0 +

ν∑
i=1

PUδ̃i,ξ̃i

)∥∥∥∥
H1

0 (Ω)

:
(
δ̃i, ξ̃i

)
∈ (0,∞)× Ω, i = 1, . . . , ν

}
≤ ε1,

where PUi = PUδi,ξi , and

max
i

δi +max
i

δi
d(ξi, ∂Ω)

≤ ε1,

as well as

max

{(
δi
δj

+
δj
δi

+
|ξi − ξj |2

δiδj

)−n−2
2

: i, j = 1, . . . , ν

}
≤ ε1.

Throughout the paper, we write κi :=
δi

d(ξi,∂Ω) .

Setting σ :=
∑ν

i=1 PUi, ρ := u− (u0 + σ), and f := −∆u− λu− up, we have
−∆ρ− λρ− p(u0 + σ)p−1ρ = f + I0[ρ] + I1 + I2 + I3 in Ω,

ρ = 0 on ∂Ω,〈
ρ, PZk

i

〉
H1

0 (Ω)
:=

∫
Ω
∇ρ · ∇PZk

i − λρPZk
i = 0 for i = 1, . . . , ν and k = 0, . . . , n,

(2.1)

where

PZ0
i := δi

∂PUi

∂δi
, PZk

i := δi
∂PUi

∂ξki
for k = 1, . . . , n,

I0[ρ] := |u0 + σ + ρ|p−1(u0 + σ + ρ)− (u0 + σ)p − p(u0 + σ)p−1ρ,

I1 := (u0 + σ)p − up0 − σp,

I2 := σp −
ν∑

i=1

(PUi)
p, and I3 :=

ν∑
i=1

[∆PUi + λPUi + (PUi)
p] .

(2.2)

We recall a well-known non-degeneracy result: Given any δ > 0 and ξ = (ξ1, . . . , ξn) ∈ Rn, the
solution space of the linear problem

−∆v = pUp−1
δ,ξ v in Rn, v ∈ D1,2(Rn)

is spanned by the functions

Z0
δ,ξ := δ

∂Uδ,ξ

∂δ
and Zk

δ,ξ := δ
∂Uδ,ξ

∂ξk
for k = 1, . . . , n.

We rewrite Ui := Uδi,ξi , Z
k := Zk

1,0, and Zk
i := Zk

δi,ξi
for i = 1, . . . , ν and k = 0, . . . , n.

Let us define four quantities
qij :=

[
δi
δj

+
δj
δi

+
|ξi − ξj |2

δiδj

]−n−2
2

, Q := max{qij : i, j = 1, . . . , ν} ≤ ε1,

Rij := max

{√
δi
δj
,

√
δj
δi
,
|ξi − ξj |√

δiδj

}
≃ q

− 1
n−2

ij , R :=
1

2
minRij .

(2.3)
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2.2. Expansions of PUδ,ξ. Given the projected bubbles PUδ,ξ via either (1.8) or (1.9), we
expand them.

Lemma 2.1. Suppose that x, ξ ∈ Ω and δ > 0 is small. Then, 0 < PUδ,ξ ≤ Uδ,ξ in Ω, and for
any τ ∈ (0, 1), the following holds:

PUδ,ξ(x) = Uδ,ξ(x)− anδ
n−2
2 H(x, ξ) +O

(
δ

n+2
2 d(ξ, ∂Ω)−n

)
provided n ≥ 3 and PUδ,ξ is given by equation (1.8), and

PUδ,ξ(x)= Uδ,ξ(x) +
λ

2
anδ

n−2
2


−|x− ξ| if n = 3

− log |x− ξ| if n = 4
1

|x−ξ| − 4λ|x− ξ| if n = 5

− δ
n−2
2 anH

n
λ (x, ξ) + δ2−

n−2
2 Dn

(
x− ξ

δ

)

+

{
O(δ

5
2
−τ ) if n = 3, 5

O(δ3−τ ) if n = 4

}
+O

(
δ

n+2
2

[
d(ξ, ∂Ω)−(n−2)

∣∣∣∣ log d(ξ, ∂Ω)

δ

∣∣∣∣+ d(ξ, ∂Ω)−n

])
provided n = 3, 4, 5 and PUδ,ξ is given by equation (1.9). Here, an = (n(n − 2))

n−2
4 (see (1.3)),

the function H(x, y) satisfies {
−∆xH(x, y) = 0 in Ω,

H(x, y) = 1
|x−y|n−2 on ∂Ω,

the function H3
λ(x, y) satisfies{

∆xH
3
λ(x, y) + λH3

λ(x, y) = −λ2

2 |x− y| in Ω,

H3
λ(x, y) =

1
|x−y| −

λ
2 |x− y| on ∂Ω,

(2.4)

the function H4
λ(x, y) satisfies{

∆xH
4
λ(x, y) + λH4

λ(x, y) = λ log |x− y| in Ω,

H4
λ(x, y) =

1
|x−y|2 − λ

2 log |x− y| on ∂Ω,
(2.5)

and the function H5
λ(x, y) satisfies{

∆xH
5
λ(x, y) + λH5

λ(x, y) = −λ2

2 |x− y| in Ω,

H5
λ(x, y) =

1
|x−y|3 + λ

2
1

|x−y| −
λ2

2 |x− y| on ∂Ω,
(2.6)

for each fixed y ∈ Ω. Besides, the function Dn = Dn(z) satisfies−∆Dn = λan

[
1

(1+|z|2)
n−2
2

− 1
|z|n−2

]
in Rn,

Dn ≈ |z|−(n−2)| log |z|| as |z| → ∞.

Proof. The inequality 0 < PUδ,ξ ≤ Uδ,ξ in Ω holds by the maximum principle.
The proof for the case where PUδ,ξ satisfies (1.8), or it satisfies (1.9) with n = 3, can be

found in [52, Proposition 1] or [25, Lemma 2.2], respectively. Here, we provide a proof for PUδ,ξ

satisfying (1.9) that applies to n = 3, 4, 5 simultaneously.
Let Gλ(x, y) be the Green’s function of −∆− λ in Ω ⊂ Rn with Dirichlet boundary condition,

which solves {
−∆xGλ(x, y)− λGλ(x, y) = δy in Ω,

Gλ(x, y) = 0 on ∂Ω
(2.7)

in the sense of distributions. The function Gλ(x, y) is symmetric with respect to the two variables
x and y. Also, one can write

Gλ(x, y) =
1

(n− 2)|Sn−1|

[
1

|x− y|n−2
−Hλ(x, y)

]
,
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where |Sn−1| is the surface area of the unit sphere Sn−1 in Rn and Hλ solves{
∆xHλ(x, y) + λHλ(x, y) = λ 1

|x−y|n−2 in Ω,

Hλ(x, y) =
1

|x−y|n−2 on ∂Ω.
(2.8)

We decompose Hλ(x, y) as

Hλ(x, y) =


λ
2 |x− y| if n = 3
λ
2 log |x− y| if n = 4

−λ
2

1
|x−y| + 2λ2|x− y| if n = 5

+Hn
λ (x, y) (2.9)

and apply elliptic regularity theory to ensure that Hn
λ (x, y) ∈ C1,α(Ω× Ω) for any α ∈ (0, 1).

Next, we define

Sδ,ξ(x) = PUδ,ξ − Uδ,ξ + anδ
n−2
2 Hλ(x, ξ)− D̃n(x).

Here, D̃n(x) := δ2−
n−2
2 Dn(

x−ξ
δ ) so that

−∆D̃n = λan

[(
δ

δ2+|x−ξ|2

)n−2
2 − δ

n−2
2

|x−ξ|n−2

]
in Ω,

D̃n ≈ δ2+
n−2
2

|x−ξ|n−2

∣∣∣log |x−ξ|
δ

∣∣∣ on ∂Ω.

By observing that

Sδ,ξ(x) = −an

[(
δ

δ2 + |x− ξ|2

)n−2
2

− δ
n−2
2

|x− ξ|n−2

]
− D̃n(x) for x ∈ ∂Ω,

we obtain ∆Sδ,ξ + λSδ,ξ = λD̃n in Ω,

Sδ,ξ = O

(
δ2+

n−2
2

[
d(ξ, ∂Ω)−(n−2)

∣∣∣∣ log d(ξ,∂Ω)
δ

∣∣∣∣+ d(ξ, ∂Ω)−n

])
on ∂Ω.

We notice that

|Dn(z)| ≃


|z| if n = 3,

| log |z|| if n = 4,

|z|−1 if n = 5

as |z| → 0.

Thus, elliptic estimates yield that ∥D̃3∥Lt ≲ δ
3
2
+ 3

t for any t > 3, ∥D̃4∥Lt ≲ δ1+
4
t for any t > 2,

and ∥D̃5∥Lt ≲ δ
1
2
+ 5

t for any t ∈ (52 , 5). Thus, we conclude for any τ ∈ (0, 1),

∥Sδ,ξ∥L∞(Ω) = O

({
δ

5
2
−τ if n = 3, 5

δ3−τ if n = 4

}
+ δ2+

n−2
2

[
d(ξ, ∂Ω)−(n−2)

∣∣∣∣ log d(ξ, ∂Ω)

δ

∣∣∣∣+ d(ξ, ∂Ω)−n

])
,

which completes the proof. □

Remark 2.2.

(1) To construct solutions to the Brezis-Nirenberg problem via a perturbative approach, addi-
tional information about Hn

λ (x, y) might be necessary. However, since the coefficient λ is fixed
in this paper, the C1,α regularity suffices for our purpose.

(2) Define φn
λ(x) := Hn

λ (x, x) for n = 3, 4, 5 and φ(x) := H(x, x) for n ≥ 3. Indeed, it is not
difficult to realize that φn

λ ∈ C∞(Ω) for n = 3, 4, 5 and φ ∈ C∞(Ω) for n ≥ 3. When d(x, ∂Ω) is
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small enough, the following estimates hold:{
φn
λ(x) if n = 3, 4, 5

φ(x) if n ≥ 3

}
=

1

(2d(x, ∂Ω))n−2
[1 +O(d(x, ∂Ω))],{

|∇φn
λ(x)| if n = 3, 4, 5

|∇φ(x)| if n ≥ 3

}
=

2(n− 2)

(2d(x, ∂Ω))n−1
[1 +O(d(x, ∂Ω))].

(2.10)

We postpone their proofs to Appendix B.

Corollary 2.3. Suppose that x, ξ ∈ Ω and δ > 0 is small. For any τ ∈ (0, 1), it holds that

PZ0
δ,ξ(x) = Z0

δ,ξ(x)−
n− 2

2
anδ

n−2
2 H(x, ξ) +O

(
δ

n+2
2 d(ξ, ∂Ω)−n

)
provided n ≥ 3 and PUδ,ξ is given by equation (1.8), and

PZ0
δ,ξ(x)= Z0

δ,ξ(x) +
n− 2

4
λanδ

n−2
2


−|x− ξ| if n = 3

− log |x− ξ| if n = 4
1

|x−ξ| − 4λ|x− ξ| if n = 5

− n− 2

2
anδ

n−2
2 Hn

λ (x, ξ)

+δ∂δ

[
δ2−

n−2
2 Dn(

x− ξ

δ
)

]
+

{
O(δ

5
2
−τ ) if n = 3, 5

O(δ3−τ ) if n = 4

}

+O

(
δ

n+2
2

[
d(ξ, ∂Ω)−(n−2)

∣∣∣∣ log d(ξ, ∂Ω)

δ

∣∣∣∣+ d(ξ, ∂Ω)−n

])
provided n = 3, 4, 5 and PUδ,ξ is given by equation (1.9).

Proof. We can argue as in the proof of Lemma 2.1. We omit the details. □

Corollary 2.4. Suppose that x, ξ ∈ Ω, δ > 0 is small, and k = 1, . . . , n. For any τ ∈ (0, 1), it
holds that

PZk
δ,ξ(x) = Zk

δ,ξ(x)− anδ
n
2 ∂ξkH(x, ξ) +O

(
δ

n+2
2 d(ξ, ∂Ω)−n

)
provided n ≥ 3 and PUδ,ξ is given by equation (1.8), and

PZk
δ,ξ(x)= Zk

δ,ξ(x) + anδ
n
2


λ

2

(x− ξ)k

|x− ξ| if n = 3

λ

2

(x− ξ)k

|x− ξ|2 if n = 4

− δ
n
2 an∂ξkH

n
λ (x, ξ) + δ∂ξk

[
δ2−

n−2
2 Dn

(
x− ξ

δ

)]

+


O(δ

5
2
−τ ) +O

(
δ

n+2
2

[
d(ξ, ∂Ω)−(n−2)

∣∣∣∣ log d(ξ, ∂Ω)

δ

∣∣∣∣+ d(ξ, ∂Ω)−n

])
if n = 3

O(δ3−τ ) +O

(
δ

n+2
2

[
d(ξ, ∂Ω)−(n−2)

∣∣∣∣ log d(ξ, ∂Ω)

δ

∣∣∣∣+ d(ξ, ∂Ω)−n

])
if n = 4


provided n = 3, 4 and PUδ,ξ is given by equation (1.9). Furthermore, if n = 5 and PUδ,ξ is given
by equation (1.9), then

PZk
δ,ξ(x) = Zk

δ,ξ(x) + anδ
n
2

[
λ

2

(x− ξ)k

|x− ξ|3
+ 2λ2 (x− ξ)k

|x− ξ|

]
− δ

n
2 an∂ξkH

n
λ (x, ξ)

+ δ∂ξk

[
δ2−

n−2
2 Dn

(
x− ξ

δ

)]
+ δ∂ξkSδ,ξ(x),

where the function Sδ,ξ satisfies

∥δ∂ξkSδ,ξ∥Lt(Ω) ≲ δ
1
2
+ 5

t +O
(
δ

n+2
2

[
d(ξ, ∂Ω)−(n−2) + δd(ξ, ∂Ω)−(n+1)

])
for any t ∈ (53 ,

5
2).

3

3We have not deduced a pointwise estimate of |δ∂ξkSδ,ξ| for this case. Its Lt-estimate is sufficient for later use.



SHARP QUANTITATIVE STABILITY ESTIMATES FOR BREZIS-NIRENBERG PROBLEM 13

Proof. We notice that

|∇Dn(z)| ≃


| log |z|| if n = 3,

|z|−1 if n = 4,

|z|−2 if n = 5

as |z| → 0, and |∇Dn(z)| ≃ |z|−(n−2) as |z| → ∞.

Thus, elliptic estimates yield that ∥δ∂ξkD̃3∥Lt ≲ δ
3
2
+ 3

t for any t > 3, ∥δ∂ξkD̃4∥Lt ≲ δ1+
4
t for any

t ∈ (2, 4), and ∥δ∂ξkD̃5∥Lt ≲ δ
1
2
+ 5

t for any t ∈ (53 ,
5
2). Using these results, we employ the same

strategy in the proof of Lemma 2.1. □

2.3. (H1
0 (Ω))

∗-norm estimates for the terms I1, I2, and I3. We recall the quantities I1, I2,
and I3 from (2.2). We estimate their (H1

0 (Ω))
∗-norms.

Lemma 2.5. For each i ∈ {1, . . . , ν}, we assume that PUi = PUδi,ξi satisfies (1.8) if n ≥ 5 or
[n = 3, 4 and u0 > 0], and satisfies (1.9) if n = 3, 4 and u0 = 0. Then it holds that

∥I1∥(H1
0 (Ω))∗ + ∥I2∥(H1

0 (Ω))∗ + ∥I3∥(H1
0 (Ω))∗ ≲



0 if n = 3, u0 = 0

max
i

δ2i | log δi| if n = 4, u0 = 0

max
i

δ
n−2
2

i if [n = 3, 4 and u0 > 0] or n = 5

max
i

δ2i | log δi|
1
2 if n = 6

max
i

δ2i , if n ≥ 7


+


max

i
κn−2
i if n = 3, 4, 5

max
i

κ4
i | log κi|

1
2 if n = 6

max
i

κ
n+2
2

i if n ≥ 7

+


Q if n = 3, 4, 5

Q| logQ|
1
2 if n = 6

Q
n+2

2(n−2) if n ≥ 7

1{ν≥2}

provided ϵ1 > 0 is small.

Proof. We begin by introducing an elementary inequality: For fixed m ∈ N, s > 1, and any
a1, . . . , am ≥ 0, it holds that

0 ≤

(
m∑
i=1

ai

)s

−
m∑
i=1

asi ≲
∑
i ̸=j

[
(ai + aj)

s − asi − asj
]
≲


∑
i ̸=j

as−1
i aj if s > 2,∑

i ̸=j

min{as−1
i aj , aia

s−1
j } if s ≤ 2.

From this, we derive that

0 ≤ I1 + I2 ≲
ν∑

i=1

(Up−1
i + Uj) +

∑
i ̸=j

Up−1
i Uj for n = 3, 4, 5. (2.11)

We next consider when n ≥ 6. Fixing any i ∈ {1, . . . , ν}, we decompose I1 into three parts:

I1 = I11 + I12 + I13,

where

I11 := (u0 + PUi)
p − up0 − (PUi)

p,

I12 := (u0 + σ)p − (u0 + PUi)
p −

∑
j ̸=i

(PUj)
p,

I13 := (PUi)
p +

∑
j ̸=i

(PUj)
p − σp.
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Considering the relationship between u0 and Ui in different regions, i.e., u0 ≲ Ui when |x− ξi| ≤√
δi and u0 ≳ Ui when |x− ξi| ≥

√
δi, we obtain that

|I11| ≲ min{u0(PUi)
p−1, up−1

0 PUi} ≲ min{Up−1
i , Ui} ≃ Up−1

i 1|x−ξi|≤
√
δi
+ Ui1|x−ξi|≥

√
δi
.

Similarly, we have

|I12| ≲
∑
j ̸=i

min
{
(u0 + PUi)

p−1PUj , (u0 + PUi)(PUj)
p−1
}

≲
∑
j ̸=i

[
min{Up−1

i Uj , U
p−1
j Ui}1|x−ξi|≤

√
δi
+min{Uj , U

p−1
j }1|x−ξi|≥

√
δi

]
.

In addition,

|I13|+ I2 ≲
∑
j ̸=i

min{Up−1
i Uj , U

p−1
j Ui}.

By introducing the rescaled variable xi := δ−1
i (x− ξi) and using [23, Proposition 3.4], we deduce

a pointwise estimate for I1 + I2:
I1 + I2

≲
ν∑

i=1

min{Ui, U
p−1
i }1{u0>0} +

∑
j ̸=i

min{Up−1
i Uj , U

p−1
j Ui}1{ν≥2}

≲
ν∑

i=1

 δ−2
i

⟨xi⟩4
1{|xi|≤δi

−1/2} +
δ
−n−2

2
i

⟨xi⟩n−21{|xi|≥δi
−1/2}

1{u0>0}

+


ν∑

i=1

[
δ−4
i

R−4

⟨xi⟩4
1{|xi|<R2}(x) + δ−4

i

R−2

|xi|5
1{|xi|≥R2}(x)

]
if n = 6

ν∑
i=1

[
δ
−n+2

2
i

R2−n

⟨xi⟩4
1{|xi|<R}(x) + δ

−n+2
2

i

R−4

|xi|n−2
1{|xi|≥R}(x)

]
if n ≥ 7

1{ν≥2}.

(2.12)

Consequently, direct computations using (2.11)–(2.12) and Lemmas A.2–A.3 give the (H1
0 (Ω))

∗-
norm estimates for I1 and I2 provided n = 3, 4, 5 or n ≥ 7:

∥I1∥(H1
0 (Ω))∗ + ∥I2∥(H1

0 (Ω))∗ ≲ ∥I1∥
L

p+1
p (Ω)

+ ∥I2∥
L

p+1
p (Ω)

≲


max

i
δ

n−2
2

i if n = 3, 4, 5

max
i

δ
n+2
4

i if n ≥ 7

1{u0>0} +

{
Q if n = 3, 4, 5

Q
n+2

2(n−2) if n ≥ 7

}
1{ν≥2}. (2.13)

Furthermore, by applying Lemma 2.1, we see that

∥(PUi − Ui)U
p−1
i ∥

L
p+1
p (Ω)

≲ ∥(PUi − Ui)U
p−1
i ∥

L
p+1
p (B(ξi,d(ξi,∂Ω)))

+ ∥Up
i ∥

L
p+1
p (B(ξi,d(ξi,∂Ω))c)

≲


max

i
κn−2
i if n = 3 or [n = 4, each PUi satisfies (1.8)] or n = 5,

max
i

(
δ2i | log δi|+ κ2i

)
if n = 4 and each PUi satisfies (1.9),

max
i

κ
n+2
2

i if n ≥ 7

=: J1.

(2.14)
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Using estimate (A.1) and Lemma A.2, we derive the (H1
0 (Ω))

∗-norm estimate for I3 provided
n = 3, 4, 5 or n ≥ 7:

∥I3∥(H1
0 (Ω))∗ ≲ ∥I3∥

L
p+1
p (Ω)

≲ max
i

∥(PUi − Ui)U
p−1
i ∥

L
p+1
p (Ω)

+max
i

∥(PUi − Ui)
p−1Ui∥

L
p+1
p (Ω)

+ λmax
i

∥Ui∥
L

p+1
p (Ω)

1{each PUi satisfies (1.8)}

≲ J1 +

max
i

δ
n−2
2

i if n = 3, 4, 5

max
i

δ2i if n ≥ 7

1{each PUi satisfies (1.8)}.

(2.15)

For the case n = 6, we fully exploit the definition of the dual norm ∥Ii∥(H1
0 (Ω))∗ rather than

relying on estimates of ∥Ii∥L(p+1)/p(Ω) as above. Recall the dual norm is defined as

∥Ii∥(H1
0 (Ω))∗ = sup

χ∈H1
0 (Ω)\{0}

∣∣∫
Ω Iiχ

∣∣
∥χ∥H1

0 (Ω)

for i = 1, 2, 3.

Consider the boundary value problem{
(−∆− λ)v = I2 in Ω,

v = 0 on ∂Ω.
(2.16)

By observing that∣∣∣∣∫
Ω
I2χ

∣∣∣∣ = ∣∣∣∣∫
Ω
∇v · ∇χ− λvχ

∣∣∣∣ ≲ ∥v∥H1
0 (Ω)∥χ∥H1

0 (Ω) for any χ ∈ H1
0 (Ω),

we deduce

∥I2∥(H1
0 (Ω))∗ ≲ ∥v∥H1

0 (Ω).

Testing (2.16) with v itself and using (2.7) and (2.12), we obtain

∥v∥2H1
0 (Ω) =

∫
Ω
(I2v)(x)dx =

∫
Ω
I2(x)

∫
Ω
Gλ(x, ω)I2(ω)dωdx

≲
∫
Ω
I2(x)

∫
Ω

1

|x− ω|4
I2(ω)dωdx

≲
∫
Ω

ν∑
i=1

[
δ−4
i

R−4

⟨xi⟩4
1{|xi|<R2}(x) + δ−4

i

R−2

|xi|5
1{|xi|≥R2}(x)

]

×
ν∑

j=1

[
δ−2
j

R−4

⟨xj⟩2
1{|xj |<R2}(x) + δ−2

j

R−2

|xj |3
1{|xj |≥R2}(x)

]
dx

≲

∥∥∥∥∥
ν∑

i=1

[
δ−4
i

R−4

⟨xi⟩4
1{|xi|<R2}(x) + δ−4

i

R−2

|xi|5
1{|xi|≥R2}(x)

]∥∥∥∥∥
L

3
2 (Ω)

×

∥∥∥∥∥∥
ν∑

j=1

[
δ−2
j

R−4

⟨xj⟩2
1{|xj |<R2}(x) + δ−2

j

R−2

|xj |3
1{|xj |≥R2}(x)

]∥∥∥∥∥∥
L3(Ω)

≲ R−8| logR| ≃ Q2| logQ|,
which yields

∥I2∥(H1
0 (Ω))∗ ≲ Q| logQ|

1
2 . (2.17)
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Similarly, we derive

∥I1∥(H1
0 (Ω))∗ ≲

ν∑
i=1

∥Ui∥(H1
0 (Ω))∗ ≲

ν∑
i=1

[∫
Ω
Ui(x)

∫
Ω

1

|x− ω|4
Ui(ω)dωdx

] 1
2

≲
ν∑

i=1

[∫
Ω

δ4i
(δ2i + |x− ξi|2)3

dx

] 1
2

≲ max
i

δ2i | log δi|
1
2 .

(2.18)

By Lemma 2.1, we further estimate

∥I3∥(H1
0 (Ω))∗ ≲

ν∑
i=1

[
∥(PUi − Ui)Ui∥(H1

0 (Ω))∗ + ∥Ui∥(H1
0 (Ω))∗

]
≲

ν∑
i=1

[∣∣∣∣∫
Ω
[(PUi − Ui)Ui](x)

∫
Ω

1

|x− ω|4
[(PUi − Ui)Ui](ω)dωdx

∣∣∣∣ 12 + δ2i | log δi|
1
2

]
≲ max

i
κ4i | log κi|

1
2 +max

i
δ2i | log δi|

1
2 =: J1. (2.19)

To derive the third inequality in (2.19), we considered that for d(ξi, ∂Ω) ≤ c with c > 0 small,∫
Ω

1

|x− ω|4
|(PUi − Ui)Ui|(ω)dω

≲
∫
Ω

1

|x− ω|4
[
δ2i (|φ(ξi)|+ |H(ω, ξi)− φ(ξi)|+ δ2i d(ξi, ∂Ω)

−4)Ui1B(ξi,d(ξi,∂Ω))(ω) + U2
i 1Ω\B(ξi,d(ξi,∂Ω))

]
dω

≲
∫
Ω

1

|x− ω|4

[
δ2i
(
|H(ω, ξi)− φ(ξi)|+ δ2i d(ξi, ∂Ω)

−4
)
Ui1B(ξi,d(ξi,∂Ω))(ω)

+

{
δ−4
i κ4i
⟨ωi⟩4

1{|ωi|≤κ−1
i } +

δ−4
i κ3i
|ωi|5

1{|ωi|≥κ−1
i }

}]
dω

≲
∫
Ω

1

|x− ω|4
δ2i
(
|H(ω, ξi)− φ(ξi)|+ δ2i d(ξi, ∂Ω)

−4
)
Ui1B(ξi,d(ξi,∂Ω))(ω)dω

+
δ−2
i κ4i
⟨xi⟩2

1{|xi|≤κ−1
i } +

δ−2
i κ3i
|xi|3

1{|xi|≥κ−1
i },

where ωi := δ−1
i (ω − ξi), and subsequently,∫

Ω
[(PUi − Ui)Ui](x)

[ ∫
Ω

1

|x− ω|4
δ2i (|H(ω, ξi)− φ(ξi)|+ δ2i d(ξi, ∂Ω)

−4)Ui1B(ξi,d(ξi,∂Ω))(ω)dω

+
δ−2
i κ4i
⟨xi⟩2

1{|xi|≤κ−1
i } +

δ−2
i κ3i
|xi|3

1{|xi|≥κ−1
i }

]
dx

≲ ∥(PUi − Ui)Ui∥
L

3
2 (Ω)

×
∥∥δ2i (|H(·, ξi)− φ(ξi)|+ δ2i d(ξi, ∂Ω)

−4
)
Ui1B(ξi,d(ξi,∂Ω))

∥∥
L

3
2 (Ω)

+

[ ∥∥∥∥δ−4
i κ4i
⟨xi⟩4

1{|xi|≤κ−1
i } +

δ−4
i κ3i
|xi|5

1{|xi|≥κ−1
i }

∥∥∥∥
L

3
2 (Ω)

+
∥∥δ2i (|H(·, ξi)− φ(ξi)|+ δ2i d(ξi, ∂Ω)

−4
)
Ui1B(ξi,d(ξi,∂Ω))

∥∥
L

3
2 (Ω)

]
×
∥∥∥∥δ−2

i κ4i
⟨xi⟩2

1{|xi|≤κ−1
i } +

δ−2
i κ3i
|xi|3

1{|xi|≥κ−1
i }

∥∥∥∥
L3(Ω)

≲ κ8i | log κi|.

Also, we applied the Hardy-Littlewood-Sobolev inequality to treat when d(ξi, ∂Ω) ≥ c as follows:
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Ω
[(PUi − Ui)Ui](x)

∫
Ω

1

|x− ω|4
[(PUi − Ui)Ui](ω)dωdx

∣∣∣∣
≲ ∥(PUi − Ui)Ui∥2

L
3
2 (Ω)

≲ δ8i | log δi|
4
3 ≲ δ4i | log δi|.

Collecting estimates (2.13), (2.15), and (2.17)–(2.19), we conclude the proof. □

2.4. Projections of I1, I2, and I3 onto the PZ0
j -direction. Given j = 1, . . . , ν, we evaluate

the integrals
∫
Ω I1PZ0

j ,
∫
Ω I2PZ0

j , and
∫
Ω I3PZ0

j , which correspond to the projections of I1, I2,
and I3 onto the directions of PZ0

j , respectively.

Lemma 2.6. Assume that u0 > 0. Moreover, when n = 3, each PUi satisfies (1.8) or (1.9), and
when n ≥ 4, each PUi satisfies (1.8). For any j ∈ {1, . . . , ν}, it holds that

∫
Ω
I1PZ0

j = anu0(ξj)δ
n−2
2

j + o(Q) +


O(max

i
δi) if n = 3

O(max
i

δ2i | log δi|) if n = 4

O(max
i

δ2i ) if n = 5

1{p>2}

+O

(
max

i
δ

n
2
i +max

i
κni

)
,

(2.20)

where an := p
∫
Rn U

p−1Z0 > 0.

Proof. By (A.3), there exists a constant η > 0 such that

I1 =
[
pu0σ

p−1 +O(u20σ
p−2)1{p>2} +O (up0)

]
1∪ν

i=1B(ξi,η
√
δi)

+
[
pup−1

0 σ +O(up−2
0 σ2)1{p>2} +O(σp)

]
1∩ν

i=1B(ξi,η
√
δi)c

.
(2.21)

The remainder of the proof is split into two steps.

Step 1. It follows from |PZ0
j | ≲ Uj , Lemma 2.1, Corollary 2.3, and Young’s inequality that∣∣∣∣ ∫

B(ξj ,d(ξj ,∂Ω))

[
(PUj)

p−1PZ0
j − Up−1

j Z0
j

] ∣∣∣∣
≲
∫
B(ξj ,d(ξj ,∂Ω))

(|PUj − Uj |+ |PZ0
j − Z0

j |)U
p−1
j +

∫
B(ξj ,d(ξj ,∂Ω))

|PUj − Uj |p−1Uj

≲ δ
n−2
2

j κ2j ≲ δ
n
2
j + κnj .

Therefore,

p

∫
∪ν
i=1B(ξi,η

√
δi)

u0(PUj)
p−1PZ0

j

= p

∫
B(ξj ,d(ξj ,∂Ω))

u0(PUj)
p−1PZ0

j +O

(∫
B(ξj ,d(ξj ,∂Ω))c

Up
j

)

= pδ
n−2
2

j

[
u0(ξj)

∫
Rn

Up−1Z0 +O

(∫
B(0,κ−1

j )
|δjy|2Up(y)dy

)]
+O

(
δ

n
2
j + κnj

)
= anδ

n−2
2

j u0(ξj) +O
(
δ

n
2
j + κnj

)
.

(2.22)

We claim that∣∣∣∣∫
Ω
u0
[
σp−1 − (PUj)

p−1
]
PZ0

j

∣∣∣∣ ≲∑
i ̸=l

∫
Ω
Up−1
i Ul = o(Q) +O

(
max

i
δ

n
2
i

)
. (2.23)



18 HAIXIA CHEN, SEUNGHYEOK KIM, AND JUNCHENG WEI

The inequality immediately follows from (A.2). To analyze the equality, we set zij := δ−1
i (ξj −ξi)

and dij := |ξi − ξj |. We distinguish three cases based on the value of Rij .

Case 1: Suppose that Rij =
dij√
δiδj

. Then, it holds that dij ≥ δi and (
√
δiδj/dij)

n−2 ≃ qij ≤ Q.

In view of Lemma A.4, we confirm that

∫
Ω
Up−1
i Uj ≲


δiδ

1
2
j d

−1
ij if n = 3

δ2i δjd
−2
ij log

(
2 + dijδ

−1
i

)
if n = 4

δ2i δ
n−2
2

j d−2
ij if n ≥ 5

 = O

(
max

i
δ

n
2
i

)
+ o(Q).

Case 2: Suppose that Rij =
√

δi
δj
. Then, it holds that dij ≤ δi, i.e., |zij | ≤ 1, and (

δj
δi
)
n−2
2 ≃

qij ≤ Q. Therefore,∫
Ω
Up−1
i Uj ≲

∫
Ω

(
δi

δ2i + |x− ξi|2

)2
(

δj
δ2j + |x− ξj |2

)n−2
2

dx

≲ δ
n−2
2

j

∫
B(0,Cδ−1

i )

1

(1 + |y|2)2
dy

[(
δj
δi
)2 + |y − zij |2]

n−2
2

≲ δ
n−2
2

j

(
1 +

∫ Cδ−1
i

2
t−3dt

)
≃ δ

n−2
2

j = o(Q).

Case 3: Suppose that Rij =
√

δj
δi
. Then, it holds that dij ≤ δj and ( δiδj )

n−2
2 ≃ qij ≤ Q. We

divide the domain Ω into B(ξi,
√
δi) and (B(ξi,

√
δi))

c, and compute∫
B(ξi,

√
δi)

Up−1
i Uj ≲

δn−2
i

δ
n−2
2

j

∫
B(0,δ

−1/2
i )

1

(1 + |y|2)2
dy

[1 + ( δiδj |y − zij |)2]
n−2
2

≲
δn−2
i

δ
n−2
2

j

(
1 +

∫ δ
−1/2
i

1
tn−5dt

)
= o(Q)

and ∫
B(ξi,

√
δi)c

Up−1
i Uj ≲ δ2i δ

n−2
2

j

∫
B(0,

√
δi)c

1

|y|4
1

|y − (ξj − ξi)|n−2
dy ≲ δiδ

n−2
2

j = O

(
max

i
δ

n
2
i

)
.

These estimates justify (2.23).

Step 2. Applying |PZ0
j | ≲

∑ν
i=1 Ui, we observe

∫
Ω
u20σ

p−2
∣∣PZ0

j

∣∣1{p>2} ≲
ν∑

i=1

∫
Ω
Up−1
i 1{p>2} ≲


max

i
δi if n = 3,

max
i

δ2i | log δi| if n = 4,

max
i

δ2i if n = 5.

(2.24)

Furthermore, since u0(x) ≲ Ui(x) for x ∈ B(ξi, η
√
δi), we infer from (2.23) that∫

∪ν
i=1B(ξi,η

√
δi)

up0|PZ0
j | ≲

∫
B(ξj ,η

√
δj)

Uj +
∑
i ̸=j

∫
B(ξi,η

√
δi)

Up−1
i Uj

= O

(
max

i
δ

n
2
i

)
+ o(Q).

(2.25)
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We also estimate the integrals over the exterior region:∫
∩ν
i=1B(ξi,η

√
δi)c

up−2
0 σ2|PZ0

j |1{p>2} ≲
ν∑

i=1

∫
B(ξi,η

√
δi)c

U3
i 1{p>2}

≲

max
i

δ
3
2
i | log δi| if n = 3,

max
i

δ
n
2
i if n = 4, 5

(2.26)

and ∫
∩ν
i=1B(ξi,η

√
δi)c

(up−1
0 σ + σp)|PZ0

j | ≲
ν∑

i=1

∫
B(ξi,η

√
δi)c

(U2
i + Up

i ) ≲ max
i

δ
n
2
i . (2.27)

Combining estimates (2.22)–(2.27), we conclude the proof of (2.20). □

Lemma 2.7. For any j ∈ {1, . . . , ν}, it holds that

∫
Ω
I3PZ0

j =


−δjcnφ(ξj) +O(κ3j ) +O(δj) if n = 3

−δ2j cnφ(ξj) +O(κ4j ) +O(δ2j | log δj |) if n = 4

λbnδ
2
j − δn−2

j cnφ(ξj) +O
(
δ2jκ

n−4
j

)
+O(κnj ) if n ≥ 5

 (2.28)

+



O(max

i
δi) if n = 3

O(max
i

δ2i | log δi|) if n = 4

o(max
i

δ2i ) if n ≥ 5

+ o(Q)

1{ν≥2, each ξi is in a compact set of Ω}

provided n ≥ 3 and each PUi satisfies (1.8), and∫
Ω
I3PZ0

j =

{
−c3φ

3
λ(ξj)δj +O(δ2j ) +O(κ3j ) if n = 3

b4λδ
2
j | log δj | − c4δ

2
jφ

4
λ(ξj)− 96|S3|λδ2j +O(δ3j ) +O(κ4j ) if n = 4

}
(2.29)

+

O(max
i

δ2i ) if n = 3

O(max
i

δ3i | log δi|) if n = 4

+ o(Q)

1{ν≥2, each ξi is in a compact set of Ω}

provided n = 3, 4 and each PUi satisfies (1.9). Here, b4 := 3
√
2
∫
R4 U

p−1Z0 > 0, bn :=
∫
Rn UZ0 >

0 for n ≥ 5, and cn := anp
∫
Rn U

p−1Z0 > 0.

Proof. We present the proof by dividing it into two steps.

Step 1. Assuming that each PUi satisfies (1.8), we assert that

∫
Ω

ν∑
i=1

λPUiPZ0
j =


O(max

i
δi) + o(Q)1{ν≥2} if n = 3,

O(max
i

δ2i | log δi|) + o(Q)1{ν≥2} if n = 4,

λbnδ
2
j +O

(
δ2jκ

n−4
j

)
+ o(Q+max

i
δ2i )1{ν≥2} if n ≥ 5.

(2.30)

To verify (2.30), we first estimate

∫
Ω
PUjPZ0

j =


O(δj) if n = 3,

O(δ2j | log δj |) if n = 4,

bnδ
2
j +O

(
δ2jκ

n−4
j

)
if n ≥ 5.
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Indeed, for the case n ≥ 5, we have∣∣∣∣ ∫
B(ξj ,d(ξj ,∂Ω))c

PUjPZ0
j

∣∣∣∣ ≲ δ2jκ
n−4
j

and∫
B(ξj ,d(ξj ,∂Ω))

PUjPZ0
j =

∫
B(ξj ,d(ξj ,∂Ω))

UjZ
0
j +O

 δ
n−2
2

j

d(ξj , ∂Ω)n−2
· δ

n+2
2

j

∫
B(0,κ−1

j )
U


= bnδ

2
j +O

(
δ2jκ

n−4
j

)
.

(2.31)

It remains to estimate the interaction terms
∫
Ω UiUj for 1 ≤ i ̸= j ≤ ν provided ν ≥ 2. As in

(2.23), we separate the analysis into three cases.

Case 1: Suppose that Rij =
dij√
δiδj

. We verify that

∫
Ω
UiUj ≲ δ

n−2
2

i δ
n−2
2

j ×


1 if n = 3,

1 + | log dij | if n = 4,

d
−(n−4)
ij if n ≥ 5

≃


O(max

i
δi) if n = 3,

O(max
i

δ2i | log δi|) if n = 4,

max
i

δ2iQ
n−4
n−2 = o(max

i
δ2i ) if n ≥ 5.

Case 2: Suppose that Rij =
√

δj
δi
. We evaluate

∫
Ω
UiUj ≲

∫
Ω

(
δi

δ2i + |x− ξi|2

)n−2
2

(
δj

δ2j + |x− ξj |2

)n−2
2

dx

≲ δ
n+2
2

−(n−2)

j δ
n−2
2

i

∫
B(0,Cδ−1

j )

1

(1 + |y|2)
n−2
2

dy

[( δiδj )
2 + |y − ξi−ξj

δj
|2]

n−2
2

≲ δ2j
δ

n−2
2

i

δ
n−2
2

j

(
1 +

∫ Cδ−1
j

2
t−(n−3)dt

)
= o(Q).

(2.32)

Here, we used |ξi − ξj | ≤ δj .

Case 3: Suppose that Rij =
√

δi
δj
. We can similarly estimate as above to deduce∫

Ω
UiUj = o(Q). (2.33)

This concludes the proof of (2.30).

Step 2. We claim that∫
Ω

ν∑
i=1

[(PUi)
p − Up

i ]PZ0
j = −δn−2

j cnφ(ξj) +O(κnj )

+

[
O(max

i
δn−1
i ) + o(Q)

]
1{ν≥2, each ξi is in a compact set of Ω}
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provided n ≥ 3 and PUi satisfies (1.8) for each i = 1, . . . , ν, and∫
Ω

ν∑
i=1

[(PUi)
p − Up

i ]PZ0
j

=

{
−c3φ

3
λ(ξj)δj +O(δ2j ) +O(κ3j ) if n = 3

b4λδ
2
j | log δj | − c4δ

2
jφ

4
λ(ξj)− 96|S3|λδ2j +O(δ3j ) +O(κ4j ) if n = 4

}

+

O(max
i

δ2i ) if n = 3

O(max
i

δ3i | log δi|) if n = 4

+ o(Q)

1{ν≥2, each ξi is in a compact set of Ω}

provided n = 3, 4 and PUi satisfies (1.9) for each i = 1, . . . , ν.

To prove this, we decompose the domain by Ω = B(ξj , d(ξj , ∂Ω)) ∪ [Ω \B(ξj , d(ξj , ∂Ω))].
First, we observe that∣∣∣∣∣

∫
Ω\B(ξj ,d(ξj ,∂Ω))

[(PUj)
p − Up

j ]PZ0
j

∣∣∣∣∣ ≲
∫
B(0,κ−1

j )c
Up+1 ≲ κnj . (2.34)

Suppose that PUi satisfies (1.8) for each i = 1, . . . , ν. By Lemma 2.1, Corollary 2.3, and (A.3),
we obtain∫

B(ξj ,d(ξj ,∂Ω))
[(PUj)

p − Up
j ]PZ0

j

= p

∫
B(ξj ,d(ξj ,∂Ω))

(PUj − Uj)U
p−1
j PZ0

j +O

(∫
B(ξj ,d(ξj ,∂Ω))

(PUj − Uj)
2Up−2

j |PZ0
j |

)
1{p>2}

+O

(∫
B(ξj ,d(ξj ,∂Ω))

|PUj − Uj |p|PZ0
j |

)
(2.35)

= −δn−2
j cnφ(ξj) +O(κnj ).

Suppose next that n = 3, 4 and PUi satisfies (1.9) for each i = 1, . . . , ν. Noticing that

p

∫
B(ξj ,d(ξj ,∂Ω))

δ
2−n−2

2
j Dn

(
· − ξj
δj

)
Up−1
j Z0

j = δ2j

∫
B(0,κ−1

j )
(−∆Dn)Z

0

+ δ2jO

(∫
∂B(0,κ−1

j )

∂Dn

∂ν
|Z0|dS +

∫
∂B(0,κ−1

j )

∣∣∣∣∂Z0

∂ν
Dn

∣∣∣∣dS
)

= δ2j

∫
B(0,κ−1

j )
(−∆Dn)Z

0 +O
(
δnj + κnj

)
,

(2.36)

where ∂
∂ν denotes the outward normal derivative and dS is the surface measure, we deduce∫
B(ξj ,d(ξj ,∂Ω))

[(PUj)
p − Up

j ]PZ0
j

= −δ
1
2
j a3pH

3
λ(ξj , ξj)

∫
B(ξj ,d(ξj ,∂Ω))

Up−1
j Z0

j − λ

2
anδ

1
2
j

∫
B(ξj ,d(ξj ,∂Ω))

|x− ξj |(Up−1
j Z0

j )(x)dx

+ λa23pδ
2
j

∫
B(0,κ−1

j )

[
1√

1 + |z|2
− 1

|z|

]
|z|2 − 1

(1 + |z|2)
3
2

dz +O(δ3−τ
j ) +O(κ3j ) (2.37)

= −c3δjφ
3
λ(ξj) +O(δ2j ) +O(κ3j ) for n = 3,
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and ∫
B(ξj ,d(ξj ,∂Ω))

[(PUj)
p − Up

j ]PZ0
j

=
λ

2
a4δj | log δj |p

∫
B(ξj ,d(ξj ,∂Ω))

Up−1
j Z0

j − λ

2
a4pδ

2
j

∫
B(0,κ−1

j )
log |x|(U2Z0)(x)dx (2.38)

+ λa24pδ
2
j

∫
B(0,κ−1

j )

[
1

1 + |z|2
− 1

|z|2

]
|z|2 − 1

(1 + |z|2)2
dz − δja4pH

4
λ(ξj , ξj)

∫
B(ξj ,d(ξj ,∂Ω))

Up−1
j Z0

j

+O(δ3j ) +O(κ4j )

= b4λδ
2
j | log δj | − c4δ

2
jφ

4
λ(ξj)− 96|S3|λδ2j +O(δ3j ) +O(κ4j ) for n = 4.

Here, we used∫
R4

log |z| |z|2 − 1

(1 + |z|2)4
dz =

|S3|
8

and

∫
R4

[
1

1 + |z|2
− 1

|z|2

]
|z|2 − 1

(1 + |z|2)2
dz = 0.

Finally, we assume that ν ≥ 2 and each ξ1, . . . , ξν is in a compact set of Ω. Given 1 ≤ i ̸= j ≤ ν,
we infer from (2.23) that∣∣∣∣ ∫

Ω
[(PUi)

p − Up
i ]PZ0

j

∣∣∣∣ ≲ δ
n−2
2

i

∫
B(ξi,d(ξi,∂Ω))

Up−1
i Uj = O(max

i
δn−1
i ) + o(Q) (2.39)

provided n ≥ 3 and each PUi satisfies (1.8), and∣∣∣∣ ∫
Ω
[(PUi)

p − Up
i ]PZ0

j

∣∣∣∣ ≲
{
O(δ

1
2
i ) if n = 3

O(δi| log δi|) if n = 4

}
×
∫
B(ξi,d(ξi,∂Ω))

Up−1
i Uj

=

O(max
i

δ2i ) if n = 3

O(max
i

δ3i | log δi|) if n = 4

+ o(Q)

(2.40)

provided n = 3, 4 and each PUi satisfies (1.9). Here, we used∫
Ω

∣∣∣∣log ∣∣∣∣x− ξi
δi

∣∣∣∣∣∣∣∣ (Up−1
i Uj)(x)dx = o(Q+max

i
δ2i ) for n = 4,

which can be argued as (2.23), and∫
Ω

∣∣∣∣δ2−n−2
2

i Dn

(
· − ξi
δi

)∣∣∣∣Up−1
i Uj ≲ ∥Up−1

i Uj∥
L

p+1
p (Ω)

∥∥∥∥δ2−n−2
2

i Dn

(
· − ξi
δi

)∥∥∥∥
Lp+1(Ω)

≲ δ2iQ

for n = 3, 4.
This completes the proof of the claim. □

Lemma 2.8. Assume that ν ≥ 2 and each of the ξ1, . . . , ξν lies on a compact set of Ω. For any
j ∈ {1, . . . , ν}, it holds that∫

Ω
I2PZ0

j =
∑
i ̸=j

cn

(
q
− 2

n−2

ij − 2
δj
δi

)
q

n
n−2

ij + o(Q)

+



O(max
i

δn−2
i ) if n ≥ 3, each PUi satisfies (1.8),∑

i ̸=j

[
− c3

2
λ|ξj − ξi| − c3H

3
λ(ξi, ξj)

]
δ

1
2
i δ

1
2
j 1{

Rij=
|ξi−ξj |√

δiδj

} + o(max
i

δi) if n = 3, each PUi satisfies (1.9),

∑
i ̸=j

[
− c4

2
λ log |ξj − ξi| − c4H

4
λ(ξi, ξj)

]
δiδj1{

Rij=
|ξi−ξj |√

δiδj

} + o(max
i

δ2i | log δi|) if n = 4, each PUi satisfies (1.9),
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provided qij in (2.3) is small.

Proof. Adapting the proof of [23, Lemma 2.1], and employing Lemma 2.1, Corollary 2.3, (2.39)–
(2.40), and [23, Lemma A.2], we discover∫

Ω
I2PZ0

j

=
∑
i ̸=j

p

∫
Ω
(PUj)

p−1PUiPZ0
j 1{ν≥2} + o(Q)

=
∑
i ̸=j

∫
Rn

Up
i δj

∂Uj

∂δj
+ p

∑
i̸=j

∫
Ω

(PUj)
p−1(PUi − Ui)PZ0

j +O

∑
i̸=j

∫
Ω

(PUj)
p−1PUi|PZ0

j − Z0
j |

+ o(Q)

=
∑
i ̸=j

cn

(
q
− 2

n−2

ij − 2
δj
δi

)
q

n
n−2

ij + o(Q) (2.41)

+



O(max
i

δn−2
i ) if n ≥ 3, each PUi satisfies (1.8),

p
∑
i ̸=j

∫
Ω
(PUi − Ui)U

p−1
j Z0

j + o(max
i

δi) if n = 3, each PUi satisfies (1.9),

p
∑
i ̸=j

∫
Ω
(PUi − Ui)U

p−1
j Z0

j + o(max
i

δ2i | log δi|) if n = 4, each PUi satisfies (1.9).

Next, we only need to estimate p
∫
Ω(PUi − Ui)U

p−1
j Z0

j if i ̸= j when n = 3, 4 and each PUi

satisfies (1.9).

If Rij =
√

δi
δj

or
√

δj
δi
, then integrating by part and (2.32)–(2.33) imply

p

∫
Ω
(PUi − Ui)U

p−1
j Z0

j =

∫
Ω
(PUi − Ui)(−∆PZ0

j − λPZ0
j )

=

∫
Ω
λUiPZ0

j +O

(
δ

n−2
2

i δ
n−2
2

j

)
= o(Q).

If Rij =
|ξi−ξj |√

δiδj
, then Taylor’s expansion yields

p

∫
Ω
(PUi − Ui)U

p−1
j Z0

j

=

{[
− c3

2 λ|ξj − ξi| − c3H
3
λ(ξi, ξj)

]
δ

1
2
i δ

1
2
j + o(Q+maxi δi) if n = 3,[

− c4
2 λ log |ξj − ξi| − c4H

4
λ(ξi, ξj)

]
δiδj + o(Q+maxi δ

2
i | log δi|) if n = 4.

Here, we used

δ
1
2
i

∫
B(ξj ,c)

||x− ξi| − |ξj − ξi||Up
j (x)dx = o(Q+max

i
δi) for n = 3,

δi

∫
B(ξj ,c)

| log |x− ξi| − log |ξj − ξi||Up
j (x)dx = o(Q+max

i
δ2i | log δi|) for n = 4,∫

Ω

∣∣∣∣δiD4

(
· − ξi
δi

)∣∣∣∣Up
j ≲

∥∥∥∥δiD4

(
· − ξi
δi

)∥∥∥∥
L4(Ω)

≲ δ2i for n = 4

to achieve the last equality, where c > 0 is a small constant independent of δj for j = 1, . . . , ν.
This finishes the proof. □
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3. Proof of Theorem 1.1

The proof of Theorem 1.1 is divided into two parts: In Subsection 3.1, we prove that (1.11)
holds. In Subsection 3.2, we show that this estimate is optimal.

3.1. Proof of estimate (1.11). Firstly, we establish the H1
0 (Ω)-norm estimate of ρ.

Proposition 3.1. Assume that ϵ1 > 0 is small enough. There exists a constant C > 0 depending
only on n, ν, λ, u0, and Ω that

∥ρ∥H1
0 (Ω) ≤ C

[
∥f∥(H1

0 (Ω))∗ +

(
∥I1∥(H1

0 (Ω))∗ + ∥I2∥(H1
0 (Ω))∗ + ∥I3∥(H1

0 (Ω))∗

)]
. (3.1)

To deduce analogous H1
0 (Ω)-norm estimates for ρ, the authors of [23, 15, 16] decomposed ρ

into the main-order term ρ0 and the remainder ρ1, and further split ρ1 into smaller pieces by
introducing auxiliary parameters4. Besides, their analyses rely on coercivity inequalities. Refer
to Subsection 1.3(4) for a prior discussion. Our argument in this paper is direct. We first derive
an H1

0 (Ω)-norm estimate for the solution to the associated linear problem, whose proof is based
on a blow-up argument.

Lemma 3.2. Let λ ∈ (0, λ1) and Π⊥ : H1
0 (Ω) → span{PZk

i : i = 1, . . . , ν and k = 0, . . . , n}⊥ ⊂
H1

0 (Ω) be the projection operator. For any functions ϱ ∈ H1
0 (Ω) and h ∈ (H1

0 (Ω))
∗ satisfying

ϱ−Π⊥[(−∆− λ)−1(p(u0 + σ)p−1)] = Π⊥[(−∆− λ)−1(h)] in Ω,

ϱ = 0 on ∂Ω,〈
ϱ, PZk

i

〉
= 0 for i = 1, . . . , ν and k = 0, . . . , n,

it holds that

∥ϱ∥H1
0 (Ω) ≲ ∥h∥(H1

0 (Ω))∗ . (3.2)

Proof. We proceed by contradiction. Suppose that there exist sequences of parameters {(δi,m, ξi,m)}m∈N,
and functions {ϱm}m∈N and {hm}m∈N such that{

max
i

δi,m +max
i

κi,m + ∥hm∥(H1
0 (Ω))∗ → 0 as m → ∞,

∥ϱm∥H1
0 (Ω) = 1 for all m ∈ N,

(3.3)

and
ϱm − (−∆− λ)−1[p(u0 + σm)p−1ϱm] = Π⊥[(−∆− λ)−1hm] +

ν∑
i=1

n∑
k=0

µk
i,mPZk

i,m in Ω,

ϱm = 0 on ∂Ω,〈
ϱm, PZk

i,m

〉
H1

0 (Ω)
= 0 for i = 1, . . . , ν and k = 0, 1, . . . , n.

(3.4)

Here, PUi,m := PUδi,m,ξi,m , PZ0
i,m := δi,m

∂PUi,m

∂δi,m
, and PZk

i,m := δi,m
∂PUi,m

∂ξki,m
. Besides, µk

i,m ∈ R
denote Lagrange multipliers.

4Similar auxiliary parameters were used also in [31].
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First, we observe that

∥Π⊥[(−∆− λ)−1hm]∥H1
0 (Ω) ≲

∥∥∥∥∥(−∆− λ)−1hm +

ν∑
i=1

n∑
k=0

∫
Ω hmPZk

i,m

∥PZk
i,m∥H1

0 (Ω)

· PZk
i,m

∥∥∥∥∥
H1

0 (Ω)

≲ ∥hm∥(H1
0 (Ω))∗ +

ν∑
i=1

n∑
k=0

∣∣∣∣∫
Ω
hmPZk

i,m

∣∣∣∣
≲ ∥hm∥(H1

0 (Ω))∗ .

(3.5)

Second, we verify that
ν∑

i=1

n∑
k=0

|µk
i,m| = om(1) (3.6)

where om(1) → 0 as m → ∞.
For this aim, we test (3.4) with PZq

j,m for each j ∈ {1, . . . , ν} and q ∈ {0, 1, . . . , n}. We only
need to focus on∣∣∣∣∫

Ω

[
(−∆− λ)ϱm − p(u0 + σm)p−1ϱm

]
PZq

j,m

∣∣∣∣
≲

∣∣∣∣∫
Ω

[
(−∆− λ)PZq

j,m − p(PUj,m)p−1PZq
j,m

]
ϱm

∣∣∣∣
+

∫
Ω

[
σp−1
m − (PUj,m)p−1

]
|ϱm||PZq

j,m|1{ν≥2} +

∫
Ω

[
(u0 + σm)p−1 − σp−1

m

]
|ϱm|Uj,m.

(3.7)

We now estimate each of the integrals on the right-hand side of (3.7).
It holds that∣∣∣∣∫

Ω

[
(−∆− λ)PZq

j,m − p(PUj,m)p−1PZq
j,m

]
ϱm

∣∣∣∣ ≲ ∥ϱm∥H1
0 (Ω)

×
[∥∥∥(PUj,m)p−1PZq

j,m − Up−1
j,m Zq

j,m

∥∥∥
L

p+1
p (Ω)

+ ∥Uj,m∥
L

p+1
p (Ω)

1{each PUj,m satisfies (1.8)}

]
.

Arguing as in (2.14) and (2.15), we deduce∥∥∥[(PUj,m)p−1 − Up−1
j,m

]
PZq

j,m

∥∥∥
L

p+1
p (Ω)

+
∥∥∥Up−1

j,m (PZq
j,m − Zq

j,m)
∥∥∥
L

p+1
p (Ω)

≲ J1,m,

where J1,m is the quantity J1 in (2.14) for n ̸= 6 and (2.19) for n = 6 with (δi, δj , ξi, ξj) replaced
by (δi,m, δj,m, ξi,m, ξj,m).

Also, by applying the inequality |PZq
j | ≲ PUj (which directly comes from the maximum

principle), (A.1), (A.2), and Hölder’s inequality, we obtain∫
Ω

[
σp−1 − (PUj,m)p−1

]
|ϱm||PZq

j,m|

≲
∫
Ω

[
σp−1PUj,m − (PUj,m)p

]
|ϱm| ≲

∫
Ω

[
σp −

ν∑
i=1

(PUi,m)p

]
|ϱm|

≲


∑
i ̸=j

∥Up−1
i,m Uj,m∥

L
p+1
p (Ω)

∥ϱm∥H1
0 (Ω) if n = 3, 4, 5,∑

i ̸=j

∥∥∥min{Up−1
i,m Uj,m, Up−1

j,m Ui,m}
∥∥∥
L

p+1
p (Ω)

∥ϱm∥H1
0 (Ω) if n ≥ 6.
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On the other hand, using (A.2), we have∫
Ω

[
(u0 + σm)p−1 − σp−1

m

]
|ϱm|Uj,m ≲

∫
Ω

[
(u0σ

p−2
m 1{u0>0,p>2} + up−1

0 1{u0>0}

]
|ϱm|Uj,m

≲ ∥Uj,m∥
L

p+1
p (Ω)

1{u0>0} +

ν∑
i=1

∥Up−1
i,m ∥

L
p+1
p (Ω)

1{u0>0,p>2}.

Therefore,∣∣∣∣ ∫
Ω

[
(−∆− λ)ϱm − p(u0 + σm)p−1ϱm

]
PZq

j,m

∣∣∣∣
≲ ∥ϱm∥H1

0 (Ω)

[
∥Uj,m∥

L
p+1
p (Ω)

1{u0>0}∪{each PUj,m satisfies (1.8)} +
ν∑

i=1

∥Up−1
i,m ∥

L
p+1
p (Ω)

1{u0>0,p>2}

+


∑
i ̸=j

∥Up−1
i,m Uj,m∥

L
p+1
p (Ω)

if n = 3, 4, 5∑
i ̸=j

∥∥∥min{Up−1
i,m Uj,m, Up−1

j,m Ui,m}
∥∥∥
L

p+1
p (Ω)

if n ≥ 6

1{ν≥2} + J1,m


= om(1), (3.8)

where the last equality follows from Lemmas A.2 and A.3, (2.12), (2.13), and ∥ϱm∥H1
0 (Ω) = 1.

Third, we assert that{
ϱm ⇀ 0 weakly in H1

0 (Ω),

ϱm → 0 strongly in Ls(Ω) for s ∈ (1, 2∗)
as m → ∞.

Since ∥ϱm∥H1
0 (Ω) = 1, there exists ϱ∞ ∈ H1

0 (Ω) such that{
ϱm ⇀ ϱ∞ weakly in H1

0 (Ω),

ϱm → ϱ∞ strongly in Ls(Ω) for s ∈ (1, 2∗)
as m → ∞,

along a subsequence. Given any χ ∈ C∞
c (Ω), we test (3.4) with χ and passing to the limit

m → ∞. We can derive from (A.2) and Lemma A.5 that∣∣∣∣ ∫
Ω

[
(u0 + σm)p−1 − up−1

0

]
ϱmχ

∣∣∣∣ ≲ ∫
Ω

[
σp−1
m + up−2

0 σm1{p>2}

]
|ϱmχ|

≲ ∥σp−1
m ∥

L
p+1
p (Ω)

+ ∥σm∥
L

p+1
p (Ω)

1{p>2} = om(1).

This fact and (3.3)–(3.6) imply that{
(−∆− λ)ϱ∞ = pup−1

0 ϱ∞ in Ω,

ϱ∞ = 0 on ∂Ω,

which together with the non-degeneracy of u0 yields ϱ∞ = 0 in Ω.

Let us now fix an index j ∈ {1, . . . , ν}, and define the rescaled function

ϱ̃j,m(y) := δ
n−2
2

j,m ϱm
(
δj,my + ξj,m

)
for any y ∈ Ω− ξj,m

δj,m

for all sufficiently large m ∈ N. We extend ϱ̃j,m(y) to Rn by setting it to zero outside its original
domain. We will show that{

ϱ̃j,m ⇀ 0 weakly in D1,2(Rn),

ϱ̃j,m → 0 strongly in Ls
loc(Rn) for s ∈ (1, 2∗)

as m → ∞. (3.9)
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Because ∥ϱm∥H1
0 (Ω) = 1, the sequence {ϱ̃j,m}n∈N is uniformly bounded in D1,2(Rn), and so there

exists ϱ̃j,∞ ∈ D1,2(RN ) such that{
ϱ̃j,m ⇀ ϱ̃j,∞ weakly in D1,2(Rn),

ϱ̃j,m → ϱ̃j,∞ strongly in Ls
loc(Rn) for s ∈ (1, 2∗)

as m → ∞,

up to a subsequence. Given a function χ ∈ C∞
c (Rn), we set

χ̃j,m(x) = δ
2−n
2

j,m χ
(
δ−1
j,m(x− ξj,m)

)
for x ∈ Ω.

After testing (3.4) with χ̃j,m, the only technical point we encounter is to derive∫
Ω
(u0 + σm)p−1ϱmχ̃j,m =

∫
Rn

Up−1ϱ̃j,∞χ+ om(1) (3.10)

as m → ∞.
Indeed, direct calculations give us that∫

Ω
(PUj,m)p−1ϱmχ̃j,m =

∫
Ω−ξj,m
δj,m

Up−1ϱ̃j,mχ+O

(
κ

n−2
n

j,m

)
=

∫
Rn

Up−1ϱ̃j,∞χ+ om(1),

because∫
Ω

∣∣∣(PUj,m)p−1 − Up−1
j,m

∣∣∣ p+1
p−1

≲
∥∥∥|PUj,m − Uj,m|Up−2

j,m 1{p>2}

∥∥∥ p+1
p−1

L
p+1
p−1 (B(ξj,m,d(ξj,m,∂Ω))

+ ∥|PUj,m − Uj,m|p+1∥L1(B(ξj,m,d(ξj,m,∂Ω))

+

∫
B(ξj,m,d(ξj,m,∂Ω))c

Up+1
j,m ≲ κ

n−2
2

j,m ,

(3.11)

while we know∫
Ω
up−1
0 ϱmχ̃j,m ≃ δ2j,m

∫
supp(χ)

up−1
0 (ξj,m + δj,my)(ϱ̃j,mχ)(y)dy = om(1)

thanks to the boundedness of u0. Furthermore, for 1 ≤ i ̸= j ≤ ν,∣∣∣∣∫
Ω
(PUi,m)p−1ϱmχ̃j,m

∣∣∣∣ ≲
∥∥∥∥∥
[
δ

n−2
2

j,m Ui,m (ξj,m + δj,m·)
]p−1

∥∥∥∥∥
L

p+1
p (supp(χ))

= om(1),

since(
δj,m
δi,m

) 4n
n+2

∫
supp(χ)

dy(
1 +

( δj,m
δi,m

|y − zij.m|
)2) 4n

n+2

≲



(
δj,m
δi,m

)− 4n
n+2

|zij,m|−
8n
n+2 if |zij,m| → ∞,(

δj,m
δi,m

) 4n
n+2

−n ∫
|z|≤

δj,m
δi,m

1

(1 + |z|)
8n
n+2

dz if |zij,m| is bounded, δi,m ≪ δj,m,

(
δj,m
δi,m

) 4n
n+2

if |zij,m| is bounded, δi,m ≫ δj,m
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≲



R
− 8n

n+2

ij,m if |zij,m| → ∞,(
δj,m
δi,m

) 4n
n+2

−n
[
1{p>2} +

∣∣∣∣log δj,m
δi,m

∣∣∣∣1{p=2} +

(
δj,m
δi,m

)n− 8n
n+2

1{p<2}

]
if |zij,m| is bounded, δi,m ≪ δj,m,(

δj,m
δi,m

) 4n
n+2

if |zij,m| is bounded, δi,m ≫ δj,m,

where Rij,m is the quantity introduced in (2.3) with (ξi, ξj , δi, δj) replaced by (ξi,m, ξj,m, δi,m, δj,m).
By (A.1), and Lemmas A.2 and A.3, we also have that∫

Ω
(PUj,m)p−2

(
u0 +

∑
i ̸=j

PUi,m

)
|ϱmχ̃j,m|1{p>2}

≲

[∑
i ̸=j

∥Ui,mUp−2
j,m ∥

L
p+1
p−1 (Ω)

+max
i

∥Up−2
i,m ∥

L
p+1
p−1 (Ω)

]
1{p>2} = om(1).

Combining the above calculations, we derive (3.10).
Taking m → ∞, we observe from (3.4) that−∆ϱ̃j,∞ = pUp−1ϱ̃j,∞ in Rn, ϱ̃j,∞ ∈ D1,2(Rn),∫

Rn

∇ϱ̃j,∞ · ∇Zk = 0 for all k = 0, . . . , n.

The nondegeneracy of U implies that ϱ̃j,∞ = 0, yielding (3.9).

Finally, we will prove

lim
m→∞

∥ϱm∥H1
0 (Ω) = 0. (3.12)

Since (3.12) contradicts (3.3), we will be able to conclude that (3.2) must hold.
To deduce (3.12), we test (3.4) with ϱm. Then, we only have to consider∫

Ω
(u0 + σm)p−1ϱ2m ≲

∫
Ω
up−1
0 ϱ2m +

ν∑
i=1

∫
Ω
(PUi,m)p−1ϱ2m

≲ om(1) +

∫
Rn

Up−1ϱ̃2i,m +O

(
max

i
κ

n−2
n

i,m

)
∥ϱm∥2H1

0 (Ω)

= om(1).

Here, we employed (3.11) and the facts that ϱm → 0 strongly in L2(Ω) and ϱ̃2i,m ⇀ 0 weakly in

L
n

n−2 (Rn). We are done. □

Proof of Proposition 3.1. We set

h := f + I1 + I2 + I3 + I0[ρ].

From (2.1), we have
ρ−Π⊥[(−∆− λ)−1(p(u0 + σ)p−1ρ)] = Π⊥[(−∆− λ)−1h] in Ω,

ρ = 0 on ∂Ω,〈
ρ, PZk

i

〉
H1

0 (Ω)
= 0 for i = 1, . . . , ν and k = 0, . . . , n.

By making use of (3.2), (A.2), (A.3) and Hölder’s inequality

∥ρ∥H1
0 (Ω) ≲ ∥f∥(H1

0 (Ω))∗ + ∥ρ∥2H1
0 (Ω)1{p>2} + ∥ρ∥p

H1
0 (Ω)

+ ∥I1∥(H1
0 (Ω))∗ + ∥I2∥(H1

0 (Ω))∗ + ∥I3∥(H1
0 (Ω))∗ .

Since p > 1 and ∥ρ∥H1
0 (Ω) = oϵ1(1), we immediately deduce (3.1). □



SHARP QUANTITATIVE STABILITY ESTIMATES FOR BREZIS-NIRENBERG PROBLEM 29

Corollary 3.3. For each i = 1, . . . , ν, we assume that PUi satisfies (1.8) if n ≥ 5 or [n = 3, 4
and u0 > 0], and satisfies (1.9) if n = 3, 4 and u0 = 0. We define

J11(δ1, . . . , δν) :=



max
i

δi if n = 3 and u0 = 0,

max
i

δ2i | log δi| if n = 4 and u0 = 0,

max
i

δ
n−2
2

i if [n = 3, 4 and u0 > 0] or n = 5,

max
i

δ2i | log δi|
1
2 if n = 6,

max
i

δ2i if n ≥ 7,

J12(κ1, . . . , κν) :=


max

i
κn−2
i if n = 3, 4, 5,

max
i

κ4i |log κi|
1
2 if n = 6,

max
i

κ
n+2
2

i if n ≥ 7,

J13(Q) :=


Q if n = 3, 4, 5

Q| logQ|
1
2 if n = 6

Q
n+2

2(n−2) if n ≥ 7

1{ν≥2}.

Then

∥ρ∥H1
0 (Ω) ≲ ∥f∥(H1

0 (Ω))∗ + J11(δ1, . . . , δν) + J12(κ1, . . . , κν) + J13(Q). (3.13)

Proof. The result is a consequence of Lemma 2.5 and Proposition 3.1. □

Proposition 3.4. For each i = 1, . . . , ν, we assume that PUi satisfies (1.8) if n ≥ 5 or [n = 3, 4
and u0 > 0], and satisfies (1.9) if n = 3, 4 and u0 = 0. We set

J21(δ1, . . . , δν) :=



max
i

δi if n = 3 and u0 = 0,

max
i

δ2i | log δi| if n = 4 and u0 = 0,

max
i

δ
n−2
2

i if n = 3, 4, 5 and u0 > 0,

max
i

δ2i if [n = 5 and u0 = 0] or n ≥ 6,

and J23(Q) := Q1{ν≥2}. If each ξ1, . . . , ξν lies on a compact set of Ω, then it holds that

J21(δ1, . . . , δν) + J23(Q) ≲ ∥f∥(H1
0 (Ω))∗ . (3.14)

Proof. Let j ∈ {1, . . . , ν} be fixed. By testing (2.1) with PZ0
j , we obtain∫

Ω
I1PZ0

j +

∫
Ω
I2PZ0

j +

∫
Ω
I3PZ0

j = −
∫
Ω
fPZ0

j −
∫
Ω
I0[ρ]PZ0

j

+

∫
Ω

[
(−∆− λ)ρ− p(u0 + σ)p−1ρ

]
PZ0

j .

As in (3.8), we apply Lemmas A.2–A.3 and (3.13), and the assumption that ξi lies on a compact
set of Ω for i = 1, . . . , ν to deduce∣∣∣∣ ∫

Ω

[
(−∆− λ)ρ− p(u0 + σ)p−1ρ

]
PZ0

j

∣∣∣∣
≲ ∥ρ∥H1

0 (Ω)

[
∥Uj∥

L
p+1
p (Ω)

1{u0>0}∪{PUj satisfies (1.8)} +

ν∑
i=1

∥Up−1
i ∥

L
p+1
p (Ω)

1{u0>0,p>2}
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+


∑
i ̸=j

∥Up−1
i Uj∥

L
p+1
p (Ω)

if n = 3, 4, 5∑
i ̸=j

∥∥∥min{Up−1
i Uj , U

p−1
j Ui}

∥∥∥
L

p+1
p (Ω)

if n ≥ 6

1{ν≥2}


= o(J21(δ1, . . . , δν) + J23(Q)).

Using (A.5) and the fact that |PZ0
j | ≤

∑ν
i=1 Ui, we also know that

∣∣∣∣ ∫
Ω
I0[ρ]PZ0

j

∣∣∣∣ ≲

∫
Ω
min{σp−2ρ2, |ρ|p}|PZ0

j | if 1 < p < 2,∫
Ω

(
σp−2ρ2 + |ρ|p

)
|PZ0

j | if p ≥ 2

≲
∫
Ω

ν∑
i=1

Up−1
i |ρ|2 + ∥ρ∥p

H1
0 (Ω)

1{p>2} ≲ ∥ρ∥2H1
0 (Ω).

(3.15)

Without loss of generality, one may assume that δ1 ≥ δ2 ≥ · · · ≥ δν . By employing Lemmas
2.6–2.8 together with an, bn > 0, d(ξi, ∂Ω) ≳ 1, −φ3

λ(ξi) > 0 provided n = 3, u0 = 0, and ν ≥ 2,
and

cnqij +


∑
i ̸=j

[
− c3

2
λ|ξj − ξi| − c3H

3
λ(ξi, ξj)

]
δ

1
2
i δ

1
2
j if n = 3∑

i ̸=j

[
− c4

2
λ log |ξj − ξi| − c4H

4
λ(ξi, ξj)

]
δiδj if n = 4

1{
n=3,4, u0=0, and qij=

(
|ξi−ξj |√

δiδj

)2−n} ≃ qij ,

we adopt the same reasoning as in [23, Lemma 2.3] (which is based on mathematical induction)
to achieve

J23(Q) ≲ ∥f∥(H1
0 (Ω))∗ + o(J21(δ1, . . . , δν)). (3.16)

Then, one may take the test function PZ0
1 , where δ1 = maxi δi, to prove

J21(δ1, . . . , δν) ≲ ∥f∥(H1
0 (Ω))∗ +

∣∣∣∣ ∫
Ω
I2PZ0

1

∣∣∣∣+ o(J21(δ1, . . . , δν) + J23(Q))

≲ ∥f∥(H1
0 (Ω))∗ + o(J21(δ1, . . . , δν) + J23(Q)).

(3.17)

Here, we used
∣∣ ∫

Ω I2PZ0
1

∣∣ ≲ Q, which comes from (2.41) and Lemma A.3.
Putting (3.16) and (3.17), we establish (3.14), concluding the proof. □

We are now in a position to establish estimate (1.11).

Proof of Estimate (1.11). Since d(ξi, ∂Ω) ≳ 1, we have

J12(κ1, . . . , κν) ≲ J11(δ1, . . . , δν).

From (3.13) and (3.14), one can identify two optimal functions ζ̃1(t) and ζ̃3(t) of the form ta| log t|b,
with a > 0 and b ≥ 0 (b = 0 unless n = 6), such that

J11(δ1, . . . , δν) ≲ ζ̃1(J21(δ1, . . . , δν)) and J13(Q) ≲ ζ̃3(J23(Q)).

Recognizing that ζ̃1(t) and ζ̃3(t) are non-decreasing for t > 0, we obtain

∥ρ∥H1
0 (Ω) ≲ max

{
∥f∥(H1

0 (Ω))∗ , ζ̃1(∥f∥(H1
0 (Ω))∗), ζ̃3(∥f∥(H1

0 (Ω))∗)
}
= ζ(∥f∥(H1

0 (Ω))∗),

where ζ(t) is the function introduced in (1.12). □



SHARP QUANTITATIVE STABILITY ESTIMATES FOR BREZIS-NIRENBERG PROBLEM 31

3.2. Sharpness of estimate (1.11). Let us divide it into two cases.

Case 1: We prove the optimality of (1.11) when [n = 3, 4, ν ≥ 1], or [n = 5, ν ≥ 1, u0 > 0] or
[n ≥ 7, ν = 1]. In this case, we have that ζ(t) = t.

We select numbers δ = δi ∈ (0, 1) for each i ∈ {1, . . . , ν} and points ξi ∈ Ω such that
d(ξi, ∂Ω) ≳ 1 and |ξi − ξj | ≳ 1 for all distinct indices 1 ≤ i ̸= j ≤ ν. Under these conditions, it
holds that Q ≃ δn−2 · 1ν≥2.

Taking

ϵ ≃


δ if n = 3 and u0 = 0,

δ2| log δ| if n = 4 and u0 = 0,

δ
n−2
2 if n = 3, 4, 5 and u0 > 0,

δ2 if n ≥ 7 and ν = 1,

and using |PZk
i | ≤ CPUi in Ω, we construct a nonnegative function of the form

ϕδ =

ν∑
i=1

PUi +
ν∑

i=1

n∑
k=0

βk
i PZk

i ,

where βk
i = oδ(1),

〈
ϕδ, PZk

i

〉
= 0 for each i = 1, . . . , ν and k = 0, 1, . . . , n, and ∥ϕδ∥H1

0 (Ω) ≃ 1.

Letting ρ := ϵϕδ, we define u∗ := u0 +
∑ν

i=1 PUi + ρ so that u∗ = 0 on ∂Ω. Then we set

f := −∆u∗ − λu∗ − up−1
∗ = −∆ρ− λρ− p

(
u0 +

ν∑
i=1

PUi

)p−1

ρ+ I1 + I2 + I3 + I0[ρ]

where I1, I2, I3, and I0[ρ] are defined as in (2.2) with parameters (δi, ξi) satisfying the above
conditions. By Lemmas 2.1 and 2.5, we have that ∥ρ∥H1

0 (Ω) ≃ ϵ and

∥f∥(H1
0 (Ω))∗ ≲ ∥ρ∥H1

0 (Ω) + ∥ρ∥min{2,p}
H1

0 (Ω)
+ ∥I1∥

L
p+1
p (Ω)

1{u0 ̸=0} + ∥I2∥
L

p+1
p (Ω)

1{ν≥2} + ∥I3∥
L

p+1
p (Ω)

≃ ϵ ≃ ∥ρ∥H1
0 (Ω).

Proceeding as in Step 2 of [15, Subsection 5.1], we deduce that

inf
(δ̃i,ξ̃i)∈(0,1)×Ω,

i=1,...,ν

∥∥∥u∗ − (u0 + ν∑
i=1

PUδ̃i,ξ̃i

)∥∥∥
H1

0 (Ω)
≳ ∥ρ∥H1

0 (Ω),

thereby establishing the optimality of (1.11).

Case 2: We prove the optimality of (1.11) when [n = 5, ν ≥ 1, u0 = 0] or [n = 6, ν ≥ 1] or
[n ≥ 7, ν ≥ 2]. In this case, we have that ζ(t) ≫ t. The proof is split into three steps.

Step 1. We select δ = δi ∈ (0, 1) and ξi ∈ Ω such that d(ξi, ∂Ω) ≳ 1 and |ξi − ξj | ≃ δb for each

i ̸= j, where i, j ∈ {1, . . . , ν} and b ∈ [0, 1). This choice ensures that Q ≃ δ(1−b)(n−2). We impose
a further restriction b ∈ (n−4

n−2 , 1) for n ≥ 7, and set b = 0 in dimensions n = 5, 6.
We now consider the function ρ solving the boundary value problem
−∆ρ− λρ− p(u0 + σ)p−1ρ = I1 + I2 + I3 + I0[ρ] +

ν∑
i=1

n∑
k=0

cki (−∆− λ)PZk
i in Ω,

ρ = 0 on ∂Ω, cki ∈ R for i = 1, . . . , ν and k = 0, . . . , n,〈
ρ, PZk

i

〉
H1

0 (Ω)
= 0 for i = 1, . . . , ν and k = 0, . . . , n,

(3.18)
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where PZk
i , I1, I2, I3, and I0[ρ] are defined as in (2.2) with parameters (δi, ξi) satisfying the

above conditions. We set f :=
∑n

k=0

∑ν
i=1 c

k
i (−∆− λ)PZk

i . Then

∥f∥(H1
0 (Ω))∗ ≲

n∑
k=0

ν∑
i=1

|cki |

≲ ς1(δ) :=

{
δ2 if [n = 5, u0 = 0, ν ≥ 1] or [n = 6, ν ≥ 1],

δ(1−b)(n−2) if n ≥ 7 and ν ≥ 2.

(3.19)

By applying Lemmas 3.2, 2.5 and (3.19), we see that

∥ρ∥H1
0 (Ω) ≲ ∥f∥(H1

0 (Ω))∗ + ∥I1∥(H1
0 (Ω))∗ + ∥I2∥(H1

0 (Ω))∗ + ∥I3∥(H1
0 (Ω))∗

≲ ς2(δ) :=


δ

3
2 if n = 5, u0 = 0, and ν ≥ 1,

δ2| log δ|
1
2 if n = 6 and ν ≥ 1,

δ
(1−b)(n+2)

2 if n ≥ 7 and ν ≥ 2.

(3.20)

Step 2. We now establish the lower bound

∥ρ∥H1
0 (Ω) ≳ ς2(δ), (3.21)

which in turn implies

∥ρ∥H1
0 (Ω) ≳ ζ(∥f∥(H1

0 (Ω))∗).

Testing equation (3.18) against any χ ∈ H1
0 (Ω) and applying Holder’s inequality yield∣∣∣∣ ∫

Ω

(
I11{n≥6, u0>0} + I21{n≥6, ν≥2} +

ν∑
i=1

λPUi1{n=5,6}

)
χ

∣∣∣∣
≲ ∥χ∥H1

0 (Ω)

[
∥ρ∥H1

0 (Ω) + ∥ρ∥min{2,p}
H1

0 (Ω)
+ ∥I1 + I2∥

L
2n
n+2 (Ω)

1{n=5,u0=0,ν≥1}

+

∥∥∥∥I3 − ν∑
i=1

λPUi1{n=5,6}

∥∥∥∥
L

2n
n+2 (Ω)

+
ν∑

i=1

n∑
k=0

|cki |
]
,

and so

∥ρ∥H1
0 (Ω) ≳

∥∥∥∥I11{n≥6, u0>0} + I21{n≥6, ν≥2} +

ν∑
i=1

λPUi1{n=5,6}

∥∥∥∥
(H1

0 (Ω))∗

− C

[∥∥∥∥I3 − ν∑
i=1

λPUi1{n=5,6}

∥∥∥∥
L

2n
n+2 (Ω)

+ ∥I2∥
L

2n
n+2 (Ω)

1{n=5} +

ν∑
i=1

n∑
k=0

|cki |
]

=: J2 + o(ς2(δ))

where we have invoked (2.13), (2.15), (3.19), and (3.20).
Let Gλ be defined as in (2.7) for n ≥ 3. We recall the lower bound estimate of Gλ:

Gλ(x, y) ≳
1

|x− y|n−2
.

Drawing on the idea in the proof of Lemma 2.5 for n = 6, together with the non-negativity of
the functions I1, I2 and λPUi, we observe that

J2 ≳ J
1
2
3 , (3.22)
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where the quantity J3 is defined as

J3 :=


∫
Ω

ν∑
i=1

λPUi(x)

∫
Ω
Gλ(x, ω)

ν∑
j=1

λPUj(ω)dxdω if n = 5, 6,∫
Ω
I2(x)

∫
Ω
Gλ(x, ω)I2(ω)dxdω if n ≥ 7.

As a result, we only need to estimate J3. Assume that n = 5, 6. A direct computation shows∫
Ω

ν∑
i=1

PUi(x)

∫
Ω
Gλ(x, ω)

ν∑
j=1

PUj(ω)dxdω

≳
∫
Ω

ν∑
i,j=1

(
δ

δ2 + |x− ξi|2

)n−2
2 δ

n−2
2

(δ2 + |x− ξj |2)
n−4
2

≃

{
δ3 if n = 5,

δ4| log δ| if n = 6.

(3.23)

Assume that n ≥ 7 and ν ≥ 2. If |x1| ≲ 1
2δ

b−1, then |x2| ≤ |x1| + |ξ1−ξ2|
δ ≲ δb−1. From this, we

derive

I2 = σp −
ν∑

i=1

(PUi)
p ≳ (PU1)

p−1PU2

and

Up−1
1 U2 ≳

δ−2

⟨x1⟩4
δ−

n−2
2

⟨x2⟩n−2 ≳
δ−2

⟨x1⟩4
δ−

n−2
2 δ(1−b)(n−2) ≳

δ(
1
2
−b)(n−2)−2

⟨x1⟩4
.

As a consequence, we have

J3 =

∫
Ω
I2(x)

∫
Ω
Gλ(x, ω)I2(ω)dxdω

≳ δ(2−2b)(n−2)

∫
{|x1|≲ 1

2
δb−1}

∫
{|ω1|< 1

2
|x1|}

1

⟨x1⟩4
1

|x1 − ω1|n−2

1

⟨ω1⟩4
dx1dω1 + o(δ(1−b)(n+2))

≳ δ(2−2b)(n−2)

∫
{|x1|≲ 1

2
δb−1}

1

⟨x1⟩6
dx1 + o(δ(1−b)(n+2)) ≳ δ(1−b)(n+2), (3.24)

where ω1 := δ−1
1 (ω − ξ1).

Putting (3.22)-(3.24) together implies the validity of (3.21).

Step 3. Let u♯ := u0 +
∑ν

i=1 PUi + ρ, (u♯)± := max{±u♯, 0}, and u∗ := (u♯)+.

Observe that{
(−∆− λ)u♯ = |u♯|p−1u♯ +

∑n
k=0

∑ν
i=1 c

k
i (−∆− λ)PZk

i in Ω,

u♯ = 0 on ∂Ω.
(3.25)

Assuming that ξ̃i satisfies the assumption of Theorem 1.1, we introduce

d∗(u) := inf

{∥∥∥u−
(
u0 +

ν∑
i=1

PUδ̃i,ξ̃i

)∥∥∥
H1

0 (Ω)
:
(
δ̃i, ξ̃i

)
∈ (0,∞)× Ω, i = 1, . . . , ν

}
.

Arguing as in Case 1, we can verify

d∗(u♯) ≳ ∥ρ∥H1
0 (Ω) ≃ ς2(δ). (3.26)

Testing (3.25) with (u♯)− gives

∥(u♯)−∥2H1
0 (Ω) = ∥(u♯)−∥p+1

Lp+1(Ω)
+

∫
Ω

n∑
k=0

ν∑
i=1

cki (−∆− λ)PZk
i (u♯)−
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≲ ∥(u♯)−∥p+1
Lp+1(Ω)

+
n∑

k=0

ν∑
i=1

|cki |∥(u♯)−∥Lp+1(Ω).

Using the estimate 0 ≤ (u♯)− ≲ |ρ|, we get

∥(u♯)−∥2H1
0 (Ω) ≲ ∥ρ∥p+1

Lp+1(Ω)
+

n∑
k=0

ν∑
i=1

|cki |∥ρ∥Lp+1(Ω) = o(1),

and so we obtain

∥(u♯)−∥H1
0 (Ω) ≲

n∑
k=0

ν∑
i=1

|cki | ≲ ς1(δ). (3.27)

Therefore, by combining estimates (3.19), (3.26) and (3.27), we infer

d∗(u∗) ≳ d∗(u♯)− ∥(u♯)−∥H1
0 (Ω) ≳ ∥ρ∥H1

0 (Ω) ≃ ς2(δ).

Moreover,

Γ(u∗) ≲ Γ̃(u♯) + ∥(u♯)−∥H1
0 (Ω) ≲ ς1(δ),

where Γ̃(u♯) := ∥∆u♯+λu♯+|u♯|p−1u♯∥(H1
0 (Ω))∗ ≲ ς1(δ). In conclusion, we obtain a function u∗ ≥ 0

satisfying

d∗(u∗) ≳ ζ(Γ(u∗)),

thereby establishing the optimality of (1.11).

4. Proof of Theorem 1.3

In this section, we investigate the single-bubble case (ν = 1), allowing the distance between
ξ1 and ∂Ω to be arbitrarily small, and prove Theorem 1.3. We assume that the function PU1

satisfies (1.9) when n = 3 or [n = 4, 5, u0 = 0], and satisfies (1.8) when [n = 4, 5, u0 > 0] or
n ≥ 6; see Remark 1.4(2).

We first examine the case when n = 5 and PU1 satisfies (1.9). By Lemma 2.1, Corollary 2.3,
and (2.36), we have

∥I3∥
L

p+1
p (Ω)

≲ ∥(PU1 − U1)U
p−1
1 ∥

L
p+1
p (Ω)

≲ δ
3
2
1

(∥∥∥∥ 1

| · −ξ1|
Up−1
1

∥∥∥∥
L

p+1
p (Ω)

+ |φ5
λ(ξ1)|∥U

p−1
1 ∥

L
p+1
p (Ω)

)

+

∥∥∥∥δ1/21 D5

(
· − ξ1
δ1

)
Up−1
1

∥∥∥∥
L

p+1
p (Ω)

≲ δ21 + κ31

(4.1)

and∫
B(ξ1,d(ξ1,∂Ω))

[(PU1)
p − Up

1 ]PZ0
1 =

λ

2
a5δ

3
2
1 p

∫
B(ξ1,d(ξ1,∂Ω))

1

|x− ξ1|
(Up−1

1 Z0
1 )(x)dx

+ λa25pδ
2
1

∫
B(0,κ−1

1 )

[
1

(1 + |z|2)
3
2

− 1

|z|3

]
|z|2 − 1

(1 + |z|2)
5
2

dz (4.2)

− δ
3
2
1 a5pH

5
λ(ξ1, ξ1)

∫
B(ξ1,d(ξ1,∂Ω))

Up−1
1 Z0

1dx+O(δ31) +O(κ51)

= b̄5λδ
2
1 − c5δ

3
1φ

5
λ(ξ1) +O(δ31) +O(κ51).
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Here,

b̄5 :=
a5
2

∫
R5

1

|z|
(Up−1Z0)(z)dz + a25p

∫
R5

[
1

(1 + |z|2)
3
2

− 1

|z|3

]
|z|2 − 1

(1 + |z|2)
5
2

dz > 0

and c5 := a5p
∫
R5 U

p−1Z0 > 0.
Combining (4.1) with (3.13), we obtain

∥ρ∥H1
0 (Ω) ≲ ∥f∥(H1

0 (Ω))∗ +



δ1 if n = 3 and u0 = 0

δ21 | log δ1| if n = 4 and u0 = 0

δ
n−2
2

1 if n = 3, 4, 5 and u0 > 0

δ21 | log δ1|
1
2 if n = 6

δ21 if [n = 5, u0 = 0] or n ≥ 7


+


κn−2
1 if n = 3, 4, 5

κ41| log κ1|
1
2 if n = 6

κ
n+2
2

1 if n ≥ 7

 .

(4.3)

Also, applying (2.20), (2.28)–(2.29), and (4.2), we deduce∫
Ω
(I1 + I3)PZ0

1

=

anu0(ξ1)δ n−2
2

1 +


O(δ1) if n = 3

O(δ21 | log δ1|) if n = 4

O(δ21) if n = 5

1{p>2} +O
(
δ

n
2
1 + κn1

)1{u0>0} (4.4)

+



−c3φ
3
λ(ξ1)δ1 +O(δ21) +O(κ31) if n = 3,

b4λδ
2
1 | log δ1| − c4δ

2
1φ

4
λ(ξ1)− 96|S3|λδ21 +O(δ31) +O(κ41) if n = 4 and u0 = 0,

−δ21c4φ(ξ1) +O(δ21 | log δ1|) +O(κ41) if n = 4 and u0 > 0,

b̄5λδ
2
1 − c5δ

3
1φ

5
λ(ξ1) +O(δ31) +O(κ51) if n = 5 and u0 = 0,

λbnδ
2
1 − δn−2

1 cnφ(ξ1) +O
(
δ21κ

n−4
1

)
+O(κn1 ) if [n = 5, u0 > 0] or n ≥ 6.

As mentioned earlier, certain cancellations between terms with opposite signs may occur in
(4.4). To handle this issue, we establish an estimate for the projection of the term I1 + I3 onto
the direction of spatial derivatives of PU1, as stated in the following lemma.

Lemma 4.1. For any k ∈ {1, . . . , n}, there exists a constant en > 0 such that

∣∣∣∣ ∫
Ω
(I1 + I3)PZk

1

∣∣∣∣ = (1 + o(1))enδ
n−1
1 ×


∣∣∣∣∂φn

λ

∂ξk1
(ξ1)

∣∣∣∣ if n = 3 or [n = 4, 5, u0 = 0]∣∣∣∣ ∂φ∂ξk1 (ξ1)
∣∣∣∣ if [n = 4, 5, u0 > 0] or n ≥ 6



+



O(δ31) if n = 3, 4, 5 and u0 = 0,

O(δ
3
2
1 | log δ1|) if n = 3 and u0 > 0,

O(δ21 | log δ1|) if n = 4 and u0 > 0,

O(δ21d(ξ1, ∂Ω) + δ
n
2
1 ) if n = 5 and u0 > 0,

O(δ
n
2
1 ) if n ≥ 6.

(4.5)
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Proof. By using Corollary 2.4, we obtain∫
B(ξ1,d(ξ1,∂Ω))

u0(PU1)
p−1PZk

1 =
∂u0

∂ξk1
(ξ1)

∫
B(ξ1,d(ξ1,∂Ω))

(x− ξ1)
k(Up−1

1 Zk
1 )(x)dx+O

(
δ

n
2
1 + κn1

)
= O

(
δ

n
2
1 + κn1

)
for n ≥ 3 (cf. (2.22)).

Let us refine estimate (2.24) for the cases n = 3, 5 and u0 > 0. If n = 5 and u0 > 0, then we
have ∫

B(ξ1,η
√
δ1)

u20(PU1)
p−2|PZk

1 | ≲
∫
B(ξ1,d(ξ1,∂Ω))

Up−1
1 +

∫
B(ξ1,d(ξ1,∂Ω))c

Up+1
1

≲ δ21d(ξ1, ∂Ω) + κn1 .

Suppose that n = 3 and u0 > 0. Applying (A.4), we expand I1 by

I1 =
[
pu0(PU1)

p−1 +
p(p− 1)

2
u20(PU1)

p−2 +O(u30(PU1)
p−3) +O (up0)

]
1B(ξ1,η

√
δ1)

+
[
pup−1

0 PU1 +O(up−2
0 (PU1)

2)1{p>2} +O((PU1)
p)
]
1B(ξ1,η

√
δ1)c

.

Also, we have∫
B(ξ1,η

√
δ1)

u20(PU1)
p−2PZk

1 = 2(1 + o(1))u0(ξ1)
∂u0

∂ξk1
(ξ1)

∫
B(ξ1,d(ξ1,∂Ω))

(x− ξ1)
k(Up−2

1 Zk
1 )(x)dx

+O

 δ
1
2
1

d(ξ1, ∂Ω)

∫
B(ξ1,d(ξ1,∂Ω))

Up−2
1

+

∫
B(ξ1,d(ξ1,∂Ω))c

Up+1
1

≲ δ21 | log δ1|+ δ1κ1| log κ1|+ κn1

and ∫
B(ξ1,η

√
δ1)

u30(PU1)
p−3|PZk

1 | ≲
∫
B(ξ1,η

√
δ1)

Up−2
1 ≲ δ

3
2
1 | log δ1|.

By combining the above estimates with (2.21) and (2.25)–(2.27), we conclude

∫
Ω
I1PZk

1 =



O(δ

3
2
1 | log δ1|) if n = 3

O(δ21 | log δ1|) if n = 4

O(δ21d(ξ1, ∂Ω)) if n = 5

1{p>2} +O
(
δ

n
2
1 + κn1

)1{u0>0}. (4.6)

On the other hand, arguing as in (2.34)–(2.38) and (4.2), we can find a constant en > 0 such
that ∫

Ω
[(PU1)

p − Up
1 ]PZk

1

=



−δ
n−2
2

1 anp
∂φn

λ

∂ξk1
(ξ1)

∫
B(ξ1,d(ξ1,∂Ω))

(x− ξ1)
k(Up−1

1 Zk
1 )(x)dx+O(δ31) +O(κn1 )

if n = 3 or [n = 4, 5, u0 = 0],

−δ
n−2
2

1 anp
∂φ

∂ξk1
(ξ1)

∫
B(ξ1,d(ξ1,∂Ω))

(x− ξ1)
k(Up−1

1 Zk
1 )(x)dx+O(κn1 )

if [n = 4, 5, u0 > 0] or n ≥ 6
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=


−(1 + o(1))enδ

n−1
1

∂φn
λ

∂ξk1
(ξ1) +O(δ31) +O(κn1 ) if n = 3 or [n = 4, 5, u0 = 0],

−(1 + o(1))enδ
n−1
1

∂φ

∂ξk1
(ξ1) +O(κn1 ) if [n = 4, 5, u0 > 0] or n ≥ 6.

(4.7)

Here, we also used Corollary 2.4.
Moreover, we see from (2.30) and (2.31) that∫

Ω
λPU1PZk

11{PU1 satisfies (1.8)} =

{
O(δ21 | log δ1|) if n = 4 and u0 > 0,

O
(
δ

n
2
1 + κn1

)
if [n = 5, u0 > 0] or n ≥ 6.

(4.8)

Consequently, (4.5) follows immediately from (4.6)–(4.8). □

Now we are in a position to prove Theorem 1.3.

Proof of Theorem 1.3. Throughout the proof, we keep in mind (2.10).

Step 1. Let us prove estimate (1.13).

By testing (2.1) with PZk
1 for k ∈ {0, 1, . . . , n}, arguing as in (3.8), and using (3.15), we obtain∣∣∣∣ ∫

Ω
(I1 + I3)PZk

1

∣∣∣∣
=

∣∣∣∣− ∫
Ω
fPZk

1 −
∫
Ω
I0[ρ]PZk

1 +

∫
Ω

[
(−∆− λ)ρ− p(u0 + PU1)

p−1ρ
]
PZk

1

∣∣∣∣
≲ ∥f∥(H1

0 (Ω))∗ + ∥ρ∥2H1
0 (Ω) + ∥ρ∥H1

0 (Ω)

[
∥[(PU1)

p−1 − Up−1
1 ]PZk

1 ∥
L

p+1
p (Ω)

(4.9)

+ ∥Up−1
1 (PZk

1 − Zk
1 )∥

L
p+1
p (Ω)

+ ∥U1∥
L

p+1
p (Ω)

+ ∥Up−1
1 ∥

L
p+1
p (Ω)

1{u0>0, p>2}

]
.

Having (4.3)-(4.5) in mind, we proceed by distinguishing several cases according to the dimension
n and the function u0.

Case 1: Assume that n ≥ 7.
We consider the following subcases:

• If bnλδ
2
1 > cnφ(ξ1)δ

n−2
1 , we have that δ21 ≲ ∥f∥(H1

0 (Ω))∗ .

- When δ21 ≳ κ
n+2
2

1 , it follows that ∥ρ∥H1
0 (Ω) ≲ ∥f∥(H1

0 (Ω))∗ + δ21 . Hence, ∥ρ∥H1
0 (Ω) ≲

∥f∥(H1
0 (Ω))∗ .

- When δ21 ≲ κ
n+2
2

1 , it follows that ∥ρ∥H1
0 (Ω) ≲ ∥f∥(H1

0 (Ω))∗ + κ
n+2
2

1 . Hence, ∥ρ∥H1
0 (Ω) ≲

∥f∥
n+2

2(n−2)

(H1
0 (Ω))∗

.

• If bnλδ
2
1 < cnφ(ξ1)δ

n−2
1 , we have that κn−2

1 ≲ ∥f∥(H1
0 (Ω))∗ and ∥ρ∥H1

0 (Ω) ≲ ∥f∥(H1
0 (Ω))∗ +

κ
n+2
2

1 . Thus, ∥ρ∥H1
0 (Ω) ≲ ∥f∥

n+2
2(n−2)

(H1
0 (Ω))∗

.

• If bnλδ
2
1 = cnφ(ξ1)δ

n−2
1 , we have that ∥ρ∥H1

0 (Ω) ≲ ∥f∥(H1
0 (Ω))∗ + κ

n+2
2

1 . It follows from

(4.5) and (4.9) that κn−1
1 ≲ ∥f∥(H1

0 (Ω))∗ + δ
n+2
n−2

+2

1 . Consequently, ∥ρ∥H1
0 (Ω) ≲ ∥f∥

n+2
2(n−1)

(H1
0 (Ω))∗

.

Case 2: Assume that n = 6.

• If anu0(ξ1)δ
2
1 + b6λδ

2
1 ̸= c6φ(ξ1)δ

4
1 , we have that

∥ρ∥H1
0 (Ω) ≲ ∥f∥(H1

0 (Ω))∗ | log ∥f∥(H1
0 (Ω))∗ |

1
2 .
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• If a6u0(ξ1)δ
2
1 + b6λδ

2
1 = c6φ(ξ1)δ

4
1 , a cancellation happens in (4.4), which leads to

I1 + I3 = 2(u0(x)− u0(ξ1))PU1 + 2(PU1 − U1)U1 + 2a6φ(ξ1)δ
2
1PU1.

Therefore,

∥ρ∥H1
0 (Ω) ≲ ∥f∥(H1

0 (Ω))∗ + ∥I1 + I3∥
L

p+1
p (Ω)

≲ ∥f∥(H1
0 (Ω))∗ + δ31 + κ51.

Applying (4.5) and (4.9), we find that κ51 ≃ δ
5
2
1 ≲ ∥f∥(H1

0 (Ω))∗ + δ41 | log δ1|, and so

∥ρ∥H1
0 (Ω) ≲ ∥f∥(H1

0 (Ω))∗ .

Case 3: Assume that n = 3, 4, 5 and u0 = 0.

• If n = 3 and u0 = 0, we have that ∥ρ∥H1
0 (Ω) ≲ ∥f∥(H1

0 (Ω))∗ .

• Assume that n = 4 and u0 = 0.
– If b4λδ

2
1 | log δ1| ≠ c4φ

4
λ(ξ1)δ

2
1 , we have that ∥ρ∥H1

0 (Ω) ≲ ∥f∥(H1
0 (Ω))∗ .

– If b4λδ
2
1 | log δ1| = c4φ

4
λ(ξ1)δ

2
1 , we have that

I3 = (PU1)
p − Up

1 − pλδ1| log δ1|Up−1
1 + pa4δ1φ

4
λ(ξ1)U

p−1
1 .

Therefore,

∥ρ∥H1
0 (Ω) ≲ ∥f∥(H1

0 (Ω))∗ + ∥I1 + I3∥
L

p+1
p (Ω)

≲ ∥f∥(H1
0 (Ω))∗ + δ21 .

Applying (4.4) and (4.9), we find that |
∫
Ω I3PZ0

1 | ≃ δ21 ≲ ∥f∥(H1
0 (Ω))∗ + δ31 , and so

∥ρ∥H1
0 (Ω) ≲ ∥f∥(H1

0 (Ω))∗ .

• Assume that n = 5 and u0 = 0.
– If b̄5λδ

2
1 ̸= c5φ

5
λ(ξ1)δ

3
1 , we have the same estimate as above.

– If b̄5λδ
2
1 = c5φ

5
λ(ξ1)δ

3
1 , we have that ∥ρ∥H1

0 (Ω) ≲ ∥f∥(H1
0 (Ω))∗ + δ21 . By Corollary 2.4,

the inequality

∥Up−1
1 δ1∂ξk1

Sδ1,ξ1∥
L

p+1
p (Ω)

≲ ∥Up−1
1 ∥L5(Ω)∥δ1∂ξk1Sδ1,ξ1∥L2(Ω) ≲ δ21 ,

(4.5), and (4.9), one derives that κ41 ≃ δ
8
3
1 ≲ ∥f∥(H1

0 (Ω))∗ +δ
7
2
1 , which gives ∥ρ∥H1

0 (Ω) ≲

∥f∥
3
4

(H1
0 (Ω))∗

.

Case 4: Assume that n = 3, 4, 5 and u0 > 0.

• If anu0(ξ1)δ
n−2
2

1 ̸= cnδ
n−2
1

{
φ3
λ(ξ1) if n = 3

φ(ξ1) if n = 4, 5

}
, we obtain that ∥ρ∥H1

0 (Ω) ≲ ∥f∥(H1
0 (Ω))∗ .

• If anu0(ξ1)δ
n−2
2

1 = cnδ
n−2
1

{
φ3
λ(ξ1) if n = 3

φ(ξ1) if n = 4, 5

}
, the expansion

I1 + I3 = (u0 + PU1)
p − up0 − (PU1)

p − pu0(ξ1)(PU1)
p−1 + (PU1)

p − Up
1

+ panδ
n−2
2

1

{
φ3
λ(ξ1) if n = 3

φ(ξ1) if n = 4, 5

}
(PU1)

p−1 + λPU11{n=4,5}

gives

∥ρ∥H1
0 (Ω) ≲ ∥f∥(H1

0 (Ω))∗ + ∥I1 + I3∥
L

p+1
p (Ω)

≲ ∥f∥(H1
0 (Ω))∗ +

{
δ1 if n = 3,

δ
n−2
2

1 if n = 4, 5.
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Besides, making use of (4.5) and (4.9), we know that

κn−1
1 ≃ δ

n−1
2

1 ≲ ∥f∥(H1
0 (Ω))∗ +

{
δ

3
2
1 if n = 3,

δn−2
1 if n = 4, 5.

We conclude

∥ρ∥H1
0 (Ω) ≲

∥f∥(H1
0 (Ω))∗ if n = 3 and u0 > 0,

∥f∥
n−2
n−1

(H1
0 (Ω))∗

if n = 4, 5 and u0 > 0.

This completes the derivation of (1.13).

Step 2. We prove the optimality of (1.13).

Case 1: Assume that ζ(t) = t.
One can treat this case as in Case 1 of Subsection 3.2, by choosing a point ξ1 ∈ Ω and setting

ϵ ≃

{
δ1 if n = 3

δ21 | log δ1| if n = 4 and u0 = 0

}
+ κn−2

1 .

Case 2: Assume that ζ(t) ≫ t.
Let us choose δ1 > 0 and ξ1 ∈ Ω satisfying the following conditions

anu0(ξ1)δ
n−2
2

1 = cnφ(ξ1)δ
n−2
1 if n = 4, 5 and u0 > 0,

b̄5λδ
2
1 = c5φ

5
λ(ξ1)δ

3
1 if n = 5 and u0 = 0,

a6u0(ξ1)δ
2
1 + b6λδ

2
1 > cnφ(ξ1)δ

4
1 if n = 6,

bnλδ
2
1 = cnφ(ξ1)δ

n−2
1 if n ≥ 7.

(4.10)

We now consider a function ρ solving the following linearized problem
−∆ρ− λρ− p(u0 + PU1)

p−1ρ = I1 + I3 + I0[ρ] +
n∑

k=0

c̃k1(−∆− λ)PZk
1 in Ω,

ρ = 0 on ∂Ω, c̃k1 ∈ R for k = 0, . . . , n,〈
ρ, PZk

1

〉
H1

0 (Ω)
= 0 for k = 0, . . . , n.

where I1, I3, and I0[ρ] are defined as in (2.2) with (δ1, ξ1) satisfying (4.10).
Denote f :=

∑n
k=0 c̃

k
1(−∆− λ)PZk

1 . Using (4.4) and (4.5), we obtain

∥f∥(H1
0 (Ω))∗ ≲ |c̃01|+ max

k∈{1,...,n}
|c̃k1|

≲

∣∣∣∣ ∫
Ω
(I1 + I3)PZ0

1

∣∣∣∣+ max
k∈{1,...,n}

∣∣∣∣ ∫
Ω
(I1 + I3)PZk

1

∣∣∣∣
≲

{
κn−1
1 if [n = 4, u0 > 0], or n = 5, or n ≥ 7,

δ21 if n = 6.

It follows that

∥ρ∥H1
0 (Ω) ≲ ς3(δ) :=


δ

n−2
2

1 if n = 4, 5 and u0 > 0,

δ21 if n = 5 and u0 = 0,

δ21 | log δ1|
1
2 if n = 6,

κ
n+2
2

1 if n ≥ 7.
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On the other hand, similarly to (2.19), we can deduce a lower bound estimate

∥ρ∥2H1
0 (Ω)

≳


∫
Ω

∫
Ω
(λPU1)(x)

1

|x− ω|n−2
(λPU1)(ω)dxdω if [n = 4, 5, u0 > 0] or n = 6,∫

Ω

∫
Ω
[(PU1)

p − Up
1 ](x)

1

|x− ω|n−2
[(PU1)

p − Up
1 ](ω)dxdω if [n = 5, u0 = 0] or n ≥ 7

≳ (ς3(δ))
2.

We set u∗ := (u0 +PU1 + ρ)+. Then, by proceeding as in Case 2 of Subsection 3.2, we finish the
proof. □

Remark 4.2. Assume that ν ≥ 2. Arguing as above, one can find a nonnegative function
u∗ ∈ H1

0 (Ω) with δi = δj and |ξi − ξj | ≳ 1 for 1 ≤ i ̸= j ≤ ν such that

inf

{∥∥∥u∗ − (u0 + ν∑
i=1

PUδ̃i,ξ̃i

)∥∥∥
H1

0 (Ω)
:
(
δ̃i, ξ̃i

)
∈ (0,∞)× Ω, i = 1, . . . , ν

}
≳ ζ(u∗),

where ζ is given by (1.14), except for the cases [n = 3, u0 > 0] and [n = 4, u0 = 0]. In these
exceptional cases, additional technical difficulties arise.

Appendix A. Some useful estimates

Lemma A.1. Let a, b > 0. Then the following estimates hold:

|(a+ b)s − as − bs| ≲

{
min{as−1b, abs−1} if 1 ≤ s ≤ 2,

as−1b+ abs−1 if s > 2.
(A.1)

Moreover, we have the following asymptotic expansions:

(a+ b)s − as = O(as−1b)1s>1 +O(bs) for s > 0, (A.2)

(a+ b)s = as + sas−1b+O(as−2b2)1s>2 +O(bs) for s > 1, (A.3)

(a+ b)s = as + sas−1b+
p(p− 1)

2
as−2b2 +O(as−3b3)1s>3 +O(bs) for s > 2. (A.4)

For any a > 0, b ∈ R such that a+ b ≥ 0 and 1 < s < 2, it holds that∣∣(a+ b)s − as − sas−1b
∣∣ ≲ min

{
as−2|b|2, |b|s

}
. (A.5)

Lemma A.2. Let s > 0 and Uδ,ξ be the bubble defined in (1.3). Then

∫
Ω
U s
δ,ξ ≲


δ

n−2
2

s if 0 < s < n
n−2 ,

δ
n
2 | log δ| if s = n

n−2 ,

δn−
n−2
2

s if s > n
n−2 .

Lemma A.3. Let Uδi,ξi and Uδj ,ξj be the bubbles for 1 ≤ i ̸= j ≤ ν. If s, t ≥ 0 satisfy s+ t = 2∗,
then for any fixed τ > 0, we have∫

Rn

U s
δi,ξi

U t
δj ,ξj

≲

{
q
min{s,t}
ij if |s− t| ≥ τ,

q
n

n−2

ij | log qij | if s = t,

provided qij in (2.3) is sufficiently small.

Proof. See [15, Lemma A.3]. □
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Lemma A.4. Suppose α > 0. Then

∫
Ω

1

|x− z|n−2

(
δ

δ2 + |z − ξ|2

)α
2

dz ≲



δ
α
2 if 0 < α < 2,

δ(1 + | log |x− ξ||) if α = 2,

δ
α
2 (δ2 + |x− ξ|2)−

α−2
2 if 2 < α < n,

δ
n
2 (δ2 + |x− ξ|2)−

n−2
2 log(2 + |x− ξ|δ−1) if α = n,

δn−α
2 (δ2 + |x− ξ|2)−

n−2
2 if α > n.

Proof. It follows from direct computations. □

Appendix B. Proof of (2.10)

Lemma B.1. Let φn
λ(x) := Hn

λ (x, x) for n = 3, 4, 5, where Hn
λ (x, y) satisfies equations (2.4)–

(2.6). If d(x, ∂Ω) is small, then we have
φn
λ(x) =

1

(2d(x, ∂Ω))n−2
(1 +O(d(x, ∂Ω))) ,

|∇φn
λ(x)| =

2(n− 2)

(2d(x, ∂Ω))n−1
(1 +O(d(x, ∂Ω))) .

Proof. Since Ω is a smooth domain, there exists d0 > 0 such that for every x ∈ Ω with d(x, ∂Ω) <
d0, there exists a unique x′ ∈ ∂Ω such that d(x, ∂Ω) = |x − x′|. By an appropriate translation
and rotation, we may assume without loss of generality that x = (0, d), x′ = 0, and the boundary
near the origin is locally given by a C2 function ϕ with ϕ(0) = 0, ∇ϕ(0) = 0. Specifically,

∂Ω ∩B(0, τ) = {y = (y′, yn) ∈ Rn : yn = ϕ(y′)} ∩B(0, τ),

Ω ∩B(0, τ) = {y ∈ Rn : yn > ϕ(y′)} ∩B(0, τ)

for some small τ > 0. Let x′′ = (0,−d) be the reflection of x across the boundary. For sufficiently
small d, x′′ ̸∈ Ω, and the function 1

|y−x′′|n−2 is harmonic in Ω. Define

Fn
λ (y) := Hn

λ (y, x)−



1

|y − x′′|n−2
− λ

2 |y − x′′| if n = 3,

1

|y − x′′|n−2
− λ

2
log |x′′ − y| if n = 4,

1

|y − x′′|n−2
+

λ

2

1

|x′′ − y|
− 2λ2|y − x′′| if n = 5.

Then Fn
λ satisfies {

∆yF
n
λ + λFn

λ = fn
λ in Ω,

Fn
λ = gnλ on ∂Ω,

where

fn
λ (y) :=


−λ2

2 (|y − x| − |y − x′′|) if n = 3,

−λ log |x− y| − λ2

2
log |x′′ − y| if n = 4,

−2λ2|y − x|+ 2λ3|x′′ − y| if n = 5,

and

gnλ(y)
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:=



1

|y − x|n−2
− 1

|y − x′′|n−2
− λ

2
(|y − x| − |y − x′′|) if n = 3,

1

|y − x|n−2
− 1

|y − x′′|n−2
− λ

2
(log |x− y| − log |x′′ − y|) if n = 4,

1

|y − x|n−2
− 1

|y − x′′|n−2
+

λ

2

(
1

|x− y|
− 1

|x′′ − y|

)
− 2λ2(|y − x| − |y − x′′|) if n = 5.

For y ∈ ∂Ω ∩B(0, τ), we have the Taylor expansions

|y − x| =
√
|y|2 + d2 − 2dyn =

√
|y|2 + d2

(
1 +O

(
dyn

|y|2 + d2

))
,

∣∣y − x′′
∣∣ =√|y|2 + d2 + 2dyn =

√
|y|2 + d2

(
1 +O

(
dyn

|y|2 + d2

))
,

where we used the smoothness of ϕ. Since |yn| = |ϕ(y′)| = O(|y′|2), we observe

1

|y − x|n−2
− 1

|y − x′′|n−2
= (|y|2 + d2)−

n−2
2 O

(
dyn

|y|2 + d2

)
= (|y|2 + d2)−

n−2
2 O(d) = O(d−n+3).

Similarly, 
|y − x| − |y − x′′| = O(1) for n = 3, 5,

log |y − x| − log |y − x′′| = O(1) for n = 4,
1

|y−x| −
1

|y−x′′| = O(1) for n = 5.

For y ∈ ∂Ω ∩ (Rn\B(0, τ)), the above differences are also uniformly bounded. In other words,

∥gnλ∥L∞(∂Ω) = O(d−n+3).

In particular, ∥fn
λ ∥Lt(Ω) ≲ 1 for any t > n. By standard elliptic estimates, we obtain

∥Fn
λ ∥L∞(Ω) = O(d−n+3).

Hence, evaluating at x, we get

φn
λ(x) = Hn

λ (x, x) =


1

|y−x′′|n−2 − λ
2 |y − x′′| if n = 3

1
|y−x′′|n−2 − λ

2 log |x
′′ − y| if n = 4

1
|y−x′′|n−2 + λ

2
1

|x′′−y| − 2λ2|y − x′′| if n = 5

+O(d−n+3)

=
1

(2d(x, ∂Ω))n−2
(1 +O(d(x, ∂Ω))).

The estimate for |∇φn
λ(x)| follows analogously by applying interior gradient estimates under the

same reflections. □

Remark B.2. The estimate for φ in (2.10) follows with slight modifications to the above proof.
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[3] T. Aubin, Problémes isopérimétriques et espaces de Sobolev, J. Differential Geom 11 (1976), 573–598.
[4] A. Bahri and J. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of

the topology of the domain, Comm. Pure Appl. Math. 41 (1988), 253–294.
[5] M. Bhakta, D. Ganguly, D. Karmakar, and S. Mazumdar, Sharp quantitative stability of Poincare-Sobolev

inequality in the hyperbolic space and applications to fast diffusion flows, Calc. Var. Partial Differential Equations
64 (2025), Paper No. 23, 47 pp.

[6] , Sharp quantitative stability of Struwe’s decomposition of the Poincaré-Sobolev inequalities on the hy-
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