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Abstract. In this paper, we consider the following Caffarelli-Kohn-Nirenberg
(CKN for short) inequality(∫

Rd
|x|−b(p+1)|u|p+1dx

) 2
p+1

≤ Sa,b

∫
Rd

|x|−2a|∇u|2dx,

where d ≥ 2, p =
d+2(1+a−b)
d−2(1+a−b)

with{
a < b < a+ 1, d = 2,

a ≤ b < a+ 1, d ≥ 3,

Sa,b is the optimal constant and u ∈ D1,2
a (Rd) with

D1,2
a (Rd) =

{
u ∈ D1,2(Rd) |

∫
Rd

|x|−2a|∇u|2dx < +∞
}
.

Based on the ideas of [23, 54], we develop a suitable strategy to derive the

following sharp stability of the critical points at infinity of the above CKN

inequality in the degenerate case b = bFS(a) with a < 0 (the Felli-Schneider

curve): let ν ∈ N and u ∈ D1,2
a (Rd) be a nonnegative function such that(

ν −
1

2

)(
S−1
a,b

) p+1
p−1

< ∥u∥2
D

1,2
a (Rd)

<

(
ν +

1

2

)(
S−1
a,b

) p+1
p−1

,

then

inf−→
λ ν∈Rν

∥∥∥∥∥∥u−
ν∑

j=1

Wλj

∥∥∥∥∥∥
D

1,2
a (Rd)

≲ (Γ(u))
1
3 ,

provided Γ(u) sufficiently small, where

Γ(u) = ∥div(|x|−a∇u) + |x|−b(p+1)|u|p−1u∥
D

−1,2
a (Rd)

with D−1,2
a (Rd) being the dual space of D1,2

a (Rd), Wλ = λ− d−2−2a
2 W (λx)

with W (x) being the unique extremal function of the above CKN inequality
which is positive and radial up to dilations and scalar multiplications and
−→
λ ν = (λ1, λ2, · · · , λν). The above stability is sharp in the sense that the

power of the right hand side can not be improved any more. The significant
finding in our result is that in the degenerate case, the power of the optimal

stability is an absolute constant 1/3 (independent of p and ν) which is quite

different from the non-degenerate case considered in [23, 78]. We also believe
that our strategy of proofs might be useful in studying many other degenerate

problems.
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1. Introduction

1.1. Background and Previous Results. Let d ≥ 2 be a positive integer and
D1,2

a (Rd) be the Hilbert space given by

D1,2
a (Rd) =

{
u ∈ D1,2(Rd) |

∫
Rd

|x|−2a|∇u|2dx < +∞
}

(1.1) eqn886

with the inner product

⟨u, v⟩D1,2
a (Rd) =

∫
Rd

|x|−2a∇u∇vdx

and the induced norm ∥ · ∥D1,2
a (Rd) =

(
⟨·, ·⟩D1,2

a (Rd)

) 1
2

, where D1,2(Rd) = Ẇ 1,2(Rd)

is the usual homogeneous Sobolev space (cf. [41, Definition 2.1]) with D−1,2 being
the dual space. Then the following Caffarelli-Kohn-Nirenberg (CKN for short in
what follows) inequality(∫

Rd

|x|−b(p+1)|u|p+1dx

) 2
p+1

≤ Sa,b

∫
Rd

|x|−2a|∇u|2dx, (1.2) eq0001

which is established by Caffarelli, Kohn and Nirenberg in the celebrated paper [12]

in a more general version, holds for all u ∈ D1,2
a (Rd), where d ≥ 2, p = d+2(1+a−b)

d−2(1+a−b)

and {
a < b < a+ 1, d = 2,

a ≤ b < a+ 1, d ≥ 3.
(1.3) eq0003

As pointed out by Catrina andWang in [13], a fundamental task in understanding
a functional inequality is to study the best constants, existence (and nonexistence)
of extremal functions, as well as their qualitative properties and classifications,
which have played important roles in many applications by virtue of the complete
knowledge on the extremal functions. For the CKN inequality (1.2), it is known
that up to dilations uτ (x) = τac−au(τx) and scalar multiplications Cu(x) (also up
to translations u(x + y) for the spacial case a = b = 0), the radial function W (x)
given by

W (x) =
(
2(p+ 1)(ac − a)2

) 1
(p−1)

(
1 + |x|(ac−a)(p−1)

)− 2
p−1

(1.4) eq0004

is the unique extremal function of (1.2) in D1,2
a (Rd) for d ≥ 2 under the conditions

bFS(a) ≤ b < a+ 1 and a < 0, d ≥ 2,

a ≤ b < a+ 1 and a ≥ 0, d ≥ 3,

a < b < a+ 1 and a ≥ 0, d = 2,

(1.5) eq0003

where

bFS(a) =
d(ac − a)

2
√
(ac − a)2 + (d− 1)

+ a− ac > a

is the well known Felli-Schneider curve found in [50] and for the sake of simplicity,
we denote ac = d−2

2 , as in [30–32]. Precisely, Aubin and Talanti established the
existence and classification of the extremal functions of the CKN inequality (1.2)
for a = b = 0 in [3,76], respectively. As a special case, Lieb established the existence
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and classification of the extremal functions of the CKN inequality (1.2) for a = 0
and 0 < b < 1 in [64]. Chou and Chu established the existence and classification
of the extremal functions of the CKN inequality (1.2) for a ≥ 0 in [19]. Catrina
and Wang established the existence and nonexistence of extremal functions of the
CKN inequality (1.2) for a < 0 in [13]. Felli and Schneider proved in [50] that
extremal functions of the CKN inequality (1.2) must be nonradial if a < 0 and
a < b < bFS(a). Lin and Wang further proved in [65] that extremal functions of
(1.2) must have O(N − 1) symmetry for a < b < bFS(a) with a < 0. Dolbeault,
Esteban, Loss and Tarantello finally classified the extremal functions of the CKN
inequality (1.2) in [32,33] for a < 0 and bFS(a) ≤ b < a+1. Moreover, it is also well
known that W (x) is nondegenerate in D1,2

a (Rd) under the condition (1.5) except
b = bFS(a) (cf. [50]). That is, up to scalar multiplications CV (x),

V (x) := ∇W (x) · x− (ac − a)W (x) =
∂

∂λ

(
λ−(ac−a)W (λx)

)
|λ=1 (1.6) eq0010

is the only nonzero solution in D1,2
a (Rd) of the linearization of the Euler-Lagrange

equation of the CKN inequality (1.2) around W which is given by

−div(|x|−a∇u) = p|x|−b(p+1)W p−1u, u ∈ D1,2
a (Rd). (1.7) eq0017

However, if the parameters a and b lie on the Felli-Schneider curve, that is, b =
bFS(a) with a < 0, then the bubble W (x) is degenerate in D1,2

a (Rd) (cf. [54]). For
the sake of simplicity in what follows, we introduce the set

Z = {cWτ (x) | c ∈ R\{0} and τ > 0}

and the usual weighted Lebesgue space Lp+1(|x|−b(p+1),Rd) with the norm

∥u∥Lp+1(|x|−b(p+1),Rd) =

(∫
Rd

|x|−b(p+1)|u|p+1dx

) 1
p+1

. (1.8) eqnnewnew0002

As pointed out by Dolbeault and Esteban in [28] (see also Figalli in [40]), once op-
timal constants are known and the set of extremal functions has been characterised,
the next question is to understand stability: which kind of distance is measured
by the deficit, that is, the difference of the two terms in the functional inequality,
written with the optimal constant. These studies were initialed by Brezis and Lieb
in [8] by raising an open question for the classical Sobolev inequality,

S

(∫
Rd

|u|
2d

d−2 dx

) d−2
d

≤
∫
Rd

|∇u|2dx, u ∈ D1,2(Rd), (1.9) eqin0001

where S is the best Sobolev constant, which was settled partially by Egnell-Pacella-
Tricarico in [36] and completely by Bianchi-Egnell in [5] by proving that

0 < sBE = inf
u∈D1,2(Rd)\M

∥∇u∥2L2(Rd) − S∥u∥2
L

2d
d−2 (Rd)

(distD1,2(u,M))
2 , (1.10) eqin0002

where ∥·∥Lp(Rd) is the usual norm in the Lebesgue space Lp(Rd) and distD1,2(u,M) =
infv∈M ∥∇u−∇v∥L2(Rd) with

M = {cU [z, λ] | c ∈ R\{0}, z ∈ Rd and λ > 0},
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U being the standard Aubin-Talanti bubble and U [z, λ] = λ
d−2
2 U(λ(x−z)). Due to

the non-Hilbert property of W 1,p(Rd) for p ̸= 2, the generalization of the Bianchi-
Egnell stability (1.10) to the general Lp-Sobolev inequality takes a long time to
introduce new ideas and develop new techniques by Cianchi in [20], Cianchi-Fusco-
Maggi-Pratelli in [21], Figalli-Magggi-Pratelli in [47], Figalli-Neumayer in [48],
Fusco in [56], Fusco-Maggi-Pratelli in [57], Neumayer in [69] and finally, Figalli
and Zhang proved the optimal Bianchi-Egnell stability of the general Lp-Sobolev
inequality in [49]. The Bianchi-Egnell type stability like (1.10) was also general-
ized to many other famous inequalities. Since the literature on this topic is so
vast and this direction is not the main topic in our paper, we only refer the readers
to [9,16,18,27,34] for the Hardy-Littlewood-Sobolev inequality, [35,67,70,72,74] for
the Gagliardo-Nirenberg-Sobolev inequality, [7, 17, 37, 39, 51, 58, 59, 80] for the log-
arithmic Sobolev inequality, [1, 14, 25, 54, 77, 78] for the Caffarelli-Kohn-Nirenberg
inequality, [4, 6, 15, 53, 66] for various different kinds of Sobolev inequalities and
[11, 24, 38, 42–46, 55, 60, 68, 71] for many kinds of geometric inequalities. We would
like to highlight the survey [28] and the Lecture notes [40,52] to the readers for their
detailed introductions and references about the studies on the stability of functional
and geometrical inequalities. In particular, the Bianchi-Egnell type stability of the
CKN inequality (1.2) reads as follows:

(1) The nondegenerate case ( [78,79]). Let d ≥ 2 and either
(i) bFS(a) < b < a+ 1 with a < 0 or
(ii) a ≤ b < a+ 1 with a ≥ 0 and a+ b > 0 (a < b for d = 2).
Then

0 < cBE = inf
u∈D1,2

a (Rd)\Z

∥u∥2
D1,2

a (Rd)
− S−1

a,b∥u∥2Lp+1(|x|−b(p+1),Rd)(
distD1,2

a
(u,Z)

)2 ,

where distD1,2
a

(u,Z) = infv∈Z ∥u− v∥D1,2
a (Rd).

(2) The degenerate case ( [54]). Let d ≥ 2 and b = bFS(a) with a < 0. Then

0 < cBE = inf
u∈D1,2

a (Rd)\Z

∥u∥2
D1,2

a (Rd)

(
∥u∥2

D1,2
a (Rd)

− S−1
a,b∥u∥2Lp+1(|x|−b(p+1),Rd)

)
(
distD1,2

a
(u,Z)

)4 .

We remark that Bianchi and Egnell’s arguments for (1.10) depends on the non-
degeneracy of the Aubin-Talanti bubble U in D1,2(Rd). Thus, to establish the
Bianchi-Egnell type stability of the CKN inequality (1.2) in the degenerate case,
Frank and Peteranderl introduced new ideas and developed new techniques to ex-
pand the deficit of the CKN inequality (1.2) up to the fourth order terms in [54],
as that in [53]. We would like to mention the paper [10] where Carlen and Figalli
proved a quantitative convergence result for the critical mass Keller-Segel system
by the Bianchi-Egnell type stability of Gagliardo-Nirenberg-Sobolev inequality and
the logarithmic Hardy-Littlewood-Sobolev inequality, which provides the potential
applications of the studies on the stability of many other inequalities. We also want
to mention the paper [9], where Carlen developed a dual method to establish the
stability of functional inequalities. Finally, we also want to mention that in the very
recent papers [61–63], Konig proved that sBE is attainable which gives a positive
answer to the open question proposed by Dolbeault, Esteban, Figalli, Frank and
Loss in [29] and makes the key step in answering the long-standing open question
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of determining the best constant sBE . Konig’s result on sBE has been generalized
to cBE in the nondegenerate case in our very recent paper [79]. Moreover, the opti-
mal constant cBE in the degenerate case was determined by Frank and Peteranderl
in [54].

On the other hand, it is well known that all critical points at infinity of the
corresponding functional of the Sobolev inequality (1.9) are induced by limits of
sums of Aubin-Talenti bubbles (at least if we consider only nonnegative functions)
which can be precisely stated as follows.

⟨thm0003⟩Theorem 1.1. (Struwe [75]) Let d ≥ 3 and ν ≥ 1 be positive integers. Let
{un} ⊂ D1,2(Rd) be a nonnegative sequence with(

ν − 1

2

)
S

d
2 < ∥∇un∥2L2(Rd) <

(
ν +

1

2

)
S

d
2 ,

where S is the best Sobolev constant. Assume that
∥∥∥∆un + |un|

4
d−2un

∥∥∥
D−1,2

→ 0

as n→ ∞, then there exist a sequence (z
(n)
1 , z

(n)
2 , · · · , z(n)ν ) of ν-tuples of points in

Rd and a sequence of (λ
(n)
1 , λ

(n)
2 , · · · , λ(n)ν ) of ν-tuples of positive real numbers such

that ∥∥∥∥∥∇un −
ν∑

i=1

∇U [z
(n)
i , λ

(n)
i ]

∥∥∥∥∥
L2(Rd)

→ 0 as n→ ∞.

Based on the above well-known Struwe decomposition, Ciraolo, Figalli, Glaudo
and Maggi proposed the following question on the stability of critical points at
infinity of the corresponding functional of the Sobolev inequality (1.9):

(Q) Let d ≥ 3, ν ≥ 1 be positive integers and

Mν
0 =

{
ν∑

i=1

U [zi, λi] | zi ∈ Rd, λi > 0

}
.

If u ∈ D1,2(Rd) is nonnegative,(
ν − 1

2

)
S

d
2 < ∥∇u∥2L2(Rd) <

(
ν +

1

2

)
S

d
2

and
∥∥∥∆u+ |u|

4
d−2u

∥∥∥
D−1,2

<< 1, does there exist a constant C(d, ν) such

that

distD1,2(u,Mν
0) ≤ C(d, ν)

∥∥∥∆u+ |u|
4

d−2u
∥∥∥
D−1,2

?

Remark 1.1. The original question ( [41, Problem 1.2]) is more general than (Q)
stated here in the sense that, u could be sign-changing if u is close to the sum
of U [zi, λi] in D1,2(Rd) where U [zi, λi] are weakly interacting (the definition of
weakly interaction can be found in [41, Definition 3.1]). We choose to state the
question (Q) since it is more close to Theorem 1.1 (Struwe [75]).

In the recent papers [22,41], Ciraolo, Figalli, Glaudo and Maggi proved the following
results by the energy method:
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(1) (Ciraolo-Figalli-Maggi [22]) Let d ≥ 3 and u ∈ D1,2(Rd) be positive such

that ∥∇u∥2L2(Rd) ≤ 3
2S

d
2 and

∥∥∥∆u+ |u|
4

d−2u
∥∥∥
D−1,2

≤ δ for some δ > 0

sufficiently small, then

distD1,2(u,M1
0) ≲

∥∥∥∆u+ |u|
4

d−2u
∥∥∥
D−1,2

.

(2) (Figalli-Glaudo [41]) Let u ∈ D1,2(Rd) be nonnegative and ν ≥ 2 be an
integer such that(

ν − 1

2

)
S

d
2 < ∥∇u∥2L2(Rd) <

(
ν +

1

2

)
S

d
2

and
∥∥∥∆u+ |u|

4
d−2u

∥∥∥
D−1,2

≤ δ for some δ > 0 sufficiently small, then

distD1,2(u,Mν
0) ≲

∥∥∥∆u+ |u|
4

d−2u
∥∥∥
D−1,2

for 3 ≤ d ≤ 5.

It is worth pointing out that a significant finding in [41] is that Figalli and Glaudo
construct a counterexample for ν = 2 and d ≥ 6 to show that the answer of the
question (Q) for ν ≥ 2 and d ≥ 6 is negative! Based on their counterexample for
d ≥ 6, Figalli and Glaudo conjectured in [41] that the stability of critical points at
infinity of the corresponding functional of the Sobolev inequality (1.9) should be of
the following nonlinear form:

distD1,2(u,Mν
0) ≲


∥∆u+ |u|u∥D−1,2 | ln(∥∆u+ |u|u∥D−1,2)|, ν ≥ 2 and d = 6;∥∥∥∆u+ |u|

4
d−2u

∥∥∥γ(d)
D−1,2

, ν ≥ 2 and d ≥ 7

with 0 < γ(d) < 1. In the recent work [23], the first author, together with Deng
and Sun, proved that the stability of critical points at infinity of the corresponding
functional of the Sobolev inequality (1.9) is actually of the following nonlinear form
by combining the energy method, the reduction argument and the blow-up analysis:

distD1,2(u,Mν
0) ≲


∥∆u+ |u|u∥D−1,2 | ln(∥∆u+ |u|u∥D−1,2)| 12 , ν ≥ 2 and d = 6;∥∥∥∆u+ |u|

4
d−2u

∥∥∥ d+2
2(d−2)

D−1,2
, ν ≥ 2 and d ≥ 7.

Moreover, the powers of the right hand sides in the above estimates are shown to be
optimal in [23] by constructing related examples. We remark that besides its own
mathematical interests, the stability of critical points at infinity of the correspond-
ing functional of the Sobolev inequality (1.9) can be used to prove quantitative
convergence results for the fast diffusion equation, see, for example [22, 41] and
due to the mathematical interests and potential applications, the stability of crit-
ical points at infinity of the corresponding functional of other famous functional
inequalities have already been established, see, for example by Aryan in [2] and De
Nitti and Konig in [26] for the fractional Sobolev inequality, and by us in [78] for the
CKN inequality (1.2) in the nondegenerate case. In particular, the stability of crit-
ical points at infinity of the corresponding functional of the CKN inequality (1.2)
in the nondegenerate case is stated as follows.

⟨thm0002⟩Theorem 1.2. Let d ≥ 2 and ν ≥ 1 be positive integers and either

(i) bFS(a) < b < a+ 1 with a < 0 or
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(ii) a < b < a+ 1 with a ≥ 0 and a+ b > 0.

Then for any nonnegative u ∈ D1,2
a (Rd) such that(

ν − 1

2

)
(S−1

a,b)
p+1
p−1 < ∥u∥2

D1,2
a (Rd)

<

(
ν +

1

2

)
(S−1

a,b)
p+1
p−1

and Γ(u) ≤ δ with some δ > 0 sufficiently small, we have

distD1,2
a

(u,Zν
0 ) ≲


Γ(u), p > 2 or ν = 1,

Γ(u)| log Γ(u)| 12 , p = 2 and ν ≥ 2,

(Γ(u))
p
2 , 1 < p < 2 and ν ≥ 2,

(1.11) eqnnewnew0001

where Γ(u) = ∥div(|x|−a∇u) + |x|−b(p+1)|u|p−1u∥D−1,2
a (Rd) and

Zν
0 =

{
ν∑

i=1

Wτi | τi > 0

}
.

Moreover, the powers of the right hand sides in the above estimates are sharp in the
sense that there exists {un} ⊂ D1,2

a (Rd) which are nonnegetive and {τj,n} ⊂ R+ :=
(0,+∞) such that∥∥∥∥∥∥un −

ν∑
j=1

Wτj,n

∥∥∥∥∥∥
D1,2

a (Rd)

∼


Γ(un), p > 2 or ν = 1,

Γ(un)| log Γ(un)|
1
2 , p = 2 and ν ≥ 2,

(Γ(un))
p
2 , 1 < p < 2 and ν ≥ 2.

We remark that Theorem 1.2 is a direct generalization of the Ciraolo-Figalli-
Maggi, Figalli-Glaudo and Deng-Sun-Wei results in [22, 23, 41] for the Sobolev in-
equality (1.9) to the CKN inequality (1.2) in the nondegenerate case, which was
mainly based on the following Struwe decomposition of critical points at infinity of
the corresponding functional of the CKN inequality (1.2).

⟨prop0002⟩Proposition 1.1. ( [78, Proposition 3.2] or [13, Lemma 4.2]) Let d ≥ 2 and
ν ≥ 1 be positive integers and either

(i) bFS(a) ≤ b < a+ 1 with a < 0 or
(ii) a < b < a+ 1 with a ≥ 0 and a+ b > 0.

If {wn} be a nonnegative sequence with(
ν − 1

2

)
(S−1

a,b)
p+1
p−1 < ∥wn∥2D1,2

a (Rd)
<

(
ν +

1

2

)
(S−1

a,b)
p+1
p−1

then there exists {τi,n} ⊂ R+ := (0,+∞), satisfying

min
i ̸=j

{
max

{
τi,n
τj,n

,
τj,n
τi,n

}}
→ +∞

as n→ ∞ for ν ≥ 2, such that

(1) wn =
∑ν

i=1Wτi,n + on(1) in D
1,2
a (Rd).

(2) ∥wn∥2D1,2
a (Rd)

= ν∥W∥2
D1,2

a (Rd)
+ on(1).
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1.2. Main result. Since the Struwe decomposition (Proposition 1.1) of critical
points at infinity of the corresponding functional of the CKN inequality (1.2) also
holds in the degenerate case b = bFS(a) with a < 0. It is natural to ask the following
question:

(Q) Does the stability of critical points at infinity of the corresponding func-
tional of the CKN inequality (1.2) like (1.11) holds true in the degenerate
case?

We shall answer the natural question (Q) by proving the following sharp result.

⟨thmn0001⟩Theorem 1.3. Let d ≥ 2, ν ≥ 1 be positive integers and b = bFS(a) with a < 0.

(1) Suppose u ∈ D1,2
a (Rd) be a nonnegative function such that(

ν − 1

2

)(
S−1
a,b

) p+1
p−1

< ∥u∥2
D1,2

a (Rd)
<

(
ν +

1

2

)(
S−1
a,b

) p+1
p−1

. (1.12) eqqqnew0001

Then we have distD1,2
a

(u,Zν
0 ) ≲ (Γ(u))

1
3 , provided Γ(u) sufficiently small,

where Γ(u) and Zν
0 are given in Theorem 1.2.

(2) There exists {un} ⊂ D1,2
a (Rd), which are nonnegative and satisfies (1.12)

with ν = 2 and Γ(un) → 0, and {τj,n} ⊂ R+ := (0,+∞) such that∥∥∥∥∥∥un −
2∑

j=1

Wτj,n

∥∥∥∥∥∥
D1,2

a (Rd)

∼ (Γ(un))
1
3 .

Remark 1.2. (i) Theorem 1.3 is rather surprising since the optimal power
of the stability of critical points at infinity of the corresponding functional of
the CKN inequality (1.2) in the degenerate case is an absolute constant
1
3 which is independent of p and ν! This is a completely new finding in
the studies on the stability of critical points at infinity of the corresponding
functional of functional inequalities. This new finding can be explained by
the optimal example of the stability stated in (2) of Theorem 1.3 which is
constructed in the last section. Roughly speaking, for the two-bubble case as
an example, the optimal power of the stability of critical points at infinity
of the corresponding functional of the CKN inequality (1.2) depends on two
values, the interaction between bubbles which is measured by the distance of
these bubbles and the projections on their nontrivial kernels. If the interac-
tion wins the projections then the optimal power of the stability of critical
points at infinity of the corresponding functional will be the values in The-
orem 1.2 which depends on p and ν. If the projections win the interaction
then the optimal power of the stability of critical points at infinity of the
corresponding functional will be the absolute constant 1

3 . If the projections
and the interaction are comparable then the optimal power of the stability
of critical points at infinity of the corresponding functional can be any val-
ues between the values of Theorem 1.2 and the absolute constant 1

3 , which
depends on the ratio of the projections and the interaction. We refer the
readers to Remark 9.1 for more details. Since the function u ∈ D1,2

a (Rd)
discussed in (1) of Theorem 1.3 is arbitrary, the optimal power of the sta-
bility must be the absolute constant 1

3 .
(ii) In preparing this paper, we knew from personal communications with

Professor W. Zou that their group was also working on the question (Q)
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for the one-bubble case. Moreover, we notice that in a very recent paper [81],
the optimal stability for the one-bubble case has been established by Zhou and
Zou, while for the multi-bubble case only a partial result is obtained by them.
Indeed, by assuming that the projections on the nontrivial kernels are much
smaller than the interactions, they obtained a stability result with the same
exponent in the non-degenerate case (Theorem 1.2), which is just one of the
three cases we explained in (i). However, as explained in (i), Theorem 1.3
tells that the most important contribution in the optimal stability comes
exactly from the projections on the nontrivial kernels.

1.3. Sketch of the proof. The basic idea in proving Theorem 1.3 is still to apply
the Deng-Sun-Wei arguments in [23], as in [78]. Since the bubble W is degenerate
now, we need also employ the Frank-Peteranderl strategy in [54]. However, since
our problem is in the critical point setting, new ideas and new techniques are also
needed to develop. Let us now explain our strategy in proving Theorem 1.3 in what
follows.

In the first step, we need to set a good problem. Suppose that u ∈ D1,2
a (Rd)

be a nonnegative function. We first transform the problem onto the cylinder C =
R × Sd−1, as usual. Then, based on the Struwe decomposition (Proposition 1.1),
the basic idea is to decompose v, the image of the bubble u on the cylinder C, into
two parts, as in [22,23,41,78], by considering the following minimizing problem

inf−→α ν∈(R+)ν ,−→s ν∈Rν

∥∥∥∥∥∥v −
ν∑

j=1

αjΨsj

∥∥∥∥∥∥
2

,

so that we can write v =
∑ν

j=1 α
∗
jΨs∗j

+ρ where the remaining term ρ is orthogonal

to
{
Ψs∗j

}
and

{
∂tΨs∗j

}
in H1(C) with Ψ being the image of the bubble W on the

cylinder C and Ψs(t) = Ψ(t − s). Since the bubble Ψ is degenerate now, we need
further decompose the remaining term ρ and further write

v =

ν∑
j=1

α∗
jΨs∗j

+

 ν∑
j=1

d∑
l=1

β∗
j,lwj,l

+ ρ∗,

where {wj,l} are the nontrivial kernels of Ψs∗j
and the remaining term ρ∗ is orthog-

onal to {Ψs∗j
},
{
∂tΨs∗j

}
and {wj,l} in H1(C), as in [54]. Since we are in the critical

point setting, the remaining term ρ∗ will also satisfy an elliptic equation:{
L(ρ∗) = f +Rint +N , in C,
⟨Ψs∗j

, ρ∗⟩ = ⟨∂tΨs∗j
, ρ∗⟩ = ⟨wj,l, ρ∗⟩ = 0 for all 1 ≤ j ≤ ν and all 1 ≤ l ≤ d.

Now, our aim is to control
∑ν

j=1

∣∣α∗
j − 1

∣∣, {β∗
k,l} and ∥ρ∗∥ by ∥f∥H−1 , which also

needs us to control the interaction between bubbles by ∥f∥H−1 due to the regular
interaction Rint.

In the second step, we need to expand the nonlinear part N and the regular
interaction Rint in the equation of ρ∗ to control

∑ν
j=1

∣∣α∗
j − 1

∣∣, {β∗
k,l}, the inter-

action between bubbles and ∥ρ∗∥ by ∥f∥H−1 , as in [23, 78]. Roughly speaking, we
shall further decompose ρ∗ into two parts, the first part is regular enough so that
we can control it very well in any reasonable sense and the second part is (possible)
singular due to the (possible) singularity of the data f ∈ H−1 but it can lie in the
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positive definite part of the linear operator L and is small enough. We notice that
in the functional inequality setting, Frank and Peteranderl have proved in [54] that
the optimal Bianchi-Egnell stability of the CKN inequality (1.2) in the degenerate
case is quartic and the projection onto nontrivial kernels dominates the remain-
ing term, thus, it is reasonable to expand the nonlinear part N at least up to the
fourth order terms and to ensure that the (possible) singular part of the remain-
ing term ρ∗ is smaller than or equal to β4

∗ by decomposing it in a suitable way,

where β∗ := maxk,l

∣∣∣β∗
k,l

∣∣∣. Keeping this in minds, we expand the nonlinear part N
up to the fourth order terms and pick up all regular parts of Rint +N which are
potentially larger than β4

∗ and solve several linear equations to decompose ρ∗ into
ρ∗ = ρ0 + ρ⊥∗∗, where ρ0 is the regular part and ρ⊥∗∗ is the (possible) singular part.
We remark that we need two sub-steps to pick up all regular parts of Rint + N
which are potentially larger than β4

∗ . In the first sub-step, we pick up the leading
order terms in this progress which, roughly speaking, behaviors like β2

∗ . In the
second sub-step, we further pick up the next order terms in this progress which are
generated by the leading order terms and roughly speaking, behaviors like βt

∗ for
2 < t < 4. We remark that in order to pick up all the next order terms which are

potentially larger than β4
∗ , we need to iterate second sub-step for max

{[
2p−1
p−1

]
, 4
}

times.
In the third step, we need to multiply the equation of ρ∗ by {Ψs∗j

}, {∂tΨs∗j
}

and {wj,l}, and multiply the equation of ρ⊥∗∗ by ρ⊥∗∗ to establish the relations of∑ν
j=1

∣∣α∗
j − 1

∣∣, {β∗
k,l}, the interaction between bubbles, ∥ρ∗∥ and ∥f∥H−1 , as in

[23,78]. It is worth pointing out that even though we have picked up all regular parts
ofRint+N which are potentially larger than β4

∗ , we still need to refine the expansion
of the nonlinear part N for three times, respectively, in estimating

∑ν
j=1

∣∣α∗
j − 1

∣∣,
the interaction between bubbles and ∥ρ⊥∗∗∥. In particular, to keep the (possible)
singular part ρ⊥∗∗ in the desired size, we need to expand the nonlinear part N
up to the max

{[
2p−1
p−1

]
, 6
}
th order terms. Moreover, in order to ensure that the

(possible) singular part of the remaining term ρ∗ is smaller than or equal to β4
∗ , we

also need to decompose the regular part ρ0 into several parts, analyze the symmetry
of these parts and then full use these symmetry and the orthogonality of ρ⊥∗∗ in the
equation of ρ⊥∗∗. However, even though these estimates are good enough, we still
can not finally control

∑ν
j=1

∣∣α∗
j − 1

∣∣, {β∗
k,l}, the interaction between bubbles and

∥ρ∗∥ only by ∥f∥H−1 by only using the above analysis. This is mainly because β4
∗

can only be bounded from above by a very special quartic form, as observed by
Frank and Peteranderl in [54]. Thus, we need to find out the right third equation
to march this special quartic form and ensure that we will not enlarge the upper
bounds in the original estimates of

∑ν
j=1

∣∣α∗
j − 1

∣∣, {β∗
k,l}, the interaction between

bubbles, ∥ρ∗∥ and ∥f∥H−1 in this progress, which is achieved by full using the
symmetry and the orthogonality of the remaining term ρ∗ once more.

In the final step, we use all above estimates of
∑ν

j=1

∣∣α∗
j − 1

∣∣, {β∗
k,l}, the inter-

action between bubbles, ∥ρ∗∥ and ∥f∥H−1 and the estimates of β4
∗ established by

Frank and Peteranderl in [54] to derive the desired estimate in (1) of Theorem 1.3.
The proof of (2) of Theorem 1.3 is achieved by constructing an example of the case

ν = 2 and using the good ansatz
∑2

j=1 α
∗
jΨs∗j

+
(∑2

j=1

∑d
l=1 β

∗
j,lwj,l

)
+ ρ0 in the

proof of (1) of Theorem 1.3.
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We believe that our strategy of proofs may be useful to study many other prob-
lems in which degeneracy appears.

1.4. Structure of this paper. In section 2, we give some preliminaries. In sec-
tion 3, we introduce the setting of the problem as stated above by decomposing a
given function into three parts, the projection on bubbles, the projection on non-
trivial kernels and the remaining term. In section 4, we expand the nonlinear part
of the remaining term up to the fourth order terms to pick up all possible lead-
ing order terms in it and use these possible leading order terms to decompose the
remaining term into two parts, the good regular part and the (possible) singular
part, as stated above. In section 5, we refine the expansion of the nonlinear part
in the first time by adding the regular part of the remaining term into the ansatz
and estimates the differences of the projection on bubbles. In section 6, we refine
the expansion of the nonlinear part in the second time by expanding it up to the
sixth order terms to estimate the interaction between bubbles. In section 7, we
refine the expansion of the nonlinear part in the third time by expanding it up to

the max
{[

2p−1
p−1

]
, 4
}
th order terms to estimate the (possible) singular part in the

remaining part. In section 8, we finally estimate the projection on nontrivial kernels
and prove (1) of Theorem 1.3. In section 9, we construct an optimal example and
prove (2) of Theorem 1.3.

1.5. Notations. Throughout this paper, a ∼ b means that C ′b ≤ a ≤ Cb and
a ≲ b means that a ≤ Cb where C and C ′ are positive constants. σ ∈ (0, 1) is
used to denote a positive constant which can be taken arbitrary small if necessary,
(R+)

ν = ((0,+∞))
ν
and we also denote

Ap,l−1 =
πl−1
j=0(p− j)

l!
and n0 = min

{
n ∈ N | n ≥

{
p

p− 1
, 4

}}
.

2. Preliminaries

The CKN inequality (1.2) can be rewritten into the following minimizing prob-
lem:

S−1
a,b = inf

u∈D1,2
a (Rd)\{0}

∥u∥2
D1,2

a (Rd)

∥u∥2
Lp+1(|x|−b(p+1),Rd)

, (2.1) eq0002

where Lp+1(|x|−b(p+1),Rd) is the usual weighted Lebesgue space and its usual norm
is given by (1.8). The Euler-Lagrange equation of the minimizing problem (2.1) is
given by

−div(|x|−a∇u) = |x|−b(p+1)|u|p−1u, u ∈ D1,2
a (Rd). (2.2) eq0018

It is well known (cf. [13, Proposition 2.2]) that D1,2
a (Rd), the Hilbert space given

by (1.1), is isomorphic to the Hilbert space H1(C) by the transformation

u(x) = |x|−(ac−a)v

(
− ln |x|, x

|x|

)
, (2.3) eq0007

where we recall that we denote ac =
d−2
2 as in [30–32], C = R×Sd−1 is the standard

cylinder, H1(C) is the Hilbert space with the inner product given by

⟨w, v⟩ =
∫
C

(
∇w∇v + (ac − a)2wv

)
dµ
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with dµ the volume element on C and the induced norm is denoted by ∥·∥. By (2.3),
the minimizing problem (2.1) is equivalent to the following minimizing problem:

S−1
a,b = inf

v∈H1(C)\{0}

∥v∥2

∥v∥2Lp+1(C)
, (2.4) eq0009

where ∥ · ∥Lp+1(C) is the usual norm in the Lebesgue space Lp+1(C). For the sake
of simplicity, we denote

Lp+1 := Lp+1(C) and H1 := H1(C)

in what follows. Let t = − ln |x| and θ = x
|x| for x ∈ RN\{0}, then the Euler-

Lagrange equation of (2.1) in terms of u given by (2.2) is equivalent to the following
Euler-Lagrange equation of (2.4) in terms of v:

−∆θv − ∂2t v + (ac − a)2v = |v|p−1v, v ∈ H1(C), (2.5) eq0006

where ∆θ is the Laplace-Beltrami operator on Sd−1.

Clearly, minimizers of (2.1) are ground states of (2.2). Moreover, by the trans-
formation (2.3), the linear equation (1.7) can be rewritten as follows:

−∆θv − ∂2t v + (ac − a)2v = pΨp−1v, v ∈ H1(C), (2.6) eq0016

where

Ψ(t) =

(
(p+ 1)(ac − a)2

2

) 1
p−1
(
cosh

(
(ac − a)(p− 1)

2
t

))− 2
p−1

(2.7) eq0026

is the image of W (x) which is given by (1.4) under the transformation (2.3). Since
(2.6) is translational invariance, it follows from (1.6) and the transformation (2.3)
that

Ψ′
s(t) = Ψ′(t− s) = ∂tΨ(t− s) = −∂sΨ(t− s)

is the only nonzero solution of (2.6) in H1(C) under the condition (1.5) except
b = bFS(a).

For the special case b = bFS(a), the bubble Ψ(t) is degenerate in H1(C) in the
sense that the nonzero solution of (2.6) in H1(C) is not only generated by the
translational invariance of (2.5). Fortunately, we have the following lemma which
provides a complete understanding of the solutions of the linear equation (2.6) in
H1(C).

⟨lem0001⟩Lemma 2.1. ( [54, Lemma 7]) Let d ≥ 2, a < 0 and b = bFS(a). Then any
solution of the linear equation (2.6) in H1(C) is the linear combination of ∂tΨ

and Ψ
p+1
2 θ1,Ψ

p+1
2 θ2, · · · ,Ψ

p+1
2 θd, where θl are the standard spherical harmonics of

degree 1 on Sd−1.

⟨rmk0001⟩Remark 2.1. As in [54], we call ∂tΨ the trivial kernel of the linear equation (2.6)

in H1(C) and call Ψ
p+1
2 θ1,Ψ

p+1
2 θ2, · · · ,Ψ

p+1
2 θd the nontrivial kernels of the linear

equation (2.6) in H1(C). Moreover, since θl are odd on Sd−1, ∂tΨ is odd in R and
Ψ is even in R, by (2.5) and (2.6), we have the following orthogonal conditions:

⟨Ψ, ∂tΨ⟩ = 0, ⟨Ψ, wl⟩ = 0, ⟨∂tΨ, wl⟩ = 0 and ⟨wj , wl⟩ = 0

for all 1 ≤ j ̸= l ≤ d, where wl = Ψ
p+1
2 θl.
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3. Setting of the problem

Let d ≥ 2, a < 0 and b = bFS(a). Then direct calculations show that

(ac − a)2 =
4(d− 1)

(p+ 1)2 − 4
.

For the sake of simplicity, we denote that

SFS := Sa,b and ΛFS :=
4(d− 1)

(p+ 1)2 − 4

for d ≥ 2, a < 0 and b = bFS(a). Let v ∈ H1(C) be a nonnegative function such
that (

ν − 1

2

)(
S−1
FS

) p+1
p−1 < ∥v∥2 <

(
ν +

1

2

)(
S−1
FS

) p+1
p−1

for some positive integer ν ≥ 1 and denote

f := −∆θv − ∂2t v + ΛFSv − vp. (3.1) eq0060

Then it is easy to see that f ∈ H−1(C), where H−1(C) is the dual space of H1(C).
For the sake of simplicity, we denote H−1(C) by H−1.

By Proposition 1.1 and (2.3), there exists (s1,♮, s2,♮, · · · , sν,♮) satisfying

min
i ̸=j

|si,♮ − sj,♮| → +∞ as ∥f∥H−1 → 0,

such that ∥∥∥∥∥∥v −
ν∑

j=1

Ψsj,♮

∥∥∥∥∥∥
2

→ 0 as ∥f∥H−1 → 0. (3.2) eqn0005

Thus, we can rewrite

v =

ν∑
j=1

Ψsj,♮ + a remaining term

in H1 as ∥f∥H−1 → 0. To obtain an optimal decomposition in the above form, let
us consider the following minimizing problem:

inf−→α ν∈(R+)ν ,−→s ν∈Rν

∥∥∥∥∥∥v −
ν∑

j=1

αjΨsj

∥∥∥∥∥∥
2

, (3.3) eqn0001

where −→α ν = (α1, α2, · · · , αν) and −→s ν = (s1, s2, · · · , sν). By (3.2) and similar
arguments used for [78, Proposition 4.1] (see also [54, Proposition 2]), we know
that the variational problem (3.3) has minimizers, say (−→α ∗

ν ,
−→s ∗

ν), such that

max
1≤j≤ν

|α∗
j − 1| → 0 and min

i ̸=j

∣∣s∗i − s∗j
∣∣→ +∞ as ∥f∥H−1 → 0. (3.4) eqn1005

Thus, we can decompose

v =

ν∑
j=1

α∗
jΨs∗j

+ ρ (3.5) eqnewnew0002
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where by (3.2),

∥ρ∥2 = inf−→α ν∈(R+)ν ,−→s ν∈Rν

∥∥∥∥∥∥v −
ν∑

j=1

αjΨsj

∥∥∥∥∥∥
2

→ 0 as ∥f∥H−1 → 0 (3.6) eqn0008

and by the minimality of (−→α ∗
ν ,
−→s ∗

ν),〈
ρ,Ψs∗j

〉
= 0 and

〈
ρ, ∂tΨs∗j

〉
= 0 for all 1 ≤ j ≤ ν. (3.7) eqn0004

Since by Lemma 2.1, the linear equation (2.6) has nontrivial kernels in H1 for d ≥ 2,
a < 0 and b = bFS(a), we need further decompose the remaining term as follows:

ρ =

 ν∑
j=1

d∑
l=1

β∗
j,lwj,l

+ ρ∗, (3.8) eqn0002

where for the sake of simplicity, we denote wj,l = Ψ
p+1
2

j θl = wl(t− s∗j ) and {β∗
j,l} is

chosen such that ⟨wj,l, ρ∗⟩ = 0 for all 1 ≤ j ≤ ν and all 1 ≤ l ≤ d. The above facts
can be summarized into the following lemma.

⟨lem0002⟩Lemma 3.1. Let d ≥ 2, a < 0 and b = bFS(a). Then we have the following
decomposition of v:

v =

ν∑
j=1

α∗
jΨs∗j

+

 ν∑
j=1

d∑
l=1

β∗
j,lwj,l

+ ρ∗, (3.9) eqnewnew0003

where the remaining term ρ∗ satisfies the following orthogonal conditions:〈
ρ∗,Ψs∗j

〉
= 0,

〈
ρ∗, ∂tΨs∗j

〉
= 0 and ⟨ρ∗, wj,l⟩ = 0 (3.10) eqn0003

for all 1 ≤ j ≤ ν and all 1 ≤ l ≤ d with

max
1≤j≤ν

|α∗
j − 1| → 0, min

i ̸=j

∣∣s∗i − s∗j
∣∣→ +∞ and ∥ρ∗∥ → 0 (3.11) eqnewnew1005

as ∥f∥H−1 → 0. Moreover, we also have

inf−→α ν∈(R+)ν ,−→s ν∈Rν

∥∥∥∥∥∥v −
ν∑

j=1

αjΨsj

∥∥∥∥∥∥
2

∼
ν∑

k=1

d∑
l=1

(
β∗
k,l

)2
+ ∥ρ∗∥2. (3.12) eqnewnew0001

Proof. (3.9) can be obtained by (3.5) and (3.8), directly, while the orthogonal condi-
tions of ρ∗ are obtained by the choice of {β∗

j,l}, the orthogonal conditions of {wj,l}
given in Remark 2.1 and the orthogonal condition of ρ given by (3.7). By (3.4)
and (3.6), it remains to show that (3.12) holds true as ∥f∥H−1 → 0. Indeed, by
(3.8) and the orthogonal conditions of wj,l given in Remark 2.1 and the orthogonal
conditions of ρ∗ given by (3.10),

∥ρ∥2 =

ν∑
k=1

d∑
l=1

(
β∗
k,l

)2 ∥wd∥2 + ∥ρ∗∥2

+2

ν∑
m,n=1;m<n

d∑
l=1

β∗
n,lβ

∗
m,l ⟨wn,l, wm,l⟩ , (3.13) eqn0006
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where we have used the invariance of Sd−1 and the norm ∥ · ∥ under the action of
orthogonal matrix O(d). Clearly, by (3.4) and (3.13), it is easy to see that

∥ρ∥2 ∼
ν∑

k=1

d∑
l=1

(
β∗
k,l

)2
+ ∥ρ∗∥2,

which, together with (3.6), implies that (3.12) holds true as ∥f∥H−1 → 0. □

For the sake of simplicity, we use the notations Ψj := Ψs∗j
, Ψ∗

j = α∗
jΨj ,

U :=

ν∑
j=1

Ψ∗
j , Uj = U −Ψ∗

j =

ν∑
i=1;i̸=j

Ψ∗
i (3.14) eqn0140

and

Vj =

d∑
l=1

β∗
j,lwj,l = Ψ

p+1
2

j

(
d∑

l=1

β∗
j,lθl

)
, V :=

ν∑
j=1

Vj . (3.15) eqn0040

Since Ψj are solutions of (2.5) and wj,l are solutions of (2.6), by (3.1), (3.5), (3.8)
and (3.10), it is easy to see that the remaining term ρ∗ satisfies:{

L(ρ∗) = f +R1 +R2 +N , in C,
⟨Ψj , ρ∗⟩ = ⟨∂tΨj , ρ∗⟩ = ⟨wj,l, ρ∗⟩ = 0 for all 1 ≤ j ≤ ν and all 1 ≤ l ≤ d,

(3.16) eq0014

where L(ρ∗) is the linear operator given by

L(ρ∗) = −∂2t ρ∗ −∆θρ∗ + ΛFSρ∗ − pUp−1ρ∗

=
(
−∂2t ρ∗ −∆θρ∗ + ΛFSρ∗ − p

(
Ψ∗

j

)p−1
ρ∗

)
− p

(
Up−1 −

(
Ψ∗

j

)p−1
)
ρ∗

:= Lj(ρ∗)− Lj,ex(ρ∗) (3.17) eqn0044

for all j = 1, 2, · · · , ν, R1 and R2 are the regular interactions given by

R1 = Up −
ν∑

j=1

(
Ψ∗

j

)p
+

ν∑
j=1

((
α∗
j

)p − α∗
j

)
Ψp

j

:= R1,ex +

ν∑
j=1

R1,j (3.18) eqn0020

and

R2 =

ν∑
j=1

p
(
Up−1 −

(
Ψ∗

j

)p−1
+
(
(α∗

j )
p−1 − 1

)
Ψp−1

j

)
Vj

=

ν∑
j=1

p
(
Up−1 −

(
Ψ∗

j

)p−1
)
Vj +

ν∑
j=1

p
((

(α∗
j )

p−1 − 1
)
Ψp−1

j

)
Vj

:= R2,ex +

ν∑
j=1

R2,j , (3.19) eqn0021

and N is the only nonlinear part of ρ∗ given by

N = (U + V + ρ∗)
p − Up − pUp−1 (V + ρ∗) . (3.20) eqnewnew8856
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By (3.12), to establish stability of the CKN inequality in the critical point setting
for d ≥ 2, a < 0 and b = bFS(a) as in [23, 41, 78], we shall control

∑ν
j=1

∣∣α∗
j − 1

∣∣,
{β∗

k,l} and ∥ρ∗∥ by ∥f∥H−1 .

4. Basic expansion of N and further decomposition of ρ∗

As stated in the introduction, to get optimal control on
∑ν

j=1

∣∣α∗
j − 1

∣∣, {β∗
k,l}

and ∥ρ∗∥ only by ∥f∥H−1 , we shall apply the ideas in [23] (see also [78]). Roughly
speaking, we need to further decompose the remaining term ρ∗ into two parts. The
first part, say ρ0, is regular enough in the sense that ρ0 can be controlled by good
weighted L∞ norms. The second part, say ρ⊥∗∗, is (possible) singular according to
the (possible) lack of regularity of f ∈ H−1 which is much smaller than ρ0 in H1.
For this purpose, we need to firstly expand the nonlinear part N to pick up all
possible leading order terms of the remaining term ρ∗.

4.1. Basic expansion of N . Since by [54, Theorem 1], the optimal Bianchi-Egnell
stability of the CKN inequality for d ≥ 2, a < 0 and b = bFS(a) is quartic, it is
reasonable to first expand the nonlinear part N up to the fourth order terms.

⟨lem0003⟩Lemma 4.1. Let d ≥ 2, a < 0 and b = bFS(a). Then we have the following
expansion of the nonlinear part N :

N = Ap,1Up−2
(
V2 + 2Vρ∗

)
+Ap,2Up−3

(
V3 + 3V2ρ∗

)
+O

(
Upβ4

∗ + χp≥2|ρ∗|2 + |ρ∗|p +
3∑

l=2

β
2(l−p)+

p+1
∗ |ρ∗|l−

2(l−p)+
p+1

)
:= N∗ +Nrem (4.1) eqn0018

in C, where ρ∗, U and V are given by (3.9), (3.14) and (3.15), respectively, β∗ =

maxj,l

∣∣∣β∗
j,l

∣∣∣, a± = max{±a, 0} and

χp≥2 =

{
1, p ≥ 2,

0, 1 < p < 2.

Proof. As in the proof of [54, Lemma 8], we introduce the set

A = {(θ, t) ∈ C | |ρ∗| ≤ |V|} .

Note that by (3.11), (3.15) and p > 1, we have

|V| ≲ β∗U
p+1
2 ≲ β∗U . (4.2) eqn0191

Thus, we can apply the ideas in the proof of [54, Lemma 8] to expand the nonlinear
part N in A and Ac, respectively, as follows:

N = Ap,1Up−2
(
V2 + 2Vρ∗

)
+Ap,2Up−3

(
V3 + 3V2ρ∗

)
+O

(
Up−4 (V + ρ∗)

4
+ Up−2 |ρ∗|2

)
= Ap,1Up−2

(
V2 + 2Vρ∗

)
+Ap,2Up−3

(
V3 + 3V2ρ∗

)
+O

(
U3p−2β4

∗ + χp≥2|ρ∗|2 + |ρ∗|p
)

(4.3) eqn0009

in A and

N = O
(
χp≥2|ρ∗|2 + |ρ∗|p

)
(4.4) eqn0010
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in Ac. Since 2(2−p)
p+1 ∈ (0, 1) for 1 < p < 2 and 2(3−p)

p+1 ∈ (0, 2) for 1 < p < 3, by

(4.2), we have

3∑
l=2

β
2(l−p)+

p+1
∗ |ρ∗|l−

2(l−p)+
p+1 ≳ Ap,1Up−2

(
V2 + 2 |Vρ∗|

)
+Ap,2Up−3

(
|V|3 + 3V2|ρ∗|

)
(4.5) eqn0017

in Ac. Thus, (4.1) is obtained by combining (4.3), (4.4) and (4.5). □

We need to further expand the nonlinear part N∗ to separate the bubbles, for
this purpose, we introduce some necessary notations. For the sake of simplicity and
without loss of generality, we assume that

−∞ := s∗0 < s∗1 < s∗2 < · · · < s∗ν < s∗ν+1 := +∞.

We also denote

τj = s∗j+1 − s∗j , τ = min
j=1,2,··· ,ν−1

τj (4.6) eqn0240

and 

B1 =
[
s∗1 −

τ1
2
, s∗1 +

τ1
2

]
× Sd−1,

Bj =
[
s∗j −

τj−1

2
, s∗j +

τj
2

]
× Sd−1, 2 ≤ j ≤ ν − 1,

Bν =
[
s∗ν − τν−1

2
, s∗ν +

τν−1

2

]
× Sd−1,

B∗ = ∪ν
j=1Bj .

(4.7) eqnnewnew0004

⟨lem0004⟩Lemma 4.2. Let d ≥ 2, a < 0 and b = bFS(a). Then the nonlinear part N which
is given by (3.20) can be further expanded as follows:

N =

ν∑
j=1

(
Ap,1

(
Ψ∗

j

)p−2 (V2
j + 2Vjρ∗

)
+Ap,2

(
Ψ∗

j

)p−3 (V3
j + 3V2

j ρ∗
))
χBj

+

ν∑
j=1

2Ap,1

(
Up−2V −

(
Ψ∗

j

)p−2 Vj

)
ρ∗χBj +

ν∑
j=1

O
(
β2
∗UjΨ

2p−3
j (Ψj + ρ∗)

)
χBj

+
(
2Ap,1Up−2Vρ∗ + Up−3V2 (Ap,1U +Ap,2V)

)
χC\B∗

+O
(
β2
∗U2(p−1)ρ∗χC\B∗

)
+Nrem (4.8) eqn0045

in C, where Nrem is given in (4.1).

Proof. Since Uj > 0 in C for all 1 ≤ j ≤ ν by (3.14), by (2.7), (3.15) and the Taylor
expansion, we have

Up−αVα−1 =
(
Ψ∗

j

)p−α Vα−1
j +O

Ψp−α−1
j Vα−1

j Uj +Ψp−α
j

∣∣∣∣∣∣
ν∑

i=1;i ̸=j

Vα−2
j Vi

∣∣∣∣∣∣


=
(
Ψ∗

j

)p−α Vα−1
j +O

(
βα−1
∗

(
Ψ

α(p−1)+p−3
2

j Uj +Ψ
α(p−1)−2

2
j U

p+1
2

j

))
in Bj for all 1 ≤ j ≤ ν and

Up−αVα−1 = O
(
βα−1
∗ U

(α+1)(p−1)
2

)
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in C\B∗, where α = 2 or α = 3. Similarly,

Up−αVα =
(
Ψ∗

j

)p−α Vα
j +O

Ψp−α−1
j Vα

j Uj +Ψp−α
j

∣∣∣∣∣∣
ν∑

i=1;i ̸=j

Vα−1
j Vi

∣∣∣∣∣∣


=
(
Ψ∗

j

)p−α Vα
j +O

(
βα
∗

(
Ψ

α(p−1)
2 +p−1

j Uj +Ψ
(α+1)(p−1)

2
j U

p+1
2

j

))
in Bj for all 1 ≤ j ≤ ν and

Up−αVα = O
(
βα
∗ U

α(p−1)
2 +p

)
in C\B∗. Thus, summarizing the above estimates of Up−αVα−1 and Up−αVα in N∗
and by p > 1 and Lemma 4.1, we have the desired expansion of N given by (4.8),
where Nrem is given in (4.1). □

4.2. Further decomposition of ρ∗. Recall that we shall control
∑ν

j=1

∣∣α∗
j − 1

∣∣,
{β∗

k,l} and ∥ρ∗∥ by ∥f∥H−1 . However, due to the regular interactionsR1 andR2, we
have an additional term which is needed to control, that is, the interaction between
bubbles. To measure the interaction between bubbles, we denote

Qj = e−
√
ΛFSτj , φs∗j

(t) = e−
√
ΛFS |t−s∗j | and Q = e−

√
ΛFSτ (4.9) eqn19993

where 1 ≤ j ≤ ν and τj and τ are given by (4.6).

⟨lem0005⟩Lemma 4.3. Let d ≥ 2, a < 0 and b = bFS(a). Then for every α, β ∈ R such that
α+ β > 0 and β > 0, we have

∫
Bi

Ψα
i U

β
i dµ ≲


Qβ , α > β,

Qβ |logQ| , α = β,

Q
α+β

2 , α < β

(4.10) eqnew0001

and ∫
C\B∗

Ψα
i Ψ

β
j dµ ≲ Q

α+β
2 +min{α(i−1),β(j−1)}, (4.11) eqnew0002

where Uj, Bj and B∗ are given by (3.14) and (4.7), respetcively.

Proof. Recall that

s∗1 < s∗2 < · · · < s∗ν−1 < s∗ν ,

thus, by (2.7), (4.6), (4.9) and similar estimates for (4.8), we have

Ψα
i U

β
i ∼ e−α

√
ΛFS(t−s∗i )e−β

√
ΛFS(s∗i+1−t) ∼ Qβ

i e
−(α−β)

√
ΛFS(t−s∗i ) (4.12) eqnewnew0006

in the region

Bi,+ :=
[
s∗i , s

∗
i +

τi
2

]
× Sd−1 (4.13) eqnewnew0010

for all i = 1, 2, · · · , ν − 1, while in the region

Bi,− :=
[
s∗i −

τi−1

2
, s∗i

]
× Sd−1 (4.14) eqnewnew0011

for all i = 2, 3, · · · , ν, we have

Ψα
i U

β
i ∼ e−α

√
ΛFS(s∗i −t)e−β

√
ΛFS(t−s∗i−1) ∼ Qβ

i−1e
−(α−β)

√
ΛFS(s∗i −t). (4.15) eqnewnew0007
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Thus, by direct calculations, we have∫
Bi

Ψα
i U

β
i dµ ∼

∫
Bi,+

Ψα
i Ψ

β
i+1dµ+

∫
Bi,−

Ψα
i Ψ

β
i−1dµ

≲


Qβ , α > β,

Qβ |logQ| , α = β,

Q
α+β

2 α < β,

which implies that (4.10) holds true for i = 2, 3, · · · , ν−1. To prove (4.10) for i = 1
or i = ν and (4.11), we denote

B1,−,∗ = (−∞, s∗1]× Sd−1

=
(
−∞, s∗1 −

τ1
2

)
× Sd−1 ∪

[
s∗1 −

τ1
2
, s∗1

]
× Sd−1

:= (C\B∗)
− ∪ B1,−, (4.16) eqnewnew0012

and

Bν,+,∗ = [s∗ν ,+∞)× Sd−1

=
[
s∗ν , s

∗
ν +

τν−1

2

]
× Sd−1 ∪

(
s∗ν +

τν−1

2
,+∞

)
× Sd−1

:= Bν,+ ∪ (C\B∗)
+
. (4.17) eqnewnew0013

Then by (2.7), (4.6) and similar estimates for (4.8), we have

Ψα
i Ψ

β
j ≲

{
Qmin{α(i−1),β(j−1)}e−(α+β)

√
ΛFS(s∗1−t), in B1,−,∗,

Qmin{α(i−1),β(j−1)}e−(α+β)
√
ΛFS(t−s∗ν), in Bν,+,∗.

(4.18) eqnewnew0008

Thus, (4.10) for i = 1 or i = ν and (4.11) are also obtained by direct calculations
as above. □

We remark that in the following of this section, we shall frequently use the linear
operator L which is given by (3.17) and the nontrivial kernels of the bubble Ψj

in H1(C), denoted by wj,l = Ψ
p+1
2

j θl and given by Lemma 2.1. Now, to further
decompose the remaining term ρ∗ and pick up a good regular part, let us first
consider the following equation:

L(γ1,ex) = R1,ex −
ν∑

j=1

Ψp−1
j

(
c1,ex,j∂tΨj +

d∑
l=1

ς1,ex,j,lwj,l

)
, in C,

⟨∂tΨj , γ1,ex⟩ = ⟨wj,l, γ1,ex⟩ = 0 for all 1 ≤ j ≤ ν and all 1 ≤ l ≤ d,

(4.19) eqn0011

where R1,ex is given by (3.18).

⟨lem0006⟩Lemma 4.4. Let d ≥ 2, a < 0 and b = bFS(a). Then (4.19) is uniquely solvable.
Moreover, the solution γ1,ex is even on Sd−1 and satisfies{

∥γ1,ex∥♯ ≲ 1, p ≥ 3,

∥γ1,ex∥♮,1 ≲ 1, 1 < p < 3,
(4.20) eqn0047



20 J. WEI AND Y.WU

where the Lagrange multipliers {c1,ex,j} and {ς1,ex,j,l} are chosen such that the right
hand side of the equation (4.19) is orthogonal to {∂tΨj} and {wj,l} in H1(C),

∥γ1,ex∥♯ = sup
Bi,+

|γ1,ex|
Q
∑ν

i=1 φ
1−σ
s∗i

(t)

and

∥γ1,ex∥♮,1 =

ν−1∑
i=1

sup
(Bi,+\Bi,0)∪(Bi+1,−\Bi+1,0)

|γ1,ex|
Qi(φ

p−2
s∗i

(t) + φp−2
s∗i+1

(t))

+ sup
∪ν

i=1Bi,0

|γ1,ex|
Q

+ sup
Bν,+,∗\Bν,0

|γ1,ex|
Qφ1−σ

s∗ν
(t)

+ sup
B1,−,∗\B1,0

|γ1,ex|
Qφ1−σ

s∗1
(t)

with Bi,±, B1,−,∗ and Bν,+,∗ given by (4.13), (4.14), (4.16) and (4.17), respectively,
and

Bi,0 = [s∗i −R, s∗i +R]× Sd−1

for R > 0 sufficiently large. The Lagrange multipliers also satisfy |c1,ex,j | ≲ Q for
all 1 ≤ j ≤ ν and ς1,ex,j,l = 0 for all 1 ≤ j ≤ ν and all 1 ≤ l ≤ d.

Proof. By the Fredholm alternative and the elliptic regularity, it is easy to show
the existence and uniqueness of γ1,ex in H2(C). Moreover, since R1,ex is even on

Sd−1, by uniqueness, we also have that γ1,ex is even on Sd−1. For the sake of clarity,
we divide the remaining proof into three steps.

Step. 1 We estimate R1,ex.
By (3.18) and similar estimates for (4.12), (4.15) and (4.18),

R1,ex ∼



Qiφ
p−2
s∗i

(t), in Bi,+ for 1 ≤ i ≤ ν − 1,

Qi−1φ
p−2
s∗i−1

(t), in Bi,− for 2 ≤ i ≤ ν,

Q1φ
p
s∗1
(t), in B1,−,∗,

Qνφ
p
s∗ν
(t), in Bν,+,∗.

(4.21) eqnewnew0009

Thus, we have

1 ≳
ν−1∑
i=1

sup
Bi,+

|R1,ex|
Qiφ

p−2
s∗i

(t)
+ sup

Bν,+,∗

|R1,ex|
Qνφ

1−σ
s∗ν

(t)

+

ν∑
i=2

sup
Bi,−

|R1,ex|
Qi−1φ

p−2
s∗i

(t)
+ sup

B1,−,∗

|R1,ex|
Q1φ

1−σ
s∗1

(t)
(4.22) eqn19997

for 1 < p < 3 and

1 ≳
ν−1∑
i=1

sup
Bi,+

|R1,ex|
Qφ1−σ

s∗i
(t)

+ sup
Bν,+,∗

|R1,ex|
Qφ1−σ

s∗ν
(t)

+

ν∑
i=2

sup
Bi,−

|R1,ex|
Qφ1−σ

s∗i
(t)

+ sup
B1,−,∗

|R1,ex|
Qφ1−σ

s∗1
(t)

(4.23) eqn19996

for p ≥ 3.
Step. 2 We prove the estimates of the Lagrange multipliers.
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By the orthogonal conditions and the oddness of wj,l on Sd−1, we have

ν∑
i=1

〈
Ψp−1

i ∂tΨi,Ψ
p−1
j ∂tΨj

〉
L2
c1,ex,i =

〈
R1,ex,Ψ

p−1
j ∂tΨj

〉
L2

and

ν∑
m=1

d∑
n=1

〈
Ψp−1

m wm,n,Ψ
p−1
j wj,l

〉
L2
ς1,ex,m,n = 0

for all 1 ≤ j ≤ ν and all 1 ≤ l ≤ d. The matrix
[〈

Ψp−1
i ∂tΨi,Ψ

p−1
j ∂tΨj

〉
L2

]
is

diagonally dominant by (3.11), thus, by p > 1, Lemma 4.3 and (4.21),

|c1,ex,j | ∼
ν∑

l=1

∣∣∣〈R1,ex,Ψ
p−1
l ∂tΨl

〉
L2

∣∣∣
≲

l−1∑
i=1

∫
Bi,+

QiΨ
p−2
i Ψp

l dµ+

ν∑
i=l+1

∫
Bi,−

Qi−1Ψ
p−2
i Ψp

l dµ+Q

∫
Bj

Ψ
2(p−1)
j dµ

≲
∫
Bj,+

Ψ2p−1
j Ψj+1dµ+

∫
Bj,−

Ψ2p−1
j Ψj−1dµ+Q

∫
Bj

Ψ
2(p−1)
j dµ

≲ Q (4.24) eqn1047

for all 1 ≤ j ≤ ν. Moreover, by (3.11) and the orthogonal conditions of {wl} on

Sd−1, the matrix
[〈

Ψp−1
m wm,n,Ψ

p−1
j wj,l

〉
L2

]
is also diagonally dominant. Thus, it

is also easy to see that ς1,ex,j,l = 0 for all 1 ≤ j ≤ ν and all 1 ≤ l ≤ d.
Step. 3 We prove the estimate (4.20).
Since it is easy to check that φ1−σ

s∗i
(t) for all σ ∈ (0, 1) are supersolutions of the

equation L(ρ) = 0 in Bi\[s∗i − R, s∗i + R] × Sd−1 for all 1 ≤ i ≤ ν with R > 0
fixed and large enough, by Lemma 2.1, (4.23) and using

∑ν
i=1 CQφ

1−σ
s∗i

(t) for a

sufficiently large C > 0 as the barrier, we can apply the maximum principle in the
strong sense and the standard blow-up arguments to (4.19) to derive the desired
estimates (4.20) for p ≥ 3. On the other hand, for 1 < p < 3, it is also easy to

check that φp−2
s∗i

(t) for all p ∈ (1, 3) are supersolutions of the equation L(ρ) = 0 in

Bi\[s∗i − R, s∗i + R] × Sd−1 for all 1 ≤ i ≤ ν with R > 0 fixed and large enough.
Now, by the local regularity, (4.22) and the estimates of the Lagrange multipliers,
we have ∥∥γ1,ex∥∥L∞(B̃i,0)

≲ Q and
∥∥γ1,ex∥∥L∞(B̃i,0,∗)

≲ Q
p
2
i , (4.25) eqn19995

where

B̃i,0 = [s∗i − 2R, s∗i + 2R]× Sd−1

and

B̃i,0,∗ =

[
s∗i + s∗i+1

2
− 2R,

s∗i + s∗i+1

2
+ 2R

]
× Sd−1

for R > 0 sufficiently large. We introduce the sets

I0 = {1 ≤ i ≤ ν | Qi ∼ Q} and I0,∗ = {1 ≤ i ≤ ν | Qi = o(Q)}.
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First of all, for i ∈ I0, since

Qiφ
p−2
s∗i

∼ Qiφ
p−2
s∗i+1

∼


Q, in

(
(Bi,+ ∩ B̃i,0) ∪ (Bi+1,− ∩ B̃i,0)

)
,

Q
p
2 , in

(
(Bi,+ ∩ B̃i,0,∗) ∪ (Bi+1,− ∩ B̃i,0,∗)

)
,

by (4.22), (4.25) and the maximum principle, we have∑
i∈I0

(
sup
Bi,+

|γ1,ex|
Qiφ

p−2
s∗i

(t)
+ sup

Bi+1,−

|γ1,ex|
Qiφ

p−2
s∗i

(t)

)
≲ 1. (4.26) eqnnewnew0009

Secondly, for i ∈ I0,∗, we shall construct a global barrier in Bi,+ ∪Bi+1,−. Let ψ1,0

be the unique solution of the following equation{
− ψ′′ − 2σψ′ + σ2ψ = 1,

ψ(0) = 1, ψ′(0) = 0

and ψ1,∗ be a solution of the following equation{
− ψ′′ − 2σψ′ + σ2ψ = 1,

ψ′(1) = 0,

where σ > 0 is sufficiently small. Then we have

ψ1,0(t) = σ−2 − σ−2 − 1

2
√
2

(
(
√
2− 1)e−(

√
2+1)σt + (

√
2 + 1)e(

√
2−1)σt

)
and we can take

ψ1,∗(t) = σ−2 +
e(

√
2−1)σ

√
2 + 1

(
(
√
2− 1)e−(

√
2+1)σ(t−1) + (

√
2 + 1)e(

√
2−1)σ(t−1)

)
.

It is easy to see that ψ′
1,0(t) < 0 and ψ′

1,∗(t) < 0 for t ∈ (0, 1) and there exists
t0 ∈ (0, 1) such that ψ′

1,0(t0) = ψ′
1,∗(t0), which implies that

ψ1(t) =


ψ1,0(0)− ψ1,0(t0) + ψ1,∗(t0)− ψ1,∗(1), t ≤ 0,

ψ1,0(t)− ψ1,0(t0) + ψ1,∗(t0)− ψ1,∗(1), 0 < t ≤ t0,

ψ1,∗(t)− ψ1,∗(1), r0 < t < 1,

0, t ≥ 1

belongs to L∞(R) ∩ C1(R) ∩W 2,∞(R) and is a cut-off function. Let
ψi,+(t) = ψ1

(
t− s∗i −

R

2
− 1

)
,

ψi+1,−(t) = ψ1

(
s∗i+1 +

R

2
+ 1− t

)
.

Then by

Qiφ
p−2
s∗i

∼ Qiφ
p−2
s∗i+1

∼


Qi = o(Q), in

(
(Bi,+ ∩ B̃i,0) ∪ (Bi+1,− ∩ B̃i,0)

)
,

Q
p
2
i , in

(
(Bi,+ ∩ B̃i,0,∗) ∪ (Bi+1,− ∩ B̃i,0,∗)

)
,

it can be checked that

ψi = ψi,+Q+ (ψi,+(0)− ψi,+)Qiφ
p−2
s∗i
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and

ψi+1 = ψi+1,−Q+ (ψi+1,−(0)− ψi+1,−)Qiφ
p−2
s∗i+1

are supersolutions of the equation L(ρ) = 0 in Bi,+\Bi,0 and Bi+1,−\Bi+1,0, respec-
tively. Thus, by (4.22), (4.25) and the maximum principle, we have

∑
i∈I0,∗

 sup
Bi,+\Bi,0

|γ1,ex|
Qiφ

p−2
s∗i

(t)
+ sup

Bi+1,−\Bi+1,0

|γ1,ex|
Qiφ

p−2
s∗i+1

(t)
+ sup

Bi,0

|γ1,ex|
Q

 ≲ 1. (4.27) eqnnewnew0010

Finally, by (4.22), (4.25) and the maximum principle, we also have

sup
Bν,+,∗

|γ1,ex|
Qφ1−σ

s∗ν
(t)

+ sup
B1,−,∗

|γ1,ex|
Qφ1−σ

s∗1
(t)

≲ 1. (4.28) eqnnewnew0011

Now, the estimate (4.20) follows from (4.26), (4.27) and (4.28). □

We next consider the following equation:
L(γ1,j) = R1,j −

ν∑
i=1

Ψp−1
i

(
c1,j,i∂tΨi +

d∑
l=1

ς1,j,i,lwi,l

)
, in C,

⟨∂tΨi, γ1,j⟩ = ⟨wi,l, γ1,j⟩ = 0 for all 1 ≤ i ≤ ν and all 1 ≤ l ≤ d,

(4.29) eqn0012

where R1,j is given by (3.18).

⟨lem0007⟩Lemma 4.5. Let d ≥ 2, a < 0 and b = bFS(a). Then (4.29) is uniquely solvable.
Moreover, the solution γ1,j is even in R in terms of t − s∗j and even on Sd−1 and
satisfies

sup
(t,θ)∈C

|γ1,j |
φ1−σ
s∗j

(t)
≲
∣∣(α∗

j )
p−1 − 1

∣∣ , (4.30) eqn0048

where the Lagrange multipliers {c1,j,i} and {ς1,j,i,l} are chosen such that the right
hand side of the equation (4.29) is orthogonal to {∂tΨj} and {wj,l} in H1(C). The
Lagrange multipliers also satisfy ς1,j,i,l = 0 and

|c1,j,i| ≲

{∣∣(α∗
j )

p−1 − 1
∣∣Qp |logQ| , i ̸= j,∣∣(α∗

j )
p−1 − 1

∣∣Q2p |logQ|2 , i = j,

for all 1 ≤ j ≤ ν, all 1 ≤ l ≤ d and all 1 ≤ i ̸= j ≤ ν.

Proof. By the orthogonal conditions and the oddness of wj,l on Sd−1, we have
ν∑

i=1

〈
Ψp−1

i ∂tΨi,Ψ
p−1
k ∂tΨk

〉
L2
c1,j,i =

〈
R1,j ,Ψ

p−1
k ∂tΨk

〉
L2

and
ν∑

m=1

d∑
n=1

〈
Ψp−1

m wm,n,Ψ
p−1
j wj,l

〉
L2
ς1,j,m,n = 0

for all 1 ≤ j, k ≤ ν and all 1 ≤ l ≤ d. Again, the matrix
[〈

Ψp−1
i ∂tΨi,Ψ

p−1
j ∂tΨj

〉
L2

]
is diagonally dominant by (3.11). Note that by the oddness of ∂tΨ in R, we have〈

R1,j ,Ψ
p−1
j ∂tΨj

〉
L2

= 0.
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Thus, by Lemma 4.3 and (3.18),

|c1,j,i| ≲


∣∣(α∗

j )
p−1 − 1

∣∣ ∫
C
Ψp

iΨ
p
jdµ ≲

∣∣(α∗
j )

p−1 − 1
∣∣Qp |logQ| , i ̸= j,

∑
l ̸=j

∣∣(α∗
j )

p−1 − 1
∣∣ (∫

C
Ψp

lΨ
p
jdµ

)2

≲
∣∣(α∗

j )
p−1 − 1

∣∣Q2p |logQ|2 , i = j,

for all 1 ≤ i ≤ ν. Moreover, by (3.11) and the orthogonal conditions of {wl} on

Sd−1, the matrix
[〈

Ψp−1
m wm,n,Ψ

p−1
j wj,l

〉
L2

]
is also diagonally dominant. Thus, it

is also easy to see that ς1,j,i,l = 0 for all 1 ≤ i, j ≤ ν and all 1 ≤ l ≤ d. Now,
since p > 1, as in the proof of Lemma 4.4, by (2.7), (3.18) and Lemma 2.1, we
can use φ̃ = C

∣∣(α∗
j )

p−1 − 1
∣∣φ1−σ

s∗j
(t) for a sufficiently large C > 0 as the barrier

and apply the maximum principle in the classical sense and the standard blow-up
arguments to (4.29) to show the existence and uniqueness of γ1,j with the desired
estimate (4.30). Moreover, since R1,j is even in R in terms of t − s∗j and even on

Sd−1, by uniqueness, γ1,j is also even in R in terms of t− s∗j and even on Sd−1. □

We also need to consider the following equation:
L(γ2,ex) = R2,ex −

ν∑
j=1

Ψp−1
j

(
c2,ex,j∂tΨj +

d∑
l=1

ς2,ex,j,lwj,l

)
, in C,

⟨∂tΨj , γ2,ex⟩ = ⟨wj,l, γ2,ex⟩ = 0 for all 1 ≤ j ≤ ν and all 1 ≤ l ≤ d,

(4.31) eqn0013

where R2,ex is given by (3.19).

⟨lem0008⟩Lemma 4.6. Let d ≥ 2, a < 0 and b = bFS(a). Then (4.31) is uniquely solvable.
Moreover, the solution γ2,ex is odd on Sd−1 and satisfies

∥γ2,ex∥♯ ≲ β∗, p ≥ 7

3
,

∥γ2,ex∥♮,2 ≲ β∗, 1 < p <
7

3
,

(4.32) eqn2047

where the Lagrange multipliers {c2,ex,j} and {ς2,ex,j,l} are chosen such that the right
hand side of the equation (4.31) is orthogonal to {∂tΨj} and {wj,l} in H1(C), ∥ · ∥♯
is given in Lemma 4.4 and

∥γ2,ex∥♮,2 =

ν−1∑
i=1

sup
(Bi,+\Bi,0)∪(Bi+1,−\Bi+1,0)

|γ2,ex|

Qi(φ
3p−5

2

s∗i
(t) + φ

3p−5
2

s∗i+1
(t))

+ sup
∪i=1νBi,0

|γ2,ex|
Q

+ sup
Bν,+,∗\Bν,0

|γ2,ex|
Qφ1−σ

s∗ν
(t)

+ sup
B1,−,∗\B1,0

|γ2,ex|
Qφ1−σ

s∗1
(t)

with Bi,±, Bν,+,∗, B1,−,∗ and Bi,0 given by (4.13), (4.14), (4.16), (4.17) and Lemma 4.4,
respectively. The Lagrange multipliers also satisfy c2,ex,j = 0 for all 1 ≤ j ≤ ν and
|ς2,ex,j,l| ≲ β∗Q for all 1 ≤ j ≤ ν and all 1 ≤ l ≤ d.

Proof. Similar to (4.12) and (4.18), by (2.7), (3.15) and (3.19), we have

|R2,ex| ≲ β∗

(
ν∑

i=1

Ψ
3(p−1)

2
i UiχBi

+ U
3p−1

2 χC\B∗

)
(4.33) eqn3147
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with Bi and B∗ given by (4.7). Thus, similar to (4.22) and (4.23),

β∗ ≳
ν−1∑
i=1

sup
Bi,+

|R2,ex|

Qiφ
3p−5

2

s∗i
(t)

+ sup
Bν,+,∗

|R2,ex|
Qνφ

1−σ
s∗ν

(t)

+

ν∑
i=2

sup
Bi,−

|R2,ex|

Qi−1φ
3p−5

2

s∗i
(t)

+ sup
B1,−

|R2,ex|
Q1φ

1−σ
s∗1

(t)
(4.34) eqn29997

for 1 < p < 7
3 and ∥R2,ex∥♯ ≲ β∗ for p ≥ 7

3 . By the orthogonal conditions and the

oddness of wj,l on Sd−1, we have

ν∑
i=1

〈
Ψp−1

i ∂tΨi,Ψ
p−1
j ∂tΨj

〉
L2
c2,ex,i = 0

and

ν∑
m=1

d∑
n=1

〈
Ψp−1

m wm,n,Ψ
p−1
j wj,l

〉
L2
ς2,ex,m,n =

〈
R2,ex,Ψ

p−1
j wj,l

〉
L2

for all 1 ≤ j ≤ ν and all 1 ≤ l ≤ d. Again, the matrix
[〈

Ψp−1
i ∂tΨi,Ψ

p−1
j ∂tΨj

〉
L2

]
is diagonally dominant by (3.11). Thus, c2,ex,j = 0 for all 1 ≤ j ≤ ν. Moreover,

the matrix
[〈

Ψp−1
m wm,n,Ψ

p−1
j wj,l

〉
L2

]
is also diagonally dominant by (3.11) and

the orthogonal conditions of wl on Sd−1. Thus, by Lemma 4.3 and (4.33), we also
have

|ς2,ex,j,l| ∼
ν∑

j=1

∣∣∣〈R2,ex,Ψ
p−1
j wj,l

〉
L2

∣∣∣
≲

ν∑
j=1

β∗

〈
Ψ

3(p−1)
2

j−1 Uj−1χBj−1,+
+Ψ

3(p−1)
2

j+1 Uj+1χBj+1,− ,Ψ
3p−1

2
j

〉
L2

+β∗

〈
Ψ3p−2

j ,Uj

〉
L2(Bj)

∼ β∗Q.

for all 1 ≤ j ≤ ν and all 1 ≤ l ≤ d. Moreover, by (3.15) and (3.19), we have

R2,ex = p

ν∑
j=1

(
Up−1 −

(
Ψ∗

j

)p−1
)
Vj

=

d∑
l=1

p ν∑
j=1

(
Up−1 −

(
Ψ∗

j

)p−1
)
Ψ

p+1
2

j β∗
j,l

 θl,

which is odd on Sd−1. Now, the rest of the proof, which is devoted to the existence,
uniqueness and oddness on Sd−1 of γ2,ex with the desired estimates (4.32), is similar
to that of Lemma 4.4, so we omit it here. □
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We finally consider the following equation:
L(γN ,led,∗) = Nled −

ν∑
j=1

Ψp−1
j

(
cN ,led,j∂tΨj +

d∑
l=1

ςN ,led,j,lwj,l

)
, in C,

⟨∂tΨj , γN ,led,∗⟩ = ⟨wj,l, γN ,led,∗⟩ = 0 for all 1 ≤ j ≤ ν and all 1 ≤ l ≤ d,

(4.35) eqn0015

where

Nled =

ν∑
j=1

(
Ψ∗

j

)p−3 V2
j

(
Ap,1Ψ

∗
j +Ap,2Vj

)
χBj

+Up−3V2 (Ap,1U +Ap,2V)χC\B∗ , (4.36) eqn3045

with Bi and B∗ given by (4.7).

⟨lem0009⟩Lemma 4.7. Let d ≥ 2, a < 0 and b = bFS(a). Then (4.35) is uniquely solvable.
Moreover, the solution γN ,led,∗ satisfies

sup
(t,θ)∈C

|γN ,led,∗|∑ν
j=1 Ψ

1−σ
j (t)

≲ β2
∗ (4.37) eqn0049

where the Lagrange multipliers {cN ,led,j} and {ςN ,led,j,l} are chosen such that the
right hand side of the equation (4.35) is orthogonal to {∂tΨj} and {wj,l} in H1(C).
The Lagrange multipliers also satisfy |cN ,led,j | ≲ β2

∗Q
p and |ςN ,led,j,l| ≲ β3

∗ for all
1 ≤ j ≤ ν and all 1 ≤ l ≤ d.

Proof. Similar to (4.33), by (4.36), we have

|Nled| ≲
ν∑

j=1

β2
∗Ψ

2p−1
j χBj + β2

∗U2p−1χC\B∗ .

We first estimate the Lagrange multipliers. By the oddness of wj,l on Sd−1, we have
ν∑

i=1

〈
Ψp−1

i ∂tΨi,Ψ
p−1
j ∂tΨj

〉
L2
cN ,led,i

= Ap,1

〈
ν∑

i=1

(Ψ∗
i )

p−2 V2
i χBi

+ Up−2V2χC\B∗ ,Ψ
p−1
j ∂tΨj

〉
L2

and
ν∑

m=1

d∑
n=1

〈
Ψp−1

m wm,n,Ψ
p−1
j wj,l

〉
L2
ςN ,led,m,n

= Ap,2

〈
ν∑

i=1

(Ψ∗
i )

p−3 V3
i χBi + Up−3V3χC\B∗ ,Ψ

p−1
j wj,l

〉
L2

for all 1 ≤ j ≤ ν and all 1 ≤ l ≤ d. Thus, similar to (4.24), by Lemma 4.3 and the
oddness of ∂tΨ in R, we have

|cN ,led,j | ≲
∑
i=±1

∫
Bj+i

Ψp−2
j+i V

2
j+iΨ

p
jdµ+

∫
Bj

Ψp−2
j V2

jΨ
p−1
j ∂tΨjdµ

≲ β2
∗Q

p + β2
∗

∫ s∗j+
τj
2

s∗j+
τ
2

Ψ3p−1
j dt

≲ β2
∗Q

p (4.38) eqn1049
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and, we have

|ςN ,led,j,l| ≲
∣∣∣〈Ψp−3

j V3
j χBj + Up−3V3χC\(∪ν

i=1Bi), wj,l

〉
L2

∣∣∣ ≲ β3
∗ (4.39) eqn3049

for all 1 ≤ j ≤ ν and all 1 ≤ l ≤ d. Now, since p > 1, as in the proof of Lemma 4.4,
by Lemma 2.1 and (4.36), we can use φ̃ =

∑ν
j=1 Cβ

2
∗φ

1−σ
s∗j

(t) for a sufficiently large

C > 0 as the barrier and apply the maximum principle in the classical sense and
the standard blow-up arguments to (4.35) to show the existence and uniqueness of
γN ,led,∗ with the desired estimates (4.37). □

By Lemmas 4.4, 4.5, 4.6 and 4.7, we have picked up all possible leading order
terms of ρ∗ in terms of Q, β∗ and

∑ν
j=1

∣∣(α∗
j )

p−1 − 1
∣∣. Now, let

ρ∗∗,0 = ρ∗ −
2∑

j=1

γj,ex −
ν∑

j=1

γ1,j − γN ,led,∗.

Since γ1,ex, γ1,j and γN ,led,∗ may have projections on span{Ψj}, we further decom-

pose ρ∗∗,0 =
∑ν

j=1 α
∗∗
j,0Ψj + ρ⊥∗∗,0, where {α∗∗

j,0} is chosen such that〈
ρ⊥∗∗,0,Ψj

〉
=
〈
ρ⊥∗∗,0, ∂tΨj

〉
=
〈
ρ⊥∗∗,0, wj,l

〉
= 0

for all 1 ≤ j ≤ ν and all 1 ≤ l ≤ d. By the orthogonal conditions of ρ∗ given in
(3.16) and Lemma 4.6, we have

ν∑
l=1

⟨Ψl,Ψj⟩α∗∗
l,0 = −

〈
γ1,ex,Ψj

〉
−

ν∑
i=1

⟨γ1,i,Ψj⟩ − ⟨γN ,led,∗,Ψj⟩ (4.40) eqn0052

for all 1 ≤ j ≤ ν. Since Ψ is a solution of (2.5), by Lemmas 4.3, 4.4, 4.5 and 4.7,

∣∣〈γ1,ex,Ψj

〉∣∣ = ∣∣∣〈γ1,ex,Ψp
j

〉
L2

∣∣∣ ≲ Q1+σ,∣∣∣∣∣
〈

ν∑
i=1

γ1,i,Ψj

〉∣∣∣∣∣ =
∣∣∣∣∣
〈

ν∑
i=1

γ1,i,Ψ
p
j

〉
L2

∣∣∣∣∣ ≲
ν∑

i=1

∣∣∣(α∗
i )

p−1 − 1
∣∣∣ ,

|⟨γN ,led,∗,Ψj⟩| =
∣∣∣〈γN ,led,∗,Ψ

p
j

〉
L2

∣∣∣ ≲ β2
∗ .

Intersecting these estimates into (4.40), we have

ν∑
j=1

∣∣α∗∗
j,0

∣∣ ≲ Q1+σ +

ν∑
j=1

∣∣∣(α∗
j

)p−1 − 1
∣∣∣+ β2

∗ . (4.41) eqn0068

Moreover, by (3.16), (4.19), (4.29), (4.31) and (4.35), ρ⊥∗∗,0 satisfies{
L(ρ⊥∗∗,0) = f +Rnew, in C,

⟨Ψj , ρ
⊥
∗∗,0⟩ = ⟨∂tΨj , ρ

⊥
∗∗,0⟩ = ⟨wj,l, ρ

⊥
∗∗,0⟩ = 0 for 1 ≤ j ≤ ν and 1 ≤ l ≤ d,

(4.42) eqn5114



28 J. WEI AND Y.WU

where by (3.16) and Lemmas 4.2, 4.4 4.5, 4.6 and 4.7,

Rnew =

ν∑
j,i=1

Ψp−1
i

(
(c1,ex,i + c1,j,i + cN ,led,i)∂tΨi +

d∑
l=1

(ς2,ex,i,l + ςN ,led,i,l)wi,l

)

+

ν∑
j=1

(
2Ap,1

(
Ψ∗

j

)p−2 Vj + 3Ap,2

(
Ψ∗

j

)p−3 V2
j

)
ρ∗χBj

+

ν∑
j=1

R2,j +Nrem

+

ν∑
j=1

2Ap,1

Up−2V −
ν∑

j=1

(
Ψ∗

j

)p−2 Vj

 ρ∗χBj

+

ν∑
j=1

O
(
β2
∗UjΨ

2p−3
j (Ψj + ρ∗)

)
χBj

+ 2Ap,1Up−2Vρ∗χC\B∗

+O
(
β2
∗U2(p−1)ρ∗χC\B∗

)
+

ν∑
j=1

pα∗∗
j,0

(
Up−1 −Ψp−1

j

)
Ψj , (4.43) eqn5061

where Bi and B∗ are given by (4.7).

As we pointed out in the introduction, even though we have picked up all possible
leading order terms of ρ∗ in terms of Q, β∗ and

∑ν
j=1

∣∣(α∗
j )

p−1 − 1
∣∣ to form a

good regular part, the data Rnew, given by (4.43), is not good enough to control
the (possible) singular part ρ⊥∗∗,0 in a desired size. This is mainly because the
optimal Bianchi-Egnell stability of the CKN inequality for d ≥ 2, a < 0 and b =
bFS(a) is quartic, as shown in [54, Theorem 1], which implies that we only have the
opportunity to control the terms of order β4

∗ from above. Thus, we need to ensure
that the (possible) singular part should be smaller than or equal to β4

∗ . Keep this
in mind, we need to eliminate the lower order terms (compared to the β4

∗ terms) in
the data Rnew. For this purpose, we first need the following decomposition.

⟨lem0010⟩Lemma 4.8. Let d ≥ 2, a < 0 and b = bFS(a). Then we can decompose

γN ,led,∗ = γN ,led,j + γN ,led,rem,j,∗,

where γN ,led,j is even in terms of t− s∗j and satisfies the equation
L(γN ,led,j) = Nled,j −

ν∑
i=1

Ψp−1
i

(
cN ,led,j,i∂tΨi +

d∑
l=1

ςN ,led,j,i,lwi,l

)
, in C,

⟨∂tΨi, γN ,led,j⟩ = ⟨wi,l, γN ,led,j⟩ = 0 for all 1 ≤ i ≤ ν and all 1 ≤ l ≤ d,

with Nled,j =
(
Ψ∗

j

)p−3 V2
j

(
Ap,1Ψ

∗
j +Ap,2Vj

)
and

sup
(t,θ)∈C

|γN ,led,j |
Ψ1−σ

j (t)
+ sup

(t,θ)∈C

|γN ,led,rem,j,∗|∑ν
i=1;i ̸=j Ψ

1−σ
i (t)

≲ β2
∗ .

Moreover, we can decompose γN ,led,j = γN ,led,j,∗ + γN ,led,j,∗∗ with γN ,led,j,∗ being
even on Sd−1, γN ,led,j,∗∗ being odd on Sd−1 and

sup
(t,θ)∈C

|γN ,led,j,∗|
β2
∗Ψ

1−σ
j (t)

+ sup
(t,θ)∈C

|γN ,led,j,∗∗|
β3
∗Ψ

1−σ
j (t)

≲ 1.

Proof. The proof is similar to that of Lemma 4.7 so we omit it. We only point
out that since Nled,j is even in terms of t − s∗j , by uniqueness, we also have that
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γN ,led,j is even in terms of t− s∗j . On the other hand, the decomposition of γN ,led,j

is generated by the data Nled,j = Ap,1

(
Ψ∗

j

)p−2 V2
j + Ap,2

(
Ψ∗

j

)p−3 V3
j . The first

part γN ,led,j,∗ is obtained by the data Ap,1

(
Ψ∗

j

)p−2 V2
j which is even on Sd−1 while,

the second part γN ,led,j,∗∗ is obtained by the data Ap,2

(
Ψ∗

j

)p−3 V3
j which is odd on

Sd−1. □

By Lemma 4.8, we can eliminate the lower order terms in the data Rnew by first
considering the following equation:
L(ρ⊥∗∗,1,j) = Rnew,∗,j +

ν∑
i=1

Ψp−1
i

(
cnew,∗,j,i∂tΨi +

d∑
l=1

ςnew,∗,j,i,lwi,l

)
, in C,

⟨∂tΨi, ρ
⊥
∗∗,1,j⟩ = ⟨wi,l, ρ

⊥
∗∗,1,j⟩ = 0 for all 1 ≤ i ≤ ν and all 1 ≤ l ≤ d,

(4.44) eqn4015

where Rnew,∗,j = 2Ap,1

(
Ψ∗

j

)p−2 VjγN ,led,j .

⟨lem0011⟩Lemma 4.9. Let d ≥ 2, a < 0 and b = bFS(a). Then (4.44) is uniquely solvable.
Moreover, the solution ρ⊥∗∗,1,j is even in terms of t− s∗j and satisfies

sup
(t,θ)∈C

|ρ⊥∗∗,1,j |
Ψ1−σ

j (t)
≲ β3

∗ ,

where the Lagrange multipliers {cnew,∗,j,i} and {ςnew,∗,j,i,l} are chosen such that the
right hand side of the equation (4.44) is orthogonal to {∂tΨj} and {wj,l} in H1(C).
The Lagrange multipliers also satisfy |cnew,∗,j,i| ≲ β3

∗Q
p and |ςnew,∗,j,i,l| ≲ β3

∗ for
all 1 ≤ i, j ≤ ν and all 1 ≤ l ≤ d.

Proof. The proof is also similar to that of Lemma 4.7 so we omit it. Again, we
only point out that since Rnew,∗,j is even in terms of t − s∗j by Lemma 4.8, by

uniqueness, we also have that ρ⊥∗∗,1,j is even in terms of t− s∗j . On the other hand,
similar to that of (4.38) and (4.39), by the oddness of ∂tΨ in R, we also have

ν∑
i=1

|cnew,∗,j,i| ≲ β3
∗Q

p and

ν∑
i=1

|ςnew,∗,j,i,l| ≲ β3
∗

for all 1 ≤ i, j ≤ ν and all 1 ≤ l ≤ d. □

Let

ρ⊥∗∗,1 =

ν∑
j=1

ρ⊥∗∗,1,j and Rnew,∗ =

ν∑
j=1

Rnew,∗,j .

Clearly, ρ⊥∗∗,1 may also have projections on span{Ψl}. Thus, as above, we decom-
pose

ρ⊥∗∗,1 =

ν∑
l=1

α∗∗
l,1Ψl + ρ⊥∗∗,2,

where {α∗∗
l,1} is chosen such that〈

ρ⊥∗∗,2,Ψj

〉
=
〈
ρ⊥∗∗,2, ∂tΨj

〉
=
〈
ρ⊥∗∗,2, wj,l

〉
= 0. (4.45) eqn2004
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Moreover, by (4.44), we know that ρ⊥∗∗,2 satisfies the following equation:


L(ρ⊥∗∗,2) = Rnew,∗∗ +

ν∑
i=1

Ψp−1
i

(
cnew,∗,i∂tΨi +

d∑
l=1

ςnew,∗,i,lwi,l

)
, in C,〈

Ψj , ρ
⊥
∗∗,2
〉
= ⟨∂tΨj , ρ

⊥
∗∗,2⟩ = 0 for all 1 ≤ j ≤ ν,

⟨wj,l, ρ
⊥
∗∗,2⟩ = 0 for all 1 ≤ j ≤ ν and all 1 ≤ l ≤ d,

(4.46) eqn6114

where

Rnew,∗∗ =

ν∑
j=1

2Ap,1

(
Ψ∗

j

)p−2 VjγN ,led,j +

ν∑
l=1

pα∗∗
l,1

(
Up−1 −Ψp−1

l

)
Ψl. (4.47) eqn6061

⟨lem0012⟩Lemma 4.10. Let d ≥ 2, a < 0 and b = bFS(a). Then we have

ν∑
j=1

∣∣α∗∗
j,1

∣∣ ≲ β4
∗ + β3

∗Q
1
2+σ. (4.48) eqn5068

Moreover, we can decompose ρ⊥∗∗,2 = ρ⊥∗∗,2,odd+ρ
⊥
∗∗,2,rem with ρ⊥∗∗,2,odd being odd on

Sd−1 and



sup
(t,θ)∈C

|ρ⊥∗∗,2,odd|∑ν
j=1 Ψ

1−σ
j (t)

≲ β3
∗ ,

∥ρ⊥∗∗,2,rem∥♯ + sup
(t,θ)∈C

|ρ⊥∗∗,2,rem|∑ν
j=1 Ψ

1−σ
j (t)

≲ β4
∗ + β3

∗Q
1
2+σ, p ≥ 3,

∥ρ⊥∗∗,2,rem∥♮,1 + sup
(t,θ)∈C

|ρ⊥∗∗,2,rem|∑ν
j=1 Ψ

1−σ
j (t)

≲ β4
∗ + β3

∗Q
1
2+σ, 1 < p < 3,

(4.49) eqn9079

where ∥ · ∥♯ and ∥ · ∥♮,1 are given in Lemma 4.4.

Proof. By (4.44) and (4.45),

ν∑
l=1

⟨Ψl,Ψj⟩α∗∗
l,1 = ⟨Rnew,∗,Ψj⟩L2 + p

〈
Up−1ρ⊥∗∗,1,Ψj

〉
L2

=

ν∑
l=1

pα∗∗
l,1

〈
Up−1Ψl,Ψj

〉
L2 + p

〈
Up−1ρ⊥∗∗,2,Ψj

〉
L2

+ ⟨Rnew,∗,Ψj⟩L2 (4.50) eqn5052

for all 1 ≤ j ≤ ν. By the oddness of wj,l on Sd−1 and Lemmas 4.3 and 4.8, we have∣∣⟨Rnew,∗,Ψj⟩L2

∣∣ ≲ β4
∗ . On the other hand, by Lemma 4.3 and similar estimates of



CAFFARELLI-KOHN-NIRENBERG INEQUALITY 31

(4.33),

ν∑
l=1

pα∗∗
l,1

〈
Up−1Ψl,Ψj

〉
L2 =

ν∑
l=1

pα∗∗
l,1

〈
ν∑

i=1

(Ψ∗
i )

p−1
χBi

Ψl,Ψj

〉
L2

+

ν∑
l=1

pα∗∗
l,1

〈(
Up−1 −

ν∑
i=1

(Ψ∗
i )

p−1
χBi

)
Ψl,Ψj

〉
L2

+

ν∑
l=1

pα∗∗
l,1

〈
Up−1χC\B∗Ψl,Ψj

〉
L2

= p∥Ψ∥2α∗∗
j,1 +

ν∑
l=1

O(Q)α∗∗
l,1

and further by (4.45), we have〈
Up−1ρ⊥∗∗,2,Ψj

〉
L2 =

〈(
Up−1 −

(
Ψ∗

j

)p−1
)
Ψj , ρ

⊥
∗∗,2

〉
L2

= ∥ρ⊥∗∗,2∥ ×


O (Q) , p > 2,

O
(
Q |logQ|

1
2

)
, p = 2,

O
(
Q

p
2

)
, 1 < p < 2.

It follows from (4.50) that

ν∑
j=1

∣∣α∗∗
j,1

∣∣ ≲ β4
∗ +Q

p
2∧1 |logQ| ∥ρ⊥∗∗,2∥.

Now, by multiplying (4.46) with ρ⊥∗∗,2 on both sides and integrating by parts,

we have ∥ρ⊥∗∗,2∥ ≲ β3
∗ , which implies that (4.48) holds true. To obtain the esti-

mate (4.49), we shall decompose Rnew,∗∗ into three parts, where Rnew,∗∗ is given

by (4.47). The first part is given by
∑ν

j=1 2Ap,1

(
Ψ∗

j

)p−2 VjγN ,led,j,∗, which gener-
ates the bound

sup
(t,θ)∈C

|ρ⊥∗∗,2,odd|∑ν
j=1 Ψ

1−σ
j (t)

≲ β3
∗

as that of γN ,led,j,∗, where γN ,led,j,∗ is given by Lemma 4.8. The second part is

given by
∑ν

j=1 2Ap,1

(
Ψ∗

j

)p−2 VjγN ,led,j,∗∗, which generates the bound

sup
(t,θ)∈C

|ρ⊥∗∗,2,rem|∑ν
j=1 Ψ

1−σ
j (t)

≲ β4
∗

as that of γN ,led,j,∗∗, where γN ,led,j,∗∗ is also given by Lemma 4.8. The third part

is given by
∑ν

l=1 pα
∗∗
l,1

(
Up−1 −Ψp−1

l

)
Ψl, which generates the bound{

∥ρ⊥∗∗,2,rem∥♯ ≲ β4
∗ + β3

∗Q
1
2+σ, p ≥ 3,

∥ρ⊥∗∗,2,rem∥♮,1 ≲ β4
∗ + β3

∗Q
1
2+σ, 1 < p < 3,

as that of γ1,ex, where γ1,ex is given by Lemma 4.4. □
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To eliminate the lower order terms in the data Rnew, we next consider the
following equations:

L(ρ⊥∗∗,3,i) = R3,ex,i −
ν∑

j=1

Ψp−1
j

(
c3,ex,i,j∂tΨj +

d∑
l=1

ς3,ex,i,j,lwj,l

)
, in C,

⟨∂tΨj , ρ
⊥
∗∗,3,i⟩ = ⟨wj,l, ρ

⊥
∗∗,3,i⟩ = 0 for all 1 ≤ j ≤ ν and all 1 ≤ l ≤ d,

(4.51) eqn6013

where

R3,ex,i =



n0∑
l=2

Ap,l−1Up−lγl
1,ex, i = 0,

n0∑
l=2

Ap,l−1Up−l

((
γ1,ex + ρ⊥∗∗,3,0,1

)l
− γl

1,ex

)
, i = 1,

n0∑
l=2

Ap,l−1Up−l

(γ1,ex +

i−1∑
k=0

ρ⊥∗∗,3,k,1

)l

−

(
γ1,ex +

i−2∑
k=0

ρ⊥∗∗,3,k,1

)l
, i ≥ 2.

(4.52) eqnnewnew0007

with γ1,ex given by Lemma 4.4.

⟨lem0014⟩Lemma 4.11. Let d ≥ 2, a < 0 and b = bFS(a). Then (4.51) is uniquely solvable
for all i ≥ 0. The solutions ρ⊥∗∗,3,i are even on Sd−1 and satisfies{

∥ρ⊥∗∗,3,i∥♯ ≲ Q((p−1)∧1)(i+1), p ≥ 3,

∥ρ⊥∗∗,3,i∥♮,1 ≲ Q((p−1)∧1)(i+1), 1 < p < 3,

where the Lagrange multipliers {c3,ex,i,j} and {ς3,ex,i,j,l} are chosen such that the
right hand side of the equation (4.51) is orthogonal to {∂tΨj} and {wj,l} in H1(C)
and the norms ∥ · ∥♯ and ∥ · ∥♮,1 are given in Lemma 4.4. The Lagrange multipliers

also satisfy |c3,ex,i,j | ≲ Q1+((p−1)∧1)(i+1) for all 1 ≤ j ≤ ν and ς3,ex,i,j,l = 0 for all
1 ≤ j ≤ ν and all 1 ≤ l ≤ d. Moreover, we can write

ρ⊥∗∗,3,i =

ν∑
j=1

α∗∗
j,2,iΨj + ρ⊥∗∗,3,i,1

where {α∗∗
j,2,i} are chosen such that ⟨Ψj , ρ

⊥
∗∗,3⟩ = 0 for all 1 ≤ j ≤ d which also

satisfies
∑ν

j=1

∣∣α∗∗
j,2,i

∣∣ ≲ Q1+((p−1)∧1)(i+1)| logQ| and{
∥ρ⊥∗∗,3,i,1∥♯ ≲ Q((p−1)∧1)(i+1), p ≥ 3,

∥ρ⊥∗∗,3,i,1∥♮,1 ≲ Q((p−1)∧1)(i+1), 1 < p < 3.

Proof. We first prove the conclusion for i = 0. Since by Lemma 4.4, we always
have |γ1,ex| = O

(
Q(p−1)∧1U

)
. Thus, it is easy to see that |R3,ex,0| ≲ Up−2γ21,ex ≲

Q(p−1)∧1
∣∣γ1,ex∣∣, which together with Lemma 4.4 once more, implies that{

∥R3,ex,0∥♯ ≲ Q(p−1)∧1, p ≥ 3,

∥R3,ex,0∥♮,1 ≲ Q(p−1)∧1, 1 < p < 3.

Since γ1,ex is even on Sd−1 which implies that R3,ex,0 is even on Sd−1, the rest

of the proof of ρ⊥∗∗,3,0 and {α∗∗
j,2,0} are the same as that of Lemmas 4.4 and 4.10,

respectively, and we omit it here. The conclusions for i ≥ 1 then follow from
iterating. □
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To eliminate the lower order terms in the data Rnew, we also need to consider
the following equation:

L(ρ⊥∗∗,4) = R4,ex −
ν∑

j=1

Ψp−1
j

(
c4,ex,j∂tΨj +

d∑
l=1

ς4,ex,j,lwj,l

)
, in C,

⟨∂tΨj , ρ
⊥
∗∗,4⟩ = ⟨wj,l, ρ

⊥
∗∗,4⟩ = 0 for all 1 ≤ j ≤ ν and all 1 ≤ l ≤ d,

(4.53) eqn5013

where L is given by (3.17), wj,l = Ψ
p+1
2

j θl are the nontrivial kernels of the bubble

Ψj in H1(C) given by Lemma 2.1 and R4,ex = 2Ap,1Up−2Vγ1,ex where

γ1,ex = γ1,ex +

n0∑
i=0

ρ⊥∗∗,3,i,1 (4.54) eqnnewnew1998

with γ1,ex and ρ⊥∗∗,3,i,1 given by Lemmas 4.4 and 4.11, respectively.

⟨lem0013⟩Lemma 4.12. Let d ≥ 2, a < 0 and b = bFS(a). Then (4.53) is uniquely solvable.
Moreover, the solution ρ⊥∗∗,4 is odd on Sd−1 and satisfies

∥ρ⊥∗∗,4∥♯ ≲ β∗, p ≥ 7

3
,

∥ρ⊥∗∗,4∥♮,2 ≲ β∗, 1 < p <
7

3
,

(4.55) eqn4447

where the Lagrange multipliers {c4,ex,j} and {ς4,ex,j,l} are chosen such that the right
hand side of the equation (4.53) is orthogonal to {∂tΨj} and {wj,l} in H1(C) and
the norms ∥ · ∥♯ and ∥ · ∥♮,2 are given in Lemma 4.6. The Lagrange multipliers also
satisfy c4,ex,j = 0 for all 1 ≤ j ≤ ν and |ς4,ex,j,l| ≲ β∗Q for all 1 ≤ j ≤ ν and
1 ≤ l ≤ d.

Proof. By Lemmas 4.4 and 4.11, γ1,ex is even on Sd−1. Moreover, similar to (4.33),
by direct calculations and p > 1, we have

∥R4,ex∥♯ ≲ β∗, p ≥ 7

3
,

∥R4,ex∥♮,2 ≲ β∗, 1 < p <
7

3
.

(4.56) eqn4548

The rest of the proof is the same as that of Lemma 4.6, so we omit it here. □

To eliminate the lower order terms in the data Rnew, we finally need to consider
the following equations:

L(ρ⊥∗∗,5,i) = R5,ex,i −
ν∑

j=1

Ψp−1
j

(
c5,ex,i,j∂tΨj +

d∑
l=1

ς5,ex,i,j,lwj,l

)
, in C,

⟨∂tΨj , ρ
⊥
∗∗,5,i⟩ = ⟨wj,l, ρ

⊥
∗∗,5,i⟩ = 0 for all 1 ≤ j ≤ ν and all 1 ≤ l ≤ d,

(4.57) eqn7013

where

R5,ex,i =



n0∑
l=2

lAp,l−1Up−l(V + γ2,ex + ρ⊥∗∗,4)γ
l−1
1,ex, i = 0,

n0∑
l=2

lAp,l−1Up−lρ⊥∗∗,5,i−1γ
l−1
1,ex, i ≥ 1,

(4.58) eqnnewnew0008

with γ1,ex given by (4.54).
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⟨lem0015⟩Lemma 4.13. Let d ≥ 2, a < 0 and b = bFS(a). Then (4.57) is uniquely solvable
for all i ≥ 0. Moreover, the solutions ρ⊥∗∗,5,i are all odd on Sd−1 and satisfies

∥ρ⊥∗∗,5,i∥♯ ≲ Q((p−1)∧1)iβ∗, p ≥ 7

3
,

∥ρ⊥∗∗,5,i∥♮,2 ≲ Q((p−1)∧1)iβ∗, 1 < p <
7

3
,

where the Lagrange multipliers {c5,ex,i,j} and {ς5,ex,i,j,l} are chosen such that the
right hand side of the equation (4.57) is orthogonal to {∂tΨj} and {wj,l} in H1(C)
and the norms ∥ · ∥♯ and ∥ · ∥♮,2 are given in Lemma 4.6. The Lagrange multipliers

also satisfy c5,ex,i,j = 0 for all 1 ≤ j ≤ ν and |ς5,ex,i,j,l| ≲ β∗Q
1+(

(p−1)
2 ∧1)i for all

1 ≤ j ≤ ν and all 1 ≤ l ≤ d.

Proof. Again, we first prove the conclusion for i = 0. By Lemmas 4.4, 4.11 and
4.12, we have |R5,ex,0| ≲

∣∣Up−2Vγ1,ex
∣∣+Q(p−1)∧1

∣∣γ2,ex + ρ⊥∗∗,4
∣∣, which implies that

∥R5,ex,0∥♯ ≲ β∗, p ≥ 7

3
,

∥R5,ex,0∥♮,2 ≲ β∗, 1 < p <
7

3
.

(4.59) eqnnewnew19997

Since γ1,ex is even on Sd−1 which implies that R5,ex,0 is odd on Sd−1, the rest of
the proof for i = 0 is the same as that of Lemma 4.6 and we omit it here. Since

|R5,ex,i| ≲ Q(p−1)∧1
∣∣ρ⊥∗∗,5,i−1

∣∣ , (4.60) eqnnewnew19996

the conclusions for i ≥ 1 then follow from iterating. □

We denote

ρ⊥∗∗,3 =

n0∑
l=0

ρ⊥∗∗,3,l,1 and R3,ex =

n0∑
l=0

R3,ex,l (4.61) eqnnewnew19994

and

ρ⊥∗∗,5 =

n0∑
l=0

ρ⊥∗∗,5,l and R5,ex =

n0∑
l=0

R5,ex,l (4.62) eqnnewnew19995

with R3,ex,l given by (4.52) and R5,ex,l given by (4.58), respctively. Now, let

ρ⊥∗∗ = ρ⊥∗∗,0 −
∑5

j=2 ρ
⊥
∗∗,j , then we have the following decomposition of ρ∗.

⟨prop0001⟩Proposition 4.1. Let d ≥ 2, a < 0 and b = bFS(a). Then we have ρ∗ = ρ0 + ρ⊥∗∗,
where

(1) the regular part ρ0 = γex + γ∗ + γN ,led and

(i) γex =
∑2

l=1 γl,ex with γ1,ex = γ1,ex+ρ
⊥
∗∗,3 even on Sd−1 and γ2,ex =

γ2,ex + ρ⊥∗∗,4 + ρ⊥∗∗,5 odd on Sd−1 satisfying{
∥γex∥♯ + ∥γ1,ex∥♯ ≲ 1, p ≥ 3,

∥γex∥♮,1 + ∥γ1,ex∥♮,1 ≲ 1, 1 < p < 3
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and 
∥γ2,ex∥♯ ≲ β∗, p ≥ 7

3
,

∥γ2,ex∥♮,2 ≲ β∗, 1 < p <
7

3
.

(ii) γ∗ =
∑ν

j=1 γj,∗ is even on Sd−1 with γj,∗ even in terms of t− s∗j in
R and satisfying

sup
(t,θ)∈C

|γ∗|∑ν
j=1 Ψ

1−σ
j (t)

≲ Q1+σ +

ν∑
j=1

∣∣∣(α∗
j

)p−1 − 1
∣∣∣+ β2

∗ ,

where γj,∗ = γ1,j + α∗∗
j,0Ψj.

(iii) γN ,led = γN ,led,∗+ρ
⊥
∗∗,2, with the symmetrical part of γN ,led in terms

of t − s∗j given by γN ,led,j + ρ⊥∗∗,1,j − α∗∗
j,1Ψj and the remaining part

denoted by γN ,led,rem,j, satisfies the following estimate

sup
(t,θ)∈C

|γN ,led,rem,j |∑ν
i=1;i ̸=j Ψ

1−σ
j (t)

≲ β2
∗ .

Moreover, ρ⊥∗∗,2 = ρ⊥∗∗,2,odd+ρ
⊥
∗∗,2,rem with ρ⊥∗∗,2,odd being odd on Sd−1

and γN ,led satisfies the following estimates
∥ρ⊥∗∗,2,rem∥♯
β4
∗ + β3

∗Q
1
2+σ

+ sup
(t,θ)∈C

β−2
∗ |γN ,led,∗|+ β−3

∗ |ρ⊥∗∗,2,odd|∑ν
j=1 Ψ

1−σ
j (t)

≲ 1, p ≥ 3,

∥ρ⊥∗∗,2,rem∥♮,1
β4
∗ + β3

∗Q
1
2+σ

+ sup
(t,θ)∈C

β−2
∗ |γN ,led,∗|+ β−3

∗ |ρ⊥∗∗,2,odd|∑ν
j=1 Ψ

1−σ
j (t)

≲ 1, 1 < p < 3.

(2) The singular part ρ⊥∗∗ satisfies the following equation:{
L(ρ⊥∗∗) = f +Rnew,0, in C,

⟨Ψj , ρ
⊥
∗∗⟩ = ⟨∂tΨj , ρ

⊥
∗∗⟩ = ⟨wj,l, ρ

⊥
∗∗⟩ = 0 for1 ≤ j ≤ ν and 1 ≤ l ≤ d,

(4.63) eqn1114

where

Rnew,0 =

ν∑
i=1

(c1,ex,i + c1,j,i + cN ,led,i − c3,ex,i − cnew,∗,i)Ψ
p−1
i ∂tΨi +

ν∑
j=1

R2,j

+

ν∑
i=1

d∑
l=1

(ς2,ex,i,l + ςN ,led,i,l − ς4,ex,i,l − ς5,ex,i,l − ςnew,∗,i,l)Ψ
p−1
i wi,l

+

ν∑
j=1

(
2Ap,1

(
Ψ∗

j

)p−2 Vj(ρ∗ − γ1,ex − γN ,led,j) + 3Ap,2

(
Ψ∗

j

)p−3 V2
j ρ∗

)
χBj

+

ν∑
j=1

O
(
β2
∗UjΨ

2p−3
j (Ψj + ρ∗) + β∗|ρ∗ − γ1,ex|Ψ

3p−5
2

j Uj

)
χBj

+O
(
β∗|ρ∗ − γ1,ex|U

3(p−1)
2

)
χC\B∗ +O

(
β2
∗U2(p−1)γ1,exχC\B∗

)
+

ν∑
j=1

α∗∗
j

(
Up−1 −Ψp−1

j

)
Ψj +Nrem −R3,ex −R5,ex (4.64) eqn0061
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with R3,ex given by (4.61), R5,ex given by (4.62) and α∗∗
j = α∗∗

j,0−α∗∗
j,1−α∗∗

1,2

with

ν∑
j=1

∣∣α∗∗
j

∣∣ ≲ Q1+σ +

ν∑
j=1

∣∣∣(α∗
j

)p−1 − 1
∣∣∣+ β2

∗ .

Proof. Since 3p−5
2 > p − 2 for p > 1, by (4.32), (4.34), (4.55), (4.56), (4.59) and

(4.60) and Lemma 4.13, we also have

∥R2,ex +R4,ex +R5,ex∥♮,1 ≲ β∗ and ∥γ2,ex∥♮,1 ≲ β∗ (4.65) eqqnew0009

for 1 < p < 3. Thus, the rest proof of (i) of (1) follows from Lemmas 4.4, 4.6,
4.12, 4.11 and 4.13. The conclusion of (ii) of (1) follows from Lemma 4.5 and
(4.41). The conclusion of (iii) of (1) follows from Lemmas 4.8, 4.9 and 4.10. The
conclusion of (2) follows from (4.41), (4.42), (4.44), (4.46), (4.53), (4.51), (4.57)
and Lemma 4.10. □

5. First refined expansion of N and estimate of
{
α∗
j

}
As we stated before, inspired by the optimal Bianchi-Egnell stability of the CKN

inequality for d ≥ 2, a < 0 and b = bFS(a) proved in [54, Theorem 1], we need
to eliminate the lower order terms (compared to the β4

∗ terms) to get the desired
stability. Thus, we need to refine the expansion of N since we have picked up a
regular part ρ0 in the remaining term ρ∗.

⟨lemn0001⟩Lemma 5.1. Let d ≥ 2, a < 0 and b = bFS(a). Then the nonlinear part N , which
is given by (3.20), can be refinedly expanded as follows:

N = Ap,1Up−2
(
V2

+ 2Vρ⊥∗∗
)
+Ap,2Up−3

(
V3

+ 3V2
ρ⊥∗∗

)
+N rem

= Ap,1Up−2
(
V2 + 2Vρ∗ + ρ20 + 2ρ0ρ

⊥
∗∗
)
+N rem

+Ap,2Up−3
(
V3 + 3V2ρ∗ + 3Vρ20 + ρ30 + 6Vρ0ρ⊥∗∗ + 3ρ20ρ

⊥
∗∗
)

= N∗ +N rem +Ap,1Up−2
(
ρ20 + 2ρ0ρ

⊥
∗∗
)

+Ap,2Up−3
(
3Vρ20 + ρ30 + 6Vρ0ρ⊥∗∗ + 3ρ20ρ

⊥
∗∗
)

:= N∗ +N rem +N0

in C, where N∗ is given in (4.1), V = V + ρ0 with ρ0 the regular part of ρ∗ given in
(1) of Proposition 4.1 and

N rem = O


β∗ +Q+

ν∑
j=1

∣∣∣(α∗
j

)p−1 − 1
∣∣∣
4

+ Up−4γ4ex


+O

(
χp≥2

∣∣ρ⊥∗∗∣∣2 + ∣∣ρ⊥∗∗∣∣p + ∣∣ρ⊥∗∗∣∣1+σ
+ |γ∗ + γN ,led|1+σχC\B̃∗∗

)
where

B̃∗∗ =

{
(θ, t) ∈ C | |γ∗ + γN ,led| ≤

1

2
U
}

and γ∗ and γN ,led are given in (1) of Proposition 4.1.
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Proof. We improve the set A, used in the proof of Lemma 4.1, by introducing the
set

A∗ =
{
(θ, t) ∈ B̃∗∗ | |ρ⊥∗∗| ≤

∣∣V∣∣} ,
where ρ⊥∗∗ is the (possible) singular part of ρ∗ given in (2) of Proposition 4.1. Since
we always have |γex| = o(U) by (i) of (1) of Proposition 4.1, by (4.2),

∣∣V∣∣ ≤ 3
4U in

B̃∗∗. Thus, by (1) of Proposition 4.1, we can expand N in A∗ as that of (4.3):

N = Ap,1Up−2
(
V2

+ 2Vρ⊥∗∗
)
+Ap,2Up−3

(
V3

+ 3V2
ρ⊥∗∗

)
+O

(
Up−4

(
V + ρ⊥∗∗

)4
+ Up−2

∣∣ρ⊥∗∗∣∣2)
= Ap,1Up−2

(
V2

+ 2Vρ⊥∗∗
)
+Ap,2Up−3

(
V3

+ 3V2
ρ⊥∗∗

)
+O


β∗ +Q+

ν∑
j=1

∣∣∣(α∗
j

)p−1 − 1
∣∣∣
4

+ Up−4γ4ex


+O

(
χp≥2|ρ⊥∗∗|2 + |ρ⊥∗∗|p

)
. (5.1) eqn9009

In C\A∗, either
∣∣V∣∣ ≤ |ρ⊥∗∗| which, as that of (4.4), implies that

N = O
(
χp≥2|ρ⊥∗∗|2 + |ρ⊥∗∗|p

)
, (5.2) eqn9010

or |ρ⊥∗∗| ≤
∣∣V∣∣ and (θ, t) ∈ C\B̃∗∗ which, together with (ii) and (iii) of (1) of

Proposition 4.1, implies that

N = O
(
|γ∗ + γN ,led|2∧p

)
. (5.3) eqn9110

Thus, similar to (4.5), since
∣∣V∣∣ = o

(
U1−σ

)
by (1) of Proposition 4.1, we have

|ρ⊥∗∗|1+σ ≳ Ap,1Up−2
(
V2

+ 2
∣∣Vρ⊥∗∗∣∣)+Ap,2Up−3

(∣∣V∣∣3 + 3V2|ρ⊥∗∗|
)

(5.4) eqn5017

if
∣∣V∣∣ ≤ |ρ⊥∗∗| in C\A∗ and

|γ∗ + γN ,led|1+σ ≳ Ap,1Up−2
(
V2

+ 2
∣∣Vρ⊥∗∗∣∣)+Ap,2Up−3

(∣∣V∣∣3 + 3V2|ρ⊥∗∗|
)

(5.5) eqn5217

if |ρ⊥∗∗| ≤
∣∣V∣∣ and (θ, t) ∈ C\B̃∗∗ in C\A∗. The conclusion then follows from (5.1),

(5.2), (5.3), (5.4) and (5.5). □

By multiplying (3.16) with Ψj on both sides and integrating by parts and by
the orthogonal conditions of ρ∗ given in (3.16) and the oddness of {Vi} on Sd−1,
we have

−⟨f,Ψj⟩H1 = ⟨R1,j ,Ψj⟩L2 + ⟨N ,Ψj⟩L2 +

ν∑
i=1;i ̸=j

⟨R1,i,Ψj⟩L2

+ ⟨R1,ex,Ψj⟩L2 + ⟨Lj,ex(ρ∗),Ψj⟩L2 (5.6) eqn0121

for all j = 1, 2, · · · , ν. In what follows, by using the equality (5.6), we shall derive

the estimate of
∑ν

j=1

((
α∗
j

)p − α∗
j

)
.
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⟨propn0001⟩Proposition 5.1. Let d ≥ 2, a < 0 and b = bFS(a). Then we have ν∑
j=1

((
α∗
j

)p − α∗
j

) = −
(
B1 + o(1)

)
Q−

〈
f,

ν∑
j=1

Ψj

∥Ψ∥2 + o(1)

〉
−
(
A1 + o(1)

)
β2
∗ +O

(
∥ρ⊥∗∗∥1+σ

)
,

where B1 > 0 is a constant and

A1 = lim
∥f∥H−1→0

∑ν
j=1Ap,1

〈(
Ψ∗

j

)p−2 V2
j ,Ψj

〉
L2

β2
∗∥Ψ∥2

.

Proof. By the the orthogonal conditions of ρ∗ and the oddness of wj,l on Sd−1 and
∂tΨj in R, we also have

⟨Nj ,Ψj⟩L2 = Ap,1

〈(
Ψ∗

j

)p−2 V2
j ,Ψj

〉
L2

+ 3Ap,2

〈(
Ψ∗

j

)p−3 V2
j ρ∗,Ψj

〉
L2

(5.7) eqn0025

for all j = 1, 2, · · · , ν, where

Nj = Ap,1

(
Ψ∗

j

)p−2 (V2
j + 2Vjρ∗

)
+Ap,2

(
Ψ∗

j

)p−3 (V3
j + 3V2

j ρ∗
)
. (5.8) eqnew9999

Intersecting (5.7) into (5.6), we have

−
ν∑

j=1

⟨f,Ψj⟩H1 =

ν∑
j=1

((
α∗
j

)p − α∗
j

)
∥Ψ∥2 +

ν∑
j=1

ν∑
i=1;i ̸=j

⟨R1,i,Ψj⟩L2

+

ν∑
j=1

⟨N −Nj ,Ψj⟩L2 +

ν∑
j=1

⟨Nj ,Ψj⟩L2

+

ν∑
j=1

⟨R1,ex,Ψj⟩L2 +

ν∑
j=1

⟨Lj,ex(ρ∗),Ψj⟩L2 . (5.9) eqn0028

The rest of the proof is to estimate every term in (5.9).
Step. 1 The estimate of

∑ν
j=1 ⟨Nj ,Ψj⟩L2 .

By Lemma 3.1,

ν∑
j=1

⟨Nj ,Ψj⟩L2 =

ν∑
j=1

(
Ap,1

〈(
Ψ∗

j

)p−2 V2
j ,Ψj

〉
L2

+ 3Ap,2

〈(
Ψ∗

j

)p−3 V2
j ρ∗,Ψj

〉
L2

)
= (A1,∗ + o(1))β2

∗ ,

where

A1,∗ = lim
∥f∥H−1→0

∑ν
j=1Ap,1

〈(
Ψ∗

j

)p−2 V2
j ,Ψj

〉
L2

β2
∗

> 0.

Step. 2 The estimate of
∑ν

j=1

∑ν
i=1;i ̸=j ⟨R1,i,Ψj⟩L2 .

By (3.18) and Lemma 4.3,

ν∑
j=1

ν∑
i=1;i ̸=j

⟨R1,i,Ψj⟩L2 =

ν∑
j=1

ν∑
i=1;i ̸=j

(
(α∗

i )
p−1 − 1

)
⟨Ψp

i ,Ψj⟩L2 = o(Q).

Step. 3 The estimate of
∑ν

j=1 ⟨R1,ex,Ψj⟩L2 .
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By the Taylor expansion, (3.18) and Lemma 4.3,

ν∑
j=1

⟨R1,ex,Ψj⟩L2 =

ν∑
j=1

ν∑
i=1

〈
pΨp−1

i UiχBi ,Ψj

〉
L2

+O

 ν∑
j=1

〈
Ψp−1

j χBj
,U2

j

〉
L2

+ ∥U∥p+1
Lp+1(C\B∗)


= (B1,∗ + o(1))Q,

where B1,∗ is a positive constant and Bi and B∗ are given by (4.7).
Step. 4 The estimate of

∑ν
j=1 ⟨Lj,ex(ρ∗),Ψj⟩L2 .

By (3.17) and (1) of Proposition 4.1,

⟨Lj,ex(ρ∗),Ψj⟩L2 =
〈
p
(
Up−1 −

(
Ψ∗

j

)p−1
)
ρ∗,Ψj

〉
L2

=
〈
p
(
Up−1 −

(
Ψ∗

j

)p−1
)
Ψj , ρ0 + ρ⊥∗∗

〉
L2
.

Similar to (4.33),

∣∣∣(Up−1 −
(
Ψ∗

j

)p−1
)
Ψj

∣∣∣ ≲

(
ν∑

i=1

Ψp−1
i UiχBi

)
+ UpχC\B∗ .

By Lemma 4.3 and (i) of (1) of Proposition 4.1,

∣∣∣〈(Up−1 −
(
Ψ∗

j

)p−1
)
Ψj , γex

〉
L2

∣∣∣ ≲



ν∑
i=1

Q
〈
Ψp−σ

i χBi
,Ui

〉
L2 , p ≥ 3,

ν∑
i=1

Q
〈
Ψ2p−3

i χBi
,Ui

〉
L2
, 1 < p < 3,

= o(Q).

By Lemma 4.3 and (ii) of (1) of Proposition 4.1,∣∣∣〈(Up−1 −
(
Ψ∗

j

)p−1
)
Ψj , γ∗

〉
L2

∣∣∣ = o
(〈
Ψp−σ

i χBi
,Ui

〉
L2

)
= o(Q).

By Lemma 4.3 and (iii) of (1) of Proposition 4.1,∣∣∣〈(Up−1 −
(
Ψ∗

j

)p−1
)
Ψj , γN ,led

〉
L2

∣∣∣
≲

ν∑
i=1

β2
∗
〈
Ψp−σ

i χBi
,Ui

〉
L2 +



ν∑
i=1

β3
∗Q
〈
Ψp−σ

i χBi
,Ui

〉
L2 , p ≥ 3,

ν∑
i=1

β3
∗Q
〈
Ψ2p−3

i χBi
,Ui

〉
L2
, 1 < p < 3

= o(Q). (5.10) eqnnewnew1999
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By Lemma 4.3,

∣∣∣〈(Up−1 −Ψp−1
j

)
Ψj , ρ

⊥
∗∗

〉
L2

∣∣∣ ≲

〈
ν∑

i=1

Ψp−1
i UiχBi

,
∣∣ρ⊥∗∗∣∣

〉
L2

≲


Q∥ρ⊥∗∗∥, p > 2,

Q |logQ|
1
2 ∥ρ⊥∗∗∥, p = 2,

Q
p
2 ∥ρ⊥∗∗∥, 1 < p < 2

= o(Q) +O
(
∥ρ⊥∗∗∥2+σ

)
.

Summarizing the above estimates, we have

ν∑
j=1

⟨Lj,ex(ρ∗),Ψj⟩L2 = o(Q) +O
(
∥ρ⊥∗∗∥2+σ

)
. (5.11) eqn0074

Step. 5 The estimate of
∑ν

j=1 ⟨N −Nj ,Ψj⟩L2 .

By Lemmas 4.2 and 5.1, (5.8) and the oddness of {Vi} on Sd−1, we have

⟨N −Nj ,Ψj⟩L2 = Ap,1

ν∑
i=1;i ̸=j

〈
(Ψ∗

i )
p−2 (V2

i + 2Viρ∗
)
χBi

,Ψj

〉
L2

+3Ap,2

ν∑
i=1;i ̸=j

〈
(Ψ∗

i )
p−3 V2

i ρ∗χBi ,Ψj

〉
L2

−Ap,1

〈(
Ψ∗

j

)p−2 (V2
j + 2Vjρ∗

)
χC\Bj

,Ψj

〉
L2

−3Ap,2

〈(
Ψ∗

j

)p−3 V2
j ρ∗χC\Bj

,Ψj

〉
L2

+

ν∑
i=1

〈
O
(
β∗|ρ∗|Ψ

3p−5
2

i Ui + β2
∗Ψ

2p−2
i Ui

)
χBi

,Ψj

〉
L2

+
〈
O
(
Up−2V2 + β∗U

3(p−1)
2 |ρ∗|

)
χC\B∗ ,Ψj

〉
L2

+
〈
N rem +N0,Ψj

〉
L2 . (5.12) eqnew0020

Step. 5.1 The estimate of
∑ν

i=1;i̸=j

〈
(Ψ∗

i )
p−2 (V2

i + 2Viρ∗
)
χBi

,Ψj

〉
L2
.

By (1) of Proposition 4.1,

ν∑
i=1;i̸=j

〈
(Ψ∗

i )
p−2 (V2

i + 2Viρ∗
)
χBi

,Ψj

〉
L2

=

ν∑
i=1;i̸=j

〈
(Ψ∗

i )
p−2 (V2

i + 2Viγ2,ex
)
χBi

,Ψj

〉
L2

+

ν∑
i=1;i̸=j

〈
(Ψ∗

i )
p−2 Vi

(
γN ,led + ρ⊥∗∗

)
χBi

,Ψj

〉
L2
.
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By Lemma 4.3 and (i) of (1) of Proposition 4.1,

ν∑
i=1;i ̸=j

∣∣∣〈(Ψ∗
i )

p−2 (V2
i + 2Viγ2,ex

)
χBi

,Ψj

〉
L2

∣∣∣

≲



ν∑
i=1;i ̸=j

〈(
β2
∗Ψ

2p−1
i + β2

∗QΨ
3p−1−2σ

2
i

)
χBi ,Ψj

〉
L2
, p ≥ 7

3
,

ν∑
i=1;i ̸=j

〈(
β2
∗Ψ

2p−1
i + β2

∗QΨ3p−4
i

)
χBi

,Ψj

〉
L2
, 1 < p <

7

3

= o(Q).

By Lemma 4.3 and (iii) of (1) of Proposition 4.1,

ν∑
i=1;i ̸=j

∣∣∣〈(Ψ∗
i )

p−2 ViγN ,ledχBi
,Ψj

〉
L2

∣∣∣

≲



ν∑
i=1;i ̸=j

〈
β3
∗Ψ

3p−1−2σ
2

i χBi
,Ψj

〉
L2
, p ≥ 3,

ν∑
i=1;i̸=j

〈(
β3
∗Ψ

3p−1−2σ
2

i + β3
∗QΨ

5p−7
2

i

)
χBi

,Ψj

〉
L2
, 1 < p < 3

= o(Q).

By Lemma 4.3,

ν∑
i=1;i ̸=j

∣∣∣〈(Ψ∗
i )

p−2 Viρ
⊥
∗∗χBi

,Ψj

〉
L2

∣∣∣ ≲
ν∑

i=1;i̸=j

β∗∥ρ⊥∗∗∥
∥∥∥Ψ 3p−3

2
i Ψj

∥∥∥
L2(Bi)

= o(Q) +O
(
∥ρ⊥∗∗∥2+σ

)
.

Summarizing the above estimates, we have

ν∑
j=1

ν∑
i=1;i̸=j

∣∣∣〈(Ψ∗
i )

p−2 (V2
i + 2Viρ∗

)
χBi ,Ψj

〉
L2

∣∣∣ = o(Q) +O
(
∥ρ⊥∗∗∥2+σ

)
.

Step. 5.2 The estimate of
〈(

Ψ∗
j

)p−2 (V2
j + 2Vjρ∗

)
χC\Bj

,Ψj

〉
L2
.

By Lemma 4.3 and (1) of Proposition 4.1,∣∣∣〈(Ψ∗
j

)p−2 (V2
j + 2Vjρ∗

)
χC\Bj

,Ψj

〉
L2

∣∣∣ ≲ β2
∗Q

p + β∗Q
3p−1

4 ∥ρ⊥∗∗∥

+β∗

〈
Ψ

3p−1
2

j χC\Bj
, |γ2,ex + γN ,led|

〉
L2
.

By Lemma 4.3 and (i) of (1) of Proposition 4.1,

〈
Ψ

3p−1
2

j χC\Bj
, |γ2,ex|

〉
L2

≲



ν∑
i=1;i̸=j

β∗Q
〈
Ψ1−σ

i χBi
,Ψ

3p−1
2

j

〉
L2
, p ≥ 7

3
,

ν∑
i=1;i̸=j

β∗Q
〈
Ψ

3p−5
2

i χBi ,Ψ
3p−1

2
j

〉
L2
, 1 < p <

7

3

= o(Q).
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By Lemma 4.3 and (iii) of (1) of Proposition 4.1,〈
Ψ

3p−1
2

j χC\Bj
, |γN ,led|

〉
L2

≲



ν∑
i=1;i ̸=j

β2
∗

〈
Ψ1−σ

i χBi
,Ψ

3p−1
2

j

〉
L2
, p ≥ 3,

ν∑
i=1;i ̸=j

(
β2
∗

〈
Ψ1−σ

i χBi ,Ψ
3p−1

2
j

〉
L2

+ β3
∗Q
〈
Ψp−2

i χBi ,Ψ
3p−1

2
j

〉
L2

)
, 1 < p < 3

= o(Q).

Summarizing the above estimates, we have〈(
Ψ∗

j

)p−2 (V2
j + 2Vjρ∗

)
χC\Bj

,Ψj

〉
L2

= o(Q) +O
(
∥ρ⊥∗∗∥2+σ

)
.

Step. 5.3 The estimate of
∑ν

i=1;i ̸=j

〈
(Ψ∗

i )
p−3 V2

i ρ∗χBi ,Ψj

〉
L2
.

By (i) of (1) of Proposition 4.1,
ν∑

i=1;i ̸=j

〈
(Ψ∗

i )
p−3 V2

i ρ∗χBi
,Ψj

〉
L2

=

ν∑
i=1;i ̸=j

〈
(Ψ∗

i )
p−3 V2

i (γN ,led + γ∗)χBi
,Ψj

〉
L2

+

ν∑
i=1;i ̸=j

〈
(Ψ∗

i )
p−3 V2

i

(
γ1,ex + ρ⊥∗∗

)
χBi

,Ψj

〉
L2
.

By Lemma 4.3 and (i) of (1) of Proposition 4.1,

ν∑
i=1;i ̸=j

∣∣∣〈(Ψ∗
i )

p−3 V2
i γ1,exχBi ,Ψj

〉
L2

∣∣∣ ≲


β2
∗Q
〈
Ψ2p−1−σ

i χBi ,Ψj

〉
L2
, p ≥ 3,

β2
∗Q
〈
Ψ3p−4

i χBi ,Ψj

〉
L2
, 1 < p < 3

= o(Q).

By Lemma 4.3 and (ii) of (1) of Proposition 4.1,
ν∑

i=1;i̸=j

∣∣∣〈(Ψ∗
i )

p−3 V2
i γ∗χBi

,Ψj

〉
L2

∣∣∣ = ν∑
i=1;i ̸=j

o(β2
∗)
〈
Ψ2p−1−σ

i χBi
,Ψj

〉
L2

= o(Q).

Similar to (5.10), by Lemma 4.3 and (iii) of (1) of Proposition 4.1,
ν∑

i=1;i ̸=j

∣∣∣〈(Ψ∗
i )

p−3 V2
i γN ,ledχBi ,Ψj

〉
L2

∣∣∣ = o(Q).

By Lemma 4.3,
ν∑

i=1;i̸=j

∣∣∣〈(Ψ∗
i )

p−3 V2
i ρ

⊥
∗∗χBi

,Ψj

〉
L2

∣∣∣ ≲ β2
∗∥ρ⊥∗∗∥

∥∥∥Ψ2p−2
i Ψj

∥∥∥
L2(Bi)

= o(Q) +O
(
∥ρ⊥∗∗∥2+σ

)
.

Summarizing the above estimates, we have
ν∑

i=1;i ̸=j

〈
(Ψ∗

i )
p−3 V2

i ρ∗χBi ,Ψj

〉
L2

= o(Q) +O
(
∥ρ⊥∗∗∥2+σ

)
.

Step. 5.4 The estimate of
〈(

Ψ∗
j

)p−3 V2
j ρ∗χC\Bj

,Ψj

〉
L2
.
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By (i) of (1) of Proposition 4.1,〈(
Ψ∗

j

)p−3 V2
j ρ∗χC\Bj

,Ψj

〉
L2

=
〈(

Ψ∗
j

)p−3 V2
j (γN ,led + γ∗)χC\Bj

,Ψj

〉
L2

+
〈(

Ψ∗
j

)p−3 V2
j

(
γ1,ex + ρ⊥∗∗

)
χC\Bj

,Ψj

〉
L2
.

By Lemma 4.3 and (i) of (1) of Proposition 4.1,∣∣∣〈(Ψ∗
j

)p−3 V2
j γ1,exχC\Bj

,Ψj

〉
L2

∣∣∣
≲



ν∑
i=1;i ̸=j

β2
∗Q
〈
Ψ1−σ

i χBi
,Ψ2p−1

j

〉
L2
, p ≥ 3,

ν∑
i=1;i ̸=j

β2
∗Q
〈
Ψp−2

i χBi
,Ψ2p−1

j

〉
L2
, 1 < p < 3

= o(Q).

By Lemma 4.3 and (ii) of (1) of Proposition 4.1,∣∣∣〈(Ψ∗
j

)p−3 V2
j γ∗χC\Bj

,Ψj

〉
L2

∣∣∣ = ν∑
i=1;i ̸=j

o(β2
∗)
〈
Ψ1−σ

i χBi
,Ψ2p−1

j

〉
L2

= o(Q).

Similar to (5.10), by Lemma 4.3 and (iii) of (1) of Proposition 4.1,∣∣∣〈(Ψ∗
j

)p−3 V2
j γN ,ledχC\Bj

,Ψj

〉
L2

∣∣∣ = o(Q).

By Lemma 4.3,∣∣∣〈(Ψ∗
j

)p−3 V2
j ρ

⊥
∗∗χC\Bj

,Ψj

〉
L2

∣∣∣ = o(Q) +O
(
∥ρ⊥∗∗∥2+σ

)
.

Summarizing the above estimates, we have∣∣∣〈(Ψ∗
j

)p−3 V2
j ρ∗χC\Bj

,Ψj

〉
L2

∣∣∣ = o(Q) +O
(
∥ρ⊥∗∗∥2+σ

)
.

Step. 5.5 The estimate of
∑ν

i=1

〈
β∗ρ∗Ψ

3p−5
2

i UiχBi ,Ψj

〉
L2
.

By (1) of Proposition 4.1,

ν∑
i=1

〈
β∗ρ∗Ψ

3p−5
2

i UiχBi
,Ψj

〉
L2

=

ν∑
i=1

β∗

〈
Ψ

3p−3
2

i UiχBi
, γN ,led + γ∗

〉
L2

+

ν∑
i=1

β∗

〈
Ψ

3p−3
2

i UiχBi
, γex + ρ⊥∗∗

〉
L2
.

By Lemma 4.3 and (i) of (1) of Proposition 4.1,

ν∑
i=1

β∗

∣∣∣〈Ψ 3p−3
2

i UiχBi
, γex

〉
L2

∣∣∣ ≲



ν∑
i=1

β∗Q
〈
Ψ

3p−1−2σ
2

i χBi
,Ui

〉
L2
, p ≥ 3,

ν∑
i=1

β∗Q
〈
Ψ

5p−7
2

i χBi
,Ui

〉
L2
, 1 < p < 3

= o(Q).
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By Lemma 4.3 and (ii) of (1) of Proposition 4.1,

ν∑
i=1

β∗

∣∣∣〈Ψ 3p−3
2

i UiχBi , γ∗

〉
L2

∣∣∣ = ν∑
i=1

o(β∗)
〈
Ψ

3p−1−2σ
2

i ,UiχBi

〉
L2

= o(Q).

Similar to (??), by Lemma 4.3 and (iii) of (1) of Proposition 4.1,

ν∑
i=1

β∗

∣∣∣〈Ψ 3p−3
2

i UiχBi
, γN ,led

〉
L2

∣∣∣ = o(Q).

By Lemma 4.3,
ν∑

i=1

β∗

∣∣∣〈Ψ 3p−3
2

i UiχBi , ρ
⊥
∗∗

〉
L2

∣∣∣ ≲
ν∑

i=1

∥ρ⊥∗∗∥
∥∥∥Ψ 3p−3

2
i Ui

∥∥∥
L2(Bi)

= o(Q) +O
(
∥ρ⊥∗∗∥2+σ

)
.

Summarizing the above estimates, we have
ν∑

i=1

∣∣∣〈β∗ρ∗Ψ 3p−5
2

i UiχBi ,Ψj

〉
L2

∣∣∣ = o(Q) +O
(
∥ρ⊥∗∗∥2+σ

)
.

Step. 5.6 The estimate of
∑ν

i=1 β
2
∗

〈
Ψ2p−2

i UiχBi
,Ψj

〉
L2
.

By Lemma 4.3,
ν∑

i=1

β2
∗

∣∣∣〈Ψ2p−2
i UiχBi ,Ψj

〉
L2

∣∣∣ ≲ ν∑
i=1

β2
∗

〈
Ψ2p−1

i χBi ,Ui

〉
L2

= o(Q).

Step. 5.7 The estimate of
〈(

Up−2V2 + β∗ρ∗U
3(p−1)

2

)
χC\B∗ ,Ψj

〉
L2
.

By (1) of Proposition 4.1,∣∣∣〈(Up−2V2 + β∗ρ∗U
3(p−1)

2

)
χC\B∗ ,Ψj

〉
L2

∣∣∣
≲

〈(
Up−2V2 + β∗|γex + γ∗ + γN ,led|U

3(p−1)
2

)
χC\B∗ ,Ψj

〉
L2

+
〈
β∗|ρ⊥∗∗|U

3(p−1)
2 χC\B∗ ,Ψj

〉
L2
.

By Lemma 4.3 and (1) of Proposition 4.1,〈(
Up−2V2 + β∗|γex + γ∗ + γN ,led|U

3(p−1)
2

)
χC\B∗ ,Ψj

〉
L2

≲ o(β∗)
∥∥∥U 3p+1−2σ

2

∥∥∥
L1(C\B∗)

+ β2
∗
∥∥U2p

∥∥
L1(C\B∗)

= o(Q).

By Lemma 4.3,〈
β∗|ρ⊥∗∗|U

3(p−1)
2 χC\B∗ ,Ψj

〉
L2

≲ β∗∥ρ⊥∗∗∥
∥∥∥U 3p−1

2

∥∥∥
L2(C\B∗)

= o(Q) +O
(
∥ρ⊥∗∗∥2+σ

)
.

Summarizing the above estimates, we have〈(
Up−2V2 + β∗|ρ∗|U

3(p−1)
2

)
χC\B∗ ,Ψj

〉
L2

= o(Q) +O
(
∥ρ⊥∗∗∥2+σ

)
.

Step. 5.8 The estimate of ⟨N0,Ψj⟩L2 .
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By (4.2), (1) of Proposition 4.1 and Lemma 5.1,∣∣⟨N0,Ψj⟩L2

∣∣ ≲ 〈Up−2−σΨj , γ
2
ex + |γN ,led + γ∗|2

〉
L2

+ ∥ρ⊥∗∗∥2.

By Lemma 4.3 and (i) of (1) of Proposition 4.1,〈
Up−2−σΨj , γ

2
ex

〉
L2

≲



ν∑
i=1

Q2
〈
Ψp−3σ

i ,Ψj

〉
L2(Bi)

, p ≥ 3,

ν∑
i=1

Q2
i

〈
Ψ

3(p−2)−σ
i ,Ψj

〉
L2(Bi)

+O
(
Q2
)
, 1 < p < 3

= o(Q). (5.13) eqnew9998

By Lemma 4.3 and (ii) of (1) of Proposition 4.1,

〈
Up−2Ψj , |γ∗|2

〉
L2

≲

(
Q1+σ + β2

∗ +

ν∑
l=1

∣∣∣(α∗
l )

p−1 − 1
∣∣∣)2

.

Similar to (5.10), by Lemma 4.3 and (iii) of (1) of Proposition 4.1,

〈
Up−2Ψj , γ

2
N ,led

〉
L2 = o(Q) +O

(
β2
∗ +

ν∑
l=1

∣∣∣(α∗
l )

p−1 − 1
∣∣∣)2

.

Thus, summarizing the above estimates, we have

∣∣⟨N0,Ψj⟩L2

∣∣ ≲ ∥ρ⊥∗∗∥2 + o(Q) +

(
β2
∗ +

ν∑
l=1

∣∣∣(α∗
l )

p−1 − 1
∣∣∣)2

.

Step. 5.9 The estimate of
〈
N rem,Ψj

〉
L2 .

By Lemma 5.1,

∣∣〈N rem,Ψj

〉
L2

∣∣ ≲ ∥ρ⊥∗∗∥1+σ +

(
β∗ +

ν∑
l=1

∣∣∣(α∗
l )

p−1 − 1
∣∣∣)4

+
〈
Up−4γ4ex,Ψj

〉
L2

+
〈
|γ∗ + γN ,led|1+σ

,Ψj

〉
L2(C\B̃∗∗)

+ o(Q).

By Lemma 4.3 and (i) of (1) of Proposition 4.1,

〈
Up−4γ4ex,Ψj

〉
L2 ≲



ν∑
i=1

Q4
〈
Ψp−4σ

i ,Ψj

〉
L2(Bi)

, p ≥ 3,

ν∑
i=1

Q4
〈
Ψ5p−12

i ,Ψj

〉
L2(Bi)

, 1 < p < 3

= o(Q). (5.14) eqnew9998

By the definition of B̃∗∗ given in Lemma 5.1, we have

C\B̃∗∗ ⊂
(
∪ν
j=1 (Bj ∩ Bj,∗)

)
∪ (B1,−,∗ ∩ B1,∗) ∪ (Bν,+,∗ ∩ Bν,∗) ,
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where B1,−,∗ and Bν,+,∗ are given by (4.16) and (4.17), respectively, and

Bj,∗ =

(θ, t) ∈ C |
∣∣t− s∗j

∣∣ ≳
∣∣∣ln(Q+ β2

∗ +
∑ν

l=1

∣∣∣(α∗
l )

p−1 − 1
∣∣∣)∣∣∣

σ

 .

Thus, by (ii) and (iii) of Proposition 4.1,

〈
|γ∗ + γN ,led|1+σ

,Ψj

〉
L2(C\B̃∗∗)

≲

(
Q+ β2

∗ +

ν∑
l=1

∣∣∣(α∗
l )

p−1 − 1
∣∣∣)1+

(2−σ)ΛFS
σ

≲

(
Q+ β2

∗ +

ν∑
l=1

∣∣∣(α∗
l )

p−1 − 1
∣∣∣)6

. (5.15) eqnnewnew0005

By summarizing the above estimates, we have

∣∣〈N rem,Ψj

〉
L2

∣∣ ≲ ∥ρ⊥∗∗∥1+σ + o (Q) +

(
β∗ +

ν∑
l=1

∣∣∣(α∗
l )

p−1 − 1
∣∣∣)4

.

By summarizing the estimates from Step. 5.1 to Step. 5.9, we have

∣∣⟨N −Nj ,Ψj⟩L2

∣∣ ≲ ∥ρ⊥∗∗∥1+σ + o (Q) +

(
β2
∗ +

ν∑
l=1

∣∣∣(α∗
l )

p−1 − 1
∣∣∣)2

.

The conclusion then follows from the estimates in Step. 1 to Step.5. □

6. Second refined expansion of N and estimates of Q

Again, we emphasize that we need to eliminate the lower order terms to get the
desired stability. Thus, we need to further refine the expansion of N rem, which is
the remaining term in the expansion of N given by Lemma 5.1.

⟨lemn0002⟩Lemma 6.1. Let d ≥ 2, a < 0 and b = bFS(a). Then N rem, the remaining term
in the expansion of N given by Lemma 5.1, can be further expanded as follows:

N rem = Ap,3Up−4
(
V4

+ 4V3
ρ⊥∗∗

)
+Ap,4Up−5

(
V5

+ 5V4
ρ⊥∗∗

)
+O


β∗ +Q+

ν∑
j=1

∣∣∣(α∗
j

)p−1 − 1
∣∣∣
6

+ Up−6γ6ex


+O

(
χp≥2|ρ⊥∗∗|2 + |ρ⊥∗∗|p + |ρ⊥∗∗|1+σ + |γ∗ + γN ,led|1+σχC\B̃∗∗

)
in C where V = V + ρ0 with V given by (3.15) and ρ0 given in Proposition 4.1, B̃∗∗
is given in Lemma 5.1 and γ∗ and γN ,led are given in (1) of Proposition 4.1.

Proof. The proof is a direct application of the Taylor expansion to N in the sets
A∗ and C\A∗, which is introduced in the proof of Lemma 5.1, up to the sixth order
terms as in the proof of Lemma 5.1. □

By multiplying (3.16) with ∂tΨj on both sides and integrating by parts, the
orthogonal conditions of ρ∗ given in (3.16) and the oddness of {Vi} on Sd−1 and
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∂tΨj in R, we have

−

〈
f,

ν∑
j=1

∂tΨj

〉
H1

=

ν∑
j=1

ν∑
i=1;i ̸=j

⟨R1,i, ∂tΨj⟩L2 +

ν∑
j=1

⟨Lj,ex(ρ∗), ∂tΨj⟩L2

+

ν∑
j=1

⟨N , ∂tΨj⟩L2 +

ν∑
j=1

⟨R1,ex, ∂tΨj⟩L2 . (6.1) eqn0022

In what follows, we shall derive the estimate of Q from (6.1).

⟨propn0002⟩Proposition 6.1. Let d ≥ 2, a < 0 and b = bFS(a). Then we have

Q = O
(
β6
∗ + ∥ρ⊥∗∗∥1+σ + ∥f∥H−1

)
.

Proof. By the oddness of wj,l on Sd−1 and ∂tΨj in R, we also have

⟨Nj , ∂tΨj⟩L2 = 2Ap,1

〈(
Ψ∗

j

)p−2 Vjρ∗, ∂tΨj

〉
L2

+ 3Ap,2

〈(
Ψ∗

j

)p−3 V2
j ρ∗, ∂tΨj

〉
L2
(6.2) eqn0026

for all j = 1, 2, · · · , ν, where Nj is given by (5.8). Intersecting (6.2) into (6.1), we
have

−
ν∑

j=1

⟨f, ∂tΨj⟩H1 =

ν∑
j=1

⟨R1,ex, ∂tΨj⟩L2 +

ν∑
j=1

⟨Nj , ∂tΨj⟩L2

+

ν∑
j=1

⟨N −Nj , ∂tΨj⟩L2 +

ν∑
j=1

⟨Lj,ex(ρ∗), ∂tΨj⟩L2

+

ν∑
j=1

ν∑
i=1;i̸=j

⟨R1,i, ∂tΨj⟩L2 . (6.3) eqn2022

As in the proof of Proposition 4.1, the rest of the proof is to estimate every term
in (6.3).

Step. 1 The estimate of
∑ν

j=1 ⟨R1,ex, ∂tΨj⟩L2 .

By (2.7), (3.18), Lemma 4.3 and the Taylor expansion,

ν∑
j=1

⟨R1,ex, ∂tΨj⟩L2 =

ν∑
j=1

ν∑
i=1

∫
Bi

(
Up −

ν∑
l=1

(Ψ∗
l )

p

)
∂tΨjdµ+ o (Q)

=

ν∑
j=1

p

∫
Bj

(
Ψ∗

j

)p−1 (
Ψ∗

j+1 +Ψ∗
j−1

)
∂tΨjdµ

+O

(
ν∑

i=1

∫
Bi

Ψp−1
i U2

i dµ

)
+ o (Q)

= p

∫
Bj

(
Ψ∗

j

)p−1 (
Ψ∗

j+1 +Ψ∗
j−1

)
∂tΨjdµ+ o(Q),
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where Bi is given by (4.7) and by (2.7) and Lemma 4.3 again,

ν∑
j=1

p

∫
Bj

(
Ψ∗

j

)p−1 (
Ψ∗

j+1 +Ψ∗
j−1

)
∂tΨjdµ =

ν∑
j=1

∫
C ∂t

(
Ψ∗

j

)p (
Ψ∗

j+1 +Ψ∗
j−1

)
dµ

α∗
j

+O
(
Q

p+1
2

)
= −

ν∑
j=1

∫
C
(
Ψ∗

j

)p
∂t
(
Ψ∗

j+1 +Ψ∗
j−1

)
dµ

α∗
j

+O
(
Q

p+1
2

)
= (B2 + o(1))Q

with B2 > 0 being a constant. Thus, summarizing the above estimates, we have

ν∑
j=1

⟨R1,ex, ∂tΨj⟩L2 = (B2 + o(1))Q.

Step. 2 The estimate of
∑ν

j=1

∑ν
i=1;i ̸=j ⟨R1,i, ∂tΨj⟩L2 .

By (3.18) and Lemma 4.3,∣∣∣∣∣∣
ν∑

i=1;i ̸=j

⟨R1,i, ∂tΨj⟩L2

∣∣∣∣∣∣ ≲
ν∑

i=1;i ̸=j

∣∣∣(α∗
i )

p−1 − 1
∣∣∣ ⟨Ψp

i ,Ψj⟩L2 = o(Q).

Step. 3 The estimate of ⟨Lj,ex(ρ∗), ∂tΨj⟩L2 .
By (2.7) and (5.11),∣∣⟨Lj,ex(ρ∗), ∂tΨj⟩L2

∣∣ ≲ ⟨|Lj,ex(ρ∗)| ,Ψj⟩L2 = o (Q) +O
(
∥ρ⊥∗∗∥2+σ

)
.

Step. 4 The estimate of ⟨Nj , ∂tΨj⟩L2 .
By (6.2) and (1) of Proposition 4.1,

⟨Nj , ∂tΨj⟩L2 = 2Ap,1

〈(
Ψ∗

j

)p−2 Vj∂tΨj , γ2,ex + γN ,led,rem,j + ρ⊥∗∗

〉
L2

+3Ap,2

〈(
Ψ∗

j

)p−3 V2
j ∂tΨj , γ1,ex + ρ⊥∗∗

〉
L2

+3Ap,2

〈(
Ψ∗

j

)p−3 V2
j ∂tΨj ,

ν∑
l=1;l ̸=j

γ1,l + γN ,led,rem,j

〉
L2

.

By (2.7), Lemma 4.3 and (i) of (1) of Proposition 4.1

∣∣∣〈(Ψ∗
j

)p−3 V2
j ∂tΨj , γ1,ex

〉
L2

∣∣∣ ≲



ν∑
i=1

β2
∗Q
〈
Ψ1−σ

i χBi
,Ψ2p−1

j

〉
L2
, p ≥ 3,

ν∑
i=1

β2
∗Q
〈
Ψp−2

i χBi
,Ψ2p−1

j

〉
L2
, 1 < p < 3

= o(Q).
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By (2.7), Lemma 4.5 and (iii) of (1) of Proposition 4.1,∣∣∣∣∣∣
〈(

Ψ∗
j

)p−3 V2
j ∂tΨj ,

ν∑
l=1;l ̸=j

γ1,l + γN ,led,rem,j

〉
L2

∣∣∣∣∣∣
≲

ν∑
l=1;l ̸=j

o
(
β2
∗
) 〈

Ψ1−σ
l χBl

,Ψ2p−1
j

〉
L2

= o(Q).

By (2.7), Lemma 4.3 and (i) of (1) of Proposition 4.1,

∣∣∣〈(Ψ∗
j

)p−2 Vj∂tΨj , γ2,ex

〉
L2

∣∣∣ ≲



ν∑
i=1

β2
∗Q
〈
Ψ1−σ

i χBi
,Ψ

3p−1
2

j

〉
L2
, p ≥ 7

3
,

ν∑
i=1

β2
∗Q
〈
Ψ

3p−5
2

i χBi
,Ψ

3p−1
2

j

〉
L2
, 1 < p <

7

3

= o(Q).

By (2.7), Lemma 4.3 and (iii) of (1) of Proposition 4.1,

∣∣∣〈(Ψ∗
j

)p−2 Vj∂tΨj , γN ,led,rem,j

〉
L2

∣∣∣ ≲ ν∑
i=1;i ̸=j

β3
∗

〈
Ψ1−σ

i χBi
,Ψ

3p−1
2

j

〉
L2

= o(Q).

By (2.7) and Lemma 4.3,∣∣∣2Ap,1

〈(
Ψ∗

j

)p−2 Vj∂tΨj , ρ
⊥
∗∗

〉
L2

+ 3Ap,2

〈(
Ψ∗

j

)p−3 V2
j ∂tΨj , ρ

⊥
∗∗

〉
L2

∣∣∣
≲ β∗

(∥∥∥Ψ 3p−1
2

j

∥∥∥
L2

+ β∗

∥∥∥Ψ2p−1
j

∥∥∥
L2

)
∥ρ⊥∗∗∥

= O
(
β6
∗ + ∥ρ⊥∗∗∥1+σ

)
.

Thus, summarizing the above estimates, we have

⟨Nj , ∂tΨj⟩L2 = o(Q) +O
(
β6
∗ + ∥ρ⊥∗∗∥1+σ

)
.

Step. 5 The estimate of ⟨N −Nj , ∂tΨj⟩L2 .
Since |∂tΨ| ≲ Ψ by (2.7), we can use similar estimates of (5.12) to obtain∣∣〈N −Nj −

(
N rem +N0

)
, ∂tΨj

〉
L2

∣∣ = o(Q) +O
(
∥ρ⊥∗∗∥2+σ

)
.

Step. 5.1 The estimate of ⟨N0, ∂tΨj⟩L2 .

Step. 5.1.1 The estimate of
〈
N0 −N 0,1, ∂tΨj

〉
L2 , where N 0,1 = Ap,1Up−2ρ20+

Ap,2Up−3
(
3Vρ20 + ρ30

)
.

By (4.2), (1) of Proposition 4.1 and Lemma 5.1,〈
N0 −N 0,1, ∂tΨj

〉
L2 ≲

〈
Up−2−σΨj (|γex|+ |γN ,led + γ∗|) ,

∣∣ρ⊥∗∗∣∣〉L2

+
〈
Up−3Ψjγ

2
ex,
∣∣ρ⊥∗∗∣∣〉L2 .
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By Lemma 4.3 and (i) of (1) of Proposition 4.1,〈
Up−2−σΨj |γex| ,

∣∣ρ⊥∗∗∣∣〉L2

≲



ν∑
i=1

Q
∥∥∥Ψp−1−2σ

i Ψj

∥∥∥
L2(Bi)

∥ρ⊥∗∗∥, p ≥ 3,

ν∑
i=1

Qi

∥∥∥Ψ2(p−2)−σ
i Ψj

∥∥∥
L2(Bi)

∥ρ⊥∗∗∥+ o(Q), 1 < p < 3

= o(Q) +O
(
∥ρ⊥∗∗∥2+σ

)
and 〈

Up−3Ψjγ
2
ex,
∣∣ρ⊥∗∗∣∣〉L2

≲



ν∑
i=1

Q2
∥∥∥Ψp−1−2σ

i Ψj

∥∥∥
L2(Bi)

∥ρ⊥∗∗∥, p ≥ 3,

ν∑
i=1

Q2
i

∥∥∥Ψ3p−7
i Ψj

∥∥∥
L2(Bi)

∥ρ⊥∗∗∥+ o(Q2), 1 < p < 3

= o(Q) +O
(
∥ρ⊥∗∗∥2+σ

)
.

By Lemma 4.3, (ii) of (1) of Proposition 4.1 and Proposition 5.1,〈
Up−2Ψj |γ∗| ,

∣∣ρ⊥∗∗∣∣〉L2 ≲
(
Q+ β2

∗ + ∥ρ⊥∗∗∥1+σ + ∥f∥H−1

)
∥ρ⊥∗∗∥

= o(Q+ β6
∗) +O

(
∥ρ⊥∗∗∥1+σ + ∥f∥H−1

)
.

Similar to (5.10), by Lemma 4.3 and (iii) of (1) of Proposition 4.1,〈
Up−2Ψj |γN ,led| ,

∣∣ρ⊥∗∗∣∣〉L2 = o(β6
∗ +Q) +O

(
∥ρ⊥∗∗∥1+σ + ∥f∥H−1

)
.

Summarizing the above estimates, we have〈
N0 −N 0,1, ∂tΨj

〉
L2 = o(Q+ β6

∗) +O
(
∥ρ⊥∗∗∥1+σ + ∥f∥H−1

)
.

Step. 5.1.2 The estimate of
〈
Up−2ρ20, ∂tΨj

〉
L2 .

By (1) of Proposition 4.1,〈
Up−2ρ20, ∂tΨj

〉
L2 =

〈
Up−2 (γ∗ + γN ,led)

2
, ∂tΨj

〉
L2

+
〈
Up−2γ2ex, ∂tΨj

〉
L2

+2
〈
Up−2 (γ∗ + γN ,led) γex, ∂tΨj

〉
L2 .

By (2.7) and similar estimates of (5.14),∣∣〈Up−2γ2ex, ∂tΨj

〉
L2

∣∣ = o(Q).

By (2.7) and (i) and (ii) of (1) of Proposition 4.1,

∣∣〈Up−2γ∗γex, ∂tΨj

〉
L2

∣∣ ≲



ν∑
i=1

o

(
Q
∥∥∥Ψp−2σ

i Ψj

∥∥∥
L1(Bi)

)
, p ≥ 3,

ν∑
i=1

o

(
Q
∥∥∥Ψ2p−3−σ

i Ψj

∥∥∥
L1(Bi)

)
, 1 < p < 3

= o(Q).

Similar to (5.10), by (2.7) and (i) and (iii) of (1) of Proposition 4.1,〈
Up−2γN ,ledγex, ∂tΨj

〉
L2 = o(Q).
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By the oddness of ∂tΨ in R and (ii) and (iii) of (1) of Proposition 4.1,〈
Up−2 (γ∗ + γN ,led)

2
, ∂tΨj

〉
L2

=
〈(

Up−2 −
(
Ψ∗

j

)p−2
)
∂tΨj ,W2

sym,j

〉
L2

+
〈
Up−2∂tΨjW∗,j , 2Wsym,j +W∗,j

〉
L2 ,

where Wsym,j = γ1,j + ρ⊥∗∗,1,j − α∗∗
j,3Ψj + γN ,led,j and W∗,j = γ∗ + γN ,led −Wsym,j

with

α∗∗
j,3 = α∗∗

j,0 − α∗∗
j,1 (6.4) eqnnewnew199985

and α∗∗
j,0 and α∗∗

j,1 being given by (4.40) and Lemma 4.10, respectively. Similar to
(4.33), by (2.7),∣∣∣(Up−2 −

(
Ψ∗

j

)p−2
)
∂tΨj

∣∣∣ ≲ ( ν∑
i=1

Ψp−2
i UiχBi

)
+ Up−1χC\B∗

where B∗ is given by (4.7), thus, by Lemmas 4.3, 4.5, 4.8, 4.9, 4.10 and Proposi-
tion 5.1,〈(

Up−2 −
(
Ψ∗

j

)p−2
)
∂tΨj ,W2

sym,j

〉
L2

= o

 ν∑
j=1

〈
Ψp−2σ

j χBj
,Uj

〉
L2

 = o(Q).

Similar to (4.12), by (2.7), Lemma 4.5, (1) of Proposition 4.1 and Proposition 5.1,

|∂tΨjW∗,j (2Wsym,j +W∗,j)|

≲
(
β2
∗ +Q+ ∥ρ⊥∗∗∥1+σ + ∥f∥H−1

)2
Q1−σ

 ν∑
j=1

Ψ1−σ
j χBj

+ U1−σχC\B∗


in C, thus, we have〈
Up−2∂tΨjW∗,j , 2Wsym,j +W∗,j

〉
L2 = o(Q+ β6

∗) +O
(
∥ρ⊥∗∗∥1+σ + ∥f∥H−1

)
.

Summarizing the above estimates, we have〈
Up−2ρ20, ∂tΨj

〉
L2 = o(Q+ β6

∗) +O
(
∥ρ⊥∗∗∥1+σ + ∥f∥H−1

)
.

Step. 5.1.3 The estimate of
〈
Up−3Vρ20, ∂tΨj

〉
L2 .

Clearly, we have

〈
Up−3Vρ20, ∂tΨj

〉
L2 =

〈
Up−3

 ν∑
i=1;i̸=j

Vi

 ρ20, ∂tΨj

〉
L2

+
〈
Up−3Vjρ

2
0, ∂tΨj

〉
L2 .

By (4.2) and applying the same symmetry as in the estimate of
〈
Up−2ρ20, ∂tΨj

〉
L2 ,

we have 〈
Up−3Vjρ

2
0, ∂tΨj

〉
L2 = o(Q+ β6

∗) +O
(
∥ρ⊥∗∗∥1+σ + ∥f∥H−1

)
.

By (2.7) and (1) of Proposition 4.1,∣∣∣∣∣∣
〈
Up−3

 ν∑
i=1;i̸=j

Vi

 ρ20, ∂tΨj

〉
L2

∣∣∣∣∣∣
≲

〈
Up−3

∣∣∣∣∣∣
ν∑

i=1;i ̸=j

Vi

∣∣∣∣∣∣ γ2ex,Ψj

〉
L2

+

〈
Up−3

∣∣∣∣∣∣
ν∑

i=1;i ̸=j

Vi

∣∣∣∣∣∣ (γ∗ + γN ,led)
2
,Ψj

〉
L2

.
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By Lemma 4.3 and (i) of (1) of Proposition 4.1,〈
Up−3

∣∣∣∣∣∣
ν∑

i=1;i ̸=j

Vi

∣∣∣∣∣∣ γ2ex,Ψj

〉
L2

≲



ν∑
i=1

β∗Q
2
〈
Ψ

3p−1−4σ
2

i χBi ,Ui

〉
L2
, p ≥ 3,

ν∑
i=1

β∗Q
2
i

〈
Ψ

7p−13
2

i χBi ,Ui

〉
L2

+ o(β∗Q
2), 1 < p < 3

= o(Q).

By Lemma 4.3, (ii) of (1) of Proposition 4.1 and Proposition 5.1,〈
Up−3

∣∣∣∣∣∣
ν∑

i=1;i̸=j

Vi

∣∣∣∣∣∣ γ2∗ ,Ψj

〉
L2

=

ν∑
i=1

o(β∗)
〈
Ψ

3p−1−4σ
2

i χBi
,Ui

〉
L2

= o(Q).

Similar to (5.10), by Lemma 4.3 and (iii) of (1) of Proposition 4.1,〈
Up−3

∣∣∣∣∣∣
ν∑

i=1;i̸=j

Vi

∣∣∣∣∣∣ γ2N ,led,Ψj

〉
L2

= o(Q).

Summarizing the above estimates, we have〈
Up−3Vρ20, ∂tΨj

〉
L2 = o(Q+ β6

∗) +O
(
∥ρ⊥∗∗∥1+σ + ∥f∥H−1

)
.

Step. 5.1.4 The estimate of
〈
Up−3ρ30, ∂tΨj

〉
L2 .

By (1) of Proposition 4.1 and Proposition 5.1,〈
Up−3ρ30, ∂tΨj

〉
L2 = O

(
Q(2p−1)∧3 |logQ|+

(
β2
∗ + ∥ρ⊥∗∗∥1+σ + ∥f∥H−1

)3)
= o(Q) +O

(
β6
∗ + ∥ρ⊥∗∗∥1+σ + ∥f∥H−1

)
.

Summarizing the estimates from Step. 5.1.1 to Step. 5.1.4, we have

⟨N0, ∂tΨj⟩L2 = o(Q) +O
(
β6
∗ + ∥ρ⊥∗∗∥1+σ + ∥f∥H−1

)
.

Step. 5.2 The estimate of
〈
N rem, ∂tΨj

〉
L2 .

Similar to (5.14) and (5.15), by Lemma 6.1 and Proposition 5.1,〈
N rem, ∂tΨj

〉
L2 = Ap,3

〈
Up−4

(
V4

+ 4V3
ρ⊥∗∗

)
, ∂tΨj

〉
L2

+Ap,4

〈
Up−5

(
V5

+ 5V4
ρ⊥∗∗

)
, ∂tΨj

〉
L2

+o(Q) +O
(
β6
∗ + ∥ρ⊥∗∗∥1+σ + ∥f∥H−1

)
.

Step. 5.2.1 The estimates of
〈
Up−4V3

ρ⊥∗∗, ∂tΨj

〉
L2

and
〈
Up−5V4

ρ⊥∗∗, ∂tΨj

〉
L2
.

Recall that V = V + ρ0 with V given by (3.15) and ρ0 given in Proposition 4.1.
By (2.7), (1) of Proposition 4.1 and Proposition 5.1,∣∣∣〈Up−4V3

ρ⊥∗∗, ∂tΨj

〉
L2

∣∣∣ ≲
(
Q

4p−3
2 ∧3 |logQ|

1
2 +

(
β∗ + ∥ρ⊥∗∗∥1+σ + ∥f∥H−1

)3) ∥ρ⊥∗∗∥
= o(Q+ β6

∗) +O
(
∥ρ⊥∗∗∥1+σ + ∥f∥H−1

)
.
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and∣∣∣〈Up−5V4
ρ⊥∗∗, ∂tΨj

〉
L2

∣∣∣ ≲
(
Q

5p−4
2 ∧4 |logQ|

1
2 +

(
β∗ + ∥ρ⊥∗∗∥1+σ + ∥f∥H−1

)4) ∥ρ⊥∗∗∥
= o(Q+ β6

∗) +O
(
∥ρ⊥∗∗∥1+σ + ∥f∥H−1

)
.

Step. 5.2.2 The estimates of
〈
Up−4V4

, ∂tΨj

〉
L2

and
〈
Up−5V5

, ∂tΨj

〉
L2
.

By the oddness of ∂tΨ in R and (1) of Proposition 4.1,〈
Up−4V4

, ∂tΨj

〉
L2

=
〈(

Up−4 −
(
Ψ∗

j

)p−4
)
∂tΨj ,V

4

sym,j

〉
L2

+
〈
Up−4∂tΨjV∗,j , 4V

3

sym,j + 6V2

sym,jV∗,j + 4Vsym,jV
2

∗,j + V3

∗,j

〉
L2
,

where Vsym,j = Vj + γ1,j + ρ⊥∗∗,1,j − α∗∗
j,3Ψj + γN ,led,j and V∗,j = V − Vsym,j with

α∗∗
j,3 given by (6.4). Similar to (4.33), by (2.7), we have∣∣∣(Up−4 −

(
Ψ∗

j

)p−4
)
∂tΨj

∣∣∣ ≲ ( ν∑
i=1

Ψp−4
i UiχBi

)
+ Up−1χC\B∗ ,

thus, by (3.15), Lemmas 4.3, 4.5, 4.8, 4.9, 4.10 and Proposition 5.1,〈(
Up−4 −

(
Ψ∗

j

)p−4
)
∂tΨj ,V

4

sym,j

〉
L2

= o
(〈

Ψp−4σ
j χBj

,Uj

〉
L2

)
= o(Q).

Again, similar to (4.12), by (2.7), (3.15), Lemma 4.5, (iii) of (1) of Proposition 4.1
and Proposition 5.1,∣∣∣∂tΨjV∗,j

(
4V3

sym,j + 6V2

sym,jV∗,j + 4Vsym,jV
2

∗,j + V3

∗,j

)∣∣∣
≲ Q1−σ

(
Q+ β∗ + ∥ρ⊥∗∗∥1+σ + ∥f∥H−1

)4 ν∑
j=1

Ψ3−3σ
j χBj

+ U3−3σχC\B∗


in C, thus, we have〈

Up−4∂tΨjV∗,j , 4V
3

sym,j + 6V2

sym,jV∗,j + 4Vsym,jV
2

∗,j + V3

∗,j

〉
L2

≲ Q1−σ
(
Q+ β∗ + ∥ρ⊥∗∗∥1+σ + ∥f∥H−1

)4
= o(Q+ β6

∗) +O
(
∥ρ⊥∗∗∥1+σ + ∥f∥H−1

)
.

Summarizing the above estimates, we have〈
Up−4V4

, ∂tΨj

〉
L2

= o(Q) +O
(
β6
∗ + ∥ρ⊥∗∗∥1+σ + ∥f∥H−1

)
.

By (4.2) and applying the same symmetry as in the estimate of
〈
Up−4V4

, ∂tΨj

〉
L2
,

we also have〈
Up−5V5

, ∂tΨj

〉
L2

= o(Q+ β6
∗) +O

(
∥ρ⊥∗∗∥1+σ + ∥f∥H−1

)
.

Summarizing the estimates from Step. 5.2.1 to Step. 5.2.2, we have〈
N rem, ∂tΨj

〉
L2 = o(Q) +O

(
β6
∗ + ∥ρ⊥∗∗∥1+σ + ∥f∥H−1

)
.

The conclusion then follows from the estimates in Step. 1 to Step. 5. □
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7. Finally refined expansion of N and estimate of ∥ρ⊥∗∗∥

By the orthogonal conditions of ρ⊥∗∗, given by (4.63) and multiplying (4.63) with
ρ⊥∗∗ on both sides and integrating by parts, we have

∥ρ⊥∗∗∥2 ≲ ∥f∥H−1∥ρ⊥∗∗∥+
∣∣〈Rnew,0, ρ

⊥
∗∗
〉
L2

∣∣ , (7.1) eqn0060

where Rnew,0 is given by (4.64). Moreover, we remark that by Lemmas 4.1 and
5.1, we have

Nrem = N0 +N rem, (7.2) eqnew0093

whereNrem is the remaining term inRnew,0. We emphasize once more that we need
to eliminate the lower order terms in the data Rnew,0 to get the desired stability.
Thus, we need further decompose the term

∑ν
j=1 γ1,j which is given in Lemma 4.5.

⟨lemn0003⟩Lemma 7.1. Let d ≥ 2, a < 0 and b = bFS(a). Then we have the following
decomposition

ν∑
j=1

γ1,j = γ̃1,∗ +

ν∑
l=1

α∗∗∗
l Ψl,

where {α∗∗∗
l } is chosen such that ⟨γ̃1,∗,Ψl⟩ = 0 for all 1 ≤ l ≤ ν. Moreover, we

have the following estimates

∥γ̃1,∗∥L∞ ≲
ν∑

l=1

Q1−σ |(α∗
l )

p − α∗
l | and

ν∑
j=1

∣∣α∗∗∗
j

∣∣ ≲ ν∑
l=1

|(α∗
l )

p − α∗
l | .

Proof. It is easy to see that γ̃1,∗ satisfies the following equation:
L(γ̃1,∗) = R1,∗ −

ν∑
i=1

Ψp−1
i

(
c1,j,i∂tΨi +

d∑
l=1

ς1,j,i,lwi,l

)
, in C,

⟨∂tΨj , γ̃1,∗⟩ = ⟨wj,l, γ̃1,∗⟩ = 0 for all 1 ≤ j ≤ ν and 1 ≤ l ≤ d,

(7.3) eqn9012

where by (3.18),

R1,∗ =

ν∑
l=1

(
R1,l − α∗∗∗

l

(
Ψp

l − pUp−1Ψl

))
=

ν∑
l=1

(
(α∗

l )
p − α∗

l − α∗∗∗
l

(
1− p (α∗

l )
p−1
))

Ψp
l

+

ν∑
l=1

pα∗∗∗
l

(
Up−1 − (Ψ∗

l )
p−1
)
Ψl.

By Lemma 4.3, (3.18) and similar estimates in the proof of Lemma 4.10, we have(
1− p

(
α∗
j

)p−1
)
α∗∗∗
j =

((
α∗
j

)p − α∗
j

)
+

ν∑
l=1

O(Q) ((α∗
l )

p − α∗
l ) +O

(
Q1−σ

)
∥γ̃1,∗∥

for all 1 ≤ j ≤ ν. Thus, by Lemma 4.5, (7.3), the orthogonal conditions of γ1,j
given in (4.29) and the elliptic estimates, we have the desired estimates of ∥γ̃1,∗∥L∞

and
∑ν

j=1

∣∣α∗∗∗
j

∣∣. □
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To eliminate the lower order terms (compared to the β4
∗ terms) in the data

Rnew,0 to get the desired stability, we need to refine the expansion of N rem for

the third time, where N rem is the remaining term in the expansion of N given by
Lemma 5.1.

⟨lemn0004⟩
Lemma 7.2. Let d ≥ 2, a < 0 and b = bFS(a). Then N rem, the remaining term
in the expansion of N given by Lemma 5.1, can be further expanded as follows:

N rem =

n0∑
l=4

Ap,l−1Up−l
(
V l

+ lV l−1
ρ⊥∗∗

)
+O

(
|γ∗ + γN ,led|1+σχC\B̃∗∗

)

+O

β∗ + ν∑
j=1

∣∣∣(α∗
j

)p−1 − 1
∣∣∣
n0

+Qp∧3


+O

(
χp≥2|ρ⊥∗∗|2 + |ρ⊥∗∗|p + |ρ⊥∗∗|1+σ

)
in C where V = V + ρ0 with V given by (3.15) and ρ0 given in Proposition 4.1, B̃∗∗
is given in Lemma 5.1 and γ∗ and γN ,led are given in (1) of Proposition 4.1.

Proof. Since by the choice of n0 and (i) of (1) of Proposition 4.1, we have∣∣Up−n0γn0
ex

∣∣ ≲

{
Qn0 , p ≥ 3,

Q
p+n0(p−1)

2 , 1 < p < 3

≲ Qp∧3,

the conclusion can be obtained by applying the Taylor expansion in the sets A∗
and C\A∗ as in the proof of Lemma 5.1 up to the n0th order terms. □

In what follows, we shall estimate ∥ρ⊥∗∗∥ by (7.1).

⟨propn0003⟩Proposition 7.1. Let d ≥ 2, a < 0 and b = bFS(a). Then we have

∥ρ⊥∗∗∥ ≲ β4
∗ + ∥f∥H−1 .

Proof. By (3.19), (4.64), (7.2) and the orthogonal conditions of ρ⊥∗∗ given by (4.63),〈
Rnew,0, ρ

⊥
∗∗
〉
L2

=

ν∑
j=1

2Ap,1

〈(
Ψ∗

j

)p−2 Vj(ρ∗ − γ1,ex − γN ,led,j)χBj , ρ
⊥
∗∗

〉
L2

+

ν∑
j=1

〈
R2,j , ρ

⊥
∗∗
〉
L2

+

ν∑
j=1

3Ap,2

〈(
Ψ∗

j

)p−3 V2
j ρ∗χBj

, ρ⊥∗∗

〉
L2

+

ν∑
j=1

α∗∗
j

〈(
Up−1 −Ψp−1

j

)
Ψj , ρ

⊥
∗∗

〉
L2

+

ν∑
j=1

〈
O
(
β∗Uj

(
β∗Ψ

2p−3
j (Ψj + ρ∗) + |ρ∗ − γ1,ex|Ψ

3p−5
2

j

))
χBj

, ρ⊥∗∗

〉
L2

+
〈
O
(
|ρ∗ − γ1,ex|U

3p−3
2

)
χC\B∗ , ρ

⊥
∗∗

〉
L2

+
〈
O
(
β2
∗U2(p−1)γ1,exχC\B∗

)
, ρ⊥∗∗

〉
L2

+
〈
N rem +N0 −R3,ex −R5,ex, ρ

⊥
∗∗
〉
L2 ,

where R3,ex and R5,ex are given by (4.61) and (4.62), respectively, and Bi and B∗
are given by (4.7).

Step. 1 The estimate of
〈∑ν

j=1 α
∗∗
j

(
Up−1 −Ψp−1

j

)
Ψj , ρ

⊥
∗∗

〉
L2
.
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By the orthogonal conditions of ρ⊥∗∗ given by (4.63), we have〈
ν∑

j=1

α∗∗
j

(
Up−1 −Ψp−1

j

)
Ψj , ρ

⊥
∗∗

〉
L2

=

〈
ν∑

j=1

α∗∗
j

(
Up−1 −

(
Ψ∗

j

)p−1
)
Ψj , ρ

⊥
∗∗

〉
L2

.

Similar to (4.33), we have∣∣∣∣∣∣
ν∑

j=1

α∗∗
j

(
Up−1 −

(
Ψ∗

j

)p−1
)
Ψj

∣∣∣∣∣∣ ≲
ν∑

j=1

∣∣α∗∗
j

∣∣Ψp−1
j UjχBj

+

 ν∑
j=1

∣∣α∗∗
j

∣∣UpχC\B∗ .

Thus, by Lemma 4.3, (2) of Proposition 4.1 and Propositions 5.1 and 6.1,〈
ν∑

j=1

α∗∗
j

(
Up−1 −Ψp−1

j

)
Ψj , ρ

⊥
∗∗

〉
L2

= O

 ν∑
j=1

∣∣α∗∗
j

∣∣Q 1
2+σ∥ρ⊥∗∗∥


≲ β2

∗
(
∥ρ⊥∗∗∥1+σ + ∥f∥H−1

) 1
2+σ ∥ρ⊥∗∗∥

+O
((
β4
∗ + ∥f∥H−1

)
∥ρ⊥∗∗∥

)
+ o(∥ρ⊥∗∗∥2)

= O
((
β4
∗ + ∥f∥H−1

)
∥ρ⊥∗∗∥

)
+ o(∥ρ⊥∗∗∥2).

Step. 2 The estimates of

ν∑
j=1

〈
β2
∗UjΨ

2p−3
j (Ψj + ρ∗)χBj , ρ

⊥
∗∗

〉
L2

and
〈
β∗(ρ∗ − γ1,ex)U∗, ρ

⊥
∗∗
〉
L2 , where U∗ =

∑ν
j=1 Ψ

3p−5
2

j UjχBj + U
3(p−1)

2 χC\B∗ .
By Lemma 4.3 and Proposition 6.1,〈

β2
∗UjΨ

2p−2
j χBj , ρ

⊥
∗∗

〉
L2

= O
(
β2
∗Q

1
2+σ∥ρ⊥∗∗∥

)
= O

(
β4
∗∥ρ⊥∗∗∥+ ∥f∥H−1∥ρ⊥∗∗∥

)
+ o

(
∥ρ⊥∗∗∥2

)
.

By (1) of Proposition 4.1,

ν∑
j=1

〈
β2
∗UjΨ

2p−3
j ρ∗χBj

, ρ⊥∗∗

〉
L2

=

ν∑
j=1

〈
β2
∗UjΨ

2p−3
j (γex + γ∗ + γN ,led)χBj

, ρ⊥∗∗

〉
L2

+o(∥ρ⊥∗∗∥2).

By Lemma 4.3, (i) of (1) of Proposition 4.1 and Proposition 6.1,∣∣∣〈β2
∗UjΨ

2p−3
j γexχBj

, ρ⊥∗∗

〉
L2

∣∣∣
≲


〈
β2
∗UjΨ

2p−2−σ
j

(
QjχBj,+

+Qj−1χBj,−

)
,
∣∣ρ⊥∗∗∣∣〉

L2
, p ≥ 3,〈

β2
∗UjΨ

3p−5
j

(
QjχBj,+ +Qj−1χBj,−

)
,
∣∣ρ⊥∗∗∣∣〉

L2
+ β2

∗Q∥ρ⊥∗∗∥, 1 < p < 3

= O
(
β2
∗Q

1
2+σ∥ρ⊥∗∗∥

)
= O

(
β4
∗∥ρ⊥∗∗∥+ ∥f∥H−1∥ρ⊥∗∗∥

)
+ o

(
∥ρ⊥∗∗∥2

)
.
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Similar to (5.10), by Lemma 4.3, (ii) and (iii) of (1) of Proposition 4.1, Proposi-
tions 5.1 and 6.1, ∣∣∣〈β2

∗UjΨ
2p−3
j (γ∗ + γN ,led)χBj , ρ

⊥
∗∗

〉
L2

∣∣∣
≲ o

(
β2
∗
) 〈

UjΨ
2p−2−σ
j ,

∣∣ρ⊥∗∗∣∣〉
L2

+O
(
β2
∗Q

1
2+σ∥ρ⊥∗∗∥

)
= O

(
β4
∗∥ρ⊥∗∗∥+ ∥f∥H−1∥ρ⊥∗∗∥

)
+ o

(
∥ρ⊥∗∗∥2

)
.

Summarizing the above estimates, we have

ν∑
j=1

〈
β2
∗UjΨ

2p−3
j ρ∗χBj , ρ

⊥
∗∗

〉
L2

= O
(
β4
∗∥ρ⊥∗∗∥+ ∥f∥H−1∥ρ⊥∗∗∥

)
+ o

(
∥ρ⊥∗∗∥2

)
.

By (1) of Proposition 4.1,〈
β∗(ρ∗ − γ1,ex)U∗, ρ

⊥
∗∗
〉
L2 = β∗

〈
γ2,ex + γ∗ + γN ,led,U∗ρ

⊥
∗∗
〉
L2 + β∗

〈
U∗,
(
ρ⊥∗∗
)2〉

L2
.

Since ∥U∗∥L∞ = o(1), we have β∗

〈
U∗,
∣∣ρ⊥∗∗∣∣2〉

L2
= o

(
∥ρ⊥∗∗∥2

)
. By Lemma 4.3, (i)

of (1) of Proposition 4.1 and Proposition 6.1, we have

β∗
∣∣〈γ2,ex,U∗ρ

⊥
∗∗
〉
L2

∣∣

≲


β2
∗Q∥ρ⊥∗∗∥

(
ν∑

i=1

〈
Ψ3p−3−2σ

i ,U2
i

〉
L2(Bi)

) 1
2

, p ≥ 7

3
,

β2
∗Q∥ρ⊥∗∗∥

(
ν∑

i=1

〈
Ψ6p−10

i ,U2
i

〉
L2(Bi)

) 1
2

+ o(β2
∗Q), 1 < p <

7

3

≲ β2
∗Q

1
2+σ∥ρ⊥∗∗∥

= O
(
β4
∗∥ρ⊥∗∗∥+ ∥f∥H−1∥ρ⊥∗∗∥

)
+ o

(
∥ρ⊥∗∗∥2

)
.

By Lemma 4.3, (ii) and (iii) of (1) of Proposition 4.1 and Propositions 5.1 and 6.1,
we have

β∗
〈
γ∗ + γN ,led,U∗ρ

⊥
∗∗
〉
L2

≲ β3
∗∥ρ⊥∗∗∥

ν∑
j=1

(∥∥∥∥Ψ 3(p−1)−2σ
2

j Uj

∥∥∥∥
L2(Bj)

)
+ ∥ρ⊥∗∗∥2+σ + ∥f∥H−1∥ρ⊥∗∗∥

+β4
∗Q

1
2+σ∥ρ⊥∗∗∥

= O
(
β4
∗∥ρ⊥∗∗∥+ ∥f∥H−1∥ρ⊥∗∗∥

)
+ o

(
∥ρ⊥∗∗∥2

)
.

Summarizing the above estimates, we have〈
β∗ρ∗U∗, ρ

⊥
∗∗
〉
L2 = O

(
β4
∗∥ρ⊥∗∗∥+ ∥f∥H−1∥ρ⊥∗∗∥

)
+ o

(
∥ρ⊥∗∗∥2

)
.

Step. 3 The estimates of

ν∑
j=1

〈(
Ψ∗

j

)p−2 Vj(ρ∗ − γ1,ex − γN ,led,j)χBj , ρ
⊥
∗∗

〉
L2

and
∑ν

j=1

〈(
Ψ∗

j

)p−3 V2
j ρ∗χBj

, ρ⊥∗∗

〉
L2
.
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By (1) of Proposition 4.1,

ν∑
j=1

〈(
2Ap,1

(
Ψ∗

j

)p−2 Vj(ρ∗ − γ1,ex − γN ,led,j) + 3Ap,2

(
Ψ∗

j

)p−3 V2
j ρ∗

)
χBj , ρ

⊥
∗∗

〉
L2

=
〈
V∗ρ0, ρ

⊥
∗∗
〉
L2 −

ν∑
j=1

〈
2Ap,1

(
Ψ∗

j

)p−2 Vj(γ1,ex + γN ,led,j)χBj
, ρ⊥∗∗

〉
L2

+ o
(
∥ρ⊥∗∗∥2

)
.

where

V∗ =

ν∑
j=1

(
2Ap,1

(
Ψ∗

j

)p−2 Vj + 3Ap,2

(
Ψ∗

j

)p−3 V2
j

)
χBj

.

By Lemma 4.3, (i) of (1) of Proposition 4.1 and Propositions 5.1 and 6.1, we have

∣∣〈γ2,ex,V∗ρ
⊥
∗∗
〉
L2

∣∣ ≲


β2
∗∥ρ⊥∗∗∥

 ν∑
j=1

Qj

∥∥∥Ψ 3p−1−2σ
2

j

∥∥∥
L2(Bj)

 , p ≥ 7

3
,

β2
∗∥ρ⊥∗∗∥

ν−1∑
j=1

Qj

∥∥∥Ψ3p−4
j

∥∥∥
L2(Bj)

+Q

 , 1 < p <
7

3

≲ β2
∗Q

1
2+σ∥ρ⊥∗∗∥

= O
(
β4
∗∥ρ⊥∗∗∥+ ∥f∥H−1∥ρ⊥∗∗∥

)
+ o

(
∥ρ⊥∗∗∥2

)
.

By the orthogonal conditions of ρ⊥∗∗ given in (2) of Proposition 4.1, Lemmas 4.5, 4.8
and 4.10, (iii) of (1) of Proposition 4.1 and Propositions 5.1 and 6.1 and Lemma 7.1
that

ν∑
j=1

2Ap,1

〈(
Ψ∗

j

)p−2 Vj(

ν∑
l=1

γ1,l + γN ,led − γN ,led,j)χBj
, ρ⊥∗∗

〉
L2

+

ν∑
j=1

3Ap,2

〈(
Ψ∗

j

)p−3 V2
j

(
ν∑

l=1

γ1,l + γN ,led

)
χBj , ρ

⊥
∗∗

〉
L2

≲
ν∑

j=1

∣∣∣∣∣∣
〈
γ̃1,∗ + γN ,led,rem,j,∗ + ρ⊥∗∗,2 +

ν∑
l=1;l ̸=j

(
α∗∗∗
l − α∗∗

l,1

)
Ψl,Ψ

p−2
j Vjρ

⊥
∗∗

〉
L2(Bj)

∣∣∣∣∣∣
+

∣∣∣∣〈(α∗∗∗
j − α∗∗

j,1

)
Ψj ,Ψ

p−2
j Vjρ

⊥
∗∗

〉
L2(C\Bj)

∣∣∣∣+ β2
∗∥ρ⊥∗∗∥

(
β2
∗ + ∥ρ⊥∗∗∥1+σ + ∥f∥H−1

)
≲ Q

1
2+σ

(
β2
∗ + ∥∥f∥H−1 + ∥ρ⊥∗∗∥1+σ

)
∥ρ⊥∗∗∥

= O
(
β4
∗∥ρ⊥∗∗∥+ ∥f∥H−1∥ρ⊥∗∗∥

)
+ o

(
∥ρ⊥∗∗∥2

)
.

Summarizing the above estimates, we have∣∣∣∣∣∣
ν∑

j=1

〈(
2Ap,1

(
Ψ∗

j

)p−2 Vj(ρ∗ − γ1,ex − γN ,led,j) + 3Ap,2

(
Ψ∗

j

)p−3 V2
j ρ∗

)
χBj , ρ

⊥
∗∗

〉
L2

∣∣∣∣∣∣
= O

(
β4
∗∥ρ⊥∗∗∥+ ∥f∥H−1∥ρ⊥∗∗∥

)
+ o

(
∥ρ⊥∗∗∥2

)
.

Step. 4 The estimate of
〈
β2
∗U2(p−1)γ1,exχC\B∗ , ρ

⊥
∗∗
〉
L2 .
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By (i) of (1) of Proposition 4.1 and Proposition 6.1,

∣∣∣〈β2
∗U2(p−1)γ1,exχC\B∗ , ρ

⊥
∗∗

〉
L2

∣∣∣ ≲ β2
∗Q

1
2+σ∥ρ⊥∗∗∥

= O
(
β4
∗∥ρ⊥∗∗∥+ ∥f∥H−1∥ρ⊥∗∗∥

)
+ o

(
∥ρ⊥∗∗∥2

)
.

Step. 5 The estimate of
〈
N rem +N0 −R3,ex −R5,ex, ρ

⊥
∗∗
〉
L2 .

By (1) of Proposition 4.1 and Lemmas 4.11, 4.13 and 7.2, we have

N rem +N0 −R3,ex −R5,ex

=

n0∑
l=2

Ap,l−1Up−l

γl1,ex −

(
γ1,ex +

n0−1∑
i=0

ρ⊥∗∗,3,i,1

)l


+

n0∑
l=2

lAp,l−1Up−lγl−1
1,ex

(
ρ⊥5,∗∗,n0

+ γ∗ + γN ,led

)
+

n0∑
l=2

l∑
k=2

Ck
l Ap,l−1Up−lγl−k

1,ex (V + γ2,ex + γ∗ + γN ,led)
k

+O
(
β4
∗ + ∥ρ⊥∗∗∥1+σ + ∥f∥H−1 +Q

)
+ o(ρ⊥∗∗)

+O
(
χp≥2|ρ⊥∗∗|2 + |ρ⊥∗∗|p + |ρ⊥∗∗|1+σ + |γ∗ + γN ,led|1+σχC\B̃∗∗

)
, (7.4) eqnnewnew19991

where Ck
l = l!

k!(l−k)! . Thus, similar to (5.15), by (ii) and (iii) of (1) of Proposi-

tion 4.1 and Propositions 5.1 and 6.1,

〈
N rem +N0 −R3,ex −R5,ex, ρ

⊥
∗∗
〉
L2

=

〈
n0∑
l=2

Ap,l−1Up−l

γl1,ex −

(
γ1,ex +

n0−1∑
i=0

ρ⊥∗∗,3,i,1

)l
 , ρ⊥∗∗

〉
L2

+

〈
n0∑
l=2

lAp,l−1Up−lγl−1
1,ex

(
ρ⊥5,∗∗,n0

+ γ∗ + γN ,led

)
, ρ⊥∗∗

〉
L2

+

〈
n0∑
l=2

l∑
k=2

Ck
l Ap,l−1Up−lγl−k

1,ex (V + γ2,ex + γ∗ + γN ,led)
k
, ρ⊥∗∗

〉
L2

+O
((
∥f∥H−1 + β4

∗
)
∥ρ⊥∗∗∥

)
+ o(∥ρ⊥∗∗∥2).

By Lemma 4.13, the choice of n0 , (1) of Proposition 4.1 and Proposition 6.1,

∣∣∣∣∣
〈

n0∑
l=2

lAp,l−1Up−lγl−1
1,exρ

⊥
5,∗∗,n0

, ρ⊥∗∗

〉
L2

∣∣∣∣∣ ≲
〈
Up−2

∣∣γ1,exρ⊥5,∗∗,n0

∣∣ , ∣∣ρ⊥∗∗∣∣〉L2

≲ Qn0(p−1)∥ρ⊥∗∗∥
= O

(
β4
∗ + ∥f∥H−1

)
∥ρ⊥∗∗∥+ o

(
∥ρ⊥∗∗∥2

)
.
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By (1) of Proposition 4.1 and Propositions 5.1 and 6.1,∣∣∣∣∣
〈

n0∑
l=2

lAp,l−1Up−lγl−1
1,ex (γ∗ + γN ,led) , ρ

⊥
∗∗

〉
L2

∣∣∣∣∣
≲ Q

1
2+σ

(
β2
∗ + ∥ρ⊥∗∗∥1+σ + ∥f∥H−1

)
∥ρ⊥∗∗∥

= O
((
∥f∥H−1 + β4

∗
)
∥ρ⊥∗∗∥

)
+ o(∥ρ⊥∗∗∥2).

By (1) of Proposition 4.1 and Propositions 5.1 and 6.1,∣∣∣∣∣
〈

n0∑
l=2

l∑
k=2

Ck
l Ap,l−1Up−lγl−k

1,ex (V + γ∗ + γN ,led)
k
, ρ⊥∗∗

〉
L2

∣∣∣∣∣
≲

n0∑
k=2

n0∑
l=k

Ck
l Q

1
2+(1+l−k)σ

(
β∗ + ∥ρ⊥∗∗∥1+σ + ∥f∥H−1

)k ∥ρ⊥∗∗∥
≲

n0∑
k=2

Q
1
2+σ

(
β∗ + ∥ρ⊥∗∗∥1+σ + ∥f∥H−1

)k ∥ρ⊥∗∗∥
= O

((
∥f∥H−1 + β4

∗
)
∥ρ⊥∗∗∥

)
+ o(∥ρ⊥∗∗∥2)

and∣∣∣∣∣
〈

n0∑
l=2

l∑
k=2

Ck
l Ap,l−1Up−lγl−k

1,exγ
k
2,ex, ρ

⊥
∗∗

〉
L2

∣∣∣∣∣ ≲
n0∑
k=2

n0∑
l=k

Ck
l Q

1
2+(1+l+k)σβk

∗∥ρ⊥∗∗∥

≲
n0∑
k=2

Q
1
2+σβk

∗∥ρ⊥∗∗∥

= O
(
∥f∥H−1 + β4

∗
)
∥ρ⊥∗∗∥+ o(∥ρ⊥∗∗∥2).

By (i) of (1) of Proposition 4.1 and Proposition 6.1,∣∣∣∣∣∣
〈

n0∑
l=2

Ap,l−1Up−l

γl1,ex −

(
γ1,ex +

n0−1∑
i=0

ρ⊥∗∗,3,i,1

)l
 , ρ⊥∗∗

〉
L2

∣∣∣∣∣∣
≲

〈
Up−2Ψ

2

∗Q
((p−1)∧1)(n0+1),

∣∣ρ⊥∗∗∣∣〉
L2

= O
(
∥f∥H−1 + β4

∗
)
∥ρ⊥∗∗∥+ o(∥ρ⊥∗∗∥2),

where we use the notation Ψ∗ to denote the barrier used in the norms ∥ρ⊥∗∗,3∥♯ for
p ≥ 3 and ∥ρ⊥∗∗,3∥♮,1 for 1 < p < 3.

Summarizing the above estimates, we have〈
N rem +N0 −R3,ex −R5,ex, ρ

⊥
∗∗
〉
L2 = O

((
∥f∥H−1 + β4

∗
)
∥ρ⊥∗∗∥

)
+ o(∥ρ⊥∗∗∥2).

The conclusion then follows from the estimates in Step. 1 to Step. 5. □
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8. Estimate of β∗ and proof of (1) of Theorem 1.3

By multiplying (3.16) with Vj on both sides and integrating by parts, the or-
thogonal conditions of ρ∗ and the oddness of {Vi} on Sd−1, we have

−
ν∑

j=1

⟨f,Vj⟩H1 =

ν∑
j=1

⟨R2,j ,Vj⟩L2 +

ν∑
j=1

⟨N ,Vj⟩L2 +

ν∑
j=1

⟨Lj,ex(ρ∗),Vj⟩L2

+

ν∑
j=1

ν∑
i=1;i ̸=j

⟨R2,i,Vj⟩L2 +

ν∑
j=1

⟨R2,ex,Vj⟩L2 (8.1) eqn0023

for all j = 1, 2, · · · , ν.
⟨propn0004⟩Proposition 8.1. Let d ≥ 2, a < 0 and b = bFS(a). Then we have

ν∑
j=1

(
p
(
(α∗

j )
p−1 − 1

) ∥∥∥Ψp−1
j V2

j

∥∥∥
L1

+ ⟨Nj ,Vj⟩L2 + ⟨f,Vj⟩
)
= o(β4

∗) +O (β∗∥f∥H−1) ,

where Nj is given by (5.8).

Proof. By the oddness of {Vi} on Sd−1, we have

⟨Nj ,Vj⟩L2 = Ap,2

〈(
Ψ∗

j

)p−3
,V4

j

〉
L2

+ 3Ap,2

〈(
Ψ∗

j

)p−3 V3
j , ρ∗

〉
L2

+2Ap,1

〈(
Ψ∗

j

)p−2 V2
j , ρ∗

〉
L2

(8.2) eqn0027

for all 1 ≤ j ≤ ν, where Nj is given by (5.8). By (8.1) and (8.2), we have

−
ν∑

j=1

⟨f,Vj⟩H1 =

ν∑
j=1

⟨R2,j ,Vj⟩L2 +

ν∑
j=1

⟨Nj ,Vj⟩L2 +

ν∑
j=1

⟨Lj,ex(ρ∗),Vj⟩L2

+

ν∑
j=1

⟨R2,ex,Vj⟩L2 +

ν∑
j=1

⟨N −Nj ,Vj⟩L2

+

ν∑
j=1

ν∑
i=1;i̸=j

⟨R2,i,Vj⟩L2 . (8.3) eqn0029

As in the proof of Proposition 4.1, the rest of the proof is to estimate every term
in (8.3).

Step. 1 The estimate of
∑ν

j=1 ⟨R2,j ,Vj⟩L2 .

By (3.19),
ν∑

j=1

⟨R2,j ,Vj⟩L2 =

ν∑
j=1

p
(
(α∗

j )
p−1 − 1

) ∥∥∥Ψp−1
j V2

j

∥∥∥
L1
.

Step. 2 The estimate of
∑ν

i=1;i̸=j ⟨R2,i,Vj⟩L2 .

By (3.19), Lemma 4.3 and Propositions 5.1 and 6.1,∣∣∣∣∣∣
ν∑

i=1;i ̸=j

⟨R2,i,Vj⟩L2

∣∣∣∣∣∣ ≲
ν∑

i=1;i ̸=j

β2
∗
∣∣(α∗

i )
p−1 − 1

∣∣ 〈Ψ 3p−1
2

i ,Ψ
p+1
2

j

〉
L2

= O
(
β2
∗
(
β2
∗ + ∥ρ⊥∗∗∥1+σ + ∥f∥H−1

)2)
= o(β4

∗ + ∥ρ⊥∗∗∥2) +O (β∗∥f∥H−1) .
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Step. 3 The estimate of ⟨R2,ex,Vj⟩L2 .
By (4.33), Lemma 4.3 and Propositions 5.1 and 6.1,

∣∣⟨R2,ex,Vj⟩L2

∣∣ ≲ ν∑
i=1

β2
∗

〈
Ψ2p−1

i ,Ui

〉
L2(Bi)

= o(β4
∗ + ∥ρ⊥∗∗∥2) +O (β∗∥f∥H−1) ,

where Bi is given by (4.7).
Step. 4 The estimate of ⟨Lj,ex(ρ∗),Vj⟩L2 .
By (3.17) and (i) and (ii) of (1) of Proposition 4.1,

⟨Lj,ex(ρ∗),Vj⟩L2 = p
〈(

Up−1 −
(
Ψ∗

j

)p−1
)
ρ∗,Vj

〉
L2

= O
(〈
β∗U∗∗, γ2,ex + γN ,led + ρ⊥∗∗

〉
L2

)
,

where U∗∗ =
∑ν

j=1 Ψ
3(p−1)

2
j UjχBj+U

3p−1
2 χC\B∗ with B∗ given by (4.7). By Lemma 4.3,

(i) of (1) of Proposition 4.1 and Proposition 6.1,

β∗ ⟨U∗∗, γ2,ex⟩L2 ≲



ν∑
j=1

β2
∗Q
〈
Ψ

3p−1−2σ
2

j ,Uj

〉
L2(Bj)

, p ≥ 7

3
,

ν∑
j=1

β2
∗Q
〈
Ψ3p−4

j ,Uj

〉
L2(Bj)

, 1 < p <
7

3

= o(β4
∗ + ∥ρ⊥∗∗∥2) +O (β∗∥f∥H−1) .

By Lemma 4.3, (iii) of (1) of Proposition 4.1 and Proposition 6.1,

β∗ ⟨U∗∗, γN ,led⟩L2 ≲ β3
∗Q+



ν∑
j=1

β4
∗Q
〈
Ψ

3p−1−2σ
2

j χBj ,Uj

〉
L2
, p ≥ 3,

ν∑
j=1

β4
∗Q
〈
Ψ

5p−7
2

j χBj
,Uj

〉
L2
, 1 < p < 3

= o(β4
∗ + ∥ρ⊥∗∗∥2) +O (β∗∥f∥H−1) .

By Lemma 4.3 and Proposition 6.1,

β∗
〈
U∗∗,

∣∣ρ⊥∗∗∣∣〉L2 ≲
ν∑

i=1

β∗

∥∥∥∥Ψ 3(p−1)
2

i Ui

∥∥∥∥
L2(Bj)

∥ρ⊥∗∗∥

= O
(
β∗Q

1
2+σ∥ρ⊥∗∗∥

)
= O

(
β∗

(
β3+σ
∗ + ∥ρ⊥∗∗∥

1
2+σ + ∥f∥

1
2+σ

H−1

)
∥ρ⊥∗∗∥

)
= o(β4

∗ + ∥ρ⊥∗∗∥2) +O (β∗∥f∥H−1) .

Summarizing the above estimates, we have

⟨Lj,ex(ρ∗),Vj⟩L2 = o(β4
∗ + ∥ρ⊥∗∗∥2) +O (β∗∥f∥H−1) .

Step. 5 The estimate of ⟨N −Nj ,Vj⟩L2 .
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Similar to (5.12), by the oddness of wj,l on Sd−1,

⟨N −Nj ,Vj⟩L2 =

ν∑
i=1;i ̸=j

Ap,1

〈
(Ψ∗

i )
p−2 (V2

i + 2Viρ∗
)
χBi

,Vj

〉
L2

+

ν∑
i=1;i̸=j

Ap,2

〈
(Ψ∗

i )
p−3 (V3

i + 3V2
i ρ∗
)
χBi

,Vj

〉
L2

+2Ap,1

〈(
Ψ∗

j

)p−2 Vjρ∗χC\Bj
,Vj

〉
L2

+Ap,2

〈(
Ψ∗

j

)p−3 (V3
j + 3V2

j ρ∗
)
χC\Bj

,Vj

〉
L2

+

ν∑
i=1

〈
O
(
β∗|ρ∗|Ψ

3p−5
2

i Ui + β2
∗Ψ

2p−2
i Ui

)
χBi

,Vj

〉
L2

+
〈
O
(
Up−2V2 + β∗|ρ∗|U

3(p−1)
2

)
χC\B∗ ,Vj

〉
L2

+
〈
N rem,Vj

〉
L2 + ⟨N0,Vj⟩L2 .

Step. 5.1 The estimate of
∑ν

i=1;i̸=j

〈
(Ψ∗

i )
p−2 V2

i χBi
,Vj

〉
L2
.

By Lemma 4.3 and Proposition 6.1,∣∣∣∣∣∣
ν∑

i=1;i̸=j

〈
(Ψ∗

i )
p−2 V2

i χBi ,Vj

〉
L2

∣∣∣∣∣∣ ≲ β3
∗

〈
Ψ2p−1

i ,Ψ
p+1
2

j

〉
L2

= o(β4
∗ + ∥ρ⊥∗∗∥2) +O (β∗∥f∥H−1) .

Step. 5.2 The estimate of
∑ν

i=1;i ̸=j

〈
(Ψ∗

i )
p−3 V3

i χBi
,Vj

〉
L2
.

By (4.2), we also have∣∣∣∣∣∣
ν∑

i=1;i̸=j

〈
(Ψ∗

i )
p−3 V3

i χBi
,Vj

〉
L2

∣∣∣∣∣∣ ≲

∣∣∣∣∣∣
ν∑

i=1;i ̸=j

〈
(Ψ∗

i )
p−2 V2

i χBi
,Vj

〉
L2

∣∣∣∣∣∣
= o(β4

∗ + ∥ρ⊥∗∗∥2) +O (β∗∥f∥H−1) .

Step. 5.3 The estimate of
∑ν

i=1;i̸=j

〈
(Ψ∗

i )
p−2 Viρ∗χBi ,Vj

〉
L2
.

By (1) of Proposition 4.1,〈
(Ψ∗

i )
p−2 Viρ∗χBi ,Vj

〉
L2

=
〈
(Ψ∗

i )
p−2 ViVjχBi , ρ

⊥
∗∗ + γex + γ∗ + γN ,led

〉
L2
.

By Lemma 4.3, (i) of (1) of Proposition 4.1 and Proposition 6.1,

∣∣∣〈(Ψ∗
i )

p−2 ViVjχBi , γex

〉
L2

∣∣∣ ≲


β2
∗Q
〈
Ψ

3p−1−2σ
2

i ,Ψ
p+1
2

j

〉
L2(Bi)

, p ≥ 3,

β2
∗Q
〈
Ψ

5p−7
2

i ,Ψ
p+1
2

j

〉
L2(Bi)

, 1 < p < 3

= o(β4
∗ + ∥ρ⊥∗∗∥2) +O (β∗∥f∥H−1) .
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Similar to (5.10), by Lemma 4.3, (ii) and (iii) of (1) of Proposition 4.1 and Propo-
sitions 5.1 and 6.1,∣∣∣〈(Ψ∗

i )
p−2 ViVjχBi

, γ∗ + γN ,led

〉
L2

∣∣∣ ≲ β4
∗

〈
Ψ

3p−1−2σ
2

i ,Ψ
p+1
2

j

〉
L2(Bi)

+o(β4
∗ + ∥ρ⊥∗∗∥2) + β∗∥f∥H−1

= o(β4
∗ + ∥ρ⊥∗∗∥2) +O (β∗∥f∥H−1) .

By Lemma 4.3 and Proposition 6.1,〈
(Ψ∗

i )
p−2 ViVjχBi

, ρ⊥∗∗

〉
L2

≲ β2
∗∥ρ⊥∗∗∥

(〈
Ψ3p−3

i ,Ψp+1
j

〉
L2(Bi)

) 1
2

= o(β4
∗ + ∥ρ⊥∗∗∥2) +O (β∗∥f∥H−1) .

Summarizing the above estimates, we have

ν∑
i=1;i̸=j

〈
(Ψ∗

i )
p−2 Viρ∗χBi ,Vj

〉
L2

= o(β4
∗ + ∥ρ⊥∗∗∥2) +O (β∗∥f∥H−1) .

Step. 5.4 The estimate of
∑ν

i=1;i̸=j

〈
(Ψ∗

i )
p−3 V2

i ρ∗χBi
,Vj

〉
L2
.

By (4.2), we have∣∣∣∣∣∣
ν∑

i=1;i̸=j

〈
(Ψ∗

i )
p−3 V2

i ρ∗χBi
,Vj

〉
L2

∣∣∣∣∣∣ ≲

∣∣∣∣∣∣
ν∑

i=1;i ̸=j

〈
(Ψ∗

i )
p−2 Viρ∗χBi

,Vj

〉
L2

∣∣∣∣∣∣
= o(β4

∗ + ∥ρ⊥∗∗∥2) +O (β∗∥f∥H−1) .

Step. 5.5 The estimate of
〈(

Ψ∗
j

)p−2 Vjρ∗χC\Bj
,Vj

〉
L2
.

By (1) of Proposition 4.1,〈(
Ψ∗

j

)p−2 Vjρ∗χC\Bj
,Vj

〉
L2

=
〈(

Ψ∗
j

)p−2 V2
j χC\Bj

, ρ⊥∗∗ + γ1,ex + γ∗ + γN ,led

〉
L2
.

By Lemma 4.3, (i) of (1) of Proposition 4.1 and Proposition 6.1,

∣∣∣〈(Ψ∗
j

)p−2 V2
j χC\Bj

, γ1,ex

〉
L2

∣∣∣ ≲



ν∑
i=1;i ̸=j

β2
∗Q
〈
Ψ1−σ

i ,Ψ2p−1
j

〉
L2(Bi)

, p ≥ 3,

ν∑
i=1;i ̸=j

β2
∗Q
〈
Ψp−2

i ,Ψ2p−1
j

〉
L2(Bi)

, 1 < p < 3

= o(β4
∗ + ∥ρ⊥∗∗∥2) +O (β∗∥f∥H−1) .

Similar to (5.10), by Lemma 4.3, (ii) and (iii) of (1) of Proposition 4.1 and Propo-
sitions 5.1 and 6.1,〈(

Ψ∗
j

)p−2 V2
j χC\Bj

, γ∗ + γN ,led

〉
L2

≲
ν∑

i=1;i ̸=j

β4
∗

〈
Ψ1−σ

i ,Ψ2p−1
j

〉
L2(Bi)

+o(β4
∗ + ∥ρ⊥∗∗∥2) + β∗∥f∥H−1

= o(β4
∗ + ∥ρ⊥∗∗∥2) +O (β∗∥f∥H−1) .



CAFFARELLI-KOHN-NIRENBERG INEQUALITY 65

By Lemma 4.3 and Proposition 6.1,

∣∣∣〈(Ψ∗
j

)p−2 V2
j χC\Bj

, ρ⊥∗∗

〉
L2

∣∣∣ ≲ β2
∗∥ρ⊥∗∗∥

(∫
C\Bj

Ψ4p−2
j dµ

) 1
2

= o(β4
∗ + ∥ρ⊥∗∗∥2) +O (β∗∥f∥H−1) .

Summarizing the above estimates, we have〈(
Ψ∗

j

)p−2 Vjρ∗χC\Bj
,Vj

〉
L2

= o(β4
∗ + ∥ρ⊥∗∗∥2) +O (β∗∥f∥H−1) .

Step. 5.6 The estimate of
〈(

Ψ∗
j

)p−3 (V3
j + 3V2

j ρ∗
)
χC\Bj

,Vj

〉
L2
.

By Lemma 4.3 and (1) of Proposition 4.1,〈(
Ψ∗

j

)p−3 (V3
j + 3V2

j ρ∗
)
χC\Bj

,Vj

〉
L2

= 3
〈(

Ψ∗
j

)p−3 V3
j χC\Bj

, γ2,ex + γN ,led

〉
L2

3
〈(

Ψ∗
j

)p−3 V3
j χC\Bj

, ρ⊥∗∗

〉
L2

+ o(β4
∗).

By Lemma 4.3 and (i) of (1) of Proposition 4.1,
∣∣∣〈(Ψ∗

j

)p−3 V3
j χC\Bj

, γ2,ex

〉
L2

∣∣∣ =
o(β4

∗). By Lemma 4.3 and (iii) of (1) of Proposition 4.1,∣∣∣〈(Ψ∗
j

)p−3 V3
j χC\Bj

, γN ,led

〉
L2

∣∣∣ = o(β4
∗).

By Lemma 4.3 and Proposition 6.1,

∣∣∣〈(Ψ∗
j

)p−3 V3
j χC\Bj

, ρ⊥∗∗

〉
L2

∣∣∣ ≲ β3
∗∥ρ⊥∗∗∥

(∫
C\Bj

Ψ5p−3
j dµ

) 1
2

= o(β4
∗ + ∥ρ⊥∗∗∥2) +O (β∗∥f∥H−1) .

Summarizing the above estimates, we have〈(
Ψ∗

j

)p−3 (V3
j + 3V2

j ρ∗
)
χC\Bj

,Vj

〉
L2

= o(β4
∗ + ∥ρ⊥∗∗∥2) +O (β∗∥f∥H−1) .

Step. 5.7 The estimate of
∑ν

i=1

〈
β∗ρ∗Ψ

3p−5
2

i UiχBi ,Vj

〉
L2
.

By (1) of Proposition 4.1 and the oddness of Vj on Sd−1,∣∣∣〈β∗ρ∗Ψ 3p−5
2

i UiχBi ,Vj

〉
L2

∣∣∣ ≲ β2
∗

〈
Ψ2p−2

i UiχBi ,
∣∣ρ⊥∗∗ + γ2,ex + γN ,led

∣∣〉
L2
.

By Lemma 4.3, (i) of (1) of Proposition 4.1, and Proposition 6.1,

∣∣∣β2
∗

〈
Ψ2p−2

i UiχBi
, γ2,ex

〉
L2

∣∣∣ ≲


β3
∗Q
〈
Ψ2p−1−σ

i ,Ui

〉
L2(Bi,+)

, p ≥ 7

3
,

β3
∗Q
〈
Ψ

7p−9
2

i ,Ui

〉
L2(Bi,+)

, 1 < p <
7

3

= o(β4
∗ + ∥ρ⊥∗∗∥2) +O (β∗∥f∥H−1) .

By Lemma 4.3 and (iii) of (1) of Proposition 4.1,∣∣∣β2
∗

〈
Ψ2p−2

i UiχBi
, γN ,led

〉
L2

∣∣∣ = o(β4
∗).
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By Lemma 4.3 and Proposition 6.1,∣∣∣β2
∗

〈
Ψ2p−2

i UiχBi
, ρ⊥∗∗

〉
L2

∣∣∣ ≲ β2
∗∥ρ⊥∗∗∥

(〈
Ψ4p−4

i ,U2
i

〉
L2(Bi)

) 1
2

= o(β4
∗ + ∥ρ⊥∗∗∥2) +O (β∗∥f∥H−1) .

Summarizing the above estimates, we have
ν∑

i=1

〈
β∗ρ∗Ψ

3p−5
2

i UiχBi
,Vj

〉
L2

= o(β4
∗ + ∥ρ⊥∗∗∥2) +O (β∗∥f∥H−1) .

Step. 5.8 The estimates of
ν∑

i=1

〈
β2
∗Ψ

2p−2
i UiχBi

,Vj

〉
L2

and
〈
Up−2V2χC\B∗ ,Vj

〉
L2 .

By Lemma 4.3 and Proposition 6.1,∣∣∣∣∣
ν∑

i=1

〈
β2
∗Ψ

2p−2
i UiχBi

,Vj

〉
L2

∣∣∣∣∣ ≲ β3
∗

ν∑
i=1

〈
Ψ

5p−3
2

i ,Ui

〉
L2(Bi)

= o(β4
∗ + ∥ρ⊥∗∗∥2) +O (β∗∥f∥H−1)

and ∣∣〈Up−2V2χC\B∗ ,Vj

〉
L2

∣∣ ≲ β3
∗

∫
C\B∗

U
5p−1

2 dµ

= o(β4
∗ + ∥ρ⊥∗∗∥2) +O (β∗∥f∥H−1) .

Step. 5.9 The estimate of
〈
β∗ρ∗U

3(p−1)
2 χC\B∗ ,Vj

〉
L2
.

By (1) of Proposition 4.1 and the oddness of Vj on Sd−1,∣∣∣〈β∗ρ∗U 3(p−1)
2 χC\B∗ ,Vj

〉
L2

∣∣∣ ≲ β2
∗
〈
U2p−1χC\B∗ , |γ2,ex + γN ,led|

〉
L2

+β2
∗
〈
U2p−1χC\B∗ ,

∣∣ρ⊥∗∗∣∣〉L2 .

By Lemma 4.3, (1) of Proposition 4.1 and Proposition 6.1,∣∣∣〈β∗ρ∗U 3(p−1)
2 χC\B∗ ,Vj

〉
L2

∣∣∣ ≲ β4
∗
∥∥U2p−σ

∥∥
L1(C\B∗)

+ β2
∗∥ρ⊥∗∗∥

∥∥U2p−1
∥∥
L2(C\B∗)

= o(β4
∗ + ∥ρ⊥∗∗∥2) +O (β∗∥f∥H−1) .

Step. 5.10 The estimate of ⟨N0,Vj⟩L2 .

By (4.2), Lemmas 4.8 and 5.1 and the oddness of Vj on Sd−1,

⟨N0,Vj⟩L2 = Ap,1

〈
Up−2

(
ρ20 − (γ1,ex + γ∗ + γN ,led,j,∗)

2
)
,Vj

〉
L2

+Ap,2

〈
Up−3

(
ρ30 − (γ1,ex + γ∗ + γN ,led,j,∗)

3
)
,Vj

〉
L2

+O
(
β2
∗

〈
Up−3Ψp+1

j , γ2ex + |γN ,led + γ∗|2
〉
L2

)
+O

(
β∗

〈
Up−2−σΨ

p+1
2

j ρ0, ρ
⊥
∗∗

〉
L2

)
.

By Lemmas 4.8 and 4.10 and (i) of (1) of Proposition 4.1,〈
Up−2

(
ρ20 − (γ1,ex + γ∗ + γN ,led,j,∗)

2
)
,Vj

〉
L2

= o
(
β∗

〈
Up−1−σΨ

p+1
2

j , γ2,ex + γN ,led,rem,j,∗ + γN ,led,j,∗∗ + ρ⊥∗∗,2

〉
L2

)
.
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By Lemma 4.3, (i) of (1) of Proposition 4.1 and Propositions 6.1 and 7.1,

β∗

〈
Up−1−σΨ

p+1
2

j , γ2,ex

〉
L2

= O
(
β2
∗Q

1+σ
)
= o(β4

∗) +O (β∗∥f∥H−1) .

By Lemmas 4.3 and 4.8 and Propositions 6.1 and 7.1,

β∗

〈
Up−1−σΨ

p+1
2

j , γN ,led,rem,j,∗ + γN ,led,j,∗∗

〉
L2

= O
(
β3
∗Q

1−σ + β4
∗
)

= O
(
β4
∗ + β∗∥f∥H−1

)
.

By Lemmas 4.3 and 4.10 and Propositions 6.1 and 7.1,

β∗

〈
Up−1−σΨ

p+1
2

j , ρ⊥∗∗,2

〉
L2

= O
(
β4
∗
)
.

Thus,〈
Up−2

(
ρ20 − (γ1,ex + γ∗ + γN ,led,j,∗)

2
)
,Vj

〉
L2 = o(β4

∗) +O (β∗∥f∥H−1) .

Similarly, 〈
Up−3

(
ρ30 − (γ1,ex + γ∗ + γN ,led,j,∗)

3
)
,Vj

〉
L2

= o
(
β∗

〈
Up−1−σΨ

p+1
2

j , γ2,ex + γN ,led,rem,j,∗ + γN ,led,j,∗∗ + ρ⊥∗∗,2)
〉
L2

)
= o(β4

∗) +O (β∗∥f∥H−1) .

By Lemma 4.3, (i) of (1) of Proposition 4.1 and Propositions 5.1 and 6.1,

β2
∗

〈
Up−3Ψp+1

j , γ2ex

〉
L2

≲ β2
∗Q = o(β4

∗) +O (β∗∥f∥H−1) .

Similar to (5.10), by Lemma 4.3, (ii) and (iii) of (1) of Proposition 4.1 and Propo-
sitions 5.1 and 6.1,

β2
∗

〈
U2Ψp+1

j , |γN ,led + γ∗|2
〉
L2

= o(β4
∗ + ∥ρ⊥∗∗∥2) +O (β∗∥f∥H−1) .

By Lemma 4.3, (1) of Proposition 4.1 and Propositions 5.1 and 6.1,

β∗

〈
Up−2−σΨ

p+1
2

j ρ0, ρ
⊥
∗∗

〉
L2

= β∗O
(〈

U2p−4−2σΨp+1
j , γ2ex

〉 1
2

L2

)
∥ρ⊥∗∗∥

+β∗O
(〈

U2p−4−2σΨp+1
j , γ2∗ + γ2N ,led

〉 1
2

L2

)
∥ρ⊥∗∗∥

= o(β4
∗ + ∥ρ⊥∗∗∥2) +O (β∗∥f∥H−1) .

Summarizing the above estimates, we have

⟨N0,Vj⟩L2 = o(β4
∗ + ∥ρ⊥∗∗∥2) +O (β∗∥f∥H−1) .

Step. 5.11 The estimate of
〈
N rem,Vj

〉
L2 .

Similar to (5.14) and (5.15), by Lemma 5.1 and Propositions 5.1, 6.1 and 7.1,∣∣〈N rem,Vj

〉
L2

∣∣ ≲ β∗
(
β4
∗ + ∥ρ⊥∗∗∥1+σ + ∥f∥H−1

)
= o(β4

∗) +O (β∗∥f∥H−1) .

By summarizing the estimates from Step. 5.1 to Step. 5.11, we have

⟨N −Nj ,Vj⟩L2 = o(β4
∗ + ∥ρ⊥∗∗∥2) +O (β∗∥f∥H−1) .

The conclusion then follows from the estimates in Step. 1 to Step. 5 and Propo-
sition 7.1. □

With Proposition 8.1 in hands, we can finally estimate β∗.
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⟨propn0005⟩
Proposition 8.2. Let d ≥ 2, a < 0 and b = bFS(a). Then we have β∗ ≲ ∥f∥

1
3

H−1 .

Proof. By Lemma 4.3, (1) of Proposition 4.1 and Propositions 5.1, 6.1 and 7.1,〈(
Ψ∗

j

)p−2 V2
j , ρ∗

〉
L2

=
〈(

Ψ∗
j

)p−2 V2
j , γex + γ∗ + γN ,led + ρ⊥∗∗

〉
L2

=

〈(
Ψ∗

j

)p−2 V2
j ,

ν∑
i=1

(γ1,i + α∗∗
i,0Ψi) + γN ,led

〉
L2

+o(β4
∗ + β∗∥f∥H−1). (8.4) eqnewnew4443

We write
∑ν

i=1 γ1,i + γN ,led =
∑ν

j=1 αj,∗Ψj + γ⊥∗∗ such that
〈
Ψj , γ

⊥
∗∗
〉
= 0 for all

1 ≤ j ≤ ν. Then by (4.40), (4.45) and (iii) of (1) of Proposition 4.1,〈
ν∑

i=1

(αi,∗ + α∗∗
i,0Ψi),Ψj

〉
=

〈
ν∑

i=1

(γ1,i + α∗∗
i,0Ψi) + γN ,led,Ψj

〉
= −⟨γ1,ex,Ψj⟩
= O

(
Q1+σ

)
. (8.5) eqnewnew6678

It follows from (8.4) and Propositions 6.1 and 7.1 that〈(
Ψ∗

j

)p−2 V2
j , ρ∗

〉
L2

=
〈(

Ψ∗
j

)p−2 V2
j , γ

⊥
∗∗

〉
L2

+ o(β4
∗ + β∗∥f∥H−1). (8.6) eqnewnew4444

By (4.29), (4.35) and Lemma 7.1, we know that γ⊥∗∗ satisfies{
L(γ⊥∗∗) = R⊥

1,∗∗, in C,

⟨Ψj , γ
⊥
∗∗⟩ = ⟨∂tΨj , γ

⊥
∗∗⟩ = ⟨wj,l, γ

⊥
∗∗⟩ = 0 for all 1 ≤ j ≤ ν and all 1 ≤ l ≤ d,

(8.7) eqn5512

where

R⊥
1,∗∗ = R1,∗∗ −

ν∑
i=1

Ψp−1
i

(
(c1,j,i + cN ,led,i)∂tΨi +

d∑
l=1

(ς1,j,i,l + ςN ,led,i,l)wi,l

)
and

R1,∗∗ = Nled +

ν∑
l=1

(
(α∗

l )
p − α∗

l − αl,∗

(
1− p (α∗

l )
p−1
))

Ψp
l

+

ν∑
l=1

pαl,∗

(
Up−1 − (Ψ∗

l )
p−1
)
Ψl

with Nled given by (4.36). Since by (4.41), (8.5) and Propositions 5.1, 6.1 and 7.1,
we have

∑ν
i=1 |αi,∗| = O

(
β2
∗ + ∥f∥H−1

)
. Thus, by the orthogonal conditions of

γ⊥∗∗, multiplying (8.7) with γ⊥∗∗ on both sides and integrating by parts, Lemma 4.3
and Propositions 6.1 and 7.1, we have〈

L(γ⊥∗∗)−Nled, γ
⊥
∗∗
〉
L2 = o

(
β4
∗ + β∗∥f∥H−1

)
+O

(
∥f∥2H−1

)
. (8.8) eqnewnew1220

Since Q→ 0 and β∗ → 0 as ∥f∥H−1 → 0, by Lemma 4.3, Propositions 5.1, 6.1 and
7.1, it is easy to see that〈
L(γ⊥∗∗)−Nled, γ

⊥
∗∗
〉
L2 = ∥γ⊥∗∗∥2 −

ν∑
j=1

〈
pΨp−1

j +
p(p− 1)

2

(
Ψ∗

j

)p−2 V2
j , γ

⊥
∗∗

〉
L2

+o(β4
∗ + ∥γ⊥∗∗∥) +O(β∗∥f∥H−1)
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which, together with (8.6), (8.8) and Propositions 5.1, 6.1, 7.1 and 8.1, implies that

ν∑
j=1

⟨f,Vj⟩H1 −
p
〈
Ψp−1

j ,V2
j

〉
L2

α∗
j∥Ψ∥p+1

Lp+1

⟨f,Ψj⟩H1


= 2(1 + o(1))∥γ⊥∗∗∥2 −

ν∑
j=1

2
〈
pΨp−1

j + p(p− 1)
(
Ψ∗

j

)p−2 V2
j , γ

⊥
∗∗

〉
L2

+

ν∑
j=1

p(p− 1)

2

p(α∗
j )

p−3
(〈

Ψp−1
j ,V2

j

〉
L2

)2
∥Ψ∥p+1

Lp+1

− p− 2

3

〈(
Ψ∗

j

)p−3
,V4

j

〉
L2


+o(β4

∗) +O
(
β∗∥f∥H−1 + ∥f∥2H−1

)
. (8.9) eqn0030

The conclusion then follows from applying the estimates in [54, Section 4.3] and
the orthogonal conditions of γ⊥∗∗ given in (8.7) into (8.9). □

We are now ready to give the proof of (1) of Theorem 1.3.

Proof of (1) of Theorem 1.3: The conclusions for ν ≥ 2 follows immediately
from Lemma 3.1 and Propositions 5.1, 6.1, 7.1, 8.1 and 8.2, since

distD1,2
a

(u,Zν
0 ) ≤ ∥ρ∥+

ν∑
l=1

∣∣∣(α∗
l )

p−1 − 1
∣∣∣ .

For ν = 1, there is no interaction between bubbles, that is, we have Q = 0. Thus,
the conclusion for ν = 1 follows from Lemma 3.1 and Propositions 5.1, 7.1, 8.1 and
8.2. 2

9. Optimal example and proof of (2) of Theorem 1.3

Let R > 0 be a sufficiently large parameter and β > 0 is a sufficiently small
parameter. We shall use the function, given by

v = Ψ+ΨR + β(wd + wR,d) := ΓR + βΦR,

to construct an optimal example of the stability stated in Theorem 1.3 and prove

(2) of Theorem 1.3, where ΨR = Ψ(t − R) and, as above, wd = Ψ
p+1
2 θd and

wR,d = wd(t−R). It is easy to see that

3

2

(
S−1
FS

) p+1
p−1 < ∥v∥2 < 5

2

(
S−1
FS

) p+1
p−1 .
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Moreover, since Ψ(t) is the unique positive solution of (2.5) for d ≥ 2, a < 0 and
b = bFS(a), by Lemmas 2.1 and 4.2,

Ξ := −∆θv − ∂2t v + ΛFSv − vp

= Ψp +Ψp
R + pβ

(
Ψp−1wd +Ψp−1

R wR,d

)
− (ΓR + βΦR)

p

= Ψp +Ψp
R − Γp

R + pβ
((

Ψp−1 − Γp−1
R

)
wd +

(
Ψp−1

R − Γp−1
R

)
wR,d

)
−
(
Ap,1β

2Ψp−2w2
d +Ap,2β

3Ψp−3w3
d

)
χB

−
(
Ap,1β

2Ψp−2
R w2

R,d +Ap,2β
3Ψp−3

R w3
R,d

)
χBR

−
(
β2Γp−3

R Φ2
R (Ap,1ΓR +Ap,2βΦR)

)
χC\(B∪BR) + Ξrem (9.1) eqqnew0001

where

B =

[
−R

2
,
R

2

]
× Sd−1, BR =

[
R

2
,
3R

2

]
× Sd−1

and

Ξrem = O
(
β2
(
Ψ2(p−1)ΨRχB +Ψ

2(p−1)
R ΨχBR

)
+ β4Γ4

R

)
.

We denote

Ξ1 = (Γp
R −Ψp −Ψp

R) + pβ
((

Γp−1
R −Ψp−1

)
wd +

(
Γp−1
R −Ψp−1

R

)
wR,d

)
:= Ξ1,1 + βΞ1,2 (9.2) eqqnew0005

and

Ξ2 = Ap,1β
2
(
Ψp−2w2

dχB +Ψp−2
R w2

R,dχBR
+ Γp−2

R Φ2
RχC\(B∪BR)

)
+Ap,2β

3
(
Ψp−3w3

dχB +Ψp−3
R w3

R,dχBR
+ Γp−3

R Φ3
RχC\(B∪BR)

)
:= β2Ξ2,1 + β3Ξ2,2. (9.3) eqqnew0006

Applying Lemmas 4.4, 4.6 and 4.7, we immediately have the following.

⟨lemq1001⟩Lemma 9.1. Let d ≥ 2, a < 0 and b = bFS(a). Then the following equation
−∆θϱi,j − ∂2t ϱi,j + ΛFSϱi,j − pΓp−1

R ϱi,j = Ξi,j + ϑi,j , in C,
⟨∂tΨ, ϱi,j⟩ = ⟨∂tΨR, ϱi,j⟩ = 0,

⟨wl, ϱi,j⟩ = ⟨wR,l, ϱi,j⟩ = 0 for all 1 ≤ l ≤ d,

(9.4) eqqnew1002

is uniquely solvable, where Ξi,j is given by (9.2) and (9.3), and

ϑi,j = Ψp−1

(
ci,j∂tΨ+

d∑
l=1

ςi,j,lwl

)
+Ψp−1

R

(
cR,i,j∂tΨR +

d∑
l=1

ςR,i,j,lwR,l

)
(9.5) eqqnew0003

with ci,j , cR,i,j and {ςi,j,l} and {ςR,i,j,l} being chosen such that the right hand side
of the equation (9.4) is orthogonal to ∂tΨ, ∂tΨR, {wl} and {wR,l} in H1(C). More-
over, ϱ1,1 is even on Sd−1 and ϱ1,2 is odd on Sd−1 with{

∥ϱ1,1∥♯ ≲ 1, p ≥ 3,

∥ϱ1,1∥♮,1 ≲ 1, 1 < p < 3,
and


∥ϱ1,2∥♯ ≲ 1, p ≥ 7

3
,

∥ϱ1,2∥♮,2 ≲ 1, 1 < p <
7

3
,
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while, ϱ2,1 is even on Sd−1 and ϱ2,2 is odd on Sd−1 with

sup
(t,θ)∈C

|ϱ2,1|+ |ϱ2,2|
Ψ1−σ +Ψ1−σ

R

≲ 1.

The norms ∥ · ∥♯, ∥ · ∥♮,1 and ∥ · ∥♮,2 are given in Lemmas 4.4 and 4.6.

Let ϱ∗ = ϱ1,1 + βϱ1,2 + β2ϱ2,1 + β3ϱ2,2. Then we have the following.

⟨propq1001⟩Proposition 9.1. Let d ≥ 2, a < 0 and b = bFS(a). Then

∥ϱ∗∥ ∼ β2 +


QR, p > 2,

QR |logQR| , p = 2,

Q
p
2

R, 1 < p < 2,

(9.6) eqqnew0020

where QR = e−
√
ΛFSR.

Proof. By using the test functions

ϱ̃R(t) =


1,

R

2
− 3 ≤ t ≤ R

2
− 2,

0, t ≤ R

2
− 4 or t ≥ R

2
− 1.

for 1 < p < 2,

ϱ̃R(t) =


1,

R

4
≤ t ≤ R

2
− 2,

0, t ≤ R

4
− 1 or t ≥ R

2
− 1.

for p = 2 and

ϱ̂R(t) =

{
1, T∗ ≤ t ≤ T∗ + 1,

0, t ≤ T∗ − 1 or t ≥ T∗ + 2,

with T∗ > 0 sufficiently large for p > 2 to (9.4), then as in the proof of [78,
Proposition 6.2], we can show that

∥ϱ1,1∥ ≳


QR, p > 2,

QR |logQR| , p = 2,

Q
p
2

R, 1 < p < 2,

which, together with (9.2), Lemma 9.1 and multiplying (9.4) of ϱ1,1 with ϱ1,1 on
both sides and integrating by parts, implies that

∥ϱ1,1∥ ∼


QR, p > 2,

QR |logQR| , p = 2,

Q
p
2

R, 1 < p < 2.

Similar to (4.65), by (9.2), Lemma 9.1 and multiplying (9.4) of ϱ1,2 with ϱ1,2 on both
sides and integrating by parts, we also have ∥ϱ1,2∥ ≲ ∥ϱ1,1∥. By (9.3), Lemma 9.1
and multiplying (9.4) of ϱ2,2 with ϱ2,2 on both sides and integrating by parts,
it is also easy to see that ∥ϱ2,2∥ ≲ 1. It remains to estimate ∥ϱ2,1∥. By (9.3),
Lemma 9.1 and multiplying (9.4) of ϱ2,1 with ϱ2,1 on both sides and integrating
by parts, it is also easy to see that ∥ϱ2,1∥ ≲ 1. For the lower bound of ∥ϱ2,1∥, we
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recall that the spherical harmonics on Sd−1, denoted by {Yj,l} with j = 0, 1, 2, · · ·
and l = 1, 2, · · · , lj for some lj ∈ N, form an orthogonal basic of L2(Sd−1) with
span1≤l≤lj{Yj,l} forming the eigenspace of the jth eigenvalue of −∆θ on L2

(
Sd−1

)
,

where ∆θ is the Laplace-Beltrami operator on Sd−1. Moreover, it is well known
that the eigenvalues of −∆θ on L2

(
Sd−1

)
are given by j(j + d − 2). The first

eigenvalue 0 is simple with the eigenfunction Y0,1 = 1, the eigenfunctions of the
second eigenvalue d− 1 are precisely Y1,l = θl for 1 ≤ l ≤ d. It is also well known
that Y2,d = θ2d − 1

d is a spherical harmonic on Sd−1 with degree 2 (cf. [73, (2.6)]
or [54, (4.9)]). Now, by (9.3), Lemma 9.1 and multiplying (9.4) of ϱ2,1 with Y2,d

on both sides and integrating by parts,we have

∥ϱ2,1∥ ≳ ⟨ϱ2,1,Y2,d⟩ − p ⟨ΓRϱ2,1,Y2,d⟩L2 = ⟨Ξ2,1,Y2,d⟩L2 ≳
∥∥Ψ2p−1Y2

2,d

∥∥
L1 .

Thus, by ϱ∗ = ϱ1,1 + βϱ1,2 + β2ϱ2,1 + β3ϱ2,2, we have the desired estimate of ∥ϱ∥
given by (9.7). □

We define

f∗ := −∆θ(ϱ∗ + v)− ∂2t (ϱ∗ + v) + ΛFS(ϱ∗ + v)− (v + ϱ∗)
p. (9.7) eqqnew0020

Then by (9.1) and Lemma 9.1,

f∗ =
(
−∆θϱ∗ − ∂2t ϱ∗ + ΛFSϱ∗ − pΓp−1

R ϱ∗

)
+Ψp +Ψp

R + pβ
(
Ψp−1wd +Ψp−1

R wR,d

)
+pΓp−1

R ϱ∗ − (ΓR + βΦR + ϱ∗)
p

= ϑ1,1 + βϑ1,2 + β2ϑ2,1 + β3ϑ2,2 + Ξ1,1 + βΞ1,2 + β2Ξ2,1 + β3Ξ2,2

+Ψp +Ψp
R − Γp

R + pβ
((

Ψp−1 − ΓR

)
wd +

(
Ψp−1

R − ΓR

)
wR,d

)
+pΓp−1

R (ϱ∗ + βΦR) + Γp
R − (ΓR + βΦR + ϱ∗)

p

= ϑ1,1 + βϑ1,2 + β2ϑ2,1 + β3ϑ2,2 + β2Ξ2,1 + β3Ξ2,2 −Nϱ∗ , (9.8) eqqnew1230

where ϑi,j is given by (9.5) and by Lemmas 4.1, 4.2, 5.1 and 7.2,

Nϱ∗ =

n0∑
l=2

Ap,l−1Γ
p−l
R (βΦR + ϱ∗)

l
+O

(
Γp−4σ
R β4 +Q1+σ

R Γσ
R +

(
β2ΓR

)1+σ
χC\B̃∗∗

)
= β2Ξ2,1 + β3Ξ2,2 +Nϱ∗,rem,

where B̃∗∗ = {(θ, t) ∈ C |
∣∣β2ϱ2,1 + β3ϱ2,2

∣∣ ≤ 1
2ΓR} and

Nϱ∗,rem = 2Ap,1β
(
Ψp−2wdχB +Ψp−2

R wR,dχBR
+ Γp−2

R ΦRχC\(B∪BR)

)
ϱ∗

+3Ap,2β
2
(
Ψp−3w2

dχB +Ψp−3
R w2

R,dχBR

)
ϱ∗ +O

(
β2Γ

2(p−1)
R ϱ∗χC\(B∪BR)

)
+2βAp,1

(
(Γp−2

R ΦR −Ψp−2wd)χB + (Γp−2
R ΦR −Ψp−2

R wR,dχBR
)
)
ϱ∗

+O
(
β2
((

Ψ2p−2ΨR +Ψ2p−3ΨRϱ∗
)
χB +

(
Ψ2p−2

R Ψ+Ψ2p−3
R Ψϱ∗

)
χBR

))
+O

(
Γp−4σ
R β4 +Q1+σ

R Γσ
R +

(
β2ΓR

)1+σ
χC\B̃∗∗

)
+Ap,1Γ

p−2
R ϱ2∗ +Ap,2Γ

p−3
R (3βΦR + ϱ∗)ϱ

2
∗ +

n0∑
l=4

Ap,l−1Γ
p−l
R (βΦR + ϱ∗)

l
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By Lemmas 4.11 and 9.1, we immediately have the following.

⟨lemq12001⟩Lemma 9.2. Let d ≥ 2, a < 0 and b = bFS(a). Then the following equation,
−∆θϱ̃1,1,i − ∂2t ϱ̃1,1,i + ΛFS ϱ̃1,1,i − pΓp−1

R ϱ̃1,1,i = Ξ̃1,1,i + ϑ̃1,1,i, in C,
⟨∂tΨ, ϱ̃1,1,i⟩ = ⟨∂tΨR, ϱ̃1,1,i⟩ = 0,

⟨wl, ϱ̃1,1,i⟩ = ⟨wR,l, ϱ̃1,1,i⟩ = 0 for all 1 ≤ l ≤ d,

(9.9) eqqnew111102

is uniquely solvable, where

Ξ̃1,1,i =



n0∑
l=2

Ap,l−1Γ
p−l
R ϱl1,1, i = 0,

n0∑
l=2

Ap,l−1Γ
p−l
R

(
(ϱ1,1 + ϱ̃1,1,0)

l − ϱl1,1

)
, i = 1,

n0∑
l=2

Ap,l−1Γ
p−l
R

(ϱ1,1 + i−1∑
k=0

ϱ̃1,1,k

)l

−

(
ϱ1,1 +

i−2∑
k=0

ϱ̃1,1,k

)l
 , i ≥ 2

and

ϑ̃1,1,i = Ψp−1

(
c̃1,1,i∂tΨ+

d∑
l=1

ς̃1,1,i,lwl

)
+Ψp−1

R

(
c̃R,1,1,i∂tΨR +

d∑
l=1

ς̃R,1,1,i,lwR,l

)
with c̃1,1,i, c̃R,1,1,i and {ς̃1,1,i,l} and {ς̃R,1,1,i,l} being chosen such that the right hand
side of the equation (9.9) is orthogonal to ∂tΨ, ∂tΨR, {wl} and {wR,l} in H1(C).
Moreover, ϱ̃1,1,i is even on Sd−1 with{

∥ϱ̃1,1,i∥♯ ≲ Q
((p−1)∧1)(i+1)
R , p ≥ 3,

∥ϱ̃1,1,i∥♮,1 ≲ Q
((p−1)∧1)(i+1)
R , 1 < p < 3

and the Lagrange multipliers satisfy

d∑
l=1

(|ς̃1,1,i,l|+ |ς̃R,1,1,i,l|) = 0 and |c̃1,1,i|+ |c̃R,1,1,i| ≲ Q
1+((p−1)∧1)(i+1)
R .

Next, by Lemmas 4.12 and 9.1, we immediately have the following.

⟨lemq1002⟩Lemma 9.3. Let d ≥ 2, a < 0 and b = bFS(a). Then the following equation,
−∆θϱ̃1,2 − ∂2t ϱ̃1,2 + ΛFS ϱ̃1,2 − pΓp−1

R ϱ̃1,2 = Ξ̃1,2 + ϑ̃1,2, in C,
⟨∂tΨ, ϱ̃1,2⟩ = ⟨∂tΨR, ϱ̃1,2⟩ = 0,

⟨wl, ϱ̃1,2⟩ = ⟨wR,l, ϱ̃1,2⟩ = 0 for all 1 ≤ l ≤ d,

(9.10) eqqnew1102

is uniquely solvable, where Ξ̃1,2 = 2Ap,1Γ
p−2
R ΦR (ϱ1,1 +

∑n0

k=0 ϱ̃1,1,k) and

ϑ̃1,2 = Ψp−1

(
c̃1,2∂tΨ+

d∑
l=1

ς̃1,2,lwl

)
+Ψp−1

R

(
c̃R,1,2∂tΨR +

d∑
l=1

ς̃R,1,2,lwR,l

)
with c̃1,2, c̃R,1,2 and {ς̃1,2,l} and {ς̃R,1,2,l} being chosen such that the right hand
side of the equation (9.10) is orthogonal to ∂tΨ, ∂tΨR, {wl} and {wR,l} in H1(C).
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Moreover, ϱ̃1,2 is odd on Sd−1 with
∥ϱ̃1,2∥♯ ≲ 1, p ≥ 7

3
,

∥ϱ̃1,2∥♮,2 ≲ 1, 1 < p <
7

3

and the Lagrange multipliers satisfy

d∑
l=1

(|ς̃1,2,l|+ |ς̃R,1,2,l|) ≲ QR and |c̃1,2|+ |c̃R,1,2| = 0.

By Lemmas 4.9 and 9.1, we also immediately have the following.

⟨lemq11002⟩Lemma 9.4. Let d ≥ 2, a < 0 and b = bFS(a). Then the following equation,
−∆θϱ̃1,3 − ∂2t ϱ̃1,3 + ΛFS ϱ̃1,3 − pΓp−1

R ϱ̃1,3 = Ξ̃1,3 + ϑ̃1,3, in C,
⟨∂tΨ, ϱ̃1,3⟩ = ⟨∂tΨR, ϱ̃1,3⟩ = 0,

⟨wl, ϱ̃1,3⟩ = ⟨wR,l, ϱ̃1,3⟩ = 0 for all 1 ≤ l ≤ d,

(9.11) eqqnew211102

is uniquely solvable, where Ξ̃1,3 = 2Ap,1

(
Ψp−2wd +Ψp−2

R wR,d

)
ϱ2,1 and

ϑ̃1,3 = Ψp−1

(
c̃1,3∂tΨ+

d∑
l=1

ς̃1,3,lwl

)
+Ψp−1

R

(
c̃R,1,3∂tΨR +

d∑
l=1

ς̃R,1,3,lwR,l

)
with c̃1,3, c̃R,1,3 and {ς̃1,3,l} and {ς̃R,1,3,l} being chosen such that the right hand
side of the equation (9.11) is orthogonal to ∂tΨ, ∂tΨR, {wl} and {wR,l} in H1(C).
Moreover, ϱ̃1,3 is odd on Sd−1 with

sup
(t,θ)∈C

|ϱ̃1,3|
Ψ1−σ +Ψ1−σ

R

≲ 1.

Finally, by Lemmas 4.13 and 9.1, we immediately have the following.

⟨lemq22001⟩Lemma 9.5. Let d ≥ 2, a < 0 and b = bFS(a). Then the following equation,
−∆θϱ̃1,4,i − ∂2t ϱ̃1,4,i + ΛFS ϱ̃1,4,i − pΓp−1

R ϱ̃1,4,i = Ξ̃1,4,i + ϑ̃1,4,i, in C,
⟨∂tΨ, ϱ̃1,4,i⟩ = ⟨∂tΨR, ϱ̃1,4,i⟩ = 0,

⟨wl, ϱ̃1,4,i⟩ = ⟨wR,l, ϱ̃1,4,i⟩ = 0 for all 1 ≤ l ≤ d,

(9.12) eqqnew11102

is uniquely solvable, where

Ξ̃1,4,i =



n0∑
l=2

lAp,l−1Γ
p−l
R (ΦR + ϱ1,2 + ϱ̃1,2)

(
ϱ1,1 +

n0∑
k=0

ϱ̃1,1,k

)l−1

, i = 0,

n0∑
l=2

lAp,l−1Γ
p−l
R ϱ̃1,4,i−1

(
ϱ1,1 +

n0∑
k=0

ϱ̃1,1,k

)l−1

, i ≥ 1

and

ϑ̃1,4,i = Ψp−1

(
c̃1,4,i∂tΨ+

d∑
l=1

ς̃1,4,i,lwl

)
+Ψp−1

R

(
c̃R,1,4,i∂tΨR +

d∑
l=1

ς̃R,1,4,i,lwR,l

)
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with c̃1,4,i, c̃R,1,4,i and {ς̃1,4,i,l} and {ς̃R,1,4,i,l} being chosen such that the right hand
side of the equation (9.12) is orthogonal to ∂tΨ, ∂tΨR, {wl} and {wR,l} in H1(C).
Moreover, ϱ̃1,4,i is odd on Sd−1 with

∥ϱ̃1,4,i∥♯ ≲ Q
((p−1)∧1)i
R , p ≥ 7

3
,

∥ϱ̃1,4,i∥♮,1 ≲ Q
((p−1)∧1)i
R , 1 < p <

7

3

and the Lagrange multipliers satisfy

d∑
l=1

(|ς̃1,4,i,l|+ |ς̃R,1,4,i,l|) ≲ Q
1+((p−1)∧1)i
R and |c̃1,4,i|+ |c̃R,1,4,i| = 0.

Let ϱ = ϱ∗ + ϱ̃1,1 + β(ϱ̃1,2 + ϱ̃1,4) + β3ϱ̃1,3 with

ϱ̃1,1 =

n0∑
k=0

ϱ̃1,1,k and ϱ̃1,4 =

n0∑
k=0

ϱ̃1,4,k

and define

f := −∆θ(ϱ+ v)− ∂2t (ϱ+ v) + ΛFS(ϱ+ v)− (v + ϱ)p. (9.13) eqqnew1020

Then similar to (4.64), (7.4) and (9.8), by Lemmas 9.2, 9.3, 9.4 and 9.5,

f = ϑ1,1 + ϑ̃1,1 + β(ϑ1,2 + ϑ̃1,2 + ϑ̃1,4) + β2ϑ2,1 + β3(ϑ2,2 + ϑ̃1,3)−Nϱ∗,rem,1,

where ϑ̃1,1 =
∑n0

k=0 ϑ̃1,1,k, ϑ̃1,4 =
∑n0

k=0 ϑ̃1,4,k and

Nϱ∗,rem,1

= 2Ap,1β
(
Ψp−2wdχB +Ψp−2

R wR,dχBR

)
(ϱ− ϱ1,1 − ϱ̃1,1 − β2ϱ2,1)

+3Ap,2β
2
(
Ψp−3w2

dχB +Ψp−3
R w2

R,dχBR

)
ϱ∗ +O

(
β2Γ

2(p−1)
R ϱ∗χC\(B∪BR)

)
+O

(
β

(
Ψ

3p−5
2 ΨRχB +Ψ

3p−5
2

R ΨχBR
+ Γ

3(p−1)
2

R χB∪BR

)
(ϱ− ϱ1,1 − ϱ̃1,1)

)
+O

(
β2
((

Ψ2p−2ΨR +Ψ2p−3ΨRϱ∗
)
χB +

(
Ψ2p−2

R Ψ+Ψ2p−3
R Ψϱ∗

)
χBR

))
+o(ΓRβ

3) +O
(
Q1+σ

R Γσ
R +

(
β2ΓR

)1+σ
χC\B̃∗∗

)
+

n0∑
l=2

Ap,l−1Γ
p−l
R

(ϱ1,1 + ϱ̃1,1)
l −

(
ϱ1,1 +

n0−1∑
i=0

ϱ̃1,1,i

)l


+

n0∑
l=2

lAp,l−1Γ
p−l
R (ϱ1,1 + ϱ̃1,1)

l−1 (
βϱ̃1,4,n0

+ β2ϱ2,1 + β3(ϱ2,2 + ϱ̃1,3)
)

+

n0∑
l=2

l∑
k=2

Ck
l Ap,l−1Γ

p−l
R (ϱ1,1 + ϱ̃1,1)

l−k
(ϱ+ βΦR − ϱ1,1 − ϱ̃1,1)

k
.

⟨propq0001⟩Proposition 9.2. Let d ≥ 2, a < 0 and b = bFS(a). Then

∥f∥H−1 ∼ β3 +QR,

where QR = e−
√
ΛFSR.
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Proof. As in the proof of Lemma 4.10, by Lemma 9.1, the orthogonality of Ψp−1∂tΨ
and

{
Ψp−1wl

}
in L2(C) and the oddness of wd on Sd−1,

−
〈
Ψp−1∂tΨ,Ξi,j

〉
L2 =

∥∥Ψp−1∂tΨ
∥∥2
L2 ci,j +

〈
Ψp−1∂tΨ,Ψ

p−1
R ∂tΨR

〉
L2
cR,i,j

and

−
〈
Ψp−1

R ∂tΨR,Ξi,j

〉
L2

=
〈
Ψp−1∂tΨ,Ψ

p−1
R ∂tΨR

〉
L2
ci,j +

∥∥Ψp−1∂tΨ
∥∥2
L2 cR,i,j

while for all 1 ≤ l ≤ d,

−
〈
Ψp−1wl,Ξi,j

〉
L2 =

∥∥Ψp−1wl

∥∥2
L2 ςi,j,l +

〈
Ψp−1wl,Ψ

p−1
R wR,l

〉
L2
ςR,i,j,l

and

−
〈
Ψp−1

R wR,l,Ξi,j

〉
L2

=
〈
Ψp−1

R wR,l,Ψ
p−1wl

〉
L2
ςi,j,l +

∥∥∥Ψp−1
R wR,l

∥∥∥2
L2
ςR,i,j,l.

It follows from Lemma 4.3 that
ci,j = −B∗

〈
Ψp−1∂tΨ,Ξi,j

〉
L2 +O

(
Qp

R |logQR|
〈
Ψp−1

R ∂tΨR,Ξi,j

〉
L2

)
,

cR,i,j = −B∗

〈
Ψp−1

R ∂tΨR,Ξi,j

〉
L2

+O
(
Qp

R |logQR|
〈
Ψp−1∂tΨ,Ξi,j

〉
L2

)
and

ςi,j,l = −B∗∗
〈
Ψp−1wl,Ξi,j

〉
L2 +O

(
Q

3p−1
2

R |logQR|
〈
Ψp−1

R wR,l,Ξi,j

〉
L2

)
,

ςR,i,j,l = −B∗∗

〈
Ψp−1

R wR,l,Ξi,j

〉
L2

+O
(
Q

3p−1
2

R |logQR|
〈
Ψp−1wl,Ξi,j

〉
L2

)
for all 1 ≤ l ≤ d, where B∗ =

∥∥Ψp−1∂tΨ
∥∥−2

L2 and B∗∗ =
∥∥Ψp−1wd

∥∥−2

L2 . Thus, by

(2.7) and Lemma 4.3, the oddness of ∂tΨ in R and the oddness of wd on Sd−1,

c1,1 ∼ cR,1,1 ∼ QR and

d∑
l=1

(|ς1,1,l|+ |ςR,1,1,l|) = 0. (9.14) eqqnew0023

Similarly, we also have

|c1,2|+ |cR,1,2| = 0 and

d∑
l=1

(|ς1,2,l|+ |ςR,1,2,l|) ≲ QR. (9.15) eqqnew0024

Again, by (2.7) and Lemma 4.3, the oddness of ∂tΨ in R and the oddness of wd on
Sd−1, we have

c2,1 ∼ cR,2,1 ∼ Qp
R,

d∑
l=1

(|ς2,1,l|+ |ςR,2,1,l|) = 0 (9.16) eqqnew0025

and

c2,2 = cR,2,2 = 0,

d∑
l=1

(|ς2,2,l|+ |ςR,2,2,l|) ∼ 1. (9.17) eqqnew0026
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On the other hand, we write ϱ2,1 = α2,1Ψ+ α2,1,RΨR + ϱ⊥2,1 where α2,1 and α2,1,R

are chosen such that
〈
ϱ⊥2,1,Ψ

〉
=
〈
ϱ⊥2,1,ΨR

〉
= 0. By (9.4) for ϱ2,1, we have

∥Ψ∥2α2,1 +O(QR)α2,1,R = ⟨Ξ2,1,Ψ⟩L2 + p
〈
Γp−1
R Ψ, α2,1Ψ+ α2,1,RΨR + ϱ⊥2,1

〉
L2

= B̃0 +O (QR) + p∥Ψ∥2α2,1

+O(QR)(α2,1 + α2,1,R + ∥ϱ⊥2,1∥)

and

∥Ψ∥2α2,1,R +O(QR)α2,1 = ⟨Ξ2,1,ΨR⟩L2 + p
〈
Γp−1
R ΨR, α2,1Ψ+ α2,1,RΨR + ϱ⊥2,1

〉
L2

= B̃0 +O (QR) + p∥Ψ∥2α2,1,R

+O(QR)(α2,1 + α2,1,R + ∥ϱ⊥2,1∥),

where B̃0 > 0 is a constant. Now, by similar estimates in the proof of Lemma 7.1,
we have ∥ϱ⊥2,1∥ ≲ 1 which implies that

α2,1 = (1 +O (QR))α2,1,R = B̃0 +O (QR) > 0. (9.18) eqnnewnew19990

We further write ϱ⊥2,1 = (ϱ⊥2,1)+ − (ϱ⊥2,1)− where (ϱ⊥2,1)± = max{±ϱ⊥2,1, 0}. Since

Ξ2,1 is positive, by multiplying (9.4) for ϱ2,1 with −(ϱ⊥2,1)− and using (9.16) and

(9.18), we know that ∥(ϱ⊥2,1)−∥ ≲ Q1+σ
R . It follows from Lemmas 9.2, 9.3 and 9.5

and (9.14), (9.15), (9.16) and (9.17) that∥∥∥ϑ1,1 + ϑ̃1,1 + β(ϑ1,2 + ϑ̃1,2 + ϑ̃1,4) + β2ϑ2,1 + β3(ϑ2,2 + ϑ̃1,3)
∥∥∥2
L2

∼ β3 +QR.

By Lemmas 4.3, 9.1, 9.2, 9.3, 9.4 and 9.5, we can estimate as in the proofs of
Propositions 5.1, 6.1 and 7.1 to show that

∥Nϱ∗,rem,1∥L2 = o(β3 +QR).

Thus, we must have ∥f∥H−1 ∼ β3 +QR. □

We decompose ϱ = α̃Ψ + α̃RΨR + ϱ̃⊥ where α̃ and α̃R are chosen such that〈
Ψ, ϱ̃⊥

〉
= 0 and

〈
ΨR, ϱ̃

⊥〉 = 0. It follows from Lemmas 9.1, 9.2, 9.3, 9.4 and 9.5
that

∥Ψ∥2α̃+O (QR) α̃R = ⟨Ξ,Ψ⟩L2 +
〈
pΓp−1

R ρ,Ψ
〉
L2

and

∥Ψ∥2α̃R +O (QR) α̃ = ⟨Ξ,Ψ⟩L2 +
〈
pΓp−1

R ρ,Ψ
〉
L2
,

where

Ξ = Ξ1,1 + Ξ̃1,1 + β(Ξ1,2 + Ξ̃1,2 + Ξ̃1,4) + β2Ξ2,1 + β3(Ξ2,2 + Ξ̃1,3) (9.19) eqnnewnew19989

with Ξ̃1,1 =
∑n0

i=0 Ξ̃1,1,i and Ξ̃1,4 =
∑n0

i=0 Ξ̃1,4,i.

⟨propq0003⟩
Proposition 9.3. Let d ≥ 2, a < 0 and b = bFS(a). Then

∥∥βΦR + ϱ̃⊥
∥∥ ∼ ∥f∥

1
3

H−1

as β → 0, provided QR ≲ β3.
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Proof. By the symmetry of ΓR about s = R
2 , (9.2) and (9.3),〈

Ξ1,1 + βΞ1,2 + β2Ξ2,1 + β3Ξ2,2,Ψ
〉
L2

=
〈
Ξ1,1 + βΞ1,2 + β2Ξ2,1 + β3Ξ2,2,ΨR

〉
L2

=
(
p∥Ψ∥p−1

Lp−1 + o(1)
)
QR +

(
Ap,1

∣∣Sd−1
∣∣

d
∥Ψ∥2pL2p + o(1)

)
β2. (9.20) eqqnew0021

By Lemmas 4.3, 9.1, 9.2, 9.3, 9.4 and 9.5,〈
Ξ̃1,1 + β(Ξ̃1,2 + Ξ̃1,4) + +β3Ξ̃1,3,Ψ

〉
L2

= (1 + o(1))
〈
Ξ̃1,1 + β(Ξ̃1,2 + Ξ̃1,4) + +β3Ξ̃1,3,ΨR

〉
L2

= o(QR + β2). (9.21) eqqnew1021

Moreover,

p
〈
Γp−1
R ρ,Ψ

〉
L2

= pα̃
〈
Γp−1
R ,Ψ2

〉
L2

+ p
〈(

Γp−1
R −Ψp−1

)
Ψ, ϱ̃⊥

〉
L2

+O (QR) α̃R

= pα̃∥Ψ∥2 +O (QR) (α̃R + α̃+ ∥ϱ̃⊥∥) (9.22) eqqnew2021

and similarly,

p
〈
Γp−1
R ρ,ΨR

〉
L2

= pα̃R∥Ψ∥2 +O (QR) (α̃R + α̃+ ∥ϱ̃⊥∥). (9.23) eqqnew3021

It follows from (9.20), (9.21), (9.22) and (9.23) that

α̃ = (1 + o(1))α̃R = (B + o(1))QR + (C + o(1))β2 +O(QR∥ϱ̃⊥∥), (9.24) eqqnew4021

where B and C are two positive constants. Since by Lemmas 9.1, 9.2, 9.3, 9.4 and
9.5, ϱ̃⊥ satisfies

−∆θϱ̃
⊥ − ∂2t ϱ̃

⊥ + ΛFS ϱ̃
⊥ − pΓp−1

R ϱ̃⊥ = Ξ+ ϑ, in C,

⟨Ψ, ϱ̃⊥⟩ = ⟨ΨR, ϱ̃
⊥⟩ = ⟨∂tΨ, ϱ̃⊥⟩ = ⟨∂tΨR, ϱ̃

⊥⟩ = 0,

⟨wl, ϱ̃
⊥⟩ = ⟨wR,l, ϱ̃

⊥⟩ = 0, for all 1 ≤ l ≤ d,

(9.25) eqqnew41102

where Ξ is given by (9.19) and

ϑ = ϑ1,1 + ϑ̃1,1 + β(ϑ1,2 + ϑ̃1,2 + ϑ̃1,4) + β2ϑ2,1 + β3(ϑ2,2 + ϑ̃1,3). (9.26) ?eqnnewnew19988?

By Lemmas 9.1, 9.2, 9.3, 9.4 and 9.5, we can use the same test functions in the
proof of Proposition 9.1 to (9.25) show that

∥ϱ̃⊥∥ ∼ β2 +


QR, p > 2,

QR |logQR| , p = 2,

Q
p
2

R, 1 < p < 2.

Thus, by the classical elliptic estimates and (9.24), we have

∥ϱ∥L∞ = O
(
Q

p
2∧1

R |logQR|+ β2
)
. (9.27) eqqnew9999

Now, if QR ≲ β3 then we have
∥∥βΦR + ϱ̃⊥

∥∥ ∼ β ∼ ∥f∥
1
3

H−1 by Proposition 9.2. □
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For the sake of simplicity, we denote ṽ = v + ϱ. We shall decompose ṽ as in
lemma 3.1 by considering the following variational problem:

inf−→α 2∈(R+)2,−→s 2∈Rν

∥∥∥∥∥∥ṽ −
2∑

j=1

αjΨsj

∥∥∥∥∥∥
2

. (9.28) eqqnew0011

Clearly, as (3.3), the variational problem (9.28) has minimizers, say (α̃∗
1, α̃

∗
2, s̃

∗
1, s̃

∗
2),

satisfying

2∑
j=1

∣∣α̃∗
j − 1

∣∣→ 0 and |s̃∗1 − s̃∗2| → +∞ (9.29) eqqnew1005

as R→ +∞ and β → 0.

⟨propq0002⟩Proposition 9.4. Let d ≥ 2, a < 0 and b = bFS(a). Then for R > 0 sufficiently
large and β > 0 sufficiently small, the variational problem (9.28) has a unique
minimizer, say (α̃∗

1, α̃
∗
2, s̃

∗
1, s̃

∗
2), satisfying

s̃∗1 = O
(
β4 +Qp

R

)
, s̃∗2 = R+O

(
β4 +Qp

R

)
and

α̃∗
1 − 1 =

⟨ρ,Ψ⟩
∥Ψ∥2

+O
(
β4 +Qp

R

)
, α̃∗

2 − 1 =
⟨ρ,ΨR⟩
∥Ψ∥2

+O
(
β4 +Qp

R

)
.

Proof. Since (α̃∗
1, α̃

∗
2, s̃

∗
1, s̃

∗
2) is a minimizer of the variational problem (9.28) and Ψ

and ∂tΨ are solutions of (2.5) and (2.6), respectively, we have

0 =

〈
ṽ −

2∑
i=1

α̃∗
iΨs̃∗i

,Ψs̃∗j

〉
=

〈
ṽ −

2∑
i=1

α̃∗
iΨs̃∗i

,Ψp
s̃∗j

〉
L2

(9.30) eqqnew0017

and

0 =

〈
ṽ −

2∑
i=1

α̃∗
iΨs̃∗i

, ∂tΨs̃∗j

〉
=

〈
ṽ −

2∑
i=1

α̃∗
iΨs̃∗i

, pΨp−1
s̃∗j

∂tΨs̃∗j

〉
L2

(9.31) eqqnew0016

for all j = 1, 2. By the oddness of wd on Sd−1, the oddness of ∂tΨ in R, (9.29) and
(9.31), we have

∑2
i=1 |α̃∗

i | ≲ 1 and〈
ṽ, pΨp−1

s̃∗j
∂tΨs̃∗j

〉
L2

= O
(〈

Ψs̃∗i
,Ψp−1

s̃∗j
∂tΨs̃∗j

〉
L2

)
= O

(
Q

|s̃∗1−s̃∗2 |
R

R

)
.

Recall that ϱ = ϱ1,1 + ϱ̃1,1 + β(ϱ1,2 + ϱ̃1,2 + ϱ̃1,4) + β2ϱ2,1 + β3(ϱ2,2 + ϱ̃1,3). Thus,
by Lemmas 9.1, 9.2, 9.3, 9.4 and 9.5,∣∣∣〈ϱ,Ψp−1

s̃∗j
∂tΨs̃∗j

〉
L2

∣∣∣ ≲ β2 +QR. (9.32) eqqnew0018

On the other hand, for every sj ≤ R
2 , by Lemma 4.3,〈

ΓR,Ψ
p−1
sj ∂tΨsj

〉
L2

=
〈
Ψ,Ψp−1

sj ∂tΨsj

〉
L2

+O
(
Q

R−sj
R

R

)
. (9.33) eqqnew0019

Note that by the evenness of Ψ in R,
〈
Ψ,Ψp−1

sj ∂tΨsj

〉
L2

= 0 has a uniquely nonde-

generate solution sj = 0 on (−∞, R2 ]. Thus, by (9.32), (9.33), the symmetry of ΓR



80 J. WEI AND Y.WU

about s = R
2 , for R > 0 sufficiently large, the solution of (9.30) and (9.31) must

satify

s̃∗1 = O
(
β2 +QR

)
and s̃∗2 = R+O

(
β2 +QR

)
. (9.34) eqqnew0031

which, together with (9.30), implies that〈
ΓR + ϱ,Ψp

s̃∗j

〉
L2

= α̃∗
j∥Ψ∥2 +O

(〈
Ψs̃∗i

,Ψp
s̃∗j

〉
L2

)
= α̃∗

j∥Ψ∥2 +O (QR)

for all j = 1, 2. Similar to (9.32) and (9.33), we have〈
ΓR + ϱ,Ψp

s̃∗j

〉
L2

= ∥Ψ∥2 +O
(
β2 +QR

)
.

Thus, we also have

α̃∗
j = 1 +O

(
β2 +QR

)
. (9.35) eqqnew0030

Now, by (9.31) once more, the oddness of ∂3tΨ, the Taylor expansion and the
orthogonal conditions of ρ given by Lemmas 9.1, 9.2, 9.3, 9.4 and 9.5, we have

0 =

〈
ṽ −

2∑
i=1

α̃∗
iΨs̃∗i

, ∂tΨs̃∗1

〉
=

〈
Ψp, ∂tΨs̃∗1

〉
L2 +

〈
ΨR − α̃∗

2Ψs̃∗2
, pΨp−1

s̃∗1
∂tΨs̃∗1

〉
L2

+
〈
ϱ, pΨp−1

s̃∗1
∂tΨs̃∗1

〉
L2

= −
〈
Ψp, ∂2tΨ

〉
L2 s̃

∗
1 +O

(
(s̃∗1)

3
)
+ (1− α̃∗

2)
〈
Ψs̃∗2

, pΨp−1
s̃∗1

∂tΨs̃∗1

〉
L2

+
〈
∂tΨs̃∗2

, pΨp−1
s̃∗1

∂tΨs̃∗1

〉
L2

(s̃∗2 −R) +O
(
(s̃∗2 −R)

2
+ ∥ϱ∥L∞ s̃∗1

)
,

which, together with (9.27), (9.34) and (9.35), implies that s̃∗1 = O
(
β4 +Qp

R

)
.

Similarly, we also have s̃∗2 = R + O
(
β4 +Qp

R

)
. Again, by (9.30), (9.35) and the

Taylor expansion,〈
ΓR + ϱ,Ψp

s̃∗1

〉
L2

= α̃∗
1∥Ψ∥2 +

〈
Ψs̃∗2

,Ψp
s̃∗1

〉
L2

+O
((
β2 +QR

)2)
= α̃∗

1∥Ψ∥2 +
〈
ΨR,Ψ

p
s̃∗1

〉
L2

+O
(
β4 +Qp

R

)
,

which, together with〈
ΓR + ϱ,Ψp

s̃∗1

〉
L2

= ∥Ψ∥2 +
〈
ΨR,Ψ

p
s̃∗1

〉
L2

+
〈
ρ,Ψp

s̃∗1

〉
L2
,

implies that α̃∗
1 − 1 = ⟨ϱ,Ψ⟩

∥Ψ∥2 + O
(
β4 +Qp

R

)
. Similarly, we also have α̃∗

2 − 1 =
⟨ϱ,ΨR⟩
∥Ψ∥2 +O

(
β4 +Qp

R

)
. □

Let ṽ± = max{±ṽ, 0}. Then ṽ = ṽ+ − ṽ− and by (9.7),

−∆θṽ+ − ∂2t ṽ+ + ΛFS ṽ+ − ṽp+ = f + G(ṽ−) := fṽ+ , (9.36) eqqnew1020

where G(ṽ−) = −∆θṽ− − ∂2t ṽ− + ΛFS ṽ− − ṽp−.

Proof of (2) of Theorem 1.3: Recall that we have the decomposition

ṽ = v + α̃Ψ+ α̃RΨR + ϱ̃⊥ (9.37) eqqnew0028

in H1(C), where by the orthogonal conditions of ϱ̃⊥ and (9.24),

⟨ϱ,Ψ⟩ = α̃∥Ψ∥2 +O
((
β2 +QR

)2)
and ⟨ϱ,ΨR⟩ = α̃R∥Ψ∥2 +O

((
β2 +QR

)2)
.
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It follows from Proposition 9.4 that

α̃∗
1 = 1 + α̃+O

(
β4 +Qp

R

)
and α̃∗

2 = 1 + α̃R +O
(
β4 +Qp

R

)
, (9.38) eqqnew9998

which, together with Proposition 9.4 once more and the Taylor expansion, implies
that

ṽ =

2∑
j=1

α̃∗
jΨs̃∗j

+ ϱ̃

= ΓR + α̃Ψ+ α̃RΨR + ϱ̃+O
(
β4 +Qp

R

)
(9.39) eqqnew0029

in H1(C). By (9.37) and (9.39), we have

ϱ̃ = βΦR + ϱ̃⊥ +O
(
β4 +Qp

R

)
.

Thus, by (9.24), (9.38) and Proposition 9.3, we have∥∥∥∥∥∥ṽ −
2∑

j=1

Ψs̃∗j

∥∥∥∥∥∥ =

∥∥∥∥∥∥ṽ −
2∑

j=1

α̃∗
jΨs̃∗j

∥∥∥∥∥∥+O

 2∑
j=1

|α̃∗
j − 1|


∼ ∥f∥

1
3

H−1 , (9.40) eqqnew0032

provided QR ≲ β3. By Lemmas 9.1, 9.2, 9.3 and 9.5, we know that

|βΦR + ϱ1,1 + ϱ̃1,1 + β(ϱ1,2 + ϱ̃1,2 + ϱ̃1,4)| ≲ ΓR

in C for sufficiently small β and sufficiently large R. Thus, 0 ≤ ṽ− ≤ |β2ϱ2,1+β
3ϱ2,2|

in C. It follows from (9.7), Lemmas 9.1 and 9.4 and Proposition 9.2 that

∥ṽ−∥2 ≲ ⟨f, ṽ−⟩L2 = O
((
β2 +QR

)2)
,

which, together with (9.36) and (9.40), implies that ṽ+ is the desired function. 2

⟨rmkn0001⟩Remark 9.1. The optimal example of Theorem 1.3 in this section, given by ṽ =
v + ϱ, precisely describes the relation between ∥f∥H−1 and distH1(ṽ,M2) where

distH1(ṽ,M2) = inf−→α ν∈(R+)2,−→s 2∈Rν

∥∥∥∥∥∥ṽ −
2∑

j=1

αjΨsj

∥∥∥∥∥∥
H1

.

Indeed, we have ∥f∥H−1 ∼ β3 +QR and

distH1(ṽ,M2) ∼ β +


QR, p > 2,

QR |logQR| , p = 2,

Q
p
2

R, 1 < p < 2.

If the interaction of two bubbles is much smaller than the projections on nontrivial

kernel, that is, β3 ≳ QR, then we have distH1(ṽ,M2) ∼ ∥f∥
1
3

H−1 . If the interaction
of two bubbles is much large than the projections on nontrivial kernel, that is,

β ≲


QR, p > 2,

QR |logQR| , p = 2,

Q
p
2

R, 1 < p < 2,
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then we have

distH1(ṽ,M2) ∼


∥f∥H−1 , p > 2,

∥f∥H−1 |log ∥f∥H−1 | , p = 2,

∥f∥
p
2

H−1 , 1 < p < 2.

(9.41) eqnnewnew19987

If the interaction of two bubbles is somehow comparable with their projections on
nontrivial kernel, that is β3 ≲ QR and

β ≳


QR, p > 2,

QR |logQR| , p = 2,

Q
p
2

R, 1 < p < 2,

then distH1(ṽ,M2) ∼ ∥f∥tH−1 for some t between the values in (9.41) and 1
3 .
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Non Linéaire, 39 (2022), 1459–1484.
FP2024 [54] R. L. Frank, J. W. Peteranderl, Degenerate stability of the Caffarelli-Kohn-Nirenberg in-

equality along the Felli-Schneider curve, Calc. Var., 63 (2024), Paper No. 44.
F1989 [55] B. Fuglede, Stability in the isoperimetric problem for convex or nearly spherical domains in

RN , Trans. Amer. Math. Soc., 314 (1989) 619–638.
F2015 [56] N. Fusco, The quantitative isoperimetric inequality and related topics, Bull. Math. Sci., 5

(2015), 517–607.
FMP2007 [57] N. Fusco, F. Maggi, A. Pratelli, The sharp quantitative Sobolev inequality for functions of

bounded variation, J. Funct. Anal., 244 (2007), 315–341.
IM2014 [58] E. Indrei, D. Marcon, A quantitative log-Sobolev inequality for a two parameter family of

functions, Int. Math. Res. Not.,20 (2014), 5563–5580.
IK2021 [59] E. Indrei, D. Kim, Deficit estimates for the logarithmic Sobolev inequality, Differ. Integral

Equ., 34, (2021), 437–466.
J1992 [60] R. Hall, A quantitative isoperimetric inequality in n-dimensional space, J. Reine Angew.

Math., 428 (1992), 161–176.
K2022 [61] T. König, On the sharp constant in the Bianchi-Egnell stability inequality, Bull. Lond. Math.

Soc., 55 (2023), 2070–2075.
K2023 [62] T. König, Stability for the Sobolev inequality: Existence of a minimizer, J. Eur. Math. Soc.,

to appear, arXiv2211.14185.
K2023-1 [63] T. König, An exceptional property of the one-dimensional Bianchi-Egnell inequality, Calc.

Var., 63 (2024), Paper No. 123.

L1983 [64] E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann. of

Math. (2), 118 (1983), 349–374.
LW2004 [65] C.-S. Lin, Z.-Q. Wang, Symmetry of extremal functions for the Caffarrelli-Kohn-Nirenberg

inequalities. Proc. Amer. Math. Soc., 132 (2004), 1685–1691.

L2005 [66] A. Loiudice, Improved Sobolev inequalities on the Heisenberg group, Nonlinear Anal., 62
(2005), 953–962.

LW2000 [67] G. Lu, J. Wei, On a Sobolev inequality with remainder term, Proc. Amer. Math. Soc., 128

(2000), 75–84.
M2008 [68] F. Maggi, Some methods for studying stability in isoperimetric type problems, Bull. Amer.

Math. Soc., 45 (2008), 367–408.
N2020 [69] R. Neumayer, A note on strong-form stability for the Sobolev inequality, Calc. Var., 59

(2020), Paper No. 25.

N2019 [70] V. Nguyen, The sharp Gagliardo-Nirenberg-Sobolev inequality in quantitative form, J.
Funct. Anal., 277 (2019), 2179–2208.

NV2024 [71] F. Nobili, I. Y. Violo, Stability of Sobolev inequalities on Riemannian manifolds with Ricci

curvature lower bounds, Adv. Math., 440 (2024), 109521.
R2014 [72] B. Ruffini, Stability theorems for Gagliardo-Nirenberg-Sobolev inequalities: a reduction

principle to the radial case, Rev. Mat. Complut., 27 (2014), 509–539.



CAFFARELLI-KOHN-NIRENBERG INEQUALITY 85

S2007 [73] M. Schneider, A priori estimates for the scalar curvature equation on S3, Calc. Var., 29

(2007), 521–560.
S2016 [74] F. Seuffert, An extension of the Bianchi-Egnell stability estimate to Bakry, Gentil, and

Ledoux’s generalization of the Sobolev inequality to continuous dimensions, J. Funct. Anal.,

273 (2017), 3094–3149.

S1984 [75] M. Struwe, A global compactness result for elliptic boundary value problems involving lim-
iting nonlinearities. Math. Z., 187 (1984), 511–517.

T1976 [76] G. Talenti, Best constant in Sobolev inequality. Ann. Mat. Pura Appl. (4), 110 (1976),

353–372.
WW2003 [77] Z.-Q. Wang, M. Willem, Caffarelli-Kohn-Nirenberg inequalities with remainder terms, J.

Funct. Anal., 203 (2003), 550–568.
WW2022 [78] J. Wei, Y. Wu, On the stability of the Caffarelli-Kohn-Nirenberg inequality, Math. Ann.,

384 (2022), 1509–1546.
WW2024 [79] J. Wei, Y. Wu, Stability of the Caffarelli-Kohn-Nirenberg inequality: the existence of mini-

mizers, preprint, 2023, arXiv:2308.04667.

W78 [80] F. B. Weissler, Logarithmic Sobolev inequalities for the heat-diffusion semigroup, Trans.

Amer. Math. Soc., 237 (1978), 255–269.
ZZ2024 [81] Y. Zhou, W. Zou, Degenerate stability of critical points of the Caffarelli-Kohn-Nirenberg

inequality along the Felli-Schneider curve, preprint, 2024, arXiv:2407.10849.

Department of Mathematics, Chinese University of Hong Kong, Shatin, NT, Hong

Kong
Email address: wei@math.cuhk.edu.hk

School of Mathematics, China University of Mining and Technology, Xuzhou, 221116,
P.R. China

Email address: wuyz850306@cumt.edu.cn


	1. Introduction
	1.1. Background and Previous Results.
	1.2. Main result
	1.3. Sketch of the proof
	1.4. Structure of this paper
	1.5. Notations

	2. Preliminaries
	3. Setting of the problem
	4. Basic expansion of N and further decomposition of *
	4.1. Basic expansion of N
	4.2. Further decomposition of *

	5. First refined expansion of N and estimate of {j*}
	6. Second refined expansion of N and estimates of Q
	7. Finally refined expansion of N and estimate of **
	8. Estimate of * and proof of (1) of Theorem 1.3
	9. Optimal example and proof of (2) of Theorem 1.3
	10. Acknowledgments
	References

