Jor any multi-index « we have

' "
(2:32) sup [D“uis(%) sup |y
. @ 2

where d=dist (', 20,

An immediate consequence of the bound (2.32) is the equicontinuity on com-
ivatives of any bounded set. of harmonic functions, ‘
y by Arzela's theorem, we see that any bounded set of harmonic

Tms a normal family; that is, we have: - '

Theorem 2,11, 4y y bounded sequence of harmonic functions onadomain Q contgins
a subsequence converging uniformly on compact subdomaing of Q2 toa harmonic
Sunction, : y

The previous corivergence theorem, Theorem 2.8, would alsp follow im-
mediately from Theorem 2.11, ! -

£ and every function 4 harmonic in 8 satisfying u<(> )h
S(2)hin B. The following properties of C°(Q) subharmonic
'fu_nctions.aré readily established : , & !
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and we may assume there is @ ball B=B(Xo) such‘tbéi u—uv# M on 8B, Letting
v denote the harmonic functions re;sp_ectively equal tou, ron 3B (Theorem 2.6),
one sees that .

M3 sup (a—0)2 (H—D)(xg) > (U =0) (xo)=M,
oB : '

‘and hence the equality holdé throughout. By the-strong maximum principle for

harmonic functions (Theorem 2.2) it follows that a-=M in B and heace

u—v=M on 0B, which contradicts the choice of B. . ,
© (i) Letube subharmonic in.Qand B bea ball strictly contained in Q. Denote

by ii the harmonic functionin B (given'by the Poisson integral of #on dB) sausfying
fi=u on 0B. We define i Q 'the harmonic lifting of u (in BY by

4 ii(x), xe€B
: (2,.3_3)4 U(x).—{__u-(x); cOQ-B.
Then the function U is also subharmonic in £. For consider an arbitrary ball
B'ecQandlethbea harmonic function in B’ satisfying h= U on 2B .Sinceus U
in B we have u<hin B’ and hence U<hin B' — B. Also since U is harmonic in B,
we have by the maximum principle Uhin B 0 B'. Consequently U<hin B and
U is subharmonic in Q. : ‘

(i) Let uy, Uys .. - Uy DE subharmonic in . Then the function u(x)=max
{uyx), .. uy(X)} is also subharmonic in £. This is a trivial consequence of the
definition of subharmonicity. Corresponding results for superharmonic-functions
are obtained by replacing u by —u in properties (i), (i) and (iii).

‘Now let © be bounded and ¢ be a bounded function on 8Q. A C°(&) sub-
harmonic function  is called'a subfunction relative to @ if it satisfies u <@ on 2Q.
Similarly 2 C°(2) superharmonic function is called a superfunction relative to @ ifit

 atisfiss w> @ on 8Q. By the maxitmum principle every subfunction is less than or -

equal to every superfunction. In particular, constant functions <inf @ (=sup @)
, : an on

. are subfiznctions (superfunctions). Let S, denote the set of subfunctions relative
to @. The basic result of the Perron method is containedin the following theorem.

Theorenz.ll Tm}fgnvcl‘ion u(x)= sup v(x) is harﬁonic in Q.

veS,

" Proof. By the tzaximam principle any functionv €S, satisfies v <sup ¢, so thatu is
~well defined. Les y be za arbitrary fixed point of Q. By the definition of u, therg exists
a sequence {g.} =3, sach that v (y) — u(y). By replacing v, with max (v, inf o),
‘we may assume that the sequence {v,} is .bounded. Now choose R s0 that the
_ball B=Bg(y)<= o0 =2 dzfine ¥, to be.the harmonic lifting of v,in-B according
to (2.33). Then V &3, ¥i¥— u(y) and by Theorem: 2.11 the sequence {V,}
contains a subsequence {¥_} converging uniformly in any ball B,( y) with p<R
to a function v that is hesmceac i B. Clearly v<u in Band v( y)=u(y). We claim

now that infact v=u10 B. For seppose w{z)<u(z)atsome z € B. Then there exists

e

dr——

s
e

&

[l

2 8. The Dirichlet Pro

a function i€ S,

harmonic liftings
sequence { W} co
p(y)=w(y)=ul¥)
This contradicts

The precedin;
solution (called 1
u= ¢ on 08. Ind
with the Perron s
and by the maxirm
of Theorem 2.12
Theorem 2.9, in
2.10).

In the Perro
essentially separ
houndary values
the concept of 1
w = w, is called

(i) wis sup
iy w>01in

An importa

" the boundary ¢

is a neighborh
Then a barrier.
{e Bcc N an

is then a barr
Indeed, W is ¢
harmonic fur
A bounda
exists a barri
The consn
contained n

Lemma 2.13.
(Theorem: 2.}
u(x)y — otls

Proof. Cht
is 2 harner «
such that ‘o
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: a function # € S, such that v(z) < #(2)- Defining wy = max (@, V,,) and also the
harmonic liftings W, as in (2.33). we obtain as before a subsequence of the
sequence (W, converging to a harmonic function w satisfying v <w<uin Band
u(y)='.1-'(y)=u(y}. But then by the maximum principle we must have p=w in B.
This contradicts the definition of # and hence u is harmonic in . O
The preceding result exhibits 2 harmonic function which is a prospective
solution (called the Perron solution) of the classical Dirichlet problem: Au=0,
u=¢ on 0% Indeed, if the Dirichlet problem is solvable, its solution is identical
with the Perron solution. For let v be the presumed solution. Then clearly w € Se
and by the maximum principle w2 forallu e S,. Wenote here also that the proof
'. of Theorem 2.12 could have been based on the Harpack convergence theorem.
Theorem 2.9, instead of the compactness. theorem. Theorem 2.117 (see Problem

| 2.10).
In the Perron

of the solution is

boundary behaviour
ption of

method the study of

essentially separate from the existence problem. The continuous assum

houndary values is connected to the geometric properties of the boundary through
barrier function, Let £ be 2 point of 8Q. Then @ %@y function

%‘ the concept of
L W= W is called a barrier at & relative to Q if:
, C(i) wis superharmonic in Q.
| (iiy w>0in 8—&1w (&)=0.
1l _ An important feature of the barrier concept is that it is a local property of
| the boundary 6Q. Namely, let us'define w to be a local barrier at & € 09 if there
! is a neighborhood N of & such that w satisfies the above definition in £ N N.
' Theh a barrier at & relative to ) can be defined as follows. Let Bbea ball satisfying
\ te BccNandm= inf w>0. The function
\ . N-B
| .
. o {min (myw(x)), XE QnB
| Sw(x)= =
;: | m, xeQ—-B
is then a barrier at ¢ relative to £, asone sees by confirming propefties (i) and (i)
Indeed, W is continuots in Q and is superharmonic in Q by property (iii) of sub-
harmonic functions; property (i) is immediate. - .
A boundary point will be called regular (with respect 10 the Laplacian) if there
exists a barrier at that point. -
& The connection between: the barrier and boundary behavior of solutions s
T contained in the following. '

¢ harmonic_function defined in S by the Perron pre i
Q and @ is continuous at &, ther

l , i
Lemma 2.13. Let u he th
gular_boundary'-poim of

(Theorem 2.12). If&isare
u(x) — @&y as x = &

I
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i Progf. Choosee> 0.and let M = sup Lol Sincef isa regulard
is a barrier wat & and, by virtue of the continuity of ¢ there a

i . such that [@(x) —p(&<e if |x — ¢ < &, and kw(x)2 M if\:g -
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@(&)+e+kw, (&) — e—kw are respectively superfunction and subfunction relative
to ¢. Hence ftom the definition of w and the fact that every superfunction dominates
every subfunction, we have in Q. ’

O(8) =&~ kw(x) S u(x)K Q(&) + e+ kw(x)

lu(x) — pron < e+ kw(x).
Since w(x) — 0 as x —» £, we obtain u(x) — o(E)asx > & O
This leads immediately to

"I'heoi'em 2.14.  The classical Dirichlet problem in a bounded domain is solvable for
arbitrary contirivous boundary values if and only if the boundary points are all regular.

Proof. If the boundary values ¢ are continuous and the boundary 0§ consists of
regular points, the preceding lemma states that the. harmonic function provided by
the Perron method solves the Dirichlet problem. Conversely, suppose that the-
Dirichlet problem is solvable for all continuous boundary values. Let ¢ € 6Q. Then
the function @(x)=|x —¢| is continuous on 82 and the harmonic function solving
the Dirichlet problem in Q with boundary values ¢ is obviously a barrier at &,

Hence £ is regular, as are all points of 0Q, O

The important question remains:, For what domains are the boundary points
regular? It turns out that general sufficient condifions ¢an be stated in terms of
local geometric properties of the boundary. We mention some of these condifions
below. :
If n=2, coasider & boundary point z,.of a bounded domain'(2 and take the
origin at z, with polar coordinates r, 8. Suppose there is a neighborhood A-of z,
such that a single valued branch of 6 is defined in-Q N,-or in a component of
£ n N having z, on its boundary. One sees that : y =

_ logr
: logir+6?

Alocal barrier at g and hence z, is a regular point. In particular, z, is a regular
ary point if it is the endpoint of a simple arc lying in the exterior of Q. Thus
Pirichlet problem in the plane is always solvable for continuous boundary
in a (bounded} domain whose boundary points are each accessible from the
3% by 4 simple arc. More generally, the same barrier shows that the boundary
oblem is solvable if every component of the complement of the domain
more than a singlke point. Examples of such domains are domains

y a finite number of sfmple closed curves. Another is the unit disc slit °

¢ in this case the boundary vaiues’can be assigned on opposite sides of -
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2.9. Capacity 27
For higher dimensions the situation is substantially different and the Dirichlet -
problem cannot be solved in corresponding generality. Thus, an-example due to
Lebesgue shows that a closed surface in three dimensions with sufficiently sharp
inward directed cusp has. a non-regular (see for

example [CH]). . ‘
A simple sufficient condition for solvability in a bounded, domain Q=R is

that € satisfy the exterior sphere condition; that is, for every point &€ 0Q, there
exists a ball B=Bgl y) satisfying B Q=¢ 1fsucha condition is fulfilled, then the

function W given by

point at the tip of the cusp;

R""-lx-—y\'z"‘ fornz3

(2'.34_) w(x)= Ioglﬂ forn=2

R
at &. Consequently the boundary pb'mts of a domain with Cc?

will be a barrier
nts; (see Problem 2.11).

b_oundary are all regular poi

2.9. Capacity

The physical concept of capacity provides another means of characterizing regular
and exceptional boundary points. Let Qbea bounded domain in R(n = 3) with

boundary 92 and let u be the harmonic function (often called the con-
complement of 0 and satisfying the boundary -

0 at infinity. The existence of i is easilyestablished
functions u’ in an expanding sequence of bounded

boundary (on which ' = 1) and with outer
ding to infinity. If £ denotes 20 or any smooth

smooth
ductor potential) defined in the

conditionsu = 1 o0 dQandu =
as the (unique}limit of harmonic
domains having 0£ as an. inner
boundaries (on which u' = 0) ten
closed surface enclosing £, then the quantity

ou

cap Q= — jé— ds = = outer normal

: j \Du\z dx

z R’ -0

(2.35)

atics, cap Qs withina constant factor

is defined to be the capacity of .In electrost
(relative 1@

the total electric charge on.the conductor 50 held at unit potential

infinity). :
Capacity can
any compact set as
approximating SmMOoo
o ‘be given directly without use ©
i particular, W& have the variational ¢

I

1so be defined for domains with nonsmooth boundaries and for
the (unique) limit of the.capacities of a nested sequence o
thly bounded domains. Equivalent definitions of capacity 24

f approximating domains (€8~ see [LKI: 1=

haracterization”

r .
(2.36) cap € = inf j \Dvl?,

vek ¥



