STABILITY OF THE CAFFARELLI-KOHN-NIRENBERG
INEQUALITY ALONG THE FELLI-SCHNEIDER CURVE:
CRITICAL POINTS AT INFINITY
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ABSTRACT. In this paper, we consider the following Caffarelli-Kohn-Nirenberg
(CKN for short) inequality
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where d > 2, p = a—2(1Ta=b) with
a<b<a+1l, d=2,
a<b<a+1l, d>3,

Sq,pb is the optimal constant and u € Dé’Q(Rd) with
Dy?(RY) = {u € DL2(RY) | / || 728 |Vu|2dz < +oo} .
R4

Based on the ideas of [23,54], we develop a suitable strategy to derive the
following sharp stability of the critical points at infinity of the above CKN
inequality in the degenerate case b = bpg(a) with a < 0 (the Felli-Schneider
curve): let v € Nand u € D(ll’Q(Rd) be a nonnegative function such that
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then

=t Dg? (RY)
provided I'(u) sufficiently small, where

D(u) = ||div(|z|=* V) + 2| =T ulP " ul| 12 ga)
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with Dz '?(R9) being the dual space of Da'?(RY), Wy = A~ 2 W(Az)
with W(z) being the unique extremal function of the above CKN inequality
which is positive and radial up to dilations and scalar multiplications and
YV = (A,A2,---,A). The above stability is sharp in the sense that the
power of the right hand side can not be improved any more. The significant
finding in our result is that in the degenerate case, the power of the optimal
stability is an absolute constant 1/3 (independent of p and v) which is quite

different from the non-degenerate case considered in [23,78]. We also believe
that our strategy of proofs might be useful in studying many other degenerate
problems.
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1. INTRODUCTION

1.1. Background and Previous Results. Let d > 2 be a positive integer and
D!2(R?) be the Hilbert space given by

DLY(RY) = {u € DM (RY) | / lz| 2| Vul?de < +oo} (1.1)[eqnsss]
R4

with the inner product

(u,v) pr2 gy 2/ |z| "2 VuVvdz
. -

1
and the induced norm || - || p1.2 gy = (<7 '>D(1112(]Rd)) *, where D12(R9) = W12(RY)

is the usual homogeneous Sobolev space (cf. [11, Definition 2.1]) with D=2 being
the dual space. Then the following Caffarelli-Kohn-Nirenberg (CKN for short in
what follows) inequality

2

p+1
—bp ) |y pg <8, / 24\ Vul*d 1.2)[eq0001
([t oot eian) ™ < s, [ lalvus (1.2)oq0001)

which is established by Caffarelli, Kohn and Nirenberg in the celebrated paper [12]

in a more general version, holds for all u € D(R?), where d > 2, p = F3rra—g
and
a<b<a+l1l, d=2, .
{a<b<a+1, d>3. (1.3) [eq0003]
As pointed out by Catrina and Wang in [13], a fundamental task in understanding

a functional inequality is to study the best constants, existence (and nonexistence)
of extremal functions, as well as their qualitative properties and classifications,
which have played important roles in many applications by virtue of the complete
knowledge on the extremal functions. For the CKN inequality (1.2), it is known
that up to dilations u,(x) = 7%~ *u(7z) and scalar multiplications Cu(x) (also up
to translations u(z + y) for the spacial case a = b = 0), the radial function W (z)
given by

2

W(zx) = (2(]3 + 1)(a. — a)Q)ﬁ (1 + |w|(aca)(p1)> . (1.4)

is the unique extremal function of (1.2) in D}!2(R?) for d > 2 under the conditions
brps(a) <b<a+landa<0, d>2

a<b<a+landa>0, d>3, (1.5)[eq0003]

a<b<a+landa>0, d=2,

where
d(a. — a)
brs(a) = +a—a.>a
(a) 2y/(ac —a)2+ (d—1)
is the well known Felli-Schneider curve found in [50] and for the sake of simplicity,
we denote a. = %, as in [30-32]. Precisely, Aubin and Talanti established the

existence and classification of the extremal functions of the CKN inequality (1.2)
for a = b= 01in [3,70], respectively. As a special case, Lieb established the existence
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and classification of the extremal functions of the CKN inequality (1.2) for a = 0
and 0 < b < 1 in [64]. Chou and Chu established the existence and classification
of the extremal functions of the CKN inequality (1.2) for a > 0 in [19]. Catrina
and Wang established the existence and nonexistence of extremal functions of the
CKN inequality (1.2) for ¢ < 0 in [13]. Felli and Schneider proved in [50] that
extremal functions of the CKN inequality (1.2) must be nonradial if a < 0 and
a < b < bpg(a). Lin and Wang further proved in [65] that extremal functions of
(1.2) must have O(N — 1) symmetry for a < b < bpg(a) with a < 0. Dolbeault,
Esteban, Loss and Tarantello finally classified the extremal functions of the CKN
inequality (1.2) in [32,33] for a < 0 and bpg(a) < b < a+1. Moreover, it is also well
known that W (z) is nondegenerate in D!2(R9) under the condition (1.5) except
b=brs(a) (cf. [50]). That is, up to scalar multiplications CV (),

V(z) = VW () 2 — (ac — a)W(x) = % (A_(“C_a)W()\x)) a1 (1.6)[eq0010]

is the only nonzero solution in D!?(R?) of the linearization of the Euler-Lagrange
equation of the CKN inequality (1.2) around W which is given by

—div(|z|7Vu) = plz|PPFOWP Ly, w e DI2(RY). (1.7)[eq0017]

However, if the parameters a and b lie on the Felli-Schneider curve, that is, b =
brs(a) with a < 0, then the bubble W (z) is degenerate in D!2(R%) (cf. [54]). For
the sake of simplicity in what follows, we introduce the set

Z={cW,(z) | c e R\{0} and 7 > 0}
and the usual weighted Lebesgue space LPH!(|z|~2®P+1 R9) with the norm

1
p+1

HU||LP+1(|€E‘—b(zJ+1),Rd) = </ |x|b(l7+1)|u|p+1dz> . (1.8)
Re

As pointed out by Dolbeault and Esteban in [28] (see also Figalli in [40]), once op-
timal constants are known and the set of extremal functions has been characterised,
the next question is to understand stability: which kind of distance is measured
by the deficit, that is, the difference of the two terms in the functional inequality,
written with the optimal constant. These studies were initialed by Brezis and Lieb
in [8] by raising an open question for the classical Sobolev inequality,

d—2
d
S(/ |ud2d2dx) S/ \Vu|?dz, u e DV(RY), (1.9)[eqino001
R4 Rd

where S is the best Sobolev constant, which was settled partially by Egnell-Pacella-
Tricarico in [36] and completely by Bianchi-Egnell in [5] by proving that

2 _ 2
IVullZ2 ga) SHUHL%(W)

inf 2
we€DL:2(RA)\ M (diStDLZ (U7M))

0< spg =

» (1.10) [oqinoooz]

where ||| 1.»(e) is the usual norm in the Lebesgue space LP(R?) and dist p1.2 (u, M) =
infveM ||Vu — V'UHLQ(Rd) Wlth

M ={cU[z,\] | c € R\{0},z € R? and \ > 0},
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U being the standard Aubin-Talanti bubble and Uz, \] = AT U(A(x—2)). Due to
the non-Hilbert property of W1?(R9) for p # 2, the generalization of the Bianchi-
Egnell stability (1.10) to the general LP-Sobolev inequality takes a long time to
introduce new ideas and develop new techniques by Cianchi in [20], Cianchi-Fusco-
Maggi-Pratelli in [21], Figalli-Magggi-Pratelli in [17], Figalli-Neumayer in [13],
Fusco in [50], Fusco-Maggi-Pratelli in [57], Neumayer in [69] and finally, Figalli
and Zhang proved the optimal Bianchi-Egnell stability of the general LP-Sobolev
inequality in [19]. The Bianchi-Egnell type stability like (1.10) was also general-
ized to many other famous inequalities. Since the literature on this topic is so
vast and this direction is not the main topic in our paper, we only refer the readers
to [9,16,18,27,34] for the Hardy-Littlewood-Sobolev inequality, [35,67,70,72,74] for
the Gagliardo-Nirenberg-Sobolev inequality, [7, 17,37,39,51,58,59,80] for the log-
arithmic Sobolev inequality, [1,14,25,54,77,78] for the Caffarelli-Kohn-Nirenberg
inequality, [4, 6, 15,53, 66] for various different kinds of Sobolev inequalities and
[11,24,38,42-16,55,60,68, 71] for many kinds of geometric inequalities. We would
like to highlight the survey [28] and the Lecture notes [40,52] to the readers for their
detailed introductions and references about the studies on the stability of functional
and geometrical inequalities. In particular, the Bianchi-Egnell type stability of the
CKN inequality (1.2) reads as follows:

(1) The nondegenerate case ( [78,79]). Let d > 2 and either
(1) brs(a)<b<a+1witha<O0or
(7i)) a<b<a+1lwitha>0anda+b>0 (a<bford=2).
Then
HUHQDSLJ(Rd) - Sa_,l%||u||ip+1(|x\—b(p+1),md)

0 < CBE = 1i£lf 2 ’
weDy* (RI\Z (distDm(U,Z))

where dist 12 (u, Z) = infuez [[u — v p12gay-
(2) The degenerate case ( [541]). Let d > 2 and b = bpg(a) with a < 0. Then

; o Tl (1l = SEalulEe oo o)
< CBg = mn

1
w€DY* (R\Z (distD}le(u, Z))

We remark that Bianchi and Egnell’s arguments for (1.10) depends on the non-
degeneracy of the Aubin-Talanti bubble U in D'?(R?). Thus, to establish the
Bianchi-Egnell type stability of the CKN inequality (1.2) in the degenerate case,
Frank and Peteranderl introduced new ideas and developed new techniques to ex-
pand the deficit of the CKN inequality (1.2) up to the fourth order terms in [54],
as that in [53]. We would like to mention the paper [10] where Carlen and Figalli
proved a quantitative convergence result for the critical mass Keller-Segel system
by the Bianchi-Egnell type stability of Gagliardo-Nirenberg-Sobolev inequality and
the logarithmic Hardy-Littlewood-Sobolev inequality, which provides the potential
applications of the studies on the stability of many other inequalities. We also want
to mention the paper [9], where Carlen developed a dual method to establish the
stability of functional inequalities. Finally, we also want to mention that in the very
recent papers [61-63], Konig proved that spp is attainable which gives a positive
answer to the open question proposed by Dolbeault, Esteban, Figalli, Frank and
Loss in [29] and makes the key step in answering the long-standing open question
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of determining the best constant spg. Konig’s result on sgg has been generalized

to ¢cgp in the nondegenerate case in our very recent paper [79]. Moreover, the opti-
mal constant cgp in the degenerate case was determined by Frank and Peteranderl
in [54].

On the other hand, it is well known that all critical points at infinity of the
corresponding functional of the Sobolev inequality (1.9) are induced by limits of
sums of Aubin-Talenti bubbles (at least if we consider only nonnegative functions)
which can be precisely stated as follows.

(thn0003) Theorem 1.1. (Struwe [75]) Let d > 3 and v > 1 be positive integers. Let
{un} € DY2(RY) be a nonnegative sequence with

. . 1 d
(v=5) 8% <IVunlaen < (v+3) 5%

where S is the best Sobolev constant. Assume that HAun + |un\ﬁun

D-1.2

as n — 0o, then there exist a sequence (z o ,z,(,")) of v-tuples of points in

”),)\g”)7_” ’)\(”)

R? and a sequence of (,\5 V") of v-tuples of positive real numbers such

that

Vi, — Y VU™ A

i=1

—0 asn— oo.
L2(R4)

Based on the above well-known Struwe decomposition, Ciraolo, Figalli, Glaudo
and Maggi proposed the following question on the stability of critical points at
infinity of the corresponding functional of the Sobolev inequality (1.9):

(Q) Let d>3, v >1Dbe positive integers and
i=1
If u € DY2(R?) is nonnegative,

1 d 1
(V — 2) 52 < ||Vu||2L2(Rd) < <V+ 2) S

and HAIH- \u|d§2uH ., <<'1, does there exist a constant C(d,v) such
D-1,
that

vl

distprz(u, M%) < C(d, V) HAu + |u|ﬁuHD o
Remark 1.1. The original question ( [/1, Problem 1.2]) is more general than (Q)
stated here in the sense that, u could be sign-changing if u is close to the sum
of Ulzi,\i] in D¥2(R?) where Ulz;, \;] are weakly interacting (the definition of
weakly interaction can be found in [/1, Definition 3.1]). We choose to state the
question (Q) since it is more close to Theorem 1.1 (Struwe [75]).

In the recent papers [22,41], Ciraolo, Figalli, Glaudo and Maggi proved the following
results by the energy method:
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(1) (Ciraolo-Figalli-Maggi [22]) Let d > 3 and u € D*2(R%) be positive such
that ”VUHQL?(Rd) < %S% and HAu—|—|u|ﬁuHD_L2 < ¢ for some 6 > 0
sufficiently small, then

distprz(u, ME) < HAU+ MﬁuH

p-12

(2) (Figalli-Glaudo [41]) Let u € D“?(R%) be nonnegative and v > 2 be an
integer such that

1 d 1 d
(I/ — 2) 52 < ||V'LL||%2(R(1) < <I/+ 2) S2

and HAU + |u|ﬁuHD71 , < 0 for some § > 0 sufficiently small, then

dist prs (u, M) < HAU+ Mﬁuu

D-1.2

for 3 <d <5.

It is worth pointing out that a significant finding in [11] is that Figalli and Glaudo
construct a counterexample for v = 2 and d > 6 to show that the answer of the
question (Q) for v > 2 and d > 6 is negative!l Based on their counterexample for
d > 6, Figalli and Glaudo conjectured in [41] that the stability of critical points at
infinity of the corresponding functional of the Sobolev inequality (1.9) should be of
the following nonlinear form:

JAu+ ufullp-r2 (| Au + uful]p-1.2)

, v>2andd=6;

distpr,2(u, M§) < ¥(d)
( 0) HAu—|—|u\d4f2uH , v>2andd>"7
D-1.2
with 0 < v(d) < 1. In the recent work [23], the first author, together with Deng

and Sun, proved that the stability of critical points at infinity of the corresponding
functional of the Sobolev inequality (1.9) is actually of the following nonlinear form
by combining the energy method, the reduction argument and the blow-up analysis:

lAu + |ulu|| p-1.2| In(||Au + |u|u||D71,z)|%, v > 2 and d = 6;
distpr2(u, Mg) < . &5
HAU—Hu\ﬁuHD , v>2andd>"T.

—1,2

Moreover, the powers of the right hand sides in the above estimates are shown to be
optimal in [23] by constructing related examples. We remark that besides its own
mathematical interests, the stability of critical points at infinity of the correspond-
ing functional of the Sobolev inequality (1.9) can be used to prove quantitative
convergence results for the fast diffusion equation, see, for example [22,11] and
due to the mathematical interests and potential applications, the stability of crit-
ical points at infinity of the corresponding functional of other famous functional
inequalities have already been established, see, for example by Aryan in [2] and De
Nitti and Konig in [26] for the fractional Sobolev inequality, and by us in [78] for the
CKN inequality (1.2) in the nondegenerate case. In particular, the stability of crit-
ical points at infinity of the corresponding functional of the CKN inequality (1.2)
in the nondegenerate case is stated as follows.

Theorem 1.2. Let d > 2 and v > 1 be positive integers and either
(1) brs(a) <b<a+1 witha <0 or
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(1i) a<b<a+1lwitha>0anda+b>0.
Then for any nonnegative u € DL2(RY) such that

1 IR == 1 _q\ Pl
(1= 5) DB < Bl < (v+3) (5205

and T'(u) < § with some 6 > 0 sufficiently small, we have

i~
-

I(u), p>2o0rv=1,

dist e (u, 25) S { T(W)|log T(w)|?, p=2 andv > 2, (1.11) [eqnnewnew0001

(I‘(u))%, l<p<2andv>2,

where T'(u) = ||div(|z|~*Vu) + |ac|_b(p+1)|u|p_1u||D;1,2(Rd) and

Z(l)/:{i:wn |Ti>0}.

i=1

Moreover, the powers of the right hand sides in the above estimates are sharp in the
sense that there exists {u,} C D}*(R®) which are nonnegetive and {7;,} C R4 =
(0, +00) such that

T(ug), p>2orv=1,
Un_ZWTjn ~ { T(un)|logT(un)|?, p=2andv > 2,
=1 D32 (RY) (F(un))% , l<p<2andv>2.
We remark that Theorem 1.2 is a direct generalization of the Ciraolo-Figalli-
Maggi, Figalli-Glaudo and Deng-Sun-Wei results in [22,23,41] for the Sobolev in-
equality (1.9) to the CKN inequality (1.2) in the nondegenerate case, which was

mainly based on the following Struwe decomposition of critical points at infinity of
the corresponding functional of the CKN inequality (1.2).

(prop0002) proposition 1.1. ([75, Proposition 8.2] or [15, Lemma 4.2]) Let d > 2 and
v > 1 be positive integers and either

(1)  brps(a) <b<a+1 witha<0 or
() a<b<a+1lwitha>0anda+b>0.

If {w,} be a nonnegative sequence with

p+1 pt1

1 e 1 _
(v 3) G20 <l < (v 3) (520

then there exists {T; n} C Ry := (0,400), satisfying

. Tin Tjn
min ¢ maxq —, ——/— — +00
i#] Tin Tin
as n — oo for v > 2, such that

(1) wy =30 W, +0,(1) in DL2(RY).
) lnls oy = IV gz gy + 0n(1):
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1.2. Main result. Since the Struwe decomposition (Proposition 1.1) of critical
points at infinity of the corresponding functional of the CKN inequality (1.2) also
holds in the degenerate case b = bpg(a) with a < 0. It is natural to ask the following
question:
(Q) Does the stability of critical points at infinity of the corresponding func-
tional of the CKN inequality (1.2) like (1.11) holds true in the degenerate
case?

We shall answer the natural question (Q) by proving the following sharp result.

(thmn0001) Theorem 1.3. Let d > 2, v > 1 be positive integers and b = bpg(a) with a < 0.
(1) Suppose u € DL2(R?) be a nonnegative function such that

pt1 pt1

1 B 1\ /o \ &
(V— 2) (S) " < hul ey < <y+ 2) (o) (1.12) [qaqmew0001]

Then we have dist 1.2 (u, Z§) < (F(u))%, provided T'(u) sufficiently small,
where I'(u) and 2§ are given in Theorem 1.2.

(2)  There exists {u,} C DL2(R?), which are nonnegative and satisfies (1.12)
with v =2 and I'(u,,) = 0, and {7j,} C Ry := (0,+00) such that

2
1
Un = W, ~ (D(un))? .
=t D}*(R)
Remark 1.2. (i)  Theorem 1.3 is rather surprising since the optimal power

of the stability of critical points at infinity of the corresponding functional of

the CKN inequality (1.2) in the degenerate case is an absolute constant

% which is independent of p and v! This is a completely new finding in
the studies on the stability of critical points at infinity of the corresponding
functional of functional inequalities. This new finding can be explained by
the optimal example of the stability stated in (2) of Theorem 1.3 which is
constructed in the last section. Roughly speaking, for the two-bubble case as
an example, the optimal power of the stability of critical points at infinity
of the corresponding functional of the CKN inequality (1.2) depends on two
values, the interaction between bubbles which is measured by the distance of
these bubbles and the projections on their nontrivial kernels. If the interac-
tion wins the projections then the optimal power of the stability of critical
points at infinity of the corresponding functional will be the values in The-
orem 1.2 which depends on p and v. If the projections win the interaction
then the optimal power of the stability of critical points at infinity of the
corresponding functional will be the absolute constant % If the projections
and the interaction are comparable then the optimal power of the stability
of critical points at infinity of the corresponding functional can be any val-
ues between the values of Theorem 1.2 and the absolute constant %, which
depends on the ratio of the projections and the interaction. We refer the
readers to Remark 9.1 for more details. Since the function u € DY2(R9)
discussed in (1) of Theorem 1.3 is arbitrary, the optimal power of the sta-
bility must be the absolute constant %

(i)  In preparing this paper, we knew from personal communications with

Professor W. Zou that their group was also working on the question (Q)
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for the one-bubble case. Moreover, we notice that in a very recent paper [51],
the optimal stability for the one-bubble case has been established by Zhou and
Zou, while for the multi-bubble case only a partial result is obtained by them.
Indeed, by assuming that the projections on the nontrivial kernels are much
smaller than the interactions, they obtained a stability result with the same
exponent in the non-degenerate case (Theorem 1.2), which is just one of the
three cases we explained in (i). However, as explained in (i), Theorem 1.3
tells that the most important contribution in the optimal stability comes
exactly from the projections on the nontrivial kernels.

1.3. Sketch of the proof. The basic idea in proving Theorem 1.3 is still to apply
the Deng-Sun-Wei arguments in [23], as in [78]. Since the bubble W is degenerate
now, we need also employ the Frank-Peteranderl strategy in [54]. However, since
our problem is in the critical point setting, new ideas and new techniques are also
needed to develop. Let us now explain our strategy in proving Theorem 1.3 in what
follows.

In the first step, we need to set a good problem. Suppose that u € D!2(R%)
be a nonnegative function. We first transform the problem onto the cylinder C =
R x S9!, as usual. Then, based on the Struwe decomposition (Proposition 1.1),
the basic idea is to decompose v, the image of the bubble u on the cylinder C, into
two parts, as in [22,23,41,78], by considering the following minimizing problem

2

v
inf v—g a; W ll
d,e(Ry)Y, T ERY =

so that we can write v = Z]V‘:1 o Wsr +p where the remaining term p is orthogonal

to {\I/S;} and {&,\IJS;} in H(C) with ¥ being the image of the bubble W on the

cylinder C and U,(t) = U(t — s). Since the bubble U is degenerate now, we need
further decompose the remaining term p and further write

v v o d
v = Za;\l’s; + sz,zwj,l + s,

j=1 j=11=1

where {w;;} are the nontrivial kernels of \I!S; and the remaining term p, is orthog-

onal to {W,:}, {(‘%\I/SJ*_} and {w;,;} in H*(C), as in [54]. Since we are in the critical

point setting, the remaining term p, will also satisfy an elliptic equation:
L(ps)=f+Rimt+N, inC,

{(Q/S;,pQ = <8t\IIS;,p*> = (wj,px) =0 foralll<j<wandalll<[<d.

» {85} and |||l by || f[lzz-+, which also
needs us to control the interaction between bubbles by || f||z-1 due to the regular
interaction R;,;.

In the second step, we need to expand the nonlinear part A” and the regular
interaction R;p; in the equation of p, to control ZZZI |oz;f - 1|, {B%.}, the inter-
action between bubbles and ||p«|| by || f||z-1, as in [23,78]. Roughly speaking, we
shall further decompose p, into two parts, the first part is regular enough so that
we can control it very well in any reasonable sense and the second part is (possible)
singular due to the (possible) singularity of the data f € H~! but it can lie in the

Now, our aim is to control 3°7_, [af —1



10 J. WEI AND Y.WU

positive definite part of the linear operator £ and is small enough. We notice that
in the functional inequality setting, Frank and Peteranderl have proved in [54] that
the optimal Bianchi-Egnell stability of the CKN inequality (1.2) in the degenerate
case is quartic and the projection onto nontrivial kernels dominates the remain-
ing term, thus, it is reasonable to expand the nonlinear part A/ at least up to the
fourth order terms and to ensure that the (possible) singular part of the remain-
ing term p, is smaller than or equal to 5% by decomposing it in a suitable way,
where 3, 1= maxy; ‘ ﬂZ,z'- Keeping this in minds, we expand the nonlinear part A/
up to the fourth order terms and pick up all regular parts of R;,; + N which are
potentially larger than 82 and solve several linear equations to decompose p, into
P+ = po + pi., where pg is the regular part and pZ, is the (possible) singular part.
We remark that we need two sub-steps to pick up all regular parts of Rin: + N
which are potentially larger than B%. In the first sub-step, we pick up the leading
order terms in this progress which, roughly speaking, behaviors like 2. In the
second sub-step, we further pick up the next order terms in this progress which are
generated by the leading order terms and roughly speaking, behaviors like S for
2 <t < 4. We remark that in order to pick up all the next order terms which are

potentially larger than 5%, we need to iterate second sub-step for max { [%} 74}
times.

In the third step, we need to multiply the equation of p, by {\I/s;}, {6,5‘115;}
and {w;,;}, and multiply the equation of p}, by pi, to establish the relations of
dim lar —1], {851}, the interaction between bubbles, [p.|| and || f|[z-1, as in
[23,78]. Tt is worth pointing out that even though we have picked up all regular parts
of Rint+N which are potentially larger than 32, we still need to refine the expansion
of the nonlinear part A/ for three times, respectively, in estimating Z;’Zl ’aj — 1|7
the interaction between bubbles and ||pZ,||. In particular, to keep the (possible)
singular part pZ, in the desired size, we need to expand the nonlinear part N

up to the max { [2;:11

(possible) singular part of the remaining term p, is smaller than or equal to 3%, we
also need to decompose the regular part pg into several parts, analyze the symmetry
of these parts and then full use these symmetry and the orthogonality of pZ, in the
equation of p,. However, even though these estimates are good enough, we still
can not finally control 377, |oz}‘ — 1|, {55}, the interaction between bubbles and
llp«|| only by || f|lz-1 by only using the above analysis. This is mainly because 32
can only be bounded from above by a very special quartic form, as observed by
Frank and Peteranderl in [54]. Thus, we need to find out the right third equation
to march this special quartic form and ensure that we will not enlarge the upper
bounds in the original estimates of >7_, |a;‘ -1, {851}, the interaction between
bubbles, ||ps«|| and ||f||z-: in this progress, which is achieved by full using the
symmetry and the orthogonality of the remaining term p, once more.

In the final step, we use all above estimates of Z;’Zl ‘a; -1, {»3;:,5}7 the inter-
action between bubbles, ||p.|| and ||f|z-1 and the estimates of 5% established by
Frank and Peteranderl in [54] to derive the desired estimate in (1) of Theorem 1.3.
The proof of (2) of Theorem 1.3 is achieved by constructing an example of the case

v = 2 and using the good ansatz 2321 W, + (232:1 sz:1 ﬁ;"le’l) + po in the
proof of (1) of Theorem 1.3.

} ,6}th order terms. Moreover, in order to ensure that the
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We believe that our strategy of proofs may be useful to study many other prob-
lems in which degeneracy appears.

1.4. Structure of this paper. In section 2, we give some preliminaries. In sec-
tion 3, we introduce the setting of the problem as stated above by decomposing a
given function into three parts, the projection on bubbles, the projection on non-
trivial kernels and the remaining term. In section 4, we expand the nonlinear part
of the remaining term up to the fourth order terms to pick up all possible lead-
ing order terms in it and use these possible leading order terms to decompose the
remaining term into two parts, the good regular part and the (possible) singular
part, as stated above. In section 5, we refine the expansion of the nonlinear part
in the first time by adding the regular part of the remaining term into the ansatz
and estimates the differences of the projection on bubbles. In section 6, we refine
the expansion of the nonlinear part in the second time by expanding it up to the
sixth order terms to estimate the interaction between bubbles. In section 7, we
refine the expansion of the nonlinear part in the third time by expanding it up to

the max { [2;’:11] 74}th order terms to estimate the (possible) singular part in the
remaining part. In section 8, we finally estimate the projection on nontrivial kernels
and prove (1) of Theorem 1.3. In section 9, we construct an optimal example and

prove (2) of Theorem 1.3.

1.5. Notations. Throughout this paper, a ~ b means that C'b < a < Cb and
a S b means that a < Cb where C and C' are positive constants. o € (0,1) is
used to denote a positive constant which can be taken arbitrary small if necessary,
(R1)" = ((0,+0c0))” and we also denote

-1 .

mi_o(p—

Apio1 = # and ng :min{neN | n > {])1,4}}
! p—

2. PRELIMINARIES
The CKN inequality (1.2) can be rewritten into the following minimizing prob-
lem:

Hu”%}lﬂ(Rd)

Sih = 7 (2.1) o2
where LPH! (|| 2P+ R9) is the usual weighted Lebesgue space and its usual norm
is given by (1.8). The Euler-Lagrange equation of the minimizing problem (2.1) is

given by

went (e (0 1l
a Lp+1(|z|—b(p+1) Rd)

~div(|a|"Vu) = |a D, w € DEA(RY). (22) eqo018
It is well known (cf. [13, Proposition 2.2]) that D!2(R9), the Hilbert space given
by (1.1), is isomorphic to the Hilbert space H'(C) by the transformation

u(z) = ||~y <—1n|a:|, Z) ; (2.3)[eq0007]

where we recall that we denote a. = 952 as in [30-32], C = Rx S%! is the standard

cylinder, H*(C) is the Hilbert space with the inner product given by

(w,v) = /c (VwVv + (ac — a)*wv) dp
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with du the volume element on C and the induced norm is denoted by | -||. By (2.3),
the minimizing problem (2.1) is equivalent to the following minimizing problem:

, (2.4)[eq0003]

where || - || zp+1(c) is the usual norm in the Lebesgue space LP™(C). For the sake
of simplicity, we denote

PH= Pt () and H':= H'Y(C)
in what follows. Let ¢t = —In|z| and 6 = ra7 for z € RM\{0}, then the Euler-
Lagrange equation of (2.1) in terms of u given by (2.2) is equivalent to the following
Euler-Lagrange equation of (2.4) in terms of v:

—Agv — 020 + (a. — a)*v = [P rv, v e HY(C), (2.5) [eq0006]

where Ay is the Laplace-Beltrami operator on S~ 1.

L o
a.b UEHI(C)\{O} H’U”%p+1(c)

Clearly, minimizers of (2.1) are ground states of (2.2). Moreover, by the trans-
formation (2.3), the linear equation (1.7) can be rewritten as follows:

—Agv — 02v + (ae — a)®v = pUP~tu, ve HY(C), (2.6) [eq0016]

where

R O e e e e =

is the image of W (x) which is given by (1.4) under the transformation (2.3). Since
(2.6) is translational invariance, it follows from (1.6) and the transformation (2.3)
that

V() =0 (t—s) =0, V(t —s) = —0s¥(t — )

is the only nonzero solution of (2.6) in H'(C) under the condition (1.5) except
b= bps(a).

For the special case b = bpg(a), the bubble ¥(¢) is degenerate in H!(C) in the
sense that the nonzero solution of (2.6) in H'(C) is not only generated by the
translational invariance of (2.5). Fortunately, we have the following lemma which

provides a complete understanding of the solutions of the linear equation (2.6) in
HY(C).

(1em0001) [.emma 2.1. ( [/, Lemma 7]) Letd > 2, a < 0 and b = bpg(a). Then any
solution of the linear equation (2.6) in H'(C) is the linear combination of 0;¥
and \IlpTﬂﬁl, \I’I)THHQ, e ,W%Gd, where 0; are the standard spherical harmonics of

degree 1 on S~1.

(rmk0001) Remark 2.1. As in [5/], we call 9,V the trivial kernel of the linear equation (2.6)

in H*(C) and call \prTﬂel, \11%92, e ,\If%ed the nontrivial kernels of the linear
equation (2.6) in H'(C). Moreover, since 0; are odd on S*', 0;¥ is odd in R and
U is even in R, by (2.5) and (2.6), we have the following orthogonal conditions:

(¥,0,0) =0, (¥,w)=0, OV, w)=0 and (w;,w)=0

p+1

forall1 < j #1<d, where w, =V "= 0.
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3. SETTING OF THE PROBLEM

Let d > 2, a <0 and b=bpg(a). Then direct calculations show that

4(d —1)
. 2 -~ @ @@
(ac —a) PESIEY
For the sake of simplicity, we denote that
4(d—1)
Sps:=8Sap and Apg:i= ——"—
FS b FS pt1)?—4

ford > 2,a <0and b= bpg(a). Let v € H'(C) be a nonnegative function such
that

p+1
—1

1 1B 2 1 —1\%
V-3 (Szs) <|v|* < v+ 3 (Sps)
for some positive integer v > 1 and denote

fi=—Dgv— v+ Apsv —vP. (3.1)[eq0060]

Then it is easy to see that f € H~1(C), where H~!(C) is the dual space of H*(C).
For the sake of simplicity, we denote H~1(C) by H 1.

By Proposition 1.1 and (2.3), there exists (s14, a4, - - , S,5) satisfying

min |s;y — sj4| = +00 as | fllg-1 =0,
i7£]

such that

2
v

v=) Vel =0 as [fllm =0 (3.2) [eqn0008]

Jj=1

Thus, we can rewrite

1%
v = E Vs, , +a remaining term
Jj=1

in H' as ||f||g-1 — 0. To obtain an optimal decomposition in the above form, let
us consider the following minimizing problem:

2

inf v=Y ol |, (3.3)
j=1

d,ERL)”, T ERY

where o, = (1,9, -+ ,a,) and 5, = (81,82, ,8,). By (3.2) and similar
arguments used for [78, Proposition 4.1] (see also [54, Proposition 2]), we know
that the variational problem (3.3) has minimizers, say (&%, & *), such that

v

— 400 as | fllg-1 = 0. (3.4)[eqn1005]

max |af — 1| — 0 and min|s} — s
1<j<v i#£] ’

Thus, we can decompose

=Y ajt; +p (3.5)[canoumenoooa
j=1



14 J. WEI AND Y.WU

where by (3.2),
2

lpll>=_, inf v=Y 0¥, | =0 as|flg- =0 (3.6) [eqno00g]
j=1

o, E(Ry)Y, T L ERY

and by the minimality of (a*, %),

(p W) =0 and (p,0Wy;) =0 forall1<j<u. (3.7) [eqn000q]

Since by Lemma 2.1, the linear equation (2.6) has nontrivial kernels in H'! for d > 2,
a <0 and b =bpg(a), we need further decompose the remaining term as follows:

v d
DO Brwia | + e (3.8)

j=11=1

ptl
where for the sake of simplicity, we denote w;; = ¥,;* 0, = w;(t — s7) and {],} is

chosen such that (w;;,p.) =0forall1 <j<wandalll<[<d. The above facts
can be summarized into the following lemma.

(1em0002) T omnma 3.1, Let d > 2, a < 0 and b = bpg(a). Then we have the following
decomposition of v:

U_Zw e (3 B | e (3.9) [canemmex0003)

j=11=1

where the remaining term p, satisfies the following orthogonal conditions:

<p*,‘l's;_> =0, <p*,8t\113;> =0 and (p.,wj;)=0 (3.10) [eqn0003]|

foralll1<j<vandall<Il<d with

max o) — 1| =0, H;m}sf —s;-| — 400 and ||p«|| =0 (3.11)[eqnewnew1005 |
i#]

1<j<v

as || fllg-1 — 0. Moreover, we also have

2
v

v d
inf 0=y ~ 30D (Bh)” + e (3-12) [eqnewnew0001]
j=1

WL ERY)”, T L ERY k=1 1=1

Proof. (3.9) can be obtained by (3.5) and (3.8), directly, while the orthogonal condi-
tions of p. are obtained by the choice of {37}, the orthogonal conditions of {w;;}
given in Remark 2.1 and the orthogonal condition of p given by (3.7). By (3.4)
and (3.6), it remains to show that (3.12) holds true as ||f||z-1 — 0. Indeed, by
(3.8) and the orthogonal conditions of w;; given in Remark 2.1 and the orthogonal
conditions of p, given by (3.10),

v d
2
Ipll* = ZZ Bit) lwall® + 1.1

d
+2 Z D B iBr (Wn, Wi 1), (3.13)

m,n=1;ym<n [=1
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where we have used the invariance of S9~1 and the norm || - || under the action of
orthogonal matrix O(d). Clearly, by (3.4) and (3.13), it is easy to see that

17 d
ol ~ S5 (810" + llosll?,

k=11=1

which, together with (3.6), implies that (3.12) holds true as || f||g-1 — 0. O

For the sake of simplicity, we use the notations ¥; := \I/S]*,, Ur=aj¥;,

U= 05, U=U-V;= > ¥ (3.14) [eqno140)]
j=1 i=13i]
and

d i1 d v
V=Y Brwi =07 (D B, V=)V (3.15) [oquoodo]
=1 =1 j=1

Since ¥, are solutions of (2.5) and w;; are solutions of (2.6), by (3.1), (3.5), (3.8)
and (3.10), it is easy to see that the remaining term p, satisfies:

Lp)=f+Ri+R2+N, inC, 316
(Wj, ps) = (045, pu) = (wj1,px) =0 forall 1 <j <vand alllSZSd,(' ) [ea0014]

where L(p.) is the linear operator given by

L(p.) = —07pe—Dops+ Apsp. — pUP ' p,
= (—33,0* — Agpu + Apsp, —p (W) p*) —p (U’H — (‘Ifﬁ)p_l) ps
= Li(0) ~ Liealp) (3.17) [oqno0sd]
forall j =1,2,--- ,v, R and Rs are the regular interactions given by
Rio= wr =Y () D () )
j=1 j=1
Rier+» R (3.18) [eqn0020)]
j=1
and
Ro Sop (U= () (e =) e Y
j=1
= Yop(@ = @) ) v (@t - ey,
j=1 j=1

= Roext Y Raj, (3.19)

Jj=1

and A is the only nonlinear part of p, given by

N=U+V+p)" =U —pUP™" (V+p.). (3.20) [eqnewnewssse |
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By (3.12), to establish stability of the CKN inequality in the critical point setting
for d > 2, a < 0 and b = bpg(a) as in [23,41, 78], we shall control Z]V‘=1 ’a; -1,

{8} and [l by [1f]lz-+-

4. BASIC EXPANSION OF A/ AND FURTHER DECOMPOSITION OF Px

As stated in the introduction, to get optimal control on 25:1 aj — 1}, {Bl’;l}
and ||p«|| only by || f||z7-1, we shall apply the ideas in [23] (see also [78]). Roughly
speaking, we need to further decompose the remaining term p, into two parts. The
first part, say pg, is regular enough in the sense that py can be controlled by good
weighted L> norms. The second part, say pi,, is (possible) singular according to
the (possible) lack of regularity of f € H~! which is much smaller than py in H*.
For this purpose, we need to firstly expand the nonlinear part N to pick up all
possible leading order terms of the remaining term p,.

4.1. Basic expansion of V. Since by [54, Theorem 1], the optimal Bianchi-Egnell
stability of the CKN inequality for d > 2, a < 0 and b = bpg(a) is quartic, it is
reasonable to first expand the nonlinear part N up to the fourth order terms.

(1em0003) [ o yma 4.1. Let d > 2, a < 0 and b = bpg(a). Then we have the following
expansion of the nonlinear part N :

N = AU (VP 42Vp,) + AU (VP4 3V7),)

4 2 e A =
+O [ UPBE + xpaloal® + [poP + D B 77 |pu]' 7o
=2

= N* +M'e7rb (41)
in C, where p., U and V are given by (3.9), (3.14) and (3.15), respectively, B, =

max; ‘ﬁ;l‘, ay = max{+a,0} and

L p=2
XPE?_{O, l<p<?2.
Proof. As in the proof of [54, Lemma 8], we introduce the set

A=A{(6,t) €C|lps| < VI}.
Note that by (3.11), (3.15) and p > 1, we have

VIS BU™T S BU. (4.2) [equot91]

Thus, we can apply the ideas in the proof of [54, Lemma 8] to expand the nonlinear
part A in A and A€, respectively, as follows:

N = AU (V2 +2Vp,) + Ap oUP2 (VP + 3V%p,)
+0 (Z/{”“L V4 p) ' +UP2 Ip*|2)
= A, UPTE (V24 2Vp.) + A, oUP T3 (VP 4 3V%),)
+O U726 + xpz2lpsl* + [p47) (4.3)
in A and

N =0 (xpz2loal + [p.]?) (4.4) [eqpo0i]
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in A°. Since 2(2+1p) € (0,1) for 1 < p < 2 and 2(3 p) € (0,2) for 1 < p < 3, by

(4.2) we have

2(’ 2(l-p)y
ZB P I 2 A, 7 (V2 2(Vpl) + Aot (1V° + 820 )(4.5)feauo0rT
in A°. Thus, (4.1) is obtained by combining (4.3), (4.4) and (4.5). O

We need to further expand the nonlinear part A, to separate the bubbles, for
this purpose, we introduce some necessary notations. For the sake of simplicity and
without loss of generality, we assume that

—00:1=5) < 8] < 55 < -+ < 5y, < 5,4 1= F00.

We also denote

T =8i41 =85, T= . gnin Tj (4.6) [eqn0240]

=1,2, ,v—1
and

By = [s; ~ 0 st %} x §4-1,

1 Tj — .
7 2 7Sj+5J:|XSd 1a 2S]§V_17
B, = [s -l ey T”‘l} x §41,

2
B, = U/, B;.

(4.7) oammenneso00d

(1em0004) Lemma 4.2. Let d > 2, a < 0 and b = brs(a). Then the nonlinear part N which
is given by (3.20) can be further expanded as follows:

N = 3 (A ()77 (4 200) + A (1) (0 4 3120.) ) s,

j=1
+ 3024, (W2 — ()77 V)) pexs, + D0 0 (82U (W5 4 0.)) xs,
j=1 Jj=1

+ (24, U™V pu + UPTIVE (Apald + Ap2V)) Xe\B.
+0 (B p,xe\s. ) + Nrom (4.8)[eqn0045]

in C, where Nyem is given in (4.1).
Proof. Since U; > 0in C for all 1 < j < v by (3.14), by (2.7), (3.15) and the Taylor
expansion, we have

*\P—& —1 —a—1 —1 -« —2
()" vet o | v Vel + 0P Z VeV,
i=13i£]

S\ P—C y a1 a1 a(p—12)+p—3 G(P—zl)—i’ pTH
= (v7) Vi + O | B v, U+, U

in Bj forall 1 <j <wvand

upfozvafl

yp-ope-l — o (53_12/{ <a+1>2<p71>)
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in C\B,, where a = 2 or a = 3. Similarly,

*\P—& y o —a—1yy —« —
()" Ve + O | WYY 4 T YT vy,
i=15i#£j

AP0 e N ale=1) (a+D)(p=1) p+1
()" v +O(6* (q/j U+ U ))
in B; forall 1 < j <v and

ur-eve = o (peu )

Ur—ope

in C\B.. Thus, summarizing the above estimates of Ur—Ye=1 and UP~*Y* in N,
and by p > 1 and Lemma 4.1, we have the desired expansion of A" given by (4.8),
where Ny.en, is given in (4.1). O

4.2. Further decomposition of p.. Recall that we shall control Z;’Zl ’aj — 1|,
{Bi.} and [[p.|| by || | z-1. However, due to the regular interactions R and Rz, we
have an additional term which is needed to control, that is, the interaction between
bubbles. To measure the interaction between bubbles, we denote

Q= VAT, pu(t) = VAl and Q= e VAT (4.9) [equioons)
where 1 < j < v and 7; and 7 are given by (4.6).

(1em0005) [ ,emma 4.3. Let d > 2, a < 0 and b = bpg(a). Then for every o, f € R such that
a+ B >0 and >0, we have

Q% a>p,
[ wwan s Q@ oxal. a5 (4.10)[oqresooot
Bi

Qz, a<p

and

/C\B* \I’?\I’fdu < Q”¥B+min{a<z‘—1)ﬁ(j—1)}7 (4.11) [equew0002]
where U;, B and B, are given by (3.14) and (4.7), respetcively.
Proof. Recall that
ST <s5 << 85_q <S8},
thus, by (2.7), (4.6), (4.9) and similar estimates for (4.8), we have
\I/f‘l/lf ~ e~ VAFs(t—s7) o —BVAFs(si1—t) Qfef(afﬁ)\/m&*s:) (4.12) [eqnewnew0006]|

in the region

Biy = [si,5f + 5] x 57! (4.13) [cquewnew0010)

foralli=1,2,--- ;v — 1, while in the region
Bi— = [si = o2 s1] x 507 (4.14) [equewnen0oii]
for all t =2,3,--- ,v, we have

\p?uf ~ e~ OVARs(si—t) o =BVAFs(t=si_1) Qf_le*(a*ﬂ)«//\Fs(SI*t). (4.15) [equewnew0007 |
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Thus, by direct calculations, we have

/\If?blfdu ~/ sz%szHdMJr/ vewr du

B; Bi 4 Bi_
Q% a>p,
< {Q%NogQl, a=5,
QF a<p,

which implies that (4.10) holds true for i = 2,3,--- ,»v—1. To prove (4.10) for i = 1
or i =v and (4.11), we denote

Bi_. = (—00,s]] xS
= ( oosl—%) Sdlu{ %,s’{}de_l
= (C\B.) UB _, (4.16) [eqnewnew0012]|
and
Bois = |[s5,+00)xS¢!
= [s;,sf,ﬁL%} x Sty (s;Jr%,Jroo) x §4-1

= B, U(C\B.)". (4.17) [equewnew0013]

Then by (2.7), (4.6) and similar estimates for (4.8), we have

\IIQ\IJB <

J o~

QP BG-D) o~ (VARSI iy B,
QrIn{al-1),8G-1} (et VTS (-5) (4.18) [eqnewnew0008]

in By 4 .

Thus, (4.10) for i = 1 or ¢ = v and (4.11) are also obtained by direct calculations
as above. O

We remark that in the following of this section, we shall frequently use the linear
operator £ which is given by (3 17) and the nontrivial kernels of the bubble ¥;

in H'(C), denoted by wj,; = \Il 0; and given by Lemma 2.1. Now, to further
decompose the remaining term p* and pick up a good regular part, let us first
consider the following equation:

v d
L7 =Riex — N2 O+ Slez.ilWil in C,
Wl,w) Lex ; J ( Lex,jOt*j ; Lex,j, Wi, | > (4'19)

(005,71 ex) = (Wj1, V1 e0) =0 foralll <j<wandalll<[<d,
where R ., is given by (3.18).

(1em0006) Lemma 4.4. Let d > 2, a < 0 and b = bps(a). Then (4.19) is uniquely solvable.
Moreover, the solution 7, ., 1s even on S and satisfies

||71,e:c||ﬂ 5 13 p Z 37 4.90
Freallen ST, 1<p<3, (4.20) 0]
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where the Lagrange multipliers {c1 ex j} and {<1 ez j,1} are chosen such that the right
hand side of the equation (4.19) is orthogonal to {8;¥;} and {w;,;} in H'(C),

e calls = sup —a el
) Bi,+ Q Zi:l 9051* a(t)
and
v—1 -
el = D - ] -

S (B \Buo)U(Bi 1, \Biyno) Qalelr 2(1) + 912 (¢)

|71,eac‘ ‘71,6x|

+ sup +

|71,e;c|

UY_,Bio Q By, +,«\Bv,o Q@iz_o(t) Bi,— «\B1,o Q‘pif_a(t)
with B; ., B1,— .« and B, 1 . given by (4.13), (4.14), (4.16) and (4.17), respectively,

and

Bio=[s; — R,s; + R] x $%*

for R > 0 sufficiently large. The Lagrange multipliers also satisfy |ci ez ;| S Q for

all1<j<vandsiesj1 =0 foralll <j<vandall<Il<d.

Proof. By the Fredholm alternative and the elliptic regularity, it is easy to show
the existence and uniqueness of 7, ., in H 2(C). Moreover, since Rq ., is even on

S?=1, by uniqueness, we also have that 7; ., is even on S, For the sake of clarity,

we divide the remaining proof into three steps.
Step. 1 We estimate R ¢
By (3.18) and similar estimates for (4.12), (4.15) and (4.18),

in§;2(t), inB; 4 forl <i<v-—1,
Qz‘—upi;j (t), inB;_for2<i<u,
Ql‘Pi} (t), in By,

Quit: (1), in By 4«

Thus, we have

—1
. | 1,ex| |R1,em|

2 sup ———— up 5
;Bi,Jr Qiﬁpi} Q(t) By 4« Qu@;; (t)

IR1,eal

+Zsup 7@1_ p,z(t) + sup 7621@;{0@)

Bi,—,«
for 1 <p<3and

|R1 eac| |R1 ex‘
1 > E SUp ————— + sup —————
i=1 Bi+ ‘Pi; ) Bus. QW;; 7(t)

|R1 ex| ‘Rl e:c|
+ SUp —————~ + SuUp ——-— ~
gsi,, Qe 7(t) B Quyr(t)

for p > 3.
Step. 2 We prove the estimates of the Lagrange multipliers.

(4.21) [amermesouos

(4.2)[oantoos7]

(4.23) [omtoose]
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By the orthogonal conditions and the oddness of w;; on S¥~!, we have

S (0w VT0;)  erer = (Rio, WO

i=1

and

v d
Z Z <\ijn_1wm,n» \Pgile,l>L2 Sl,ex,m,n — 0
m=1n=1
forall 1 < j < vandall1<1l<d The matrix {<qffflatwi,\p§*18tqu>p} is
diagonally dominant by (3.11), thus, by p > 1, Lemma 4.3 and (4.21),

v
p—1
‘cl,ez,j| ~ E ‘<R1,em7\Ijl 8t\I/l>L2‘
=1

-1 v
S Y[ ewrtwae Y [ oawwdeeq [ w0
=1 i+ b= J

i=l+1
/ \Ilip_l‘l/jﬂd,u—l—/ \Ilip_l\llj_ldu—FQ/ \I/?(p_l)du
Bj + Bj, - B;

S Q (4.24) [omtoaT)

for all 1 < j < v. Moreover, by (3.11) and the orthogonal conditions of {w;} on

S9=1, the matrix [<\I/§n_1wm7n, \Iff_le)l> 2] is also diagonally dominant. Thus, it
L

is also easy to see that ¢1 e, j; =0forall<j<wvandalll<I<d.

Step. 3 We prove the estimate (4.20).

Since it is easy to check that @l;”(t) for all o € (0,1) are supersolutions of the
equation L£(p) = 0 in B;\[sf — R,sf + R] x S% ! forall 1 < i < v with R > 0
fixed and large enough, by Lemma 2.1, (4.23) and using > r_, CQpl?(t) for a
sufficiently large C' > 0 as the barrier, we can apply the maximum principle in the
strong sense and the standard blow-up arguments to (4.19) to derive the desired
estimates (4.20) for p > 3. On the other hand, for 1 < p < 3, it is also easy to
check that P 2(t) for all p € (1,3) are supersolutions of the equation £(p) = 0 in
Bi\[sf — R,sf + R] xS ! for all 1 < i < v with R > 0 fixed and large enough.
Now, by the local regularity, (4.22) and the estimates of the Lagrange multipliers,
we have

A

b

H71’€IHL°"(§¢,0) S’ Q and ||ﬁ1’em||L”(l§i,o,*) SJ 1‘57 (425)

where
Bio = [si —2R,s! +2R] x %!
and
Ei,o,* = % — 2R, S”L% +2R| x §¢-1

for R > 0 sufficiently large. We introduce the sets
Zo={1<i<v|[Qi~Q} and Zy,={1<i<v|Q;=0(Q)}
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First of all, for 7 € Z, since
9 Q, in ((Bi,Jr N gz’,O) U (Bi+177 n giy())) 5
iné ~ Qz‘pf T ~ » . ~ ~
@z, in ((Bi,+ N Bio) U (Bit1,— N Bi,O,*)) ;

by (4.22), (4.25) and the maximum principle, we have

> ( p el '”') <1 (4.20)[pmosevcncs)

iezy \Bi+ Qz‘P (t) Bit1,— Qi‘Psz (t)

Secondly, for i € Zy ., we shall construct a global barrier in B;  UB; 1. —. Let 919
be the unique solution of the following equation

. 1;[}” _ 20¢/ +U27/} _ 17
P(0)=1, '(0)=0
and 1 . be a solution of the following equation

{_¢/1_20¢/+02w: 1’

P'(1) =0,
where o > 0 is sufficiently small. Then we have
o7 ?2-1
N =—g2_ <\/§ De~(V2+1)at 4 (/5 4 1)e(V2- 1)Ut)
qu)l,O( ) o 2\/§ ( ) ( )

and we can take

) e(\/ifl)o
(t)=0""+ ——
1/)1, ( ) \/§+ 1
It is easy to see that v o(t) < 0 and 97 () < 0 for ¢t € (0,1) and there exists
to € (0,1) such that 1] ((to) = 91 .(to), which implies that

¥1,0(0) = ¥1,0(to) + P14 (to) —¥1+(1), <0,

((\/ﬁ — 1)e*(\/5+1)0(t*1) + (V2 + 1)6(\/571)0(1&71)) .

brt) = P1,0(t) — 1,0(t0) + U1 (to) — 1,(1), 0 <t <ty,
BT ) — (1), me<t<l,
0, t>1

belongs to L>(R) N C*(R) N W2%>(R) and is a cut-off function. Let
. R
Vit (1) = U (f Si T 5~ 1) ;

. R
Yig1,—(t) = 1 <5i+1 + ) +1- t) )
Then by

., _2 Qi =0(Q), in ((Bi,+ NBio) U (Bij1,_ N gz’,O)) ;
QM?; ~ Qi‘ﬂgrﬂ ~ » ) . .
Qiz, 11 <(Bi7+ n 81,07*) U (Bi+1,— n Bi707*)) y

it can be checked that

Y = ;4 Q 4 (Yi,4(0) — wi,+)Qi¢€;2
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and
Yit1 = ip1,-Q + (Yiy1,-(0) — ¢i+1,7)Qi<P§;r_+21

are supersolutions of the equation £(p) = 0 in B; +\B; o and B;y1,—\Bi+1,0, respec-
tively. Thus, by (4.22), (4.25) and the maximum principle, we have
sup |71,e;c| + |71,ex‘ . |71,ex|
—_2 -2
i€To. Bi,+\Bi,o0 QM?; (t) Bity1,-\Bit1,0 QM?;H (t) Bi.o Q

S 1. (4.27) [oumomenooto

Finally, by (4.22), (4.25) and the maximum principle, we also have

|71 ew| ‘ﬁl ea:|
oup el el (1.25) eqpmammenoor
By 4« QW;; (t)  Bi_. Q@i; (t)
Now, the estimate (4.20) follows from (4.26), (4.27) and (4.28). O

We next consider the following equation:

L) =Ruy— Y W 1000 + > a1 jiwig

v d
( ) , inC,
(4.29) om0z

(691/1»,717]-) = <’wi’l,’}/1)j> =0 foralll < ) <v and all 1 < l < d,
where R ; is given by (3.18).

(1em0007) Lemma 4.5. Let d > 2, a < 0 and b = bpgs(a). Then (4.29) is uniquely solvable.
Moreover, the solution 71 is even in R in terms of t — s} and even on St and
satisfies

e CHUSE ] (4.30) [an0048]

where the Lagrange multipliers {ci1 ;;} and {1 i1} are chosen such that the right
hand side of the equation (4.29) is orthogonal to {0;¥;} and {w;,;} in H'(C). The
Lagrange multipliers also satisfy <151 =0 and

_ @iyt =1]Q g @1, i # .

T L@ 1@ og QI i =,
forall1<j<v,alll<I<dandall<i#j<wv.

e,

Proof. By the orthogonal conditions and the oddness of w;; on S4-1, we have

v

> (v o, quflatq/k%z cri = (R, qlgflat\yk%
i=1
and
v d

-1 p—1 —
<\Il€n Wm,n, \I/j wj,l>L2 S1,j5,m,n = 0

m=1n=1
foralll < j,k <wvandalll <[ <d. Again, the matrix [<\Ilf_18t\11i, \Ilij_lat‘llj>LJ
is diagonally dominant by (3.11). Note that by the oddness of ;¥ in R, we have

<R17j7\1:§—1at\1:j>m —0.
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Thus, by Lemma 4.3 and (3.18),

|(a;f)p1—1|/cxlf€\1v§du5 ()P~ = 1| QP log Q[, i # j,

lerjal S 2 )
Sl =1l ([ wrwian) <yt - 1@ gl i
1#] ¢

for all 1 <4 < v. Moreover, by (3.11) and the orthogonal conditions of {w;} on

S9=1, the matrix [<\I/§n_1wm7n, \If§_1wj,l>L2] is also diagonally dominant. Thus, it

is also easy to see that ¢;;;; =0 forall 1 <i,j <wvandalll <! <d. Now,

since p > 1, as in the proof of Lemma 4.4, by (2.7), (3.18) and Lemma 2.1, we

can use p = C ’(a;)p_l - 1’ @L-7(t) for a sufficiently large C' > 0 as the barrier

J
and apply the maximum principle in the classical sense and the standard blow-up

arguments to (4.29) to show the existence and uniqueness of ~; ; with the desired
estimate (4.30). Moreover, since Ry ; is even in R in terms of ¢ — s7 and even on

S9!, by uniqueness, 71,5 is also even in R in terms of ¢ — s} and even on st 0O

We also need to consider the following equation:

v d
L7, exr =R er \Iﬂ‘)il C2.ex a\:[l‘f' S2.ex,jlW4 s iHC7
Fzcz) B jzz:l ! (2’ S ; enp T (4.31) [eqno013]

OtV 5, e0) = (W) 1,V er) =0 forall 1 <j<wvandall1<I<d,
where R ¢, is given by (3.19).

(1em0008) Lemma 4.6. Let d > 2, a < 0 and b = bpg(a). Then (4.31) is uniquely solvable.
Moreover, the solution %, ., is odd on S9! and satisfies

EN|

||72,€(L‘Hﬁ 5 6*7 p >

0 (4.32) [sqn2047]

7
Ih,ggﬁ*a 1<p<§a

where the Lagrange multipliers {ca e j} and {$2 ez, } are chosen such that the right
hand side of the equation (4.31) is orthogonal to {8;%;} and {w;;} in H*(C), || - ||
is giwen in Lemma 4.4 and

||72,ex

v—1

_ 72,ezl
17V2,eall2 = Z sup 355 = 3p—5
i—=1 (Bi,+\Bi,0)U(Bit1,-\Bit+1,0) Qi((psf (t) + Lps:il (t))

+ sup |72,ex| + |72,ex| |72,eac|

u N 1—0 /4 up AN 1—0 /4
Ui=1vBio Q By +,x\By,o Qs@;,’j U(t) Bi,—,«\B1,0 Q‘Pif a(t)

with By +, By 4+ «, B1,— .« and B, o given by (4.13), (4.14), (4.16), (4.17) and Lemma 4.4,
respectively. The Lagrange multipliers also satisfy czeq; =0 for all1 < j < v and
I$2,ex,51] S BQ foralll <j<wvandalll <I<d.

Proof. Similar to (4.12) and (4.18), by (2.7), (3.15) and (3.19), we have

_|_

3(p—

d 1) _
Ra.cal S B (Z U, 7 Uxs, +u3‘°21><c\3*> (4.33) [eqn31d7]

=1
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with B; and B, given by (4.7). Thus, similar to (4.22) and (4.23),

v—1
R R
5, > Zsup%Jr sup Rzl
DB Qup, T (1) Buore Quipss 7 (1)

R ex R ex
+Zsup|273,pla+s pM (4.34) [eqn29997 |

i—2Bi- Q1,2 (t)  Bu- Q1<P 7(t)

W[~

for 1 <p < Zand ||Raexlls < Bs for p > I. By the orthogonal conditions and the

oddness of w;; on S~ we have

v

-1 -1
Z <\I/;f 8t\I/i, \Iff 8,5\I’j>L2 Coex,i = 0

i=1
and

v

d
} : 1 Pl _ p—1
<\I’p Wm, ny ¥ j wj,l>L2 S2,ex,m,n = <R2,exa \I/j wj,l>L2

forall1 <j<wvandalll<I[<d. Again, the matrix [<\Ilf_18t\lli,\11§-’_18t\l'j> J
L
is diagonally dominant by (3.11). Thus, ¢2¢s,; = 0 for all 1 < j < v. Moreover,

the matrix [<‘If§’n_1wm’n,\11§_l
the orthogonal conditions of w; on S¢~!. Thus, by Lemma 4.3 and (4.33), we also
have

wj,l> J is also diagonally dominant by (3.11) and
L

|§2,ex,j,l

A

v 3(p—1) 3(p—1) 3p—1
2 2 2
E B* \Ijjfl uj—lXijLJr +\I’j+1 uj-‘rlXBjJrl,fa\Ilj )
j=1 L

+8. (W72 U;)
~ B.Q.

forall 1 < j <wand all 1 <[ <d. Moreover, by (3.15) and (3.19), we have

Roew = pzy: (Up_l - (‘I’j)p_l) v
j=1

L2(By)

p+1

S pZ(U’” v ) w8 |

which is odd on S%~!. Now, the rest of the proof, which is devoted to the existence,
uniqueness and oddness on S9! of 7, ., with the desired estimates (4.32), is similar
to that of Lemma 4.4, so we omit it here. [
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We finally consider the following equation:
d

v
LN tedx) = Niea — U e e jOR T + SN Jled,j W41 |, in C,
(YA e ) e ; j Jled,jOt ¥ j ; Jled,j,lWj, (4'35)

(0eV 5, YN ted) = (W) 1, YN eds) =0 forall 1 <j<wvandalll<Il<d,

where
- *\P—3 *
Niea = Z (W5)"77 V3 (A4p1 05 + Ay 2Vj) x5,
j=1
HUPTIVE (Ap U + Ay 2V) Xe\B, » (4.36)

with B; and B, given by (4.7).

(1em0009) [emma 4.7. Let d > 2, a < 0 and b = bpg(a). Then (4.35) is uniquely solvable.
Moreover, the solution yar jcd,« Satisfies

|’YN led *| 2
SUD = oy S B4 (4.37)[equ0049]
(toree S W) [ean0049]

where the Lagrange multipliers {CN’ledJ} and {§N,led,j,l} are chosen such that the
right hand side of the equation (4.35) is orthogonal to {8;¥;} and {w;,} in H'(C).
The Lagrange multipliers also satisfy |cariea,;| S B2QF and |sareaji| S B2 for all
1<j<vandadll<I<d.

Proof. Similar to (4.33), by (4.36), we have

Nl S B2 Iy, + B2UP  xe\s. -

j=1

We first estimate the Lagrange multipliers. By the oddness of w;; on S41 we have

v

Z<‘I’f713t‘1’i"1’§713t‘1’j> CN Jled,i
L2

i=1

= Apa <Z (U7)P " Viys, +UP_QV2XC\B*7\I’§_1@‘I’]'>
=1 L2

and

v d
} : 2 : -1 p—1
<\Ilfn Wm,n, \Ijj wj,l>L2 SN ,led,m,n

m=1n=1

= Ay <Z (5P Vixs, +UP Ve B, xp;?le,l>
i=1 L2

forall 1 <j<wvandalll<[<d. Thus,similar to (4.24), by Lemma 4.3 and the
oddness of 9;¥ in R, we have

-2 -2 -1
lenrea| S Z/B \If§+iv§+iqz§du+/8 VEEVROP L0, W s dp
i=£1"Pit+e i

J

o

s;+
g [T v

x4 T
sj+2

gy (4.35) [omtods]

A

A
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and, we have

SH (139) eauos)

foralll1 <j<wandalll <[ <d. Now, since p > 1, as in the proof of Lemma 4.4,
by Lemma 2.1 and (4.36), we can use ¢ = Z;zl CB2p! 7 (t) for a sufficiently large
J

—3433 —3y53
[SYAEERRIDS ‘<‘I’f Vixs, +UPTPY Xc\(uiu:lgi)awj7l>L2

C > 0 as the barrier and apply the maximum principle in the classical sense and
the standard blow-up arguments to (4.35) to show the existence and uniqueness of
YN led,« With the desired estimates (4.37). O

By Lemmas 4.4, 4.5, 4.6 and 4.7, we have picked up all possible leading order

terms of p, in terms of @, 5. and 25:1 |(a;‘?)?*1 —1|. Now, let

2 v
Pxx,0 = Px — Zij,ex - Z’VLj — YN led,x-
Jj=1 Jj=1

Since ¥y ¢zs 71,5 and YA led,« may have projections on span{¥;}, we further decom-
POSE Pax,0 = Z;Zl ;v + Pi},o» where {a}7} is chosen such that

<pi_*,ovlpj> = <pi_*,07at\11j> = <p*l*,07wjal> =0

forall 1 < j <wvandalll <l <d. By the orthogonal conditions of p, given in
(3.16) and Lemma 4.6, we have

v v

S L) ot = = Trewr Ui) = D (716 ¥5) = (W tedonr ¥) (4.40) [eqno0s2]

=1 =1

for all 1 < j <w. Since ¥ is a solution of (2.5), by Lemmas 4.3, 4.4, 4.5 and 4.7,

1
<Q+U7

~

’<71,ew’ \IIJ>’ = ‘<7175$’ \IJ§>L2

’<Z V1,is ‘I’g>‘ = ‘<Z'Yl,i7 ‘I’f>
i=1 i=1 2

2
S B

v

S -1

i=1

)

‘<7N,led,*a \I/j>| = ‘<7/\/,led,*7 \I’§>L2

Intersecting these estimates into (4.40), we have
v
> ladk
j=1

Moreover, by (3.16), (4.19), (4.29), (4.31) and (4.35), ps, o satisfies

<Q 4 Z )(a;)p—l _ 1‘ + B2. (4.41) [eqno068|
j=1

,C(p*{k O) == f + Rnewa in C?
| (4.42)[oaisisd

(W), pi0) = (0095, py0) = (Wi, pig) =0 for 1< j<vand1<I<d,
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where by (3.16) and Lemmas 4.2, 4.4 4.5, 4.6 and 4.7,

d
Rnew Z i ! < Cliex,i + €150 + CN led,i) Ot W5 + Z(§2,er,i,l + C/\/,led,i,l)wz',l>
Jyi=1 =1
3 14
+Z(2Ap1 V +3Ap2( )P ij) P*XBJ +ZR2,j +Nrem
j=1

+3 24,0 [Ur=2V = (9)" 77V | paxs,

+ Z o (53%“1’?%3 (¥ + P*)) X8, + 24, 1UP*Vp.xe\s.
j=1

+0 (BUPP D poxens. ) + Zpa (urt — v ), (4.43) [oquB061]

where B; and B, are given by (4.7).

As we pointed out in the introduction, even though we have picked up all possible
leading order terms of p. in terms of @, B, and Y7, ’(a;)P—l — 1| to form a
good regular part, the data Ry, given by (4.43), is not good enough to control
the (possible) singular part pi-*ﬁ in a desired size. This is mainly because the
optimal Bianchi-Egnell stability of the CKN inequality for d > 2, a < 0 and b =
brs(a) is quartic, as shown in [54, Theorem 1], which implies that we only have the
opportunity to control the terms of order 5% from above. Thus, we need to ensure
that the (possible) singular part should be smaller than or equal to 3%. Keep this
in mind, we need to eliminate the lower order terms (compared to the 5% terms) in
the data R,eq. For this purpose, we first need the following decomposition.

(1em0010) 1, ornma 4.8. Let d >2,a<0 andb=brg(a). Then we can decompose

YN led,x* = VYN ,led,j + YN ,led,rem,j,*>

where Y7 1ed,; 15 even in terms of t — s% and satisfies the equation

J

d

LN ted,j) = Nied,j — Z ot (C./\/7led,j7iat\1/i + §/\/’,led,j,i,lwi,l> , inC,
=1

(OeVi, YN led,j) = <wi,la7/\/,led,j> =0 foralll<i<vandall<Il<d,

with Niea; = (U3)7 V2 (4,107 + A,5V;) and

sup |7Nled,j| + sup IZN,led,re’r;L,_j: 563
(t,0)eC ‘I’ () oec Zi:l;i;&j (1)

Moreover, we can decompose Ynjied,j = YN led,j,« T+ YN led,jxx With VA7 led,j« being
even on S Ynr ed e being odd on ST and

sup \VN,lled,j,*| sup |7N,lled,j,**| <1
(t,0)ecC 53\113‘_”(0 (t,0)eC ﬂf‘yj_ﬂ(t)

Proof. The proof is similar to that of Lemma 4.7 so we omit it. We only point
out that since Noq j is even in terms of ¢ — s , by uniqueness, we also have that
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YN led,j 18 even in terms of £ — s7. On the other hand, the decomposition of Y ied,;
is generated by the data Njeq; = A1 (‘ll;)p_2 12232 + Ao (\I/;f)p_3 VJ‘?’. The first
part Yaried,j,« is obtained by the data A, 1 (\Il;)pf Vf which is even on S¢~! while,

the second part Yarjed,j«« is obtained by the data A, » (\If;f)p_3 V? which is odd on
Sdfl. ([

By Lemma 4.8, we can eliminate the lower order terms in the data R, by first
considering the following equation:

v d
[’(pi_* 1 ) = Rnew,*,j + Z \I/p_l (Cnew,*,j,iat\pi + Z gnew,*,j,i,lwi,l> , inC
] 2" (140

(000, pn j) = (Wig, piy ;) =0 foralll1<i<vandall1<I<d,

-2
where Ryew,«,j = 24p,1 (‘I’;)p ViIN led,j-

(1em0011) Lemma 4.9. Let d > 2, a < 0 and b = bpg(a). Then (4.44) is uniquely solvable.

Moreover, the solution pL, 1,; s even in terms of t — s and satisfies
1,

‘PL 1 |
sup —-= < B3
(toyec V57 (t)

where the Lagrange multipliers {Cpew,« j,i} and {Snew,«,j,i,1} are chosen such that the
right hand side of the equation (4.44) is orthogonal to {0;¥;} and {w;,} in H'(C).
The Lagrange multipliers also satisfy |cnew xjil S B2QP and |Spew,xjiil S B for
alll<i,j<vandalll<Il<d.

Proof. The proof is also similar to that of Lemma 4.7 so we omit it. Again, we
only point out that since Rpew,«,; is even in terms of ¢ — s7 by Lemma 4.8, by
uniqueness, we also have that pj-*’l,j is even in terms of ¢ — s7. On the other hand,
similar to that of (4.38) and (4.39), by the oddness of 9;¥ in R, we also have

v

v
Z |Cnew,*7j,i| < Bpr and Z |§new,*,j7i,l| < ﬁf

i=1 i=1

forall 1 <i4,j<vandalll<I<d. U

Let

v v
1 E 1 E
p**,l = p**,l,j a’nd Rneu),* = R"va*vj'

=1 =1

Clearly, P*J'*,l may also have projections on span{¥;}. Thus, as above, we decom-
pose

v
1 _ 2 /‘ EES 1
p**,l - al,lqjl + p**,Qv
=1

where {a;7} is chosen such that

<pi_*,27\:[jj> = <pi_*,27at\11j> = <pi_*,27wj7l> =0. (445)
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Moreover, by (4.44), we know that p*{k,Q satisfies the following equation:

v d
E(pi_*,Q) = Rnew,** + Z \Ilf71 <cnew,*,iat\pi + Z gnew,*,i,l“h‘,l) ) in Ca

=1
(W), pn) = (005, p0) =0 forall 1<j<v,
<wj7l,p*l*72> =0 foralll<j<vandalll<I<d,

i=1

(4.46) fsas1ca]

where

Rewsee = 3 2451 (V) Virnaea + > pa (up—l - @f*l) U, (4.47)[equ6061]
j=1

=1

(1em0012) Lemma 4.10. Let d > 2, a < 0 and b = bpg(a). Then we have

S B+ BIQET. (4.48)

v
kk
E : |0‘j,1
j=1

MOT@OU@T, we can decompose pi*,2 = p*l* 2 odd+p*l*,2,'rem with p*l* 2,0dd bemg odd on
S?1 and

sup |p*l*,2,odd| < 33
v 1— ~ %9
(t,0)eC Zj:l \Ijj 7(t)

|3 2 | 1
0 el + sup P2 < gt QR >, (4.49) [sqn0To]
(to)ec D=1 ¥; (1)

|pi_*2 | < 1
Lk S S g 04T, 1<y <
, j=1 ¥

Hpi_*,Q,rem

where || - ||y and || - ||5,1 are given in Lemma 4.4.
Proof. By (4.44) and (4.45),

v

Z<\I]l>‘llj>a2kj = <Rnew,*;\yj>L2 +p<up_1pi*,17\llj>[/2
=1

Zpaﬂ UPTI W) L+ p U™ o s \Ilj>L2
=1

+ (Rnew,xr ¥j) (4.50)

for all 1 < j <v. By the oddness of w;; on S%! and Lemmas 4.3 and 4.8, we have
|<Rnew,*, U)o S B4, On the other hand, by Lemma 4.3 and similar estimates of
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(4.33),
S pafi (U vy, =Y pajh <Z (TP~ xg, T, qu>
=1 =1 i=1 L2
+Y_poi) < <up_1 =yt X&) v, ‘I’j>
=1 i=1 12

v
+Y pait (U Xe\B U T
=1

PPl + ) 0(@afs
=1
and further by (4.45), we have

U 22 5) = <(up71 - (‘I’Zf)pfl) ‘I’j’pi*~2>
0@, p>2,

= okl x {0 (QMoz@l). p=2
O(Qg), l<p<2.

L2

It follows from (4.50) that
2 o
j=1

Now, by multiplying (4.46) with p*l*’Q on both sides and integrating by parts,
we have |[pL, 5| < B2, which implies that (4.48) holds true. To obtain the esti-
mate (4.49), we shall decompose Ryew «+ into three parts, where Ryeqw « 1S given
by (4.47). The first part is given by Z’;Zl 24,1 (\Ilj)pf2 VYN Jied,j,«» Which gener-
ates the bound

< B+ QEM |log Q) [lpt

‘pi*,Q,odd| < 53

*

SUp =7 110/
(torec Yoj—1 ¥ (t)

as that of Vs jed,j«, Where Yarjedj« 1S given by Lemma 4.8. The second part is
given by >0, 24, (\Il;f)p_2 VYN led,j,«+» Which generates the bound

|PL 2 |
rx2reml < B

*

SUPp =7 —1—0/.\
(t,0)eC Zj:l \I/; (t)

as that of Yar ied,j«x, Where Yar jed,j,«x is also given by Lemma 4.8. The third part
is given by 22;1 pagy (Up’l — \Ilffl) W;, which generates the bound
1
P52 remlls S B2+ B2QT, p=>3,
”pi_*,Q,rem”h,l S/ 53 + ﬂfQ%+aa 1 < p < 37

as that of 7, .., where 7, ., is given by Lemma 4.4. O
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To eliminate the lower order terms in the data R,e., we next consider the
following equations:

v d
L(pt5:) = Racai— Y V0 | 360,50005 + Y 3 eaijiWi inC TS
w%,3,1 ex,i ]gl j ex,i,j 7 lzzl ex,i,j J ) 5 (451) W

(0095, prsi) = (Wi, prygs) =0 forall 1< j<wvandall<I<d,

where

o

p—1-l f
Z ApJ—lu Wl,ezv = Oa
=2

no .
1 (= 1 1 .
Riexi = ZAp,l_lz,l“’ ((71,ez + P**,s,o,l) - ’Y1,ez> , =1, (4.52)
1=2
no i—1 l i—2 !
ZAP,l—lup_l (’Yl,e:c + Zpi*ﬁ’kvl) - <'71,ex + Zpt"g’k’l) , 122
=2

k=0 k=0

with 7, ., given by Lemma 4.4.

(1em0014) Lemma 4.11. Let d > 2, a < 0 and b = bpg(a). Then (4.51) is uniquely solvable
for alli > 0. The solutions pi-*73’i are even on S and satisfies

Iph 5lly S QUP=DADEHD -y > 3

ot s,illsn S QUPTDADEFD 1 < p <3,
where the Lagrange multipliers {cs ez} and {S3.ez,i,j,1} are chosen such that the
right hand side of the equation (4.51) is orthogonal to {9;¥;} and {w;,} in H*(C)
and the norms || - ||y and || - ||y,1 are given in Lemma 4.4. The Lagrange multipliers
also satisfy |3 ex.i ;] S QU P=UAVGHD for il 1 < j < v and 34,50 = 0 for all
1<j<vandalll<I<d. Moreover, we can write

v
€ _ sk 1
Pxx,34 = § aj,2,i\Ilj + Pix,3,0,1
Jj=1

where {a% ;} are chosen such that (Q/j,pf*73> =0 for all 1 < j < d which also
satisfies Z;_/Zl |a;*2,i| < QU =DANED) | 1og Q| and

{|Pi'*,3,i,1||ti < QUPTVANGETD -y > 3

HP*L*,S,iJHHJ < QUPTADGETD -y < p <3,

Proof. We first prove the conclusion for ¢ = 0. Since by Lemma 4.4, we always
have |v1,e,| = O (QP~D"Y). Thus, it is easy to see that [Rs ez0| S U2y . S
Qp—1nt |71’em|, which together with Lemma 4.4 once more, implies that

HR&,C%O”ﬁ 5 Q(pil)/\la P Z 37
[Rs.exollin S QP VM, 1<p<3.

Since ¥, ., is even on S?~! which implies that R3¢0 is even on S?~1, the rest

of the proof of pf*,&o and {aj%,} are the same as that of Lemmas 4.4 and 4.10,
respectively, and we omit it here. The conclusions for ¢ > 1 then follow from
iterating. [
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To eliminate the lower order terms in the data R, we also need to consider
the following equation:

, inC,
1=1 > (4.53) [eqns013]

(0495, pa) = (W), prrg) =0 foralll<j<vandalll<l<d,

v d
ﬁ(pi‘*A) - R4,ex - Z \Ilg')il <C4,ez,jat\:[lj + Z S4,ex,j,lWj1

Jj=1

ptl
where L is given by (3.17), w;,; = W;* 6, are the nontrivial kernels of the bubble
¥ in H'(C) given by Lemma 2.1 and Riex = 2Ap,1up72]/’717m where

ng
— 1
Vex = V1,ex + E Pix,3,i,1 (454) eqnnewnew1998

i=0
with 7, ., and p,f,ﬂ;g,i’1 given by Lemmas 4.4 and 4.11, respectively.

(1em0013) Lemma 4.12. Letd > 2, a <0 and b= bps(a). Then (4.53) is uniquely solvable.
Moreover, the solution pi-*A is odd on S and satisfies

7
Hpi_*,él”ﬁ S/ Biy P = ga
(4.5 [

7
Hpi_*,4||h,2 5 B*7 1< p< §7

where the Lagrange multipliers {c4 e j} and {S4,ex,j1} are chosen such that the right
hand side of the equation (4.53) is orthogonal to {0;¥;} and {w;,;} in H*(C) and

the norms || - ||y and || - ||y,2 are given in Lemma 4.6. The Lagrange multipliers also
satisfy caep; = 0 for all 1 < j < v and [Saexji| S 5@ for all1 < j < v and
1<l <d.

Proof. By Lemmas 4.4 and 4.11, 71 ¢, is even on S?~1. Moreover, similar to (4.33),
by direct calculations and p > 1, we have

||R47em||ﬁ 5 B*a p=>

Wl

)

(4.56) [omtsas)

7
Raexllye S Bsy, 1<p< 3

The rest of the proof is the same as that of Lemma 4.6, so we omit it here. O

To eliminate the lower order terms in the data R, we finally need to consider
the following equations:

1 _ p—1
L(pt5:) = Roeai— YV 65000005 + > S5remijati

v d
, inC,
i=1 =1 (4.57)[eqn7013]
(0095, pr5.i) = (Wi, prysi) =0 forall 1< j<wvandall 1 <I<d,

where

n0o
D A AP YV + T+ )Y s 1 =0,

=2
R5,eac,i = no (458) eqnnewnew0008

-1 1 -1 .
E 1A, UP Pux5,i—171,ex> i >1,
=2

with v1,e, given by (4.54).
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(1em0015) Lemma 4.13. Let d > 2, a < 0 and b = bpg(a). Then (4.57) is uniquely solvable
for alli > 0. Moreover, the solutions pj-*)g)’i are all odd on S¥1 and satisfies

A 7

||pi_*,5,i| f S Q((p 1)/\1) /8*7 p 2 57
oAb 7
||pi_*,5,i| b,2 5 Q((p 1)/\1) /B*a 1 < p < gv

where the Lagrange multipliers {cs ez} and {S5.ez,i1} are chosen such that the
right hand side of the equation (4.57) is orthogonal to {8;¥;} and {w;,;} in H'(C)

and the norms || - ||y and || - ||y,2 are given in Lemma 4.6. The Lagrange multipliers
(r—1)

also satisfy ¢5.ezi; =0 for all 1 < j < v and S50, S B QT ADE for qll
1<j<vandall<I<d.

Proof. Again, we first prove the conclusion for ¢ = 0. By Lemmas 4.4, 4.11 and
4.12, we have [R5 ez0] S |Z/l1’_2V’yl’8x| + Q=D |72,em + pi‘*A , which implies that

HR5,eaz,0l|ﬁ 5 Bey D=

)

Wl

. (1.59)[oqmesmenisseT]
HR5769370||h72 5 By, 1<p< g

Since 71,ex is even on S¥~! which implies that Rs e, 0 is odd on S~1, the rest of
the proof for i = 0 is the same as that of Lemma 4.6 and we omit it here. Since

Rs.eail S QP V" o5l (4.60)

the conclusions for ¢ > 1 then follow from iterating. O

We denote

no no
p*l*73 = E pi_*,?),l,l and RB,ex = E Rg,exJ (461) eqnnewnew19994
1=0 1=0

and

7o no
p*J_*,5 = § Pi_*ﬁ,l and Rs e = E Rs,em,l (4.62) eqnnewnew19995
=0 =0

with R eq given by (4.52) and Rs ez, given by (4.58), respctively. Now, let
L = pi;@ — Z?:z p*J-*7j, then we have the following decomposition of p,.

(prop0001) Proposition 4.1. Let d > 2, a <0 and b = brs(a). Then we have p, = po + pL,,
where
(1) the regular part po = Yex + Vs« + VN ied aNd
(’) VYex = 212:1 Vi,ew With V1 eq = Y1,ex —l—pi-*’g, even on S41 and V2,00 =
Yo,ex + p*J‘*A + pi‘*,5 odd on S satisfying
Ieally + Ieelly S 1. 923,
||’y€l’||h,1 + ||P71,ex||h71 S_, 17 1< < 3
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and
7
Meeally S B P23,
7
||’Y2,em|h,2§ﬁ*, l<p<-—.

3

(1)  ve = Z]’;l Vi« 15 even on S with Y« even in terms of t — s7 in
R and satisfying

|7l 140 - «\P—1 2
SUp =1 S @ + ‘CY' —1‘4‘5,
woyec >r—y U7 (t) ; (05) '
where vj .« = Y15 + a;’B\I/j.
(190) YN led = 'yN,led7*+p*L*)2, with the symmetrical part of Yar ieq in terms
of t — 87 given by YN ied,j + pi;d,j — a1V, and the remaining part
denoted by YN led,rem,j, Satisfies the following estimate

sup L’YN,led,reﬁﬁ S BZ
(t)eC Di1sizg ¥y (1)

MOT@O/UET! pi_*,Q = p*l*72,odd +pi_*,2,rem thh p*L*,Q,odd bemg Odd on Sd71
and Ynr,1ed satisfies the following estimates

103 2 remlls sup B2 ded,x| + B30 2,044l <1 p>3
BE+B3Q3TT (rejec S YT ~ETT
1L B2 —3),L
* N led,x + B*
HZ**,Z,remllil sup |7 eV | = |p**,2,odd| ,S 1, 1<p<3.
B+ B3QTT  eec Zj:l v (t)

(2)  The singular part pt, satisfies the following equation:

E(pi*) = f + Rnew,07 m Cv
<\I’j7p*l*> = <at\Ilj7p*l*> = <wj,l7p*{k> =0 fO’f’l < j <vandl<I< da

(4.63) fomt1ea]

where
v v
_ § : p—1 E :
Rnew,O = (Cl,eaz,i + C1,4,i + CN ,led,i — C3,ex,i — Cnew,*,i)\yi at\:[lz + R2,j
i=1 J=1
v d
p—1
+ § E (§2,ea:,i,l + SN led,i,l — S4,ex,i,l — S5,ex,i,l — gnew,*,i,l)\l’i ws 1
i=1 =1

+ Z (2Ap,1 (‘I’;)p_2 Vi(ps — V1,ex — YN ied,j) + 3Ap2 (‘I/;)p_3 ijp*) XB;
=1

ul B 3p—5
+ZO (552/[]\1]31) 3 (\I/] + p*) + ﬁ*‘p* - Vl,eajllllj 2 u]) XB]'
Jj=1

3(p—1)

+0O (ﬂ*lp* — Vel 2 ) xe\s. + 0O (»33“2(?_1)%@@(0\6*)

v

+ Z OZ;* (up—l - \:[1571> \I’j + Nrem - RS,ex - RS,em (464)
j=1
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Kk

with R3,ex given by (4.61), Ry ex given by (4.62) and of* = o —aji—ai%
with

> les s QU+ |(a)) T — 1]+ 82
Jj=1 j=1

Proof. Since 222 > p — 2 for p > 1, by (4.32), (4.34), (4.55), (4.56), (4.59) and

(4.60) and Lemma 4.13, we also have

[R2,ex + Rajex + Roeallsn S B and  [[v2,exllgn S Bs (4.65) [eqgnew0009|

for 1 < p < 3. Thus, the rest proof of (i) of (1) follows from Lemmas 4.4, 4.6,
4.12, 4.11 and 4.13. The conclusion of (ii) of (1) follows from Lemma 4.5 and
(4.41). The conclusion of (i) of (1) follows from Lemmas 4.8, 4.9 and 4.10. The
conclusion of (2) follows from (4.41), (4.42), (4.44), (4.46), (4.53), (4.51), (4.57)
and Lemma 4.10. (]

5. FIRST REFINED EXPANSION OF N AND ESTIMATE OF {a;f}

As we stated before, inspired by the optimal Bianchi-Egnell stability of the CKN
inequality for d > 2, a < 0 and b = bpg(a) proved in [54, Theorem 1], we need
to eliminate the lower order terms (compared to the 3% terms) to get the desired
stability. Thus, we need to refine the expansion of A since we have picked up a
regular part pg in the remaining term p,.

(1emn0001) { o yma 5.1. Let d > 2, a <0 and b="brs(a). Then the nonlinear part N, which
is given by (3.20), can be refinedly expanded as follows:

N = Ayt (V4 29k ) + A, (VP 4+ 3V ) + N
= A, UPTE (V24 2Vp, + pd + 200035 ) + Norem
F A, UP (VP 4 3V, + 3Vp2 + i + 6Vpopis, + 3p2p1)
= Ni+Nyem + Ap iUP™2 (02 + 2p0pL,)
+A,0UP 2 (3Vp5 + pg + 6V pops, + 3popi)
= N+ Neem + N

in C, where N, is given in (4.1), V =V + po with py the regular part of p. given in
(1) of Proposition 4.1 and

4

Neem = O (B+Q+ X |(@) ™ =1 | +urq,
j=1
+0 (xpz2 o] + o+ 1on] ™7+ e+ wved ™ xers.,)

where
~ 1
B = {0.0) € | b + sl < )

and Y. and Ypreq are given in (1) of Proposition 4.1.
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Proof. We improve the set A, used in the proof of Lemma 4.1, by introducing the
set

Ao={(0.0) € B | o5 < |V},

where p, is the (possible) singular part of p, given in (2) of Proposition 4.1. Since
we always have |vez| = o(U) by (¢) of (1) of Proposition 4.1, by (4.2), < 3U in
B... Thus, by (1) of Proposition 4.1, we can expand N in A, as that of (4.3):

N = A ur- 2(1/ —|—2V,0**>—|—A SUP™ 3(V +3V p**)
+0O (up—‘* (V+ph) +ur? ol )

= A ur? (VQ + 2?&&) + ApoUP? (V?’ + SVQpi‘*)
4

+O | (B 4+Q+) ’(a}‘)f"*1 — 1’ +UPy2,
j=1

+0 (Xpz2lpiel® + |piel”) - (5.1) [equs008]

In C\A,, either [V| < |pZ;| which, as that of (4.4), implies that

N =0 (xpz2lpal® +1pl?) (5.2) [eqn9010]

or |pL| < |V| and (0.1) € C\B,. which, together with (ii) and (iii) of (1) of
Proposition 4.1, 1mpheb that

N =0 Iy + v ea?) - (5.3) [oquotio]

Thus, similar to (4.5), since W’ =0 (U'77) by (1) of Proposition 4.1, we have
LI 2 Ap ottt (V4 2|Vl ) + Aot (VP 43V ])  (5.4)
if W} < |pL| in C\A. and

_ —2 —
Ve + N tea T 2 Ap i UPT? (V +2| Vo,

)+ Ayt (|9 + 3| ) (5.5) [eansor?]

if |pt| < ’ ‘ nd (0,t) € C\B,. in C\A,. The conclusion then follows from (5.1),

<><_><> <o>. 0

By multiplying (3.16) with ¥; on both sides and integrating by parts and by
the orthogonal conditions of p, given in (3.16) and the oddness of {V;} on S?~!,
we have

— (LU = R )+ N )+ > (R W) s
i=L5i#j
+ <R1,exa ‘I’j>L2 + <‘Cj7€3?(p*)a \I’j>L2 (5.6)

for all j =1,2,---,v. In what follows, by using the equality (5.6), we shall derive

the estimate of 3 7_, (1) = a3).
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(propn0001) Proposition 5.1. Let d > 2, a < 0 and b = bps(a). Then we have

S ((e)" —a7) | = —<Bl+0<”)Q‘<f’i”‘P”fi0<”>

j=1
— (A1 +0(1) B2+ O (|lpwll'*7)
where By > 0 is a constant and
v «\P—2
i 2j-14pa <(‘I’j)p Vi, ‘I’j>L2
im
1£1l -1 -0 B2

Proof. By the the orthogonal conditions of p, and the oddness of w;; on S41 and
0, ¥; in R, we also have

Wi W) = Apa ((U) VY, 43450 (25)" " VEpa, ;) | (5.7) [eamoons]

forall j =1,2,---, v, where

Nj = Apa (B5)"7 (V4 2Vi0.) + Ap (85)7° (V] +3V30.) . (5.8) [eanewsoss]

Intersecting (5.7) into (5.6), we have

A, =

v

—Z<f"1’j>H1 = > (@) =ap) I¥IP+> > (Riis¥)),a

j=1 §=1i=1;ij

FY N =N e+ Y NG
j=1 j=1

D (Riee Vi) + > Ljex(pa), Us) o - (5.9) [equoo2s]
j=1

1

Jj=
The rest of the proof is to estimate every term in (5.9).
Step. 1 The estimate of 357_) (N, ¥;) .

By Lemma 3.1,
JZ::I N Ui)pe = Jz::l (Apvl <(\I/;')p72 Vﬂg’ \I}j>L2 + 34y <(qj;)p73 ijp*, \Ijj>L2>
- (Zl,* + 0(1)) f,
where
. S () V) L

= lim
T N fllg—1—0 2

Step. 2 The estimate of 327 3371, (Rui, W) o
By (3.18) and Lemma 4.3,

S R =3 > (@) = 1) (), = o).
J=1i=1;ij J=1i=1sij

Step. 3 The estimate of >7_) (Ri,cz, ¥j) 2
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By the Taylor expansion, (3.18) and Lemma 4.3,

v

Z<R1,ez>\:[/j>L2 = ZZ <p\:[j€71uiXBia\I}j>L2

j=1 j=1i=1

v

+0 ([ 3 )+ U e

Jj=1

= (B1.+0(1)Q,
where B . is a positive constant and B; and B, are given by (4.7).

Step. 4 The estimate of 37| (Ljcx(ps), V) 12
By (3.17) and (1) of Proposition 4.1,

<p (Up*l - (‘1’}‘)%1) P ‘I’j>L2

<p (U”‘l - (‘I’j)p_l) Uj,po + pi*>L :

2

<£j,eac (P*): \I/j>L2

Similar to (4.33),

‘(upflf(\l/;f)p’l)\lfj] < (Z‘Iffluixzsi> +UXe\s,
=1

By Lemma 4.3 and (%) of (1) of Proposition 4.1,

ZQ<\I/€_UXB-;7Ui>L2 , D=3,
i=1

(- ) )

A

L2 i
S QU s ) . 1<p<s,
=1

= 0(Q)

By Lemma 4.3 and (4¢) of (1) of Proposition 4.1,

(- ) )

By Lemma 4.3 and (4i7) of (1) of Proposition 4.1,
‘<(Up_1 - (‘I’}?)p_l) ‘I’jaVN,zed>L2

v ZﬁfQ <\Ij€70XBmui>L2 , D=3,
ZB’% <\I/1i)_aXBiaui>L2 + ljl
= > BQ(U s th) . 1<p<3

i=1

- Q). (5.10) [oammormetsss]

o (W U} 2) = 0lQ).

L2

N
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By Lemma 4.3,
(et w ) wnt), | = (Swr e loh)
Lo
Qllpwll, p>2,
S { QogQI? o], p=2.
Q% prl, 1<p<2

o(Q)+ O (o5 P+

Summarizing the above estimates, we have

v

D {Liealpe)s ¥5) 2 = 0(Q) + O (0L ]7+7). (5.11) [eqmo07d]

j=1

Step. 5 The estimate of >27_) (N = Nj, ¥;) .
By Lemmas 4.2 and 5.1, (5.8) and the oddness of {V;} on S%~!, we have

v

N =N ) e = Apa o ()77 (VE+2Vin) xw, ¥ )

i=L5ij

L2

v

34,0 Y (U Vipoxs, W) |
i=1yi#j

_Ap1<( )p 2(V2+2V]p*)><c\5, >

_3Ap,2<( ) Vp*XC\B’ ‘>L2

L2

+Z< (Belou 0,5 U+ 5292720, ) x5

+ <O (uPﬂW +BU” D Xe\B. » \I/j>L2
+ (Nrem +No, ¥j) s - (5.12) [eqnew0020]

Step. 5.1 The estimate of Zi'/:l;#j <(\Ifl*)p_2 (VZ+2Vip,) X8, \I/j>
By (1) of Proposition 4.1,

L2

v

> (T (VR 2V s, 5 )

i=15ij

L2

!
F:M

(U572 (V2 +2Viv2.60) X8 ‘I’j>L2

+ Z < (’YNled+P**)X37‘I’>

Lz’
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By Lemma 4.3 and (%) of (1) of Proposition 4.1,

S [ (v + 2i.c0) w8, )

i=Lij L
v _ 3p—1—20 7

> (B4 2Qu, T e ty) L b2

i=Liij

<

> (8w + 82U ) s ¥y) |, 1<p<sg

=Ty

= 0(Q)
By Lemma 4.3 and (4i7) of (1) of Proposition 4.1,
Z ’<(‘I’f)p_2 Vﬂj\/,ledXBm‘I’j>L2
i=LiiAj

v 3 3p—1—20

Z <B*\II'L 2 XBia\I’j>L2a p237

——
<
3 <(53qf ST QU )XBi,q/j>L2 . 1<p<3
i=Tyi
= 0(Q)
By Lemma 4.3,
*\P—24) | )
S [ vetaew) | 5 Y sdekil e
1=13i#] 1=13i7#]

= 0@+ 0 (lpwl**) .

Summarizing the above estimates, we have
S w02+ i) e ¥, i) | =@+ 0 (]2
J=1li=1;i#j
Step. 5.2 The estimate of <( )p ? (V2 + 2Vjp*) Xe\s;, ¥ >
By Lemma 4.3 and (1) of Proposition 4.1,

’<(‘I’;)p72 (Vg‘2+2vjﬂ*) XC\B].7\I/J->L2‘ < B2QP + B,

3p—1

L2’

41

+5* <\I/j 2 XC\B, |'72,eac + ’YN,led|>L2

By Lemma 4.3 and (%) of (1) of Proposition 4.1,

3p—1 7
Z B*Q< '3 XBN '2 >L2’ nga
3p;1 < i= 11#]
<\Ijj XC\Bj’|72>€$|>L2 ~ . 7
Z B*Q<\I/ XB; T>L27 l<p<g
i=15i#j

= 0(Q)
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By Lemma 4.3 and (4i7) of (1) of Proposition 4.1,

3p-1
<‘I’j * Xe\s; |’YN,led|>

L2
. 2 1—0 3p;1

Z B* \Ilz XB.”\IIJ' L27 pz?’?
< i=1;i#]

z”: 62 pl-o w% +63Q pP—2 \IJ% 1<p<3

* 7 XBN ] L2 * 1 XBN ] L2 9 p
i=15i#]

= 0(Q).

Summarizing the above estimates, we have
x\P—2 o
()" (V2 4 2V0) xers, 0s) | = 0l@) + O (Iph]+7).

Step. 5.3 The estimate of >2; ., <(\I!2‘)p73 V2p.XB;, \I/j>
By (%) of (1) of Proposition 4.1,

L2

v v

> () Vi, v) = (@772 (tea +7) x,0 W)
i=13i] i=13i#]
+ Z <(l:[/2<)17*3 sz (’Vl,ex + Pi_*) XBi?\Ilj>L2 .
i=1;i#j

By Lemma 4.3 and (%) of (1) of Proposition 4.1,

BEQ <\I’12p_1_UXBﬂ \I/j> , p=3,

L2

Z ‘<(W;)p_3 Vi27176wXBiv\I/j> ~
i=15i#j L B2Q <‘I/?p74XBi,‘I’j>L2 , 1<p<3
= 0(Q)
By Lemma 4.3 and (4¢) of (1) of Proposition 4.1,

> [ e ) = 3 o) (8w~ o).

i=1;i#j i=15i#]
Similar to (5.10), by Lemma 4.3 and (4i7) of (1) of Proposition 4.1,

Z ‘<(‘I’f)p_3 VZUN ledXB; s ‘1/j>

i=13i]

By Lemma 4.3,
*\P—3
E ‘<(\Ijz>p ViQPi*XBi7\IIj>L2

i=13i#]

=0(Q).

L2

N

2p—2
ok w22,

L2(B;)

o(Q) + O (llp]**7) -

Summarizing the above estimates, we have
14
-3
S (P Ve ¥y) = 0(@)+ O (k).
i=15i#£j

Step. 5.4 The estimate of <(\I/;‘)p_3 VjQp*XC\Bj,\IIj>

2’
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By (%) of (1) of Proposition 4.1,
<<\I,;>p_3 V2p.aXe\s; ‘I/j>L2 = <(\p;)P—3 V2 (I ted + Vx) XO\B; » ‘I/j>L2
() V2 (1w + 0E) X\, W)
By Lemma 4.3 and (%) of (1) of Proposition 4.1,
|

<(\Ij;)p73 ijrYl,exXC\Bja \Ijj>
> AW Txs, W) L p23,

L2
i=1i#£j

Lz’

L2

A

= 0(Q).
By Lemma 4.3 and (4¢) of (1) of Proposition 4.1,

S o) (¥ 9~ o(@)

L2
i=1yiztj

Similar to (5.10), by Lemma 4.3 and (éi7) of (1) of Proposition 4.1,

’<(‘I’;)p_3 VJZ'YN,ledXC\Bja ‘I/j> =0(Q).

()" Vixews, ¥5)

L2

L2

By Lemma 4.3,
£\P3 -
()" Vintoxews, 05) | = 0(@) + O (o).
Summarizing the above estimates, we have

(@) V2 pxews, W) | = 0@+ 0 (oL 7).

3p—>5

Step. 5.5 The estimate of Y ;_, <5*p*\11i 2 Z/{ixgi,\llj>
By (1) of Proposition 4.1,

L2

v

3p—5

S (BT Ui 0y = 308 <\p;u + %)
*Px X ; iXBis ¥ j 12 * i iXBis YN ,led T Vx

i=1 i=1

L2
3p—3

308 (T Ui, w05
i=1

2

By Lemma 4.3 and (i) of (1) of Proposition 4.1,

Zﬁ*Q <\I/;p72 UXBivui>L2 , p=3,
=1

N

3p—3
<\Ill 2 Z/[ZX61 ) Veaz>L

> 8. )
=1

p—"T7

;ﬂ*Q <\I/i52 X&,L{1>L2, 1<p<3
= o(Q).
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By Lemma 4.3 and (4¢) of (1) of Proposition 4.1,
Db
i=1

Similar to (??), by Lemma 4.3 and (#i3) of (1) of Proposition 4.1,

> B

i=1

3p—3 3p—1-—-2

<‘1’i ’ UiXB,”%>L2’ = idﬁ»«)@fﬂz’m» =0(Q).
=1

2

3p—3
<‘I’i ® Uixs;, ’YN,led>L

=0(Q).

2

By Lemma 4.3,

2P,
i=1

N

3p—3
<\Ijl 2 uiXBmpi_*>L2

o 3p-3
v, 2 U
Sl o= e

1
= 0(Q)+ O (llpl”) -
Summarizing the above estimates, we have

3p—>5

; ’<5*p*\1/i”2 Uixs, \I/j>L2‘ = 0(Q) + O ([l p&]27) .

Step. 5.6 The estimate of >, _, 32 <\I/fp72UiXBi,\I/j>
L2
By Lemma 4.3,

> 82
=1

Step. 5.7 The estimate of <(U”_2V2 + B*p*UW) XC\Bw‘I’j>L2~
By (1) of Proposition 4.1,

<\I'?p_2uz‘XB“ \I/j>L2‘ Sy B8 <‘I’§p_1XB“Ui>L2 =0(Q).
=1

3(p—1)

P—2y)2 .
‘<<L{ V24 Bupd™ 2 )XC\B*v\IIJ>L2
< p—272 3(p—1)
N <(u v +6*|'Yem +'Y* +7N7led|u 2 ) XC\Bw\IJj>
3(p—1)

+ <5*|Pf* U2 xe\B. s ‘I’j>
By Lemma 4.3 and (1) of Proposition 4.1,

_ 3(p=1)
<(up 2V2 +B*|7€x + Vs +'7N,led|u 2 ) XC\BW\IJJ'>

L2

Lz

L2

3pt+1—-20
< 3p+1—20 2 2p
< o) 'U ’ Ll(C\B*)+B*Hu HLI(C\B*)
= 0o(Q).
By Lemma 4.3,
n 3(p—1) ] < L H el
<B*|p**|u 3 XC\B*7lI]J>L2 S Bellpal ||U 2 L2(C\B.)

= 0(Q) +O ([lp=]*).

Summarizing the above estimates, we have

3(p—=1)

(U292 4 Bl ™7 ) xers., W5) | = 0(@) + O (o4
Step. 5.8 The estimate of (N, ¥;) ..
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By (4.2), (1) of Proposition 4.1 and Lemma 5.1,

[N, W) 12| S (U2 0502% + bvaea + 1)+ o
By Lemma 4.3 and (%) of (1) of Proposition 4.1,

<up_2_owj773w>
30
ZQ2< P 4>L2(Bl)’ p23a

ZQ2< pir-2- xIJj>L2(Bi)+O(Q2), 1<p<3
= o(Q). (5.13) [eqnews998]

By Lemma 4.3 and (4¢) of (1) of Proposition 4.1,

<up72\:[jj’ |7*|2>L2 < <Q1+a + 82+ lzi; ‘(a;‘)pfl — 1‘>2.

Similar to (5.10), by Lemma 4.3 and (éi7) of (1) of Proposition 4.1,

A

v 2
U259 rea) 2 = 0(Q)+ O <63 + 3 [y - 1\) -
=1

Thus, summarizing the above estimates, we have

v 2
Nor )] < I 2+ 0() + (53 o3 ftat - 1\) |
=1

Step. 5.9 The estimate of <Nrem, >L2.
By Lemma 5.1,

v 4
}<Nrem7\ljj>L2{ S ”p*L*Hl—i_UJ'_ (ﬂ*—’—z‘(a? _1‘> Z/{p 4’\/81?7\]:jj>L2
=1

1
+ (e + Wteal 7 o(Q)-

U)o+
L2(C\Bux)
By Lemma 4.3 and (i) of (1) of Proposition 4.1,

4 p—do
o \1/> . p>3,
;Q < ’ 7128 b=

3o <\Iffp‘12,\1/j> . l<p<3
i=1 L2(B:)

= 0(Q). (5.14)

By the definition of B, given in Lemma 5.1, we have

C\Bow C (UY—y (B; NB;.)) U (Bi—x NBru) U Byt NBus),

U e W) e S
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where By _ . and B, 1 . are given by (4.16) and (4.17), respectively, and
(@ + 82+ 30, (@) =1])|

g

Bi.={(0.t)eC||t—s}]| 2

~

Thus, by (i¢) and (4i¢) of Proposition 4.1,

14 (Q—U;AFS

140 2 w\p—1
+ TN led ‘1’> s S |@FE+ ‘oz —1‘
(b wvaea 7 95) 2| (@i)
v 6
S (Q+53+Z’(a?‘)p_ll‘). (5.15) [equnewnew0005 |
=1

By summarizing the above estimates, we have

v 4
‘<N’F€ma \I/j>L2‘ N ||pi*||1+a + O(Q) + (6* + Z ‘<a7)p71 - 1‘) )
=1

By summarizing the estimates from Step. 5.1 to Step. 5.9, we have

y 2
[N = NG W) ] S A7 +0(Q)+ (ﬂf + 3 [ty - 1|> :
1=1
The conclusion then follows from the estimates in Step. 1 to Step.5. O

6. SECOND REFINED EXPANSION OF N AND ESTIMATES OF Q

Again, we emphasize that we need to eliminate the lower order terms to get the
desired stability. Thus, we need to further refine the expansion of A.c;,, which is
the remaining term in the expansion of N given by Lemma 5.1.

(1emn0002) T o ryyma 6.1. Let d > 2,a<0andb=bps(a). Then N, em, the remaining term
in the expansion of N given by Lemma 5.1, can be further expanded as follows:

T = 4 (74 ) 40 (757
6

+O0 | [ B +Q+ Z ((a;)p‘l - 1‘ +UP0A8
j=1

+0 (xpz2\pi*\2 o l? + Lol 7+ e+ ’YN,led|1+UXc\E**)

in C where ¥V =V + pg with V given by (3.15) and po given in Proposition 4.1, B..
is given in Lemma 5.1 and v« and Yareq are given in (1) of Proposition 4.1.

Proof. The proof is a direct application of the Taylor expansion to A/ in the sets
A, and C\ A, which is introduced in the proof of Lemma 5.1, up to the sixth order
terms as in the proof of Lemma 5.1. O

By multiplying (3.16) with 0;¥; on both sides and integrating by parts, the
orthogonal conditions of p, given in (3.16) and the oddness of {V;} on S?~! and
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0y¥; in R, we have

- <fazat‘1/j> = <R1,iaat\:[’j>L2 +Z<£j,eaC(P*)aat\I’j>L2
H? J ' ]

Jj=1

In what follows, we shall derive the estimate of @ from (6.1).

(propn0002) Proposition 6.1. Let d > 2, a <0 and b = bpg(a). Then we have
Q=0 (B + ozl + I flla-) -
Proof. By the oddness of w;; on S4~! and 9,¥; in R, we also have
*\P—2 *\P—3
NG 005 o = 240 ((05)" 7 Vipe 00 ) |+ 34,0 ()" Vi, 010, ) (6.2) eamoozs]

for all j =1,2,---,v, where Nj is given by (5.8). Intersecting (6.2) into (6.1), we
have

v v v

- Z (f, 8t\IJj>H1 = Z <R1,ew7at\llj>[,2 + Z <A/;7 875\I’J'>L2
j=1 =1 =1
"’Z N = NG, 0095) 1. + Z (Ljex(ps), 0e¥;) 2
j=1 j=1

+> 0D (R 8Ty) s (6.3) [eqn2022]

Jj=1li=1;i#j

As in the proof of Proposition 4.1, the rest of the proof is to estimate every term
in (6.3).

Step. 1 The estimate of 2;21 (Riex, 0¢%;) o

By (2.7), (3.18), Lemma 4.3 and the Taylor expansion,

14

Z<R1,ewa6t\1/j>L2 = ZZ/B (up_Z(\Ilzk)p> oV jdu +0(Q)
i =1

=1 j=1i=1

= op ) @) e
j=1

J

o - P y2d
¥ (;/B ; lu)+o<cz>

= p/B (‘Ifz*)p_l (Wiq +W5_1) 0,9 5dp + 0(Q),

J
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where B; is given by (4.7) and by (2.7) and Lemma 4.3 again,

*

v - v T (T, + 0 d
Soo [ () (W ) ot S de D) a2 )
=1 B j=1

j a;
+O (Qi)
_ Z Je (v5)" 8, (‘1’37:1 +05_y) du
j=1 @
+O (Qi)
= (B2+0(1)Q

with By > 0 being a constant. Thus, summarizing the above estimates, we have

v

D (Riea: 005) 2 = (Ba +0(1)Q.

j=1

Step. 2 The estimate of >37_; > 31 1. (R1,i, 0 Y;) 1o
By (3.18) and Lemma 4.3,

v v

S R0l S D (@ =1 (9, 95),. = o(Q).

i=15i#7 i=1;i#j

Step. 3 The estimate of (L cx(p«), 0t Vj) -
By (2.7) and (5.11),

[(Liea(pe), 0e%5) 12| S (1L ealpi)l, ¥5) 2 = 0(Q) + O ([lpsal**7) -

Step. 4 The estimate of (N, 0;¥;), .
By (6.2) and (1) of Proposition 4.1,

o\ P2
<~/\/ja at\Ijj>L2 = 2Ap,l <(\Ij])p Vjat\Ilja V2,ex + VYN led,rem.j + Pi'*>

«\P—3
+3Ap,2 <(\I/])p ijat‘lljaryl,ea: + p*L*>

L2
L2

\P-3 Z"
+3Ap,2 <(\Ilj)p VJQat\IJj> 1,1 +’7N,led,rem,j> .
1=1;1#7 L2

By (2.7), Lemma 4.3 and (¢) of (1) of Proposition 4.1

> aQ (W s W) L p23,
£\p—3 =
‘<(\I/j)p ijatwjv'yl7ea:>[/2‘ S Vl

> AQ (W s, W) L 1<p<3

L2
=1

= 0(Q)
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By (2.7), Lemma 4.5 and (#4¢) of (1) of Proposition 4.1,

v
-3
<(\Il;)p ijat\:[jj’ Z V1,1 +'7N,led,rem,j>

I=151#] L2

v

> 0(82) (¥ xm, v

I=Lil#j

= 0(Q).

By (2.7), Lemma 4.3 and (i) of (1) of Proposition 4.1,

A

L2

v

S (s, W, T ) L bz

i=1

)

wl

N

%\ P—2
‘<(\I/j) Vjat\ljja'72,ew>L2‘ v 3p_5 3p_1 7
2 3p=5 3p—1
ZB*Q<\I}12 XBmlIljz >L2’ ]-<p<§

i=1
= 0(Q).
By (2.7), Lemma 4.3 and (i4i) of (1) of Proposition 4.1,
-1

S Y (e ) o)

i=Lii

() V3095 e )

By (2.7) and Lemma 4.3,
‘2Ap71 <(\1/;)”*2 vjat\pj,p@y + 34,0 <(x11;)”*3 V20,0, pi‘*>

3p—1

—5 1
Ba (‘ \Ilj 12 + L2) ”P**H
O (B2 + lloml'*7) .

L2

A

2p—1
% ’

Thus, summarizing the above estimates, we have
NG, 0085) 12 = 0(Q) + O (B2 + [lpal|') -

Step. 5 The estimate of (N — N, 9,9;), ..
Since |0;¥| < U by (2.7), we can use similar estimates of (5.12) to obtain

(N =N = Nrem +MN0),0085) L] = 0(Q) + O (lp 127 .

Step. 5.1 The estimate of (N, 0, V;) ..

Step. 5.1.1 The estimate of <J\/0 ~Noa, (“)t\Ilj>L2, where N1 = A, :UP~2p3+
Ay 2UPT3 (3Vp3 + pd).

By (4.2), (1) of Proposition 4.1 and Lemma 5.1,

(Mo —No,l,at‘l/j>Lz SO WU (ea| + N tea + 74) |P*L*’>Lz
+ <up73\]:jj762£t’ ’pi_*|>L2 .
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By Lemma 4.3 and (%) of (1) of Proposition 4.1,
<up_2_0\11j |’76m‘ ) {pi_* |>L2

>afor )
=1

> Qi
i=1

o(Q) + O ([lpwl**7)

I, »=>3,

1
L2y 1P

WO ekl +e@), 1<p<s

L2(

and
<up73\11j7217 |pi_* | >L2

ZQ2 H\I,f—lfzowj_’
i=1

>
=1

o(Q) + O (llpl*7) .
By Lemma 4.3, (i7) of (1) of Proposition 4.1 and Proposition 5.1,
U5 el o) e S Q4 B2+ ol + 1 Flle—1) ol
= o(Q+89) + O (llpw " + 1f 1) -
Similar to (5.10), by Lemma 4.3 and (éi7) of (1) of Proposition 4.1,
U2 i eal s [p2]) 1o = 0(BS + Q) + O (Il I + I Fll 1) -
Summarizing the above estimates, we have

(No=Noa,0095) 1, = 0(Q+ BS) + O (o5 I + |1 £ll-1) -

Step. 5.1.2 The estimate of <Up_2p%,8t\11j>L2.
By (1) of Proposition 4.1,

W20y, = (U2 o+ )’ ,at\pj>L2 + (UPT2,, 005
+2 <L{p’2 ("}/* + ’YN,led) Yex at\Ilj>L2 .

Loy 1Pl P23,

N

\113”*7\11-)’ L 2 1<p<3
[3 J Lz(Bi) ||p**|| +O(Q ) p

By (2.7) and similar estimates of (5.14),
|<up_272:67 at\IJj>L2 | = O(Q)
By (2.7) and (i) and (i) of (1) of Proposition 4.1,

\Iﬂ?‘r""\p" >3
§O<QH 7 J Ll(Bi)>7 p =9,

P23y , l<p<3
ZO(QH i J Ll(Bi)> b

|<up727*')/em, at\Ilj>L2| N

= 0o(Q).
Similar to (5.10), by (2.7) and (¢) and (#i7) of (1) of Proposition 4.1,
<up72P)/N,led'Vexa at\Ijj>L2 = O(Q)
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By the oddness of 9;¥ in R and (i) and (i3¢) of (1) of Proposition 4.1,
—2 2 _ -2 #\P—2 2
(=2 O+ vaea) 005 ) = (U2 = ()7 oy W2, )
+ U200 W, 2Waym.j + Wa) a5

where Waym j = 71 + pru1j — @555 + Yntea; and Wa j = Ya + Y 1ed — Waym.j
with
a3 = ajh - o] (64)
and o} and o}’ being given by (4.40) and Lemma 4.10, respectively. Similar to
(4.33), by (2.7),

(2= ()" ") auwy| 5 <Z ‘P?Quimi) +U" xe\s.
=1

where B, is given by (4.7), thus, by Lemmas 4.3, 4.5, 4.8, 4.9, 4.10 and Proposi-
tion 5.1,

<(up—2 - (\Il;)p_Q) 0, WSQymvj>L2 - zy: <\IJ§_20XBj’uj>L2 = ol@).

j=1
Similar to (4.12), by (2.7), Lemma 4.5, (1) of Proposition 4.1 and Proposition 5.1,
009 We 5 2Wsym. i + We j)l

o 2 —o - i —-g
S B+Q+ el + 1 fla-)" Q" > Uxs, + U Xe\s.

j=1
in C, thus, we have
UP20, U We s 2Wsym i + W) 2 = 0(Q + B9) + O ([l I + (1 fll 1) -
Summarizing the above estimates, we have
UP2p3,0,95) 2 = o(Q + B2) + O ([l + (1 Fll 1) -

Step. 5.1.3 The estimate of <Z/{p_3Vp(2),8t\I/j>L2.
Clearly, we have

<Up*3Vp(2);3t\I/j>Lz = <up3 Z Vi p%,@t\Ilj> + <upigvjpgvat‘1’j>w'
i=13i#j L2

By (4.2) and applying the same symmetry as in the estimate of <L{p_2p%, (‘3t\I/j>
we have

UP=2Yp5,0095) 1o = 0(Q + B2) + O (s + I fllzr—+) -
By (2.7) and (1) of Proposition 4.1,

<Z/[P3 Z Vl p%,@t\I’j>

i=1i#]

Lz’

L2

S <up3 > ﬁx,%>

v
T <up3 > Vil wiaea) ‘I’j>
i=Liz 12 i=Li%] 12
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By Lemma 4.3 and (%) of (1) of Proposition 4.1,

<u”3 o vix,\lfj>
i=15izt) 12

Zﬁ*Q2< S et L p23,

2

A

Zﬂ*Q2< U s ) +o(B.Q), 1<p<3
= O(Q)-
By Lemma 4.3, (ii) of (1) of Proposition 4.1 and Proposition 5.1,
- z 3p—1-do
<up3 Z Vi 737\Ijj> = Zo(ﬁ*) <‘I’i ’ XBmUz'>L2 =0(Q).
i=13i#] 2 =1

Similar to (5.10), by Lemma 4.3 and (4i7) of (1) of Proposition 4.1,

<Up—3 Z Vi WJQ\f,Zeda‘I’j> =0(Q).

i=15ij 12
Summarizing the above estimates, we have
UP2Vp3, 8095 1, = o(Q+ B2 + O (Il + I fll ) -

Step. 5.1.4 The estimate of <Ll 308, 00V >L2
By (1) of Proposition 4.1 and Proposition 5.1,

U ph00) = 0(QETIN log QL+ (82 + oL | + 11 k-1)")
= 0@+ 0 (B + loE I + 1 fll)-

Summarizing the estimates from Step. 5.1.1 to Step. 5.1.4, we have
No, 0 %;) 12 = 0(Q) + O (B + low I + (Il 1) -

Step. 5.2 The estimate of (N e, 8t\Ilj>L2.
Similar to (5.14) and (5.15), by Lemma 6.1 and Proposition 5.1,

<~/vrema 8t\I]j>L2 = Ap,3 <up—4 (71 + 4V3pi*) ,Bt\Ilj>
Ay (U= (V459" ,atqu>L2
+0(Q) + O (B + o™ + [ ) -

Step. 5.2.1 The estimates of <Z/{p_4V 0L, 00 >L2 and <up—5v4pi*7at\11j>m

Recall that V = V + py with V given by (3.15) and pg given in Proposition 4.1.
By (2.7), (1) of Proposition 4.1 and Proposition 5.1,

(" ph,00;) | 5 (QU5% ogQlh + (8. + oLl + 1 £1a-)") o]
= 0@+ B + O (Il + [ fll-1)

L2
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and
U=y L 9w < 1 3 1 j|l4o RNt
P O L] S log Q1% + (B« + ol + 1 F =) ) lossll
= 0oQ+8)+O (llpwll"™ + I fller—) -

Step. 5.2.2 The estimates of <Z/{p_4v4,8t\11j>L2 and <up—5v5,at\11j>
By the oddness of 9;¥ in R and (1) of Proposition 4.1,

<up—4v4, 0, »>L2

_ <(uP*4—(\I/J) )atqu,vsymj>L

_ = = = = = —2 =3
+ (UPA YV, 5 A+ OV Vg + WV + VL)

L2

where Voym j = Vi + 715 + pi1j — @5V + Wiedj and Vi j =V = Veym j with
aj’ given by (6.4). Similar to (4.33), by (2.7), we have

‘(up_4 - (\Ilj)p_‘l) AT (Z ‘1’?_4%)(1%) + U xe\s, »
thus, by (3.15), Lemmas 4.3, 4.5, 4.8, 4.9, 4.10 and Proposition

5.
(= ) a0 P, = (80 ,25) ) =0
O

Again, similar to (4.12), by (2.7), (3.15), Lemma 4.5, (#i¢) of (1) of Proposition 4.1
and Proposition 5.1,

sym, J sym,j

L

—c o 4 - —30 —30
S QT (QA B+ lomlT + 1 f 1) Z‘l/? %7x8; + U xe\B.
j=1
in C, thus, we have
(U209, 5,47,

46V Ve + Vg Vo 4V >L2

sym,j

S QUI(QHB A+ IR+ (1 f )
= 0@+ 8D+ Ol + I fle-1) -

Summarizing the above estimates, we have

(Ur=V" 08,) | = 0(@)+ O (B +Ip5 I + 17 -1)

sym,j

By (4.2) and applying the same symmetry as in the estimate of <Z/11’*4V47 Bt\Ilj> )
L

we also have
_550 -
W=V, 009;) | =o(Q+82) +O (o5l + 1 fll) -
Summarizing the estimates from Step. 5.2.1 to Step. 5.2.2, we have

<Nrem7at >L2 *O(Q)+O(ﬂ6+Hp**||1+a+||f”H 1)'

The conclusion then follows from the estimates in Step. 1 to Step. 5. (]
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7. FINALLY REFINED EXPANSION OF A/ AND ESTIMATE OF ||p||

By the orthogonal conditions of pL,, given by (4.63) and multiplying (4.63) with
pi. on both sides and integrating by parts, we have

ol S Az ol + [(Rnew.0, ) 12 (7.1)[eqno060]

where Ryew0 is given by (4.64). Moreover, we remark that by Lemmas 4.1 and
5.1, we have

Nrem = No + Nyem, (7.2)

where N ¢p, is the remaining term in R,eq,0. We emphasize once more that we need
to eliminate the lower order terms in the data Ryew,0 to get the desired stability.
Thus, we need further decompose the term Z;Zl v1,; which is given in Lemma 4.5.

(1emn0003) Lemma 7.1. Let d > 2, a < 0 and b = bps(a). Then we have the following
decomposition

17 v
~ *okok
E V1,5 = V1% T E o,
j=1 =1

where {aj**} is chosen such that (Y1, ¥;) = 0 for all 1 <1 < v. Moreover, we
have the following estimates

14 v v
Al Y Q7)) —ofl  and Y || <D (@) —afl.
1=1 j=1 1=1

Proof. It is easy to see that 7 . satisfies the following equation:

v d
LA =Rie—> U e 0,0, + ¢ iwi |, inC,
(717 ) 17 ; 7 ( 17.712 t g ; 17]7171 7'7l (7‘3)

(000,91 ,4) = (Wi, 71,+) =0 foralll <j<wvand1l<I<d,
where by (3.18),

v

Rie = > (Rug—af™ (¥ —pU~'¥,))

=1

- Z (i) =i =ai* (1=paj)"™")) 9!

I=1
Y (U - ()
1=1
By Lemma 4.3, (3.18) and similar estimates in the proof of Lemma 4.10, we have
£\ p—1 *kk * * - * * —o ~
(1=p(@)"") a5 = ()" = a}) + X OQ) ((@}) = ai) + 0 (') [
1=1
for all 1 < j < v. Thus, by Lemma 4.5, (7.3), the orthogonal conditions of v, ;

given in (4.29) and the elliptic estimates, we have the desired estimates of |71 || oo
and Y%, |ag**|. O




CAFFARELLI-KOHN-NIRENBERG INEQUALITY 55

To eliminate the lower order terms (compared to the 5% terms) in the data
Rnew,0 to get the desired stability, we need to refine the expansion of Ny, for

the third time, where N, is the remaining term in the expansion of N given by
Lemma 5.1.

(Lemn0004) Lemma 7.2. Letd > 2, a <0 and b = bps(a). Then Nyem, the remaining term

in the expansion of N given by Lemma 5.1, can be further expanded as follows:

— o P R Y
N'rem = ZAp,lflup t (V + 1V p*L*) + @ ("Y* + ’yf\f,led|1+aXC\E**)
=4
no

+O [ [ B+ ‘ ()" - 1‘ +QP
j=1

+0 (xp2lpnl® + o P+ [p|'T0)

in C where ¥V =V + pg with V given by (3.15) and po given in Proposition 4.1, B.s
is given in Lemma 5.1 and v, and Yareq are given in (1) of Proposition 4.1.

Proof. Since by the choice of ng and (i) of (1) of Proposition 4.1, we have

o Q", p=3,
|up O’Yea?| S/ pt+ngo(p—1)
2 , l<p<3
3
SR

the conclusion can be obtained by applying the Taylor expansion in the sets A,
and C\A, as in the proof of Lemma 5.1 up to the noth order terms. O

In what follows, we shall estimate ||pZ|| by (7.1).

(propn0003) proposition 7.1. Let d > 2, a < 0 and b = bpg(a). Then we have

lpll S B+ 1 f a1
Proof. By (3.19), (4.64), (7.2) and the orthogonal conditions of pZ, given by (4.63),
<Rnew707 P*L*>L2

= Z 2AP71 <(\Ij;)p72 Vj (p* — Vlex — 7N,l€d7j)XBj ) p*l*>L2 + Z <R27ja pi_*>L2
Jj=1 j=1
+ ZSAIHQ <(‘Ij;)p73 ijp*Xijpi_*>L2 + Za;* <(up*1 - \Il?_l) \I/jvpi_*>L2
j=1 j=1

Y 3p—5
+ 37 (0 (84 (B9 (W54 p2) +1pe = 1ol 7)) x5, 05 )
j=1

L2

3p—3
+ <(9 (|P* - 71,ex|upT) XC\B*7p9J«_*>L2 + <(9 (53“2(}771)71,%)(6\8*) 7Pf*>
+ <Nrem +NO - RB,ea: - R5,ea:7 P*L*>L2 )

where R3 e, and Rs e, are given by (4.61) and (4.62), respectively, and B; and B,
are given by (4.7).

Step. 1 The estimate of <Z;:1 aj* (L{p_l — \Ilé.’_l) Wj,ﬁf*>L2-

L2
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By the orthogonal conditions of pL, given by (4.63), we have

<Za;**(w—1—w5*)wj,pf*> =<Za;*(w—1—<w;>p‘1)wj,p*a> .
Jj=1 2 Jj=1 2

Similar to (4.33), we have

o e w) 8] <50

Ujxs,; + Z\Oz UPxe\B. -
j=1

Thus, by Lemma 4.3, (2) of Proposition 4.1 and Propositions 5.1 and 6.1,

(S o))

Syl @bk

L2 j=1

B2 (o5 1 + 11 £l ) > ok

+O (B4 £l o5 1) + o(llpS 1)
O ((B+ 1 lm-1) 1P 1) + oo 1.

A

Step. 2 The estimates of

v

Z <ﬂfuj‘1’§p73 (U + ps) XB; 5 p*l*>L2

j=1

3p—5
and (B.(px — VieaUe, ph) pos where Uy = 30 UST Upys, +UTT xevs, -
By Lemma 4.3 and Proposition 6.1,

— 1.5
(B w0k ) = O (B2Q5 k)
O (85N + 1l o) + o (o5 12)

By (1) of Proposition 4.1,

v

S (BU pxs ot = Y (BT e+ %+ N i) X8, P52 )
j=1 j=1

L2

+o([lpsll?)-

By Lemma 4.3, (i) of (1) of Proposition 4.1 and Proposition 6.1,
ﬁfu P 3Pyez><5],p**>
B2ul\p2‘p_2_o (QjXB]',+ + Qj—lXBjﬁf) ) |P*L*|> s P > 37

L2
<52u U (Qixe, + Qi ) o)+ BQleL]L 1<p<3
= o(BQ k)

= OBl + 1 la-1llozll) +o (lol?) -
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Similar to (5.10), by Lemma 4.3, (i7) and (i4i) of (1) of Proposition 4.1, Proposi-
tions 5.1 and 6.1,

‘ <Bfuj\1/?p_3(7* + YN led) XB; » pf*>L2
G, Y 1y,
S o (8) (U ph] ), + 0 (82 k)

= O Bowll + 1 fla-1llozll) +o (o) -

Summarizing the above estimates, we have

> <B>»2<uj VP p.xs;, Pf*>

j=1
By (1) of Proposition 4.1,

<5*(p* - 'Yl,em)u*7p*l*>L2 = B <72,e:1: + Vi VN,ledau*p*L*>L2 + B <Z/{*7 (p*l*)2>L2 :

o = OBl + 1l llowll) + o (o) -

Since [[Us ||z~ = o(1), we have B, <L{*, |pj-*|2>L2 = o (||p]1?). By Lemma 4.3, (i)
of (1) of Proposition 4.1 and Proposition 6.1, we have

B

<72,e$a u*pik>L2 ‘

v 2

Caan 7
Qe (Z (wpre ,u3>L2(Bi)> R

i=1

A

1
v

2
7
2 1 @op—10 7.2 2 1 !
ﬁ*le**H(E < 7UZ>L2(Bi) +o(B.Q), 1<p<g

=1
< BRI ekl
O (BHIpE | + 1L L= o) + o (Il ]1%) -

By Lemma 4.3, (i¢) and (¢¢) of (1) of Proposition 4.1 and Propositions 5.1 and 6.1,
we have

B <7* + ’YN,ledau*pi_*>L2

Bk S (\

j=1

—1)—20

3(p
2 )
v, U,

A

) + 1omPH + 1 =l
L2(B;)

lis
+B:Q2 1 o
= O (Blowl + I la-lloll) +o (lowl?) -
Summarizing the above estimates, we have
(Beplh, pre) 1o = O (Bl + £ lloill) + 0 (los?) -
Step. 3 The estimates of

o\ p—2
Z <<\I’J>p V](P* — Vex — ’YN,led,j)XBjap*l*>L2

v -3
and 37, <(‘1’j)p pr*xBj,pi*>L2-
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By (1) of Proposition 4.1,

Z <(2Ap,1 (\Ilj)p_Q Vj (P* — V,ex — ’YN,ledJ) + 3Ap,2 (‘II;)I?_?’ VJQ/)*) XB;» P*L*>L2

j=1
= <V*p07 p*L*>L2 - Z <2AP71 (‘I’;)p_Q Vj(ryl,e;v + ’YN,led,]’)XBj ) p*l*>L2 +o (”p*L* ||2) .
j=1
where
V= 3 (2400 (9)7 72V, 4 34,0 (9" V2) s,

=1

J
By Lemma 4.3, (i) of (1) of Proposition 4.1 and Propositions 5.1 and 6.1, we have

3p—1—20

CHEA N DI [
j=1

> 7
9 p_37

L2(B;)
|<72,ex7V*Pi_*>Lz| 5

v—1
7
2y L 3p—4
IR ’ , l<p< <
/6*||P**|| ]Z:;Q] H J L2(Bj) +Q p 3
< B2 lpwll
= OBzl + I o) + o (lowl?) -
By the orthogonal conditions of p, given in (2) of Proposition 4.1, Lemmas 4.5, 4.8
and 4.10, (447) of (1) of Proposition 4.1 and Propositions 5.1 and 6.1 and Lemma 7.1
that

Z 2Ap,1 < (l:[l;'{)p72 Vj (Z V1,1 + YN led — IYN,led,j)XBj ) Pi_*>
Jj=1 L2

=1
v 3 v
+ Z3Ap,2 <(\Ilj)p Vj2 <Z V1,0 + ’YN,md) XBjapi'*>
j=1 =1 L?
v v
5 Z <§1,* + YN led,rem,j,* + p*L*,Q + Z (al*** - Oé;:*i) \I’la \Ilg_zvjp*{k>
j=1 I=1;1#£] L2(B;)
+ ‘<(a;** —ayh) U W0k ) + B2llpwll (B2 + Nl + N1 fllzr-+)
L2(C\B;)
1
S QY (B2 la— + ol 7)ol

= O (Biloll + 1 a-llpwl) +o (o) -
Summarizing the above estimates, we have

v

Z <(2Ap,1 (\I};)p72 V](p* — Vex — P)/.N',led,j) + 3Ap,2 (\II;)P*?’ pr*) XB]‘ ) pi_*>
j=1

= O (Bllpsll + Il lowll) + o (lowl?) -

Step. 4 The estimate of <ﬁfu2(p_1)71’ez><c\3*,pi-*>L2.

L2
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By (%) of (1) of Proposition 4.1 and Proposition 6.1,

< BRI pL |
= O (BHEN + I fle-2llpE]) + o (5 ]?) -

‘ <ﬁ$u2(p_1)71,erC\B* ) p*l* >L2

Step. 5 The estimate of (Nyem +No — R3.cx — Roear Pis) 2
By (1) of Proposition 4.1 and Lemmas 4.11, 4.13 and 7.2, we have

/vrem + NO - RS,ea: - RS,em

no Tlofl !
—1 | 1 ~ L
= ZAp,l—lup TMiex = | Tyex + Z Pesx3,0,1

=2 i=0

Z ZAP - 1up lryl JeT (p5 *%,10 + Vs + TN, led)

k
+ Z Z ClkAPal—lup l71 Jex (V =+ V2,ex + Vx + TN, led)
=2 k=2

+O (B + w7+ [ -1 + Q) + 0(p3)

+0 (xp>2|p**\2 +lon P+ Lol ™7+ e+ el T Xc\éw) , (7.4)[cqnnevnew19991 ]

where CF = W Thus, similar to (5.15), by (i¢) and (éii) of (1) of Proposi-
tion 4.1 and Propositions 5.1 and 6.1,

< rem +N0 - RS,ex - R5,ex7 P*L*>L2

l
no—1
= <ZAPl 1up ’Yi,em - (71,61 + Z pj:*,S,i,l) 7p*l*>

i=0 12

no
+ <Z lAp,l—wlp—l’Yi,_; <p5l7**,n0 + Vs + ’Y./\/,led) ap*l*>

L2

no l
+ <Z Z ClkAP,l—lup Z’YI Jex (V + V2,ex + V= + TN, led) 7P*L*>
L2

1=2 k=2

O ((I1Fllzr—+ + 82) llpzcll) + olllpzl?)-

By Lemma 4.13, the choice of ng , (1) of Proposition 4.1 and Proposition 6.1,

g <L{p72 |’Yl,empé_,**,no| ) |p*J_* |>L2

no
]<zmp,l_1w ot e;pgwo,pw>
=2 L2

S QU
= OB+ Il okl +o (I 1)
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By (1) of Proposition 4.1 and Propositions 5.1 and 6.1,

no
| <Z lApJ—lup_lrﬁ,_e%c (7* + VN,led) ’p*L*>
L2

=2

A

Q= (B2 + eI + 1f ) ekl
O (Il + B2) lpwcll) + ollo ).

By (1) of Proposition 4.1 and Propositions 5.1 and 6.1,

no l
Kz S Ch Ay Ul (0 4 e ,p:*>

=2 k=2 L2
e kAL+(1+—k 11 LATENE
SJ ZZCl Q§+( H=k)o (6* + ||p**|| to —+ Hf”H*l) Hp**ll
k=2 1=k
no A
1
S Q2 (Bu oM+ £ lm—) okl
k=2
= O (Il + BE) llozll) + olllpxl?)
and
no no mNo
_ — 1
|< > CFAaUP lvi,e§v§,6x’pf*> < CrQ2 Ttk gk oL ||
1=2 k=2 L2 k=2 =k
no
< Y@tk
k=2

= O (Iflla-1 +B2) lowall + olll o).

By (%) of (1) of Proposition 4.1 and Proposition 6.1,

70 no—1 l
<2Ap,l—1upl ’Yi,eg; - (’Yl,ex + Z Pi_*,37i,1> aﬂi_*>

1=2 i=0 L2

A

p—2q2 ) ((p—1)AD)(no+1) |, L
(ur237Q D ek])

O (I1fllzr-1 + B2) llowall + oCllpzalI),

where we use the notation W, to denote the barrier used in the norms ||p3, 5|l for

p>3and |pd 5lls1 for 1 <p < 3.
Summarizing the above estimates, we have

<Nrem +N0 - RS,ex - R5,ex7pi_*>L2 =0 ((”fHH*l + Bf) ”pi_*H) + O(Hpi_*”Z)

The conclusion then follows from the estimates in Step. 1 to Step. 5. (]
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8. ESTIMATE OF [, AND PROOF OF (1) OF THEOREM 1.3

By multiplying (3.16) with V; on both sides and integrating by parts, the or-
thogonal conditions of p, and the oddness of {V;} on S?~!, we have

v

_Z<fvvj>H1 = Z<R2,jvvj>L2+Z<N7VJ’>L2+Z<’Cj’ez(p*)vvj>[,2
i=1 j=1 j=1

j=1

0> (Rai Vi) + Y (Roeas Vi) (8.1) [eqn0023]
J=1

=li=Tiizj
forall j=1,2,---,v.

(propn0004) Proposition 8.1. Let d > 2, a <0 and b = bpg(a). Then we have
S (Pl =) [ |+ G () = 088 + O Bl )
j=1

where Nj is given by (5.8).
Proof. By the oddness of {V;} on S4~! we have
*\P—3 £\ P—3 +
</\/jvvj>L2 = App <(‘py‘)p ’V;’L>L2 + 34,2 <(‘I’j)p Vf7P*>L2
24,0 ((8)" 7 VEpe) (8.2) eam0027]

for all 1 < j < v, where N; is given by (5.8). By (8.1) and (8.2), we have

=Y Vi = D (Rep Vil + D N Vi) e+ D (Liealpa), Vi) 1o
7=1 Jj=1 j=1 j=1
+3 (Roew Vidpe + N =N, Vi)
Jj=1 j=1
0> (RaiVi) - (8.3) [equ0039]
J=1i=13i%j
As in the proof of Proposition 4.1, the rest of the proof is to estimate every term
in (8.3).
Step. 1 The estimate of Z?Zl (Rajs Vj) -
By (3.19),

*\p— —1
D (Rayi Vi) =D p((ef)P ' = 1) H‘I’f Vf’
j=1 j=1
Step. 2 The estimate of 3371, (R, Vj) 12
By (3.19), Lemma 4.3 and Propositions 5.1 and 6.1,

2

14

Yo ReaVie| s Y B

i=1yistj i=1yiztj
2 (92 1 ||1+o 2
= 0 (B2 (B2 + o + S l))
= o(B!+ o417 + O (Bell fll 1)

1 3p—1 p+1
(=t =1 (v, w7 )
L2

)
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Step. 3 The estimate of (R2 ez, V) o-
By (4.33), Lemma 4.3 and Propositions 5.1 and 6.1,

(R e,V L2\~262< L e A BRCICA T e

where B; is given by (4.7).
Step. 4 The estimate of (Ljcx(ps), Vj) -
By (3.17) and (i) and (i) of (1) of Proposition 4.1,

(- ) ),

o (<ﬂ*u**a V2,ex T YN led T Pi_*>L2) )

(Ljex(ps), Vi) 2

3(p— p—
where Uy, = Z;’Zl v, 2 Ujxs, +UE Xc\B. With B, given by (4.7). By Lemma 4.3,
() of (1) of Proposition 4.1 and Proposition 6.1,

v 3p—1—20 7
263Q<\D7' i ’uj>L2(Bj)’ P=3

j=1

= 7
2q (w4 u-> 1 L
Zﬁ*Q< 5oYi) g TSP

j=1
= 0B +llpsl®) + O Bell fll 1) -

By Lemma 4.3, (iii) of (1) of Proposition 4.1 and Proposition 6.1,

5* <Z/{**7’72,er>L2 §

v 3p—1-—20
Z/BfQ <\I/J : XBjauj>L2; p235
j=1

BlQ+1{7,
5p—1
>80T xs ) o 1<p<3

j=1

A

6* <u** y 'YJ\/',led>L2

= 0B+ llpwll®) + O (Bl flz-1) -

By Lemma 4.3 and Proposition 6.1,

> _B.
i=1

= 0B k)

= 0 (8 (B + 1ok A1) 1)

= o(Bs + llpwl®) + O Bl fllm-1)-
Summarizing the above estimates, we have

(Liea(pi)s Vi) g2 = 0(B2 + 03 l®) + O (Bell fl i) -
Step. 5 The estimate of (N — N, V;) ;.

(r=1)
U (|

L2(B;)

B <u**7 }p*l*|>L2

A
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Similar to (5.12), by the oddness of w;; on S1,

WMoV = 3 A (@)™ (V2 +2ip) Xm0 Vs |
i= 11;6]
+ Z A (U572 (VF +3V2p) X0 Vi )
i=15i#j

%\ P—2
24,0 <(‘I’j) Vip«Xe\s; Vj> L2

+Ap2 ((U5)77 (Vi +3V20.) xers, Vi )

v

L2

_|_

< (5*|P*|\If U+ pRU 2U‘) XBian>

=1
<O (up 2V2 + 5*|P* ) XC\B*’Vj>L2
+ WV

rem; > <N0a >

L2

Step. 5.1 The estimate of 2/, <(\Iff)p_2 V?XBi’Vj>L2'
By Lemma 4.3 and Proposition 6.1,
v +1

S (e vive ) |5 g (et et

i=L5ij

= 0B+ llpll®) + O (Bl flz-1) -

Step. 5.2 The estimate of >}, <(\I/ 3 VSXBNV]->
By (4.2), we also have

L2’

*\P—3 1,3 . *\P—2 )2 .
DIR(C Ry I I DI (i e RV
i=15i#j i=15i#j

= 0B+ pwl®) + O Bull flla-)-

Step. 5.3 The estimate of 3.7, <(\If;7‘)p_2 ViP«XB; Vj>
By (1) of Proposition 4.1,

L2

*\P—2 *\p—2
<(\IIZ );D ViP*XBmVj>L2 = <(\Ijz )p ViVjXBivpi_* +’Yem +'—Y* +7N,led>L2 .
By Lemma 4.3, (i) of (1) of Proposition 4.1 and Proposition 6.1,

p—1—20 p+1

3
o (v, ,\117>L2(B), =3,
*\p—2 i
’<(\I/z)p ViVjXBm’Yex>L2‘ S 2Q<\I]5p27 \I} > ) 5
- , <p<
* E L2(B;) b
= o(B: +lpll?) + O (B. -1).
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Similar to (5.10), by Lemma 4.3, (é¢) and (¢4z) of (1) of Proposition 4.1 and Propo-
sitions 5.1 and 6.1,

3p—1—20 p+1
S LaERPRVENNEDNS > < 4<\p4 : \I!,T>
K( i) XBo Yt Wed) | S Be( 5T ) s
+o(By + llpwll?) + Bell fll -1
= o8+ pl®) + O (Bull fllz-)-
By Lemma 4.3 and Proposition 6.1,
%
* p—2 VZV | L> < 29 L <\D3P—37‘I]p+l>
<( ’L) FXBi» P 2~ B*Hp**H [ J L2(B:)

= o(BI+ llpwll®) + O (Bl flr-1) -

Summarizing the above estimates, we have

v

> (W Vipxws Vi), = 0B+ 15D + O Bullflla-)

i=1ij

Step. 5.4 The estimate of >/ .. <(\I/’f‘)’773 pr*xgi,vj>

(2

L2
By (4.2), we have
*\P—3 *\P—2
S (@ Vi i) LS | Y () Ve V)
—— i=15ij

= o(B: + llpwl®) + O Bull fllm-1) -

Step. 5.5 The estimate of <(\Il;)p72 Vjp*xC\Bj,Vj>
By (1) of Proposition 4.1,

L2’

P2 o\ p—2
<(‘I’j)p VjP*XC\Bj7Vj>L2 = <(‘I’j)p ViXe\B;s Prx + Vex + Vs + '7N,led>L2

By Lemma 4.3, (i) of (1) of Proposition 4.1 and Proposition 6.1,

v

> moul vy L p23,
i=13izj ’
> B <\If§”2, \113”’1> , 1<p<3
i=15i£] L2(B:)
= 0B+ lpwl®) + O Bull Flla-1) -

Similar to (5.10), by Lemma 4.3, (i¢) and (#i¢) of (1) of Proposition 4.1 and Propo-
sitions 5.1 and 6.1,

A

()" Vixers, e

L2

A

#\P=2 12 gt (giee g
() VjXC\Bja7*+'YN,led>L2 i;ﬁﬂ*@i NG >L2(6i)

+o(B + lp2ll?) + Bull fll
= o(Bs + lpwll?) + O Bull fll ) -
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By Lemma 4.3 and Proposition 6.1,

A

1
2
B2l < /C - W?”dﬂ>

o(By + llpwll®) + O (Bullf 1) -

Summarizing the above estimates, we have

A\ P—2
()" Vipexers, Vi), = 082+ I0]%) + O (B f 1)

(w37 Vixers, ot

L2

Step. 5.6 The estimate of <(\I/§)p73 (V]3 + 3V]2p*) XC\BJ,V]->
By Lemma 4.3 and (1) of Proposition 4.1,

L2

<(\I’;)p73 (VJB + 3pr*) XC\B;> Vj>L2 = 3 <(\p;)1’*3 V;‘XC\Bj yY2,ex T ’YN,zed>L2

*\P—3 4,3 1 4
3 <(\I/]) Vj XC\Bj?p**>L2 + O(ﬁ*)

By Lemma 4.3 and (i) of (1) of Proposition 4.1, <(\I/;f)p_3 V;’Xc\lgj,’}/2$ez>
o(B%). By Lemma 4.3 and (iii) of (1) of Proposition 4.1,

’<(‘I’§)p_3 V?XC\Bj77N7led>L = o(B).

By Lemma 4.3 and Proposition 6.1,

L2

2

BloL | ( / \I’?”_?’du)
C\B;
o(BL+ 105 12) + O (Bullfl 1) -

Summarizing the above estimates, we have

()7 (VF +3V30.) xevs, Vi ), = 082 + 105 1) + O (Bl f 1)

A

()" Vixews,. ph),

2

3p—5

Step. 5.7 The estimate of >, <B*P*\I’z‘ E UiXBi,Vj>
By (1) of Proposition 4.1 and the oddness of V; on S9!,

2’

3p—5

‘<5*p*q]1 2 uiXB,;an>L2‘ S 63 <\ijp72uiXBm pi_* +’y2,em +7N,led|>

L2’

By Lemma 4.3, (i) of (1) of Proposition 4.1, and Proposition 6.1,

g (v U

L2(Bi )’

ﬁf <\D?p_2uiXBi y 72,69:>L

A

2 Tp—9

QY T U, 1
/B*Q< (3 7UZ>L2(B,31+)’ <p <
= o(B: + llpll®) + O (Bull flz-1) -

By Lemma 4.3 and (4i7) of (1) of Proposition 4.1,

e <‘Ilz‘2p_2uiXBw ’w,Zed>L = 0(B.).

2
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By Lemma 4.3 and Proposition 6.1,

A

2| pt pir—4 142 ’
okl ((vrtaet)
= o8+ oL %) + OBl ).

Summarizing the above estimates, we have

Bf <\I/§p_2uiXBm pi_*>

L2

Y 3p-5
> (Bop W, T Ui Vi) = 0B+ 051D + O (Bull )
i1
Step. 5.8 The estimates of

Z <ﬁf\1112p—2uixgi,vj>m and <UP_QV2XC\B*7VJ'>L2 .
i=1
By Lemma 4.3 and Proposition 6.1,

v

Z <6E\Ij?p72uix&, ; Vj>L2

i=1

5p—3
2

S 5f§<% ,ui>L2(Bi)

= o(B + llpwl®) + O Bull fllr-1)

5 / U dy
C\B.
= o(B 4 1oL 1) + O (Bl flla—)-

3(p—1)

Step. 5.9 The estimate of <B*p*l/{ 2 XC\B*7Vj>L2-
By (1) of Proposition 4.1 and the oddness of V; on §%-1,

and

A

(UP2V2xens, Vi) ps |

3(p—=1)

‘<ﬁ*p*u 7 XC\B. ; Vj>L2

S B U xe\B. V2w + YN dedl) 0

+82 (U xe\B. s

By Lemma 4.3, (1) of Proposition 4.1 and Proposition 6.1,
417 2p—0 29 L 2p—1

5 B U P HLl(C\B*) + ﬁ*”p**” HZ/[ b HLQ(C\B*)

= o(Bi +lpsl®) + O Bull fllm-1) -

Step. 5.10 The estimate of (N, V;) ;..
By (4.2), Lemmas 4.8 and 5.1 and the oddness of V; on S9!,

NoyVidpe = Apt U™ (05 — (Yrew + e + WWtedjn)?) s Vi) 1o
+Ap72 <up73 (Pg - ('Yl,e:c + Y+ 'YN,ledJ,*)B) 7Vj>L2
+0 (82 (U= 0 + lwvaea+ 7))

—2—0 il 1
+O (6* <up \11]2 pOap**>L2) .
By Lemmas 4.8 and 4.10 and (4) of (1) of Proposition 4.1,
<up_2 (p% - (Wl,ea: + Vi + PyN,led,j,*)Q) ’Vj>L2

g BEl N
= o (6* <u;0 U\Dj 2 sy V2,ex + YN led,rem,j,* + YN led,j,** + p**,2>L2) .

Pl o

3(p—1)

) <5*ﬂ*u 2 XC\B.s Vj>

L2
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By Lemma 4.3, (i) of (1) of Proposition 4.1 and Propositions 6.1 and 7.1,
ptl
B (U e wE ) = 0(52Q17) = oY) + O (Bul flli-r)
By Lemmas 4.3 and 4.8 and Propositions 6.1 and 7.1,
1—o g 5" 31 4
ﬂ* <up* 70\1]]' 2 s YN led,rem,j,* + 7N,led,j,**>L2 = 0 (B*Q 7+ ﬁ*)
O (B + Ball fller-1) -

By Lemmas 4.3 and 4.10 and Propositions 6.1 and 7.1,
R 4
ﬁ* <up \I/j 2 7p**,2>L2 =0 (6*) .
Thus,
<up_2 (p(Q) - (’yl,ex + Vx + ’YN,lCdJ;*)Q) avj>L2 = 0(53) + @ (IB*HfHH*l) .

Similarly,
UP™? (g — (Myea + Vo + W tedg)’) s Vi) 2
= o0 (5* <Up7170\1/?,72,m + YN Jed,rem.jx T YN led, e T P*l*,z)>L2)
= 0(B) + OBl fllm-1)-
By Lemma 4.3, (i) of (1) of Proposition 4.1 and Propositions 5.1 and 6.1,
B (U 02 ) S Q= o(BY) + O (Bl f ).

Similar to (5.10), by Lemma 4.3, (4¢) and (4i¢) of (1) of Proposition 4.1 and Propo-
sitions 5.1 and 6.1,

52 (UPO L uxcea + ) | = o(5E + 15 %) + O (Bl ).

By Lemma 4.3, (1) of Proposition 4.1 and Propositions 5.1 and 6.1,
1
2p—4—20q,p+1 2 \ 2 1
B0 (<U \ 7’Yez>L2> [l

i %
5.0 ((Ur 2w 2 4 ) ) o

L2
= o(B: + llpwl®) + O (Bl fll—)-
Summarizing the above estimates, we have
(N0, Vi) o = 0(B2 + [lp?) + O (Ball fll i) -
Step. 5.11 The estimate of (N e, Vj>L2.
Similar to (5.14) and (5.15), by Lemma 5.1 and Propositions 5.1, 6.1 and 7.1,
[(Nrems Vi) pal S Be (B2 + o7 + [ flla-1) = 0o(8) + O (Bull fllar-1) -
By summarizing the estimates from Step. 5.1 to Step. 5.11, we have
N =N Vj) 2 = 0B + pwall?) + O (Bull f ) -

The conclusion then follows from the estimates in Step. 1 to Step. 5 and Propo-
sition 7.1. 0

p—2—0 2l 1
ﬂ* <u \I/j 2 vap**>L2

With Proposition 8.1 in hands, we can finally estimate f,.
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1
Proposition 8.2. Let d > 2, a <0 and b = bps(a). Then we have B, S ||fI|7-1-
Proof. By Lemma 4.3, (1) of Proposition 4.1 and Propositions 5.1, 6.1 and 7.1,

<(\I/;f)p—2 V;,p*>L2 = <(\Ij}‘)p—2 ija’}/ew +')/* +7N,led+pi*>L2

= <(\D;)p_2 VJZ’ Z(’Yl,z‘ +a; W) + '7N,led>
L2

=1

(Bt + Bl Flla-). (8.4) [ommomentass]
We write Y71 71,0 + YN led = E;’Zlaj,*\l/j + 7% such that (¥;,7%,) = 0 for all
1 < j <w. Then by (4.40), (4.45) and (i) of (1) of Proposition 4.1,

<Z(ai,* +a; Vi), \I’j> <Z(71,i +a;oVi) + YN leds ‘I’j>

i=1 i=1

= _<’71,6$7\I]j>

0(Q™7). (©5)
It follows from (8.4) and Propositions 6.1 and 7.1 that
() vhe) = () 7VEAR) |+ 0B+ Bllfln-). (86 [camementats
By (4.29), (4.35) and Lemma 7.1, we know that 73, satisfies
LFE) =Ry, inC,
{<\Ifj,vf*> = (0195,72.) = (w1, 75) =0 foralll <j<wvandall1<I<d,

where

(3.7)[eamstz)

v

d
—1 — _
Ry = Riux — Z Pt <(C1,j,i + CAled,i)Oc Y + Z(Q,j,i,l + CN,led,i,z)wi,z>

i=1 =1
and

Riee = Nt 3 (@) - af e (1-paiy ™)) w7
=1

Jripal,* (Up*l - (‘I’Zﬁ)pil) v,
=1

with Neq given by (4.36). Since by (4.41), (8.5) and Propositions 5.1, 6.1 and 7.1,
we have Y7, [@; .| = O(B2+|/fllzr-1). Thus, by the orthogonal conditions of
7L, multiplying (8.7) with 72, on both sides and integrating by parts, Lemma 4.3
and Propositions 6.1 and 7.1, we have

(LOTE) = Niea. T8 1o = 0 (B4 Bl f =) + O (1f1%-1) (5.8) [oqpommeniza0)

Since @ — 0 and 8, — 0 as || f|| -1 — 0, by Lemma 4.3, Propositions 5.1, 6.1 and
7.1, it is easy to see that

v

_ 1), p2a
(£7) = N7 = I = 3 (o0 + P w202t )

j=1

+o(By + 7l + OBl fll-1)
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which, together with (8.6), (8.8) and Propositions 5.1, 6.1, 7.1 and 8.1, implies that

zy: p<\Il§71,V]2>L
F Vil = — = ()
j=1 e OZ}FH‘I’H[;L o

v

= 21+ o)) TR = D2 (p¥) "+ plp— 1) ()7 VETL)

L2
J=1

v _ (a)P—3 prt )2 ? _
+j; p(p2 1) [ P ||<§,||zf+1 J >L2> _p . 2 <(\p*)P—3’V4>L2

Lp+1
Fo(B4) + O (Bl f i1 + 1 FIB) (8.9) [eqmo0030]

The conclusion then follows from applying the estimates in [54, Section 4.3] and
the orthogonal conditions of 72, given in (8.7) into (8.9). O

We are now ready to give the proof of (1) of Theorem 1.3.

Proof of (1) of Theorem 1.3: The conclusions for v > 2 follows immediately
from Lemma 3.1 and Propositions 5.1, 6.1, 7.1, 8.1 and 8.2, since

. 17 * 71
dzstD;,z(u,ZO) <ol + Z ‘(O‘l )= 1‘ :
=1

For v = 1, there is no interaction between bubbles, that is, we have () = 0. Thus,
the conclusion for v = 1 follows from Lemma 3.1 and Propositions 5.1, 7.1, 8.1 and
8.2. O

9. OPTIMAL EXAMPLE AND PROOF OF (2) OF THEOREM 1.3

Let R > 0 be a sufficiently large parameter and 5 > 0 is a sufficiently small
parameter. We shall use the function, given by

v=VU+ Vg + B(wg +wr,a) =Lr + BPr,
to construct an optimal example of the stability stated in Theorem 1.3 and prove
p+1
(2) of Theorem 1.3, where ¥p = U(t — R) and, as above, wy = U2 6, and

wr,q = wq(t — R). It is easy to see that

3 L pw 5, s
5 (Szs) "t <vl? < 5 (Sps) ™"
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Moreover, since W(t) is the unique positive solution of (2.5) for d > 2, a < 0 and
b= brs(a), by Lemmas 2.1 and 4.2,

= = —Aev—afv—i—AFsv—vp
= U+ Uh +pp (\prflwd + qj%_le,d) — (Pr+ BPgR)°
= U4k TP 4 pp ((\Ilp_l — F’;{l) wq + (‘I’Tj{l - FI}%—1> wR,d)
— (Ap71ﬂ2@p72w3 + Ap7253\11p*3w2) XB

- (Apﬁlﬁquzl){zwl%c,d + Ap,253‘1111){3w?1)%,d) XBr

- (ﬂQFﬁ’{S@% (Apal'r + AP,QB@R)) XC\(BUBg) T Erem (9.1)
where
R R R 3R
B= |2 — Sd—l Br = |— = Sd—l
53] xe s me=[3.5]
and
Erem =0 (BQ (‘IjQ(pil)\I/RXB + \I/%p_l)\I’XBR) + B4FL}L%) :
‘We denote
=2 = (F% — PP — \IJ%) + pp ((F%_l — \Ilpfl) wq + (F%_l — \I/[;%_l> wR,d)

= i1+ 6 (9:2) camenoocs

and
Sy = Apf (‘prz’wszB + U wd s, + F%izq)%{XC\(BUBR))

+ A4, (‘I”’*ngXB + U W xs, + FZJ;_B(I):?%XC\(BUBR))
= [+ 5. (9.3) [eqanew0006]
Applying Lemmas 4.4, 4.6 and 4.7, we immediately have the following.
(1emq1001) [ emma 9.1. Let d >2,a<0 andb=bps(a). Then the following equation
— Ngoij — 201+ Apsoij —pT% toij =Ei; + 0y, inC,
04V, 0, 5) = (0: ¥R, 0i5) =0, (9.4) [eqqnew1002]
(wr, 0i,5) = (Wr1, 0i5) =0 for all 1 <1 < d,

is uniquely solvable, where Z; ; is given by (9.2) and (9.3), and

d d
9 ;= wrt (Ci,jat\l: +)° gi,j}lwl> + P! (cRﬁi’jat\pR + gR,i,j,le,l> (9.5)

=1 =1

with ¢; j,cri; and {sij1} and {Sr,i 1} being chosen such that the right hand side
of the equation (9.4) is orthogonal to 8; ¥, 8,V g, {w;} and {wg,;} in H*(C). More-
over, 01,1 5 even on S and 01,2 15 odd on Se=1 with

7
s <1, p>3, llorzlly S 1, p=3

{|91,1 p
an
<1, 1<p<3,
HQLl |h,1 ~ p ||91,2 02 <1,

7
l<p< o,
P=3
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while, 02,1 1s even on S?-1 and 02,2 s odd on S with

l02,1] + |Q?—2<|; <1
(toyec P1=7 + Uy
The norms || - ||g, || - ls,1 and || - ||y,2 are given in Lemmas 4.4 and 4.6.

Let 0. = 011 + Bo1,2 + B?02.1 + B3022. Then we have the following.
(propq1001) Proposition 9.1. Let d > 2, a < 0 and b = brg(a). Then
Qr, p>2,

o]l ~ B2 + Qrl|logQrl, p=2, (9.6)

ya
Qp, 1<p<2,
where Qr = e~ VArsh,

Proof. By using the test functions

1, E—3§t§§—2,
~ _ 2 2
0, t§§—40rt>——1
for 1 <p<2,
1a ggt§§_27
or(t) = R
0, tnglort>—fl
for p =2 and

y T <t<T.+1,
ﬁR(t)_{o, t<T,—lort>T, +2,
with 7, > 0 sufficiently large for p > 2 to (9.4), then as in the proof of [78,
Proposition 6.2], we can show that
Qr, p>2,
o]l > { QrllogQrl, p=2,
Q% 1<p<?2,
which, together with (9.2), Lemma 9.1 and multiplying (9.4) of 011 with 011 on
both sides and integrating by parts, implies that
Qr, p>2,
o]l ~ { @rllog@rl, p=2,

b
Qp l1<p<2.

Similar to (4.65), by (9.2), Lemma 9.1 and multiplying (9.4) of g1 2 with g1 2 on both
sides and integrating by parts, we also have ||o12]| < |le1,1]l- By (9.3), Lemma 9.1
and multiplying (9.4) of g22 with g22 on both sides and integrating by parts,
it is also easy to see that ||g22] < 1. It remains to estimate |[o21]]. By (9.3),
Lemma 9.1 and multiplying (9.4) of g21 with g21 on both sides and integrating
by parts, it is also easy to see that [|g21]] < 1. For the lower bound of ||g2,1||, we
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recall that the spherical harmonics on S¢~1, denoted by {Y;,} with j =0,1,2,---
and | = 1,2,---,1; for some [; € N, form an orthogonal basic of L*(S%!) with
spany<;<i,{V;,} forming the eigenspace of the jth eigenvalue of —Ay on L? (Sdil),
where Ay is the Laplace-Beltrami operator on S¢~!. Moreover, it is well known
that the eigenvalues of —Ay on L? (S?7!) are given by j(j + d — 2). The first
eigenvalue 0 is simple with the eigenfunction )Yy = 1, the eigenfunctions of the
second eigenvalue d — 1 are precisely Vy; = 6; for 1 <1 < d. It is also well known
that Va4 = 03 — % is a spherical harmonic on S with degree 2 (cf. [73, (2.6)]
or [54, (4.9)]). Now, by (9.3), Lemma 9.1 and multiplying (9.4) of g21 with Vs 4
on both sides and integrating by parts,we have

o2l Z (021, V2.a) — P (TrO2.1, Vo) 12 = (B2, Vaud) 2 2 |02 V5 4,0 -

Thus, by 0. = 01,1 + Bo1,2 + %021 + B302,2, we have the desired estimate of | o]

given by (9.7). O
We define
foi= =Do(0x +0) = (04 +v) + Aps(os +0) — (v + o). (9.7) [eqanew0020]

Then by (9.1) and Lemma 9.1,
fe = (—Ae@* — 870s + Apsos. — pF’}{lg*) + WP+ U +pp (‘P”_lwd + ‘Pzé_le,d)
+pFZI)~‘::719* - (FR + B + Q*)p
= V11 + B2+ V21 + B2 + E11 + BE12 + B2 + BPEa
+UP + \Iﬂ;{ — P% +pp ((\ij—l — FR) wWq + (\I/%71 — FR) wR,d>
+pI% (0« + B®R) + T — (Tr+ BOr + 0.)"
= V114 B2+ B2021 + B2 + B°E21 + B2 — N, (9.8)[eqqnew1230]
where ¥; ; is given by (9.5) and by Lemmas 4.1, 4.2, 5.1 and 7.2,

no
Noo = 3 ApuaTh ! (B0n + 0.)' + 0 (T8 + QT + (3°TR) ™ xers..)
=2
= P21+ BE22 + Ny, rems
where B., = {(6,t) € C | |f%021 + fP022| < iU} and
Noorem = 24,18 (‘I’p_gdeB + U wp axs, + F%_zq’RXC\(BuBR)) 0«

+3A4, 2 (‘I’p73w(21XB + \115727311)?%,(1)(313) 0« + 0O (BQF%p_l)Q*XC\(BUBR))
+28Ap1 ((FI})%_Q(I)R — WP 2wg)xp + (T 2@ — W%_sz,dXBR)) 0«
+0 (8 (W2 20R + W30 p0.) x5+ (VF 20 + UF 7 00,) v, ))

o) (I"I’{40[34 + Q}{+UI\% + (BQFR)l-‘rU XC\E**)

no
+Ap TR 20 + Ap oI (380 + 0.)02 + D Apia T (B®R + 0.)'
=4
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By Lemmas 4.11 and 9.1, we immediately have the following.
(1emq12001) T omma 9.2. Letd > 2, a <0 and b= brps(a). Then the following equation,

~ 9~ ~ —1~ = ~ .
—DNo0171,i — 07011, + Arsoi1 —PUY 011 =EZ11, + 01,14, @ C,

(0:¥,01,1,i) = (0r¥R,01,1,5) =0, (9.9) [eqgmew111102]

(wi, 01,1,i) = (WRy, 01,1,5) =0 for all 1 <1 <d,

is uniquely solvable, where

no

p—l 1 s
ZAp,lfer 01,1, 1= 0,
=2

no
- -1 ~ ,
) D> Al ((Qm +01,10) — Ql1,1) ;=1
1=2

i =
no i—1 ! i—2 !
—1 ~ ~ .
ZAp,l—IF% <Q1,1 + Z Q171,k> - <Q171 + ZQl,Lk) , 12>2
1=2 k=0 k=0
and
d d
9 -1 (= ~ -1 [~ ~
V11, = WP <01,1,¢5t‘1’ + Zﬁ,u,lwz) + Ul <CR,1,1,iat\I"R + Z CR,l,l,i,leJ>
=1 =1

with €11.4,¢r 11, and {S1.1,1} and {Sr1,1,:,1} being chosen such that the right hand

side of the equation (9.9) is orthogona} to oV, Vg, {w} and {wg,} in H'(C).
Moreover, 01,1, is even on S4=1 with
@l S Q"M p =3,
{n@,l,nu,l ST 1<p<s
and the Lagrange multipliers satisfy

d
Z(|§~1 it FISr11,i0)) =0 and [+ [Cr114l S Q};((I)_I)M)(Hl)-

£ 1,14,
Next, by Lemmas 4.12 and 9.1, we immediately have the following.
(1emq1002) 1 o ryyma 9.3. Let d > 2, a <0 and b=>bpg(a). Then the following equation,

— Ngo12— 07012+ Apsor o _pF%71§1,2 =E12+ %12, nC,

{00V, 01,2) = (O VR, 01.2) =0, (9.10) [eqqnewi102]

(wy, 01,2) = (Wr,01,2) =0 for all 1 <1 <d,

is uniquely solvable, where ELQ = 2Ap,1F]I”{2<I>R (0110 + D120 01,1,) and

d d
o= gt (El,zat‘ll + Z 51,2,1101) + \11117{1 (ER,1,25t\I/R + Z 51?,,1,2,le,1>

=1 =1

with ¢12,¢r1,2 and {S121} and {Sr1,2.} being chosen such that the right hand
side of the equation (9.10) is orthogonal to 8,¥, &,V g, {w;} and {wg,} in H*(C).
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Moreover, 012 is odd on Se=1 with
~ 7
||Ql,2||ji§]-» D= ga

~ 7
012l S1, 1<p< 3
and the Lagrange multipliers satisfy

d

D (Rizal + Rz

=1

) SQr and |¢12]|+|Cra2| =0.

By Lemmas 4.9 and 9.1, we also immediately have the following.
(1emq11002) T ormma 9.4. Letd > 2, a <0 and b= brps(a). Then the following equation,

— Ngo13— 07013+ Arsons *pFZ;{lEl,s =E13+713, nC,

(0¥, 013) = (0 VR, 01,3) =0, (9.11)[eqqnew211102]

(wy, 01,3) = (Wr,,01,3) =0 for all 1 <1 <d,

is uniquely solvable, where El,g =24,1 (\I!p”wd + \I/%_sz,d> 02,1 and

d d
¥y 3 =WP! (51,33t\1’ + Zi,g,ﬂﬂ) +wht <5R,1,33t‘1’R + Z?R,l,&le,l)

=1 =1

with ¢1,3,¢r1,3 and {S13,} and {Sr1,3,} being chosen such that the right hand
side of the equation (9.11) is orthogonal to 8;¥, OV, {w;} and {wg,} in H*(C).
Moreover, 913 is odd on St with

|01,3
sup —————— <1
(t,0)ec V1= + \I/]R 7

Finally, by Lemmas 4.13 and 9.1, we immediately have the following.
(1emq22001) y eyyma 9.5. Let d > 2, a <0 and b =brgs(a). Then the following equation,

~ 2~ ~ p—1~ _ E Y .
—Ago1,4,0 — 07 01,4,s + Arps01,4 — Py 01,40 = E1,4,0 + V1,44, i C,

(0¥, 01,4,i) = (O VR, 01,4,4) = 0, (9.12) [eqqnew11102]

(wi, 01,4,4) = (WRy, 01,4,) =0 for all 1 <1< d,

is uniquely solvable, where

=1,4,4 =

o no no -1
i~ ~ .
ZlAp,lAF% 01,4,i—1 (Qm + Z Q1,1,k> , 1>1

=2 k=0

o o -1
> 1Api AT (PR + 012 + 81.2) <Q1,1 +) 51,1,k> ; 1=0,
1=2 k=0

and

d d
9 -1 [ = ~ -1 [~ ~
V14, = WP <01,47iat\1' + Z§174,i7lwl> + ol (CR,lA,iat‘llR + Z §R71,4,i,le7l>

=1 =1
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with €1,44,Cr 1,4, and {S1.4,1} and {Sr1,4,:1} being chosen such that the right hand

s Ly FEs

side of the equation (9.12) is orthogonal to 0¥, 0,V g, {w;} and {wg,} in H'(C).
Moreover, 01.4,; is odd on Se1 with

~ —1)A1)i 7
1G1,alls S QWA p> 3

llo1,4lls1 S Q%pil)/\l)i l<p< s

and the Lagrange multipliers satisfy
d

> (Bl + Braaid) S QF ™ and 14l + Era,ail = 0.
=1

Let 0 = 0x + 011 + B(012 + 01,4) + B301,3 with

no no
51,1 = E 51,1,k and 51,42 E 51,4,k
k=0 k=0
and define

fi=—Dolo+v) = F(e+v)+Ars(o+v) — (v+0)P. (9.13) [eqqnen1020]
Then similar to (4.64), (7.4) and (9.8), by Lemmas 9.2, 9.3, 9.4 and 9.5,

f=t1+ 51,1 + B2+ 51,2 + 51,4) + ﬂ2192,1 + 53(192,2 + 51,3) — N, rem,1,
where 911 = 3400 9110 V1,4 = Sop%o V1,4 and
N, rem,1
= 2AP,1/B (‘I’pfzdeB + ‘I’%_QwR,dXBR> (Q — 011 — 51,1 - 5292,1)

+34,,25% (\I/p_?’w?ixs + \I/%_?’w?g’dXBR) 0.+ 0O (Bzfzgpfl)g*Xc\(suBR))

3p— 3(p—1)
2

3p—5 5 -
+0 (ﬁ (‘I’%\I’RXB +Vg* Uxss +1R° XBUBR> (e—o11— 91,1)>
+0O (/82 ((WQP*Q\IJR 4 \1/21773\111%0*) X8 + (\PQR})—Q\I} + \P?_S\PQ*) XBR>)

oo 140
+o(Trf%) + O (Q}z+ %+ (B°Tr) XC\E**)
1 l
no o _ . no N
+> Api T (e +210) — (Qm + ) Ql,l,i)
1=2 =0
no
+> 1A AT (011 + 801)' T (BBram + 82021 + B (022 + 013))
1=2

no 1
—1 ~ -k ~ \k
+ g E ClkAp,l—lrgz (011+011) " (0+BPr—011—011) -
1=2 k=2

(propq0001) Proposition 9.2. Letd > 2, a <0 and b = brs(a). Then

Ifllg-2 ~ B° + Qr,
where Qr = e~ VArsh,



76 J. WEI AND Y.WU

Proof. As in the proof of Lemma 4.10, by Lemma 9.1, the orthogonality of ¥P~19,¥
and {¥P~!w;} in L?(C) and the oddness of wy on S,

_ <\1Jp_1at\1175i,j>L2 _ H\pr_lat\I’HQLz cij+ <\I/P_16t\11, \IJ%_lﬁt‘IfR>L2 CR,i,j
and
. <\1/f;15t\113,3i7j>y - <quflatqf,\pglat%>m cig + 0P 0|2, cr
while for all 1 < < d,
— (WP, i) . = H\I/p_lwszLg Sijl+ <‘I’p_1wl, \I’f{le,z>L2 SR,ijl

and

2
p—1 = — p—1 -1 p—1
- <‘IfR wR,laHi,j>L2 = <\I’R wr,, VP wl>L2 Sijl T H‘I’R wR,lHL2 SRijl-

It follows from Lemma 4.3 that
g = =B (WO, E5) 1+ O (@ llog Qrl (V100 By ) ).
CR,i,j = — B, <\Iﬂ}){718t\I/R7Ei,j>L2 + 0O ( % |10g QR‘ <\I/p716t\11, Ei7j>L2)

and

3p—1 _ _
Gijl = — B <\I/p_1’wl,Ei7j>L2 +0 (QRZ |log Qr| <\Iﬂ}0{ 1wR,l7:i7j>L2> )

3p—
2

1
SRyij,l = —DBux <\Iﬂ}){_1wR,l,Ei,j>L2 +0 (QR llog Qr| <‘1’p_1wl,5i,j>Lz)

for all 1 <1 < d, where B, = ||¥?=19,%| ;% and B.. = |7 wy||[5. Thus, by
(2.7) and Lemma 4.3, the oddness of 9;¥ in R and the oddness of wq on S,

d

c1,1~cri11~Qr and Z (Jst,0,0] + lsr,1,1,]) = 0. (9.14) [eqgnew0023]|

1=1
Similarly, we also have

d

leral +lera2l =0 and > (s120] + sra2:0) S Q. (9.15)[ eqqnew0024|

=1
Again, by (2.7) and Lemma 4.3, the oddness of 9;¥ in R and the oddness of wy on

S41 we have

d

a1~ eran~ QY (ls21l + lsr2,1.
=1

)=0 (9.16) [eaanewozs

and

d
C2,2 =CR22 =0, Z (|s2,2,1] + lsr,2,2,1]) ~ 1. (9.17) [eqgnew0026]|

=1
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On the other hand, we write 021 = a1 ¥ + a1, RV R + 03 Where as;1 and az1,r
are chosen such that <,Q2L’1, \I/> = <92{17 \I/R> = 0. By (9.4) for gz 1, we have

[9]2az1 + O(Qr)azir = (E21,9),.+p <F};{1‘I’, a1V + a1 RYR + Qzl,1>

= Bo+O(Qr) +p||¥|%az,
+0(Qr) (2,1 + 21,1 + [z )

L2

and
[9]Paz,1,r +OQRr)azy = (Z21,VYg),>+p <F117{1‘IJR7 az1V +az1 rVYR + QZL,1>

= Bo+O(Qr) +pl|l¥[az,,r
+0(Qr) (21 + a2,1,r + ||92l1||)7

L2

where EO > 0 is a constant. Now, by similar estimates in the proof of Lemma 7.1,
we have [|o3 || < 1 which implies that

az1 = (1+O(Qr)) az1,r = By + O (Qr) > 0. (9.18) [equuewnew19890 |

We further write 03 = (03.1)+ — (03.1)— where (03,)+ = max{+03,,0}. Since
Zo 1 is positive, by multiplying (9.4) for gz with —(gil), and using (9.16) and
(9.18), we know that ||(03)—|| S Q. It follows from Lemmas 9.2, 9.3 and 9.5
and (9.14), (9.15), (9.16) and (9.17) that

- ~ ~ ~ 2
i1+ + B+ +014)+ 52192,1 + 53(192,2 +v13) ~ B*+ Qr.
L2

By Lemmas 4.3, 9.1, 9.2, 9.3, 9.4 and 9.5, we can estimate as in the proofs of
Propositions 5.1, 6.1 and 7.1 to show that

||NQ*,T€m;1HL2 = 0(53 + QRr)-
Thus, we must have || f||g-1 ~ 3% + Qrg. O

We decompose o0 = a¥ 4+ ar¥p + o~ where & and ag are chosen such that
<\II,EJ-> =0 and <\IIR,§J-> = 0. It follows from Lemmas 9.1, 9.2, 9.3, 9.4 and 9.5

that

|9I%5 + O (Qr) dr = (2, 9) 12 + (T "0, W)
and

|91PaR+0 Q)& = (£ W) + (pTh ', ¥)
where

E=E11+E11+BE12+Ei2+E14) +B%E01 + 3(E00 + Ei) (9-19) [ eqnnewnewi9989 |
with 21,1 = Z?:OO El,l,i and 51,4 = Z?:oo §1,4,i~

1
(propq0003) Proposition 9.3. Letd > 2, a <0 and b = bps(a). Then Hﬂ(I)R + ELH ~ £ s

as B — 0, provided Qr < B3.
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Proof. By the symmetry of 'y about s = &, (9.2) and (9.3),
(B11+ BB12 + B°Ean + 2522, V),
= (E11+BE12+ BE21 + B°Ea, UR),»

A Sa-1
(QDII\I/H’EE1 + 0(1)) On + (m}d\

1935, + 0(1)> B2 (9.20)[eqanew002i]
By Lemmas 4.3, 9.1, 9.2, 9.3, 9.4 and 9.5,

<§1,1 + 5(51,2 + E1,4) + +53§1,37 ‘I’>

L2

(1+o0(1)) <§1,1 + BB +E14) + +6°E1 3, \I’R>L2

= o(Qr+p?). (9.21) [eqqnewi031]
Moreover,
-1 ~ -1 -1 — ~
p(T% p,\I’>L2 = pa (T ,‘I’2>L2 +p((Th - v, Ql>L2
+0 (Qr) ar
= pa|¥|* + O (Qr) (ar +a+ [la"])) (9.22) [eqqmew2021]

and similarly,

p (P59, 0R) | = panlWI + O (@n) (Gn +a + 3. (9.23) [eqmmessoat
It follows from (9.20), (9.21), (9.22) and (9.23) that

a = (1+o(1))ar = (B +0(1)Qr + (C +0(1)8* + OQrllg"[).  (9.24) [sqanewaozi]

where B and C are two positive constants. Since by Lemmas 9.1, 9.2, 9.3, 9.4 and
9.5, o satisfies

— Agot — 025 + Apsot —pl% gt =249, inC,
(U, 0%) = (Vg,0") = (0, 0,07) = (0, ¥R, o) =0, (9.25) [eqauewdii02]
(wy, o) = (wry,07) =0, forall 1 <1<d,
where = is given by (9.19) and
9 =011 4011+ BB12 + D12+ 01,4) + 8021 + 87 (V20 + D1.3). (9.26) 7eqnnewnew199857

By Lemmas 9.1, 9.2, 9.3, 9.4 and 9.5, we can use the same test functions in the
proof of Proposition 9.1 to (9.25) show that

QR> p>2,
o] ~ B* + QellogQRI, p=2,

Thus, by the classical elliptic estimates and (9.24), we have

loll= = O (QE“ log Qr| + 62) : (9.27)

Now, if Qr < 82 then we have ||B<I>R + §LH ~ B~ ||f||§_1,1 by Proposition 9.2. [
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For the sake of simplicity, we denote v = v + . We shall decompose v as in
lemma 3.1 by considering the following variational problem:
2

2
inf T a0, || (9.28) [eqanew0011]
J=1

W2€(Ry)2, T 2€RY

Clearly, as (3.3), the variational problem (9.28) has minimizers, say (af, a3, s, 55),
satisfying

2
dla; -1/ =0 and [5] - 55 = +oo (9.29) [eqanew1005]
j=1

as R — +oo and 8 — 0.

(Propq0002) prophosition 9.4. Let d > 2, a < 0 and b = brs(a). Then for R > 0 sufficiently
large and B > 0 sufficiently small, the variational problem (9.28) has a unique
minimizer, say (a5, as, s7,55), satisfying

SI=0(8"+Qk), 55=R+0(8'+Q})
and

<pa \I/R>
(NI

_ Y
12

a;—1 +O(B'+QR), a3-1= +0 (8 + Q) -

Proof. Since (aj,as,st,5s) is a minimizer of the variational problem (9.28) and ¥
and 0;¥ are solutions of (2.5) and (2.6), respectively, we have

2 2
- <’ﬁ— Zar%:7%;> = <6— Zar%w%;> (9-30) [eqsne0o17]
i=1 i=1 L

2

and

2 2
0= <5— Za;mg;,atng;> = <5— > a:\Pg:,p\I/g;_lat\I/g;> (9.31) [eqqnew0016|
i=1 L2

i=1
for all j = 1,2. By the oddness of wg on S¥~!, the oddness of ;¥ in R, (9.29) and
(9.31), we have Z?Zl |ar] <1 and

J5¢ -3
~ -1 1
(Tpwiows ) =0 (s, W2 05 ) ) =0 (QR . ) .

Recall that o = 011+ 01,1 + B(01,2 + 01,2 + 01,4) + 82021 + 83(02,2 + 01,3). Thus,
by Lemmas 9.1, 9.2, 9.3, 9.4 and 9.5,

(o vz o) | <8 +@n (9:32) sammevcota
On the other hand, for every s; < %, by Lemma 4.3,
R—s
(rrwptow,) = (vuiae,) +0(@ ). (033 ooy

Note that by the evenness of ¥ in R, <\I!, Ur=19,W, > , = 0 has a uniquely nonde-
J J L
generate solution s; = 0 on (—oo, g] Thus, by (9.32), (9.33), the symmetry of T'r



80 J. WEI AND Y.WU

about s = &, for R > 0 sufficiently large, the solution of (9.30) and (9.31) must
satify

57=0(8+Qr) and 55=R+0(8+Qr). (9.34) [eqqmew0031 |

which, together with (9.30), implies that
(Tr+e92) =& 0)2+0((s:,0%) ) =&[9]*+ 0 (Qnr)
for all j = 1,2. Similar to (9.32) and (9.33), we have
(Tr+e,92.)  =|V|*+0 (5 +Qur).
il L2

Thus, we also have

& =1+0(5 +Qn). (9.35) [eaanenoszo

Now, by (9.31) once more, the oddness of 97V, the Taylor expansion and the
orthogonal conditions of p given by Lemmas 9.1, 9.2, 9.3, 9.4 and 9.5, we have

2
<5— Za;\pg;,at%>
i=1

s 1 -1
= (U,0,05),, + <\1/R sy, UL 3t%f>m + <Q,p\I/§,{ atxpgT>L2

0

— (U7, 000) .51+ O ((3)) + (1 — &) (Wsy pU 1005, )
+ (00 UL 005 ) (35— R)+ O (33— B + llello=57)

which, together with (9.27), (9.34) and (9.35), implies that 57 = O (8*+ Q%).
Similarly, we also have 53 = R+ O (8*+ Q%). Again, by (9.30), (9.35) and the
Taylor expansion,

(Tr+e92) = &lv)?+ (s 0% ) +0((8+Qr)°)
= G+ (TR L) O (8 +QR),
which, together with

2
(Trto92) = II?+ (U 08) +(pW%) .

1

implies that af — 1 = f@‘ﬁ’g + O (B*+QY%). Similarly, we also have a3 — 1 =

el + O (B +Qh). O

Let vy = max{+v,0}. Then v = v; — v_ and by (9.7),
Ay — O, + Apsts — T, = f+G() = fr,. (9.36)[equmentozo

where G(V_) = —Agv_ — 020_ + Apsv_ — 0.

Proof of (2) of Theorem 1.3: Recall that we have the decomposition

t=v+aV+arVer+0- (9.37) [eqanew0028]

in H1(C), where by the orthogonal conditions of g* and (9.24),
~ 2 ~ 2
(0, 0) =a|w|*+0 (8 +Qr)°) and (0. W) = Gxl|¥|*+0 (8 +Qr)°).
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It follows from Proposition 9.4 that
B 14EHO(F QR and G =1hantO(P Q). (938) fsamerseos

which, together with Proposition 9.4 once more and the Taylor expansion, implies
that

2
o= ) aUs+0
j=1

= Tr+aV+ar¥r+0+0 (8" +Q%) (9.39) [eqqmew0029 |
in HY(C). By (9.37) and (9.39), we have
G= BOn+ 5+ O (5 + Q).
Thus, by (9.24), (9.38) and Proposition 9.3, we have

2 2
CEDICA ] R DBICES]
j=1 j=1

1
~ Wl (9.40) [eqanew0032]

provided Qg < 3. By Lemmas 9.1, 9.2, 9.3 and 9.5, we know that

2

5—§:m§

j=1

|BPR+ 011+ 011+ B(o12+ 012+ 014)| STr

in C for sufficiently small 3 and sufficiently large R. Thus, 0 < 0_ < 32021452022
in C. It follows from (9.7), Lemmas 9.1 and 9.4 and Proposition 9.2 that

=12 $ (£,0-),e = O (82 + Qr)°)

which, together with (9.36) and (9.40), implies that v is the desired function. O

(rmkn0001) Remark 9.1. The optimal ezample of Theorem 1.3 in this section, given by v =

v + o, precisely describes the relation between || f||z-1 and dist g (v, M?) where

2
dist (T, M?) = - +ir)12f’_s)2€w v — Z a; Uy,
Jj=1 H1
Indeed, we have ||f||z-1 ~ B> + Qr and
Qr, p>2,
disty (T, M2) ~ B+ { QrllogQr|, p=2,
QL 1<p<2
If the interaction of two bubbles is much smaller than the pr?jections on nontrivial

kernel, that is, 3% 2 Qr, then we have disty: (0, M?) ~ I fll 3= If the interaction
of two bubbles is much large than the projections on nontrivial kernel, that is,

QR? p>27
B<{QrllogQr|, p=2,

P
Qp, 1<p<2,
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then we have
||fHH*17 p>2a

dist 1 (U, M?) ~ { | fll=1 og [ flla-], » =2, (9.41) [eqnnewnew19967]

ya
Ifll7-, 1<p<2

If the interaction of two bubbles is somehow comparable with their projections on
nontrivial kernel, that is > < Qg and

Qr, p>2,
BZ QR“OgQR'a p:2a

QL 1<p<?2,

then distg: (U, M?) ~ || f||4—1 for some t between the values in (9.41) and %.
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