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ON NON-SIMPLE BLOWUP SOLUTIONS OF LIOUVILLE EQUATION

TERESA D’APRILE, JUNCHENG WEI, AND LEI ZHANG

ABSTRACT. For Liouville equation with quantized singular sources, the non-
simple blowup phenomenon has been a major difficulty for years. It was conjec-
tured by the first two authors that the non-simple blowup phenomenon does not
occur if the equation is defined on the unit ball with Dirichlet boundary condi-
tion. In this article we not only completely settle this conjecture in its entirety,
but also extend our result to cover any bounded domain. Since the main theo-
rem in this article rules out the non-simple phenomenon in commonly observed
applications, it may pave the way for advances in degree counting programs,
uniqueness of blowup solutions and construction of solutions, etc.

1. INTRODUCTION

In this article we study the following Liouville equation with finite singular
sources: let Ω be an open, bounded and connected subset of R2 with smooth bound-
ary ∂Ω and let u be defined as

(1.1) ∆u+ eu =
M

∑
t=1

4πγtδpt in Ω

where p1, ..., pM are points in Ω, γ1, ...,γM are constants greater than −1. If a
γt is a positive integer (γt ∈ N, N is the set of natural numbers), we say pt is a
quantized singular source . Studying the asymptotic behavior of blowup solutions
is particularly important for a number of applications. Let uk be a sequence of
solutions of (1.1); we say {uk} is a sequence of blowup solutions if, for a point
p∈Ω, there exist xk → p such that uk(xk)−2γp log |xk− p|→∞. Here we set γp = 0
if p is not a singular source. For a sequence of blowup solutions uk, it is standard
to assume a uniform bound on the total integration and boundary oscillation: there
exists C > 0 independent of k such that

(1.2)
∫

Ω

euk ≤C

and

(1.3) |uk(x)−uk(y)| ≤C, ∀x,y ∈ ∂Ω.

If a blowup point p is either a regular point or a “non-quantized” singular source,
the asymptotic behavior of uk around p is well understood (see [3, 7, 13, 14, 21,
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26, 27, 32, 45, 44]). As a matter of fact, uk satisfies the spherical Harnack in-
equality around p, which implies that, after scaling, the sequence uk behaves as a
single bubble around the maximum point. However, if p happens to be a quantized
singular source, the so-called “non-simple” blowup phenomenon does happen (see
[25, 39, 40, 41]), which is equivalent to stating that uk violates the spherical Har-
nack inequality around p. The study of non-simple blowup solutions has been a
major challenge for Liouville equations and its research laid dormant for years. Re-
cently significant progress has been made by Kuo-Lin, Bartolucci-Tarantello and
other authors [5, 6, 17, 25, 39, 40, 41]. In particular it is established in [6] and [25]
that there are γp + 1 local maximum points and they are evenly distributed on S1

after scaling according to their magnitude.
The case γp ∈N is more difficult to treat, and at the same time the most relevant

to physical applications. Indeed, in vortex theory the number γp represents vortex
multiplicity, so that in that context the most interesting case is precisely when it
is a positive integer. The difference between the case γp ∈ N and γp ̸∈ N is also
analytically essential. Indeed, as usual in problems involving concentration phe-
nomena like (1.1), after suitable rescaling of the blowing-up around a concentration
point one sees a limiting equation which, in this case, takes the form of the planar
singular Liouville equation:

∆U + eU = 4πγδp in R2,
∫
R2

eU dx < ∞;

only if γp ∈ N the above limiting equation admits non-radial solutions around p
since the family of all solutions extends to one carrying an extra parameter (see
[35]). This suggests that if γp ∈N and the blow-up point happens to be the singular
source, then solutions of (1.1) may exhibit non-simple blow-up phenomenon.

So, from analytical viewpoints the study of non-simple blowup solutions is far
more challenging than simple blowup solutions, but the impact of this study may be
even more significant because non-simple blowup solutions represent certain situ-
ations in the blowup analysis of systems. If local maximums of blowup solutions
in a system tend to one point, the profile of solutions can be described by a Liou-
ville equation with quantized singular source. It is desirable to know exactly when
non-simple blowup phenomenon happens. In [17] the first two authors studied the
following equation:

∆u+λeu =
M

∑
t=1

4πγtδpt in Ω ⊂ R2,(1.4)

u = 0 on ∂Ω,

where Ω is an open and bounded subset of R2, p1, ..., pM ∈ Ω, ∂Ω is smooth, λ > 0
and γt ∈ N. We note equation (1.4) transforms into a Liouville equation with no
boundary condition of the type (1.1) by using the presence of the free parameter
λ > 0 under the transformation u= u(x)+ logλ ; then, we say that uk is a sequence
of blow-up solutions of (1.4) with parameter λk → 0+ if, for some point p ∈ Ω,
there exists xk → p such that uk(x)+ logλk −2γp log |xk − p| → +∞ and there is a
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uniform bound on its mass:

(1.5) λk

∫
Ω

euk <C.

In [17] it was conjectured that if Ω = B1, M = 1 and p1 = 0, then there is no
non-simple blowup sequence in B1. This conjecture of D’Aprile and Wei was
considered audacious since there was no restriction of number of bubbles inside Ω

and only the Dirichlet boundary condition is placed. The purpose of this conjecture
is to claim that the boundary data seem to have a great influence on the profile of
blowup solutions inside. In comparison, the series of works of Wei-Zhang [39,
40, 41] focuses on the vanishing rate of coefficient functions. In this respect, the
conjecture of D’Aprile and Wei seems more natural and useful for application. In
the first main result we completely settle this conjecture in a far more general form:

Theorem 1.1. Let uk be a sequence of blowup solutions of (1.4) with parameter λk
that satisfies (1.5). Then uk is simple around any blowup point in Ω.

Theorem 1.1 does not impose any symmetry condition on Ω. As long as Ω is
a bounded open set with smooth boundary, the conclusion of Theorem 1.1 holds
under a natural uniform bound on its mass λ

∫
Ω

eu. This comes as a complete
surprise. (Note that by a nice result of Battaglia [8], the mass λ

∫
Ω

eu is uniformly
bounded as long as Ω is simply connected and M = 1. In particular when Ω =
B1,M = 1, the mass is uniformly bounded. As a result we have completely solved
the original conjecture of the first two authors.)

If the boundary condition is the usual oscillation finiteness assumption (1.3), we
can also rule out non-simple blowup in a surprising way. The second main result
is:

Theorem 1.2. Let uk be a sequence of blowup solutions of (1.1) such that (1.2)
and (1.3) hold. If there are at least two blowup points in Ω, each blowup point is a
simple blowup point.

Theorem 1.2 is also unexpected. First there is no requirement on the data of uk
on ∂Ω except that the oscillation of uk is finite. There is also no specific require-
ment of what Ω has to be. As long as there are at least two blowup points in Ω,
each one of them has to be simple. Thus non-simple blow-up, if happens, can only
be single. This greatly simplifies the blowup analysis in many applications.

The conclusions of Theorem 1.2 and Theorem 1.1 rule out non-simple blowup
phenomenon in several applicable situations. They seem to suggest that the only
case that non-simple blowup solutions occur is when the profile of blowup solu-
tions is very close to global solutions in the classification theorem of Prajapat-
Tarantello [35]. The proofs of the main results should lead to advances in multiple
related problems. Even though we study only one equation in this article, it rep-
resents certain situations in systems. For example, in the blowup analysis of Toda
systems, which has ties with conformal geometry, algebraic geometry, integrable
system and complex analysis [28, 36, 37, 42, 46], one always needs to compare
blowup speeds of different components. If different components all tend to infin-
ity in a neighborhood of one blowup point, the behavior of the “fast” component is
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similar to a quantized singular source to “slow” components. Therefore the asymp-
totic behavior of blowup solutions of Liouville equation with quantized singular
source provides crucial information for systems.

It is also important to point out that the study of singular equation with “quan-
tized” singular source is ubiquitous in mathematical literature; the nonsimple blow-
up phenomenon also appears in the research of Liouville system [23], prescribing
Q curvature equation [1], Monge-Ampere equation [14] and the vortices in a planar
model of Euler flows [19], etc.

The proof of Theorem 1.2 comes naturally from Theorem 2.1, which contains
most of the key ideas. The proof of Theorem 2.1 is by way of contradiction. If
non-simple blowup happens, the blowup solutions (denoted vk) would have N +1
local maximums evenly distributed around the unit disk. We shall use N+1 global
solutions, each is very close to vk near a local maximum. Even though these N +1
global solutions are close to one another, their mutual difference can be captured
as kernels of linearized Liouville equation. The mutual locations of the local maxi-
mum points plays a key role in our argument. One way to understand this argument
is that vk cannot be very close to different global solutions at the same time. In or-
der to obtain a contradiction, the point-wise estimate has to be very precise. In
this article we use Fourier analysis to obtain precise pointwise estimates around
one “easy point” first. Then this accuracy can be passed to other regions by Har-
nack inequality. In the final step a contradiction can be obtained by comparing
Pohozaev identities of vk and other global solutions. Another key ingredient in our
proof is that the behavior of vk on the boundary of its domain is significantly differ-
ent from all the approximating global solutions. This difference can be turned into
a contrast on coefficient functions, which leads to a contradiction from Pohozaev
identities. This set of ideas has turned out to be not only successful for single
equations [39, 40, 41], but also in Toda systems [38]. Many related projects such
as construction of blowup solutions, the uniqueness of blowup sequence, etc will
also be influenced by the proof in this article. The research in these directions will
be carried out soon.

The organization of the article is as follows. From Chapter 2 to Chapter 4 we
present the key proposition needed for the proof of the main theorem. The proof
of Theorem 2.1 in these chapters contains the key ingredients, which are inspired
by a series of works of the second and third authors [39, 40, 41]. Finally we place
some computations in the appendix, which consists of the last three chapters.

Notation: We will use B(x0,r) to denote a ball centered at x0 with radius r. If
x0 is the origin we use Br. C represents a positive constant that may change from
place to place.

2. LOCAL APPROXIMATION

In the section we study the following local equation defined in the unit disk B1
in R2:

∆u+ eu = 4πNδ0, in B1
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where N is a positive integer. Since ∆( 1
2π

log |x|) = δ0 we can use this function to
write the equation above as

(2.1) ∆u+ |x|2Neu = 0,

if we set u(x) = u(x)− 2N log |x|. The purpose of this section is to study blowup
solutions of (2.1).

Let uk be a sequence of solutions of (2.1):

(2.2) ∆uk + |x|2Neuk = 0, in B1

We say uk is a sequence of blowup solutions with blowup point at the origin, if
there exists xk → 0 such that uk(xk)→ ∞ as k → ∞. Suppose the oscillation of uk
on the boundary of B1 is finite:

(2.3) |uk(x)−uk(y)| ≤C, ∀x,y ∈ ∂B1

for some C > 0 independent of k, and there is a uniform bound on the integration
of |x|2Neuk :

(2.4)
∫

B1

|x|2Neuk <C.

Our goal is to study the asymptotic behavior of uk near the origin and its relation
with the oscillation of uk on ∂B1 (the boundary of B1). For this purpose we set

Φk(x) = uk(x)−
1

2π

∫
∂B1

uk, x ∈ B1.

Since uk has bounded oscillation on ∂B1, Φk(0) = 0 and all the derivatives of Φk
are uniformly bounded in B1/2. Let Φ be the limit of Φk over any fixed compact
subset of B1.

Then our assumption of Φk is

(2.5) Either Φ ̸= 0 or Φk ≡ 0.

Theorem 2.1. Let uk be a sequence of blowup solutions of (2.2) that takes 0 as its
only blowup point in B1. Suppose (2.5) and (2.4) hold. Then uk is a simple blowup
sequence:

uk(x)+2(1+N) log |x| ≤C
for some C > 0.

3. PROOF OF THEOREM 2.1

Suppose non-simple blowup does happen. It is well known [25, 5] that there are
exactly N+1 local maximums forming a circle around the origin. We use pk

0,...,pk
N

evenly distributed on S1 after scaling according to their magnitude: Suppose along
a subsequence

lim
k→∞

pk
0/|pk

0|= eiθ0 ,

then

lim
k→∞

pk
l

|pk
0|

= ei(θ0+
2πl

N+1 ), l = 1, ...,N.
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For many reasons it is convenient to denote |pk
0| as δk and define µ̄k as follows:

(3.1) δk = |pk
0| and µ̄k = uk(pk

0)+2(1+N) logδk.

Since pk
l ’s are evenly distributed around ∂Bδk , standard results for Liouville

equations around a regular blowup point can be applied to have uk(pk
l ) = uk(pk

0)+
o(1). Also, µ̄k → ∞. The interested readers may look into [25, 5] for more detailed
information.

We write pk
0 as pk

0 = δkeiθk and define vk as

(3.2) vk(y) = uk(δkyeiθk)+2(N +1) logδk, |y|< δ
−1
k .

If we write out each component, (3.2) is

vk(y1,y2) = uk(δk(y1 cosθk − y2 sinθk),δk(y1 sinθk + y2 cosθk))+2(1+N) logδk.

Then it is standard to verify that vk solves

(3.3) ∆vk(y)+ |y|2Nevk(y) = 0, |y|< δ
−1
k ,

Thus the image of pk
0 after scaling is Qk

0 = e1 = (1,0). Let Qk
1, Qk

2,...,Qk
N be the

images of pk
i (i = 1, ...,N) after the scaling:

Qk
l =

pk
l

δk
e−iθk , l = 0, ...,N.

It is established by Kuo-Lin in [25] and independently by Bartolucci-Tarantello in
[5] that

(3.4) lim
k→∞

Qk
l = lim

k→∞

pk
l /δk = e

2lπi
N+1 , l = 0, ....,N.

Then it is proved in our previous work that ( see (3.13) in [39])

(3.5) Qk
l − e

2πli
N+1 = O(µ̄ke−µ̄k).

Choosing 3τ > 0 small and independent of k, we can make disks centered at Qk
l

with radius 3τ (denoted as B(Qk
l ,3τ)) mutually disjoint. The µ̄k in (3.1) is

µ̄k = max
B(Qk

0,τ)
vk.

Since Qk
l are evenly distributed around ∂B1, it is easy to use standard estimates for

single Liouville equations ([45, 21, 15]) to obtain

max
B(Qk

l ,ε)
vk = µ̄k +o(1), l = 1, ...,N.

Let

(3.6) Vk(x) = log
eµ̄k

(1+ eµ̄k

8(1+N)2 |yN+1 − e1|2)2
.

Clearly Vk is a solution of

(3.7) ∆Vk + |y|2NeVk = 0, in R2, Vk(e1) = µk.
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This expression is based on the classification theorem of Prajapat-Tarantello [35].
Now we use the following expansion of Vk for |y|= Lk (Lk = δ

−1
k )

Vk(y) =−µ̄k +2log(8(N +1)2)−4(N +1) logLk +
2

L2N+2
k

(3.8)

+
4cos((N +1)θ)

LN+1
k

+
4

L2N+2
k

cos((2N +2)θ)

+O(L−3N−3
k )+O(e−µ̄k L−2N−2

k ).

To eliminate the main oscillation of vk −Vk on ∂Ωk, we set φv,k(δk·) be the har-
monic function on ∂Ωk such that Vk(y)−φv,k(δky) has no oscillation. The reason
we use φv,k(δk·) is because φv,k is the harmonic function that eliminates the oscilla-
tion of Ṽk on ∂B1. Ṽk is a re-scaled VK :

Ṽk(δky)+2(1+N) logδk =Vk(y).

on ∂B1. From the expression of Vk we see that φv,k → 0 uniformly on B1. It is easy
to see that the leading terms of φv,k(δky) are

φv,k(δky) =
4

L2N+2
k

rN+1 cos((N +1)θ)+
4

L4N+4
k

r2N+2 cos((2N +2)θ)+ ....

Naturally we define φ0,k(y), h0,k and v0,k as

φ0,k(y) = Φk(δky)−φv,k(δky)
(3.9)

= Φk(δky)−4δ
2N+2
k rN+1 cos((N +1)θ)−δ

4N+4
k r2N+2 cos((2N +2)θ)+ ...

(3.10) h0,k = eφ0,k .

v0,k = vk −φ0,k,

and we write the equation of v0,k as

(3.11) ∆v0,k +h0,k|y|2Nev0,k = 0, in Ωk

Based on the definition of h0,k in (3.10) we prove

Lemma 3.1. There exist and integer L > 0 ,δ ∗
k ∈ (δ L

k ,δk) an integer 0 ≤ s ≤ N such
that

(3.12) ∇h0,k(e
2πis
N+1 )/δ

∗
k ̸= 0.

Proof of Lemma 3.1: The proof of (3.12) is based on (2.5). We first write the
expansion of Φk(x) as

Φk(x) =
∞

∑
n=1

rn(ak
n cos(nθ)+bk

n sin(nθ))
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where x = reiθ and the two sequences |ak
n| and |bk

n| are uniformly bounded from
above. They could tend to zero for some n. The expansion of φv,k(x) can be written
as

φv,k(x) =
∞

∑
n=1

rn(ak
n,v cos(nθ)+bk

n,v sin(nθ))

with ak
n,v and bk

n,v both tending to zero as k → ∞ for each fixed n. Then clearly

φ0,k(y) = Φk(δky)−φv,k(δky)

=
∞

∑
n=1

δ
n
k rn

(
(ak

n −ak
n,v)cosnθ +(bk

n −bk
n,v)sinnθ)

)
.

Obviously we use y = reiθ in this case. If Φ ̸= 0 (see 2.5) there exists an integer L
such that |ak

L|+ |bk
L| ≥C > 0 for some C > 0 independent of k. Now we set δ ∗

k as

δ
∗
k :=

L

∑
n=1

δ
n
k (|ak

n −ak
n,v|+ |bk

n −bk
n,v|).

We make three trivial remarks about δ ∗
k . First

δ
∗
k ≥Cδ

L
k

because |an
L|+ |bn

L| ≥ C for some C independent of k. Second, since it is only a
finite sum in the definition of δ ∗

k , δ ∗
k is comparable to

max
1≤n≤L

(|ak
n −ak

n,v|+ |bk
n −bk

n,v|)δ n
k .

The third observation is
∞

∑
n=L+1

(|ak
n −ak

n,v|+ |bk
n −bk

n,v|)δ n
k = O(δ L+1

k ).

In other words, the quantity is far less than δ ∗
k . Our goal is to compute ∇φ0,k at

points close to ∂B1. We use the following formula:

|∇φ0,k(x)|2 = |∂rφ0,k|2 +
1
r2 |∂θ φ0,k|2, |x| ∼ 1.

For convenience we use

(ak
n −ak

n,v)δ
n
k = δ

∗
k |ck

n|cos(β k
n ), (bn −bn,v)δ

n
k = δ

∗
k |ck

n|sin(β k
n ).

Note that at least one |ck
n| ∼ 1. In fact we consider those comparable to 1 in the

summation from 1 to L. Then

∂rφ0,k = δ
∗
k

L

∑
n=1

nrn−1|ck
n|cos(β k

n −nθ)+O(δ L+1
k )
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∂θ φ0,k

=δ
∗
k

L

∑
n=1

rn(−n|ck
n|cos(β k

n )sin(nθ)+n|ck
n|sin(β k

n )cos(nθ))+O(δ L+1
k )

=δ
∗
k

N

∑
n=1

nrn|ck
n|sin(β k

n −nθ)+O(δ L+1
k ).

|∇φ0,k|2 = |∂rφ0,k|2 +
1
r2 |∂θ φ0,k|2(3.13)

=(δ ∗
k )

2(
L

∑
n=1

n2r2n−2|ck
n|2 +2∑

s<t
strs+t−2|ck

s ||ck
t |cos(β k

s −β
k
t − (s− t)θ)

+O(δ L+1
k ).

Now we have the freedom to choose e
2πli
N+1 . Since all these points are on the unit

circle, r = 1 in the evaluation of (3.13). By Cauchy’s inequality we see that if
|∇φ0,k|= O(δ L+1

k ) at one of e
2πil
N+1 it is obviously not the case on another such point,

which means at that point, say e
2πil
N+1 , |∇φ0,k(e

2πil
N+1 )| is comparable to δ ∗

k . Lemma 3.1
is established if Φ ̸= 0.

Finally if Φk ≡ 0, based on the expansion of Vk we take δ ∗
k = δ

2N+2
k . Lemma

3.1 is established. □

If we let Qk
0 denote the local maximum point of v0,k, the difference between

Qk
0 and e1 is O(δ ∗

k e−µ̄k) by the non-degeneracy of vk around e1 (Indeed, if we use
ε̄k = e−µ̄k/2 to be the scaling factor, after scaling, it is easy to see that the location
of the critical point is O(ε̄kδ ∗

k ) for the scaled function. In the original setting before
the scaling, the location of the local maximum is O(δ ∗

k e−µ̄k) away from e1. The
maximum of v0,k is µ̄k +O(δ ∗

k ).
Let V0,k be the global solution of that agrees with v0,k at Qk

0:

(3.14) v0,k(Qk
0) =V0,k(Qk

0), ∇v0,k(Qk
0) = ∇V0,k(Qk

0) = 0

and the equation for V0,k is

(3.15) ∆V0,k + |y|2Nh0,k(Qk
0)e

V0,k = 0, in R2,
∫
R2

|y|2NeV0,k < ∞.

Of course V0,k is a small perturbation of the previous Vk, and we see that the oscil-
lation of v0,k −V0,k is O(δ ∗

k δ
N+1
k e−µ̄k) on ∂Ωk. At this moment we set the scaling

factor to be

εk = e−
1
2 µk . µk = v0,k(Qk

0)

Indeed, the expression of V0,k is

V0,k(y) = log
eµk

(1+ h0,k(Qk
0)e

µk

D |yN+1 −1− pk|2)2
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where pk = O(e−µk δ ∗
k ). From here we see that the perturbation of v0,k −V0,k on

∂Ωk is O(δ ∗
k δ

N+1
k e−µk):

(3.16) |(v0,k −V0,k)(x)− (v0,k −V0,k)(y)| ≤Cδ
∗
k δ

N+1
k e−µk , ∀x,y ∈ ∂Ωk.

3.1. Point-wise estimate for v0,k−V0,k. In the appendix we establish the closeness
of local maximum points of vk with e

2iπl
N+1 for l = 0, ...,N. As mentioned before the

local maximums of v0,k is only O(δ ∗
k ε2

k ) perturbation of the corresponding local
maximum points of vk.

Another observation is that based on (3.5) we have

ε
−1
k |Qk

l − eiβl | ≤Cε
ε
k , l = 0, ...,N

for some small ε > 0. Thus ξk tends to U after scaling. We need this fact in our
argument.

Now we cite Proposition 3.1 of [40]:
Proposition 3.1 of [40]: Let l = 0, ...,N and δ be small so that B(eiβl ,δ )∩

B(eiβs ,δ ) = /0 for l ̸= s. In each B(eiβl ,δ )
(3.17)

|v0,k(x)−V0,k(x)| ≤


Cµke−µk/2, |x− eiβl | ≤Ce−µk/2,

C µke−µk

|x−eiβl | +O(µ2
k e−µk), Ce−µk/2 ≤ |x− eiβl | ≤ δ .

Remark 3.1. We only need a re-scaled version of Proposition 3.1 of [40]:

(3.18) |v0,k(eiβl + εky)−V0,k(eiβl + εky)| ≤Cε
ε
k (1+ |y|)−1, 0 < |y|< τε

−1
k .

for some small constants ε > 0 and τ > 0 both independent of k.

Remark 3.2. The main idea of the proof of Theorem 2.1 can be observed from
the equations of v0,k (3.11) and V0,k (3.15). While (3.15) has a constant coefficient
h0,k(Qk

0), (3.11) has a function h0,k whose derivative is not zero at some Qk
s . We

shall obtain a precise pointwise estimate of v0,k −V0,k and the difference on these
coefficient functions will lead to a contradiction.

Proposition 3.1. Let w0,k = v0,k −V0,k, then

|w0,k(y)| ≤Cδ
∗
k y ∈ Ωk := B(0,δ−1

k ),

Proof of Proposition 3.1: Let Mk be the maximum of |w0,k| on Ωk. By way of
contradiction we assume that

(3.19) Mk/(δ
∗
k )→ ∞.

Now we recall the equation for v0,k is (3.3), v0,k −V0,k is very close to a constant
on ∂B(0,δ−1

k ). Moreover

(3.20) w0,k(Qk
0) = |∇w0,k(Qk

0)|= 0.

Recall that V0,k defined in (3.6) satisfies (3.15).
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We shall derive a precise, point-wise estimate of w0,k in B3 \∪N
l=1B(Qk

l ,τ) where
τ > 0 is a small number independent of k. We shall prove that w0,k is very small in
B3 if we exclude all bubbling disks except the one around e1.

Now based on (3.11) and (3.15) we write the equation of w0,k as

(3.21) ∆w0,k + |y|2Nh0,k(y)eξk w0,k = |y|2N(h0,k(Qk
0)−h0,k(y))eV0,k

in Ωk, where ξk is obtained from the mean value theorem:

eξk(x) =


ev0,k(x)−eV0,k(x)

v0,k(x)−V0,k(x)
, if v0,k(x) ̸=V0,k(x),

eV0,k(x), if v0,k(x) =V0,k(x).

An equivalent form is

(3.22) eξk(x) =
∫ 1

0

d
dt

etv0,k(x)+(1−t)V0,k(x)dt = eV0,k(x)
(

1+
1
2

w0,k(x)+O(w0,k(x)2)
)
.

Note that the oscillation of w0,k on ∂Ωk is O(δ ∗
k δ

N+1
k e−µk). A trivial observation

is that the right hand side of (3.21) is zero if y = Qk
0. This simple fact determines a

pathway for our argument. We will prove smallness of wk around Qk
0 first and then

pass it to other places.
By normalizing w0,k we shall study the following function:

w̃k(y) = w0,k(y)/Mk, x ∈ Ωk.

Clearly maxx∈Ω̄k
|w̃k(x)|= 1. The equation for w̃k is

(3.23)
∆w̃k(y)+ |y|2Nh0,k(y)eξk w̃k(y) = O(σk)|y|2N(y−Qk

0)e
V0,k +O(σk)|y−Qk

0|2eV0,k

in Ωk. Here δ ∗
k /Mk = σk → 0. Also on the boundary, the oscillation of w̃k is

o(δ N+1
k e−µk). By Proposition 3.1 of [40]

(3.24) ξk(Qk
0 + εkz) =V0,k(Qk

0 + εkz)+O(εε
k )(1+ |z|)−1

Since V0,k is not exactly symmetric around Qk
0, we shall replace the re-scaled

version of V0,k around Qk
0 by a radial function. Let Uk be solutions of

(3.25) ∆Uk +h0,k(Qk
0)e

Uk = 0, in R2, Uk(0) = max
R2

Uk = 0.

By the classification theorem of Caffarelli-Gidas-Spruck [9] we have

Uk(z) = log
1

(1+ h0,k(Qk
0)

8 |z|2)2

and standard refined estimates yield (see [15, 45, 21])

(3.26) V0,k(Qk
0 + εkz)+2logεk =Uk(z)+O(εk)|z|+O(µ2

k ε
2
k ).

Also we observe that

(3.27) log |Qk
0 + εkz|= O(εk)(1+ |z|).
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Thus, the combination of (3.24), (3.26) and (3.27) gives

2N log |Qk
0 + εkz|+ξk(Qk

0 + εkz)+2logεk −Uk(z)(3.28)

=O(εε
k )(1+ |z|) 0 ≤ |z|< τε

−1
k .

for a small ε > 0 independent of k. Since we shall use the re-scaled version, based
on (3.28) we have

(3.29) ε
2
k |Qk

0+εkz|2Nh0,k(Qk
0+εkz)eξk(Qk

0+εkz) = h0,k(Qk
0)e

Uk(z)+O(εε
k )(1+ |z|)−3

Here we note that the estimate in (3.28) is not optimal. In the following we shall
put the proof of Proposition 3.1 into a few estimates. In the first estimate we prove

Lemma 3.2.

(3.30) |w̃k(Qk
0 + εkz)| ≤ o(εk)(1+ |z|), 0 < |z|< τε

−1
k .

for some τ > 0.

Proof of Lemma 3.2: Step one: In this step we prove the following statement: For
δ > 0 small and independent of k,

(3.31) w̃k(y) = o(1), ∇w̃k = o(1) in B(e1,δ )\B(e1,δ/8)

where B(e1,3δ ) does not include other blowup points.
If (3.31) is not true, we have, without loss of generality that w̃k → c ̸= 0. This

is based on the fact that w̃k tends to a global harmonic function with removable
singularity. So w̃k tends to constant. Let

(3.32) Wk(z) = w̃k(Qk
0 + εkz), εk = e−

1
2 v0,k(Qk

0),

then if we use W to denote the limit of Wk, we have

∆W + eUW = 0, R2, |W | ≤ 1,

and U is a solution of ∆U + eU = 0 in R2 with
∫
R2 eU < ∞. Since 0 is the local

maximum of U ,

U(z) = log
1

(1+ 1
8 |z|2)2

.

Here we further claim that W ≡ 0 in R2 because W (0) = |∇W (0)|= 0, a fact well
known based on the classification of the kernel of the linearized operator. Going
back to Wk, we have

Wk(z) = o(1), |z| ≤ Rk for some Rk → ∞.

Based on the expression of w̃k, (3.26) and (3.29) we write the equation of Wk as

(3.33) ∆Wk(z)+h0,k(Qk
0)e

Uk(z)Wk(z) = Ek,

for |z|< δ0ε
−1
k where a crude estimate of the error term Ek is

Ek(z) = o(1)εε
k (1+ |z|)−3.

Let

(3.34) gk
0(r) =

1
2π

∫ 2π

0
Wk(r,θ)dθ .
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Then clearly gk
0(r)→ c > 0 for r ∼ ε

−1
k . The equation for gk

0 is

d2

dr2 gk
0(r)+

1
r

d
dr

gk
0(r)+h0,k(Qk

0)e
Uk(r)gk

0(r) = Ek
0(r)

gk
0(0) =

d
dr

gk
0(0) = 0.

where Ek
0(r) has the same upper bound as that of Ek(r):

|Ek
0(r)| ≤ o(1)εε

k (1+ r)−3.

For the homogeneous equation, the two fundamental solutions are known: gk
01,

gk
02, where

gk
01 =

1− ckr2

1+ ckr2 , ck =
h0,k(Qk

0)

8
.

By the standard reduction of order process, gk
02(r) = O(logr) for r > 1 with a

bound independent of k. Then it is easy to obtain, assuming |Wk(z)| ≤ 1, that

|gk
0(r)| ≤C|gk

01(r)|
∫ r

0
s|Ek

0(s)g
k
02(s)|ds+C|gk

02(r)|
∫ r

0
s|gk

01(s)E
k
0(s)|ds

≤Cε
ε
k log(2+ r). 0 < r < δ0ε

−1
k .

Clearly this is a contradiction to (3.34). We have proved c = 0, which means
w̃k = o(1) in B(e1,δ0)\B(e1,δ0/8). Then it is easy to use the equation for w̃k and
standard Harnack inequality to prove ∇w̃k = o(1) in the same region. (3.31) is
established.

Step two: Now we extend the estimate to the whole neighborhood of e1. The
estimate will be obtained in a progressive way. Let Wk be defined as in (3.32). In
order to obtain a better estimate we need to write the equation of Wk more precisely
than (3.33):

(3.35) ∆Wk +h0,k(Qk
0)e

ΘkWk = o(σk)εky(1+ |y|)−4, z ∈ B(0,τε
−1
k )

where Θk is defined by

eΘk(z) = |Qk
0 + εkz|2Neξk(Qk

0+εkz)+2logεk .

Here we observe that by step one Wk = o(1) on ∂B(0,τε
−1
k ). In the computation

of (3.35) we also used

h0,k(Qk
0 + εky) = h0,k(Qk

0)+O(εky).

To replace Θk by Uk we have an extra error that depends on the bound of Wk:

(3.36) ∆Wk +h0,k(Qk
0)e

UkWk = Ek, z ∈ B(0,τε
−1
k )

where Ek = E1 +E2 and E1 is the right hand side of (3.35). Thus

|E1| ≤Cσkεky(1+ |y|)−4 |E2| ≤Cσkε
ε
k (1+ |z|)−3.

Note that in the crude bound of E2, we used |Wk| ≤C. If the bound of |Wk| is better,
the estimate of E2 will improve as well.
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The proof is by considering the projection of Wk in different nodes. Let gk
0 be

the projection on 1, then we have

d2

dr2 gk
0(r)+

1
r

d
dr

gk
0(r)+h0,k(Qk

0)e
Uk gk

0 = Ek,0

gk
0(0) =

d
dr

gk
0(0) = 0

where Ek,0 is the projection of Ek to 1. Just like in the proof of step one, the estimate
of gk

0 is

|gk
0(r)| ≤C|g01(r)|

∫ r

0
s|Ek,0(s)||gk

02(s)|ds

+C|gk
02(r)|

∫ r

0
s|Ek,0(s)||gk

01(s)|ds

where

gk
01(r) =

1− ckr2

1+ ckr2 , ck =
h0k(Qk

0)

8
.

and gk
02 = O(logr) for r > 1 and for r close to 0. If we just use

|Ek,0(s)| ≤ o(1)εε
k (1+ s)−3,

we have
|gk

0(r)|= o(1)εε
k log(2+ r).

Let gk
1 be the radial part of the projection of Wk on eiθ . Then gk

1 satisfies

d2

dr2 gk
1(r)+

1
r

d
dr

gk
1(r)+(h0,k(Qk

0)e
Uk − 1

r2 )g
k
1(r) = Ek,1

and we use the following crude upper bound for Ek,1

Ek,1(r) = o(1)εε
k (1+ r)−3

and gk
1(0) =

d
dr gk

1(0) = 0. Then the two fundamental solutions are

gk
11(r) =

r
1+ ckr2 ,

gk
12(r) behaves like O(r−1) near 0 and behaves like O(r) near infinity.

|gk
1(r)| ≤o(1)|gk

11(r)|
∫ r

0
sε

ε
k (1+ s)−3|gk

12(s)|ds

+o(1)|gk
12(r)|

∫ r

0
sε

ε
k (1+ s)−3|gk

11(s)|ds

= o(1)εε
k (1+ r)

For l ≥ 2, let gk
l be the radial part of the projection on eilθ , then the equation is

d
dr2 gk

l (r)+
1
r

d
dr

gk
l (r)+(h0,k(Qk

0)e
Uk − l2

r2 )g
k
l (r) = o(1)εε

k (1+ r)−3
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with gk
l (0) = 0 and gk

l (Lk) = sl,k for some sl,k = o(1) as a result of step one. For
the corresponding homogeneous equation, the two fundamental solutions gk

l1, gk
l2

can be chosen to behave like

gk
l1 ∼ rlnear 0 and ∞,

gk
l2 ∼ r−lnear 0 and ∞

with bounds independent of k. Then

|gk
l (r)| ≤ |ck

1,lg
k
l1(r)|+o(εε

k )|gk
l1(r)|

∫
∞

r

s
l
(1+ s)−3|gk

l2(s)|ds

+o(εε
k )|gk

l2(r)|
∫ r

0

s
l
|gk

l1(s)|(1+ s)−3ds

≤ |ck
l,1gk

l1(r)|+
o(εε

k )

l2 .

By gl(τε
−1
k ) = sl,k we have |ck

l,1| ≤Csl,kε l
k. Thus the summation of projections on

all nodes is convergent and the summation leads to

|Wk(z)| ≤ o(1)εε
k (1+ |z|).

Using this new bound in the previous machinery we will obtain

|Wk(y)| ≤ o(1)ε2ε
k (1+ |z|).

A repetitive application of this process eventually makes E1 the leading error term
in Ek and we have

|Wk(z)| ≤ o(1)εk(1+ |z|), |z| ≤ τε
−1
k .

Lemma 3.2 is established. □

The smallness of w̃k around e1 can be used to obtain the following key estimate:

Lemma 3.3.
(3.37) w̃k = o(1) in B(eiβl ,τ) l = 1, ..,N.

Proof of Lemma 3.3: We abuse the notation Wk by defining it as

Wk(z) = w̃k(eiβl + εkz), z ∈ B(0,τε
−1
k ).

Here we point out that based on (3.5) we have ε
−1
k |Qk

l − eiβl | → 0. So the scaling
around eiβl or Qk

l does not affect the limit function.

ε
2
k |eiβl + εkz|2Nh0,k(eiβl + εkz)eξk(eiβl+εkz) → eU(z)

where U(z) is a solution of

∆U + eU = 0, in R2,
∫
R2

eU < ∞.

Since Wk converges to a solution of the linearized equation:

∆W + eUW = 0, in R2.

W can be written as a linear combination of three functions:

W (x) = c0φ0 + c1φ1 + c2φ2,
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where

φ0 =
1− 1

8 |x|
2

1+ 1
8 |x|2

φ1 =
x1

1+ 1
8 |x|2

, φ2 =
x2

1+ 1
8 |x|2

.

The remaining part of the proof consisting of proving c0 = 0 and c1 = c2 = 0. First
we prove c0 = 0.
Step one: c0 = 0. First we write the equation for Wk in a convenient form. Since

|eiβl + εkz|2N = 1+O(εkz),

and
ε

2
k h0,k(eiβl + εkz)eξk(eiβl+εkz) = eUk(z)+O(εε

k )(1+ |z|)−3.

Based on (3.23) we write the equation for Wk as

(3.38) ∆Wk(z)+ eUkWk = Ek
l (z)

where
Ek

l (z) = O(εε
k )(1+ |z|)−3 in Ωk,l.

In order to prove c0 = 0, the key is to control the derivative of W k
0 (r) where

W k
0 (r) =

1
2πr

∫
∂Br

Wk(reiθ )dS, 0 < r < τε
−1
k .

To obtain a control of d
drW k

0 (r) we use φ k
0 (r) as the radial solution of

(3.39) ∆φ
k
0 + eUk φ

k
0 = 0, in R2.

When k → ∞, φ k
0 → φ0. From multiplying φ k

0 to (3.38) and multiplying Wk to (3.39)
we have

(3.40)
∫

∂Br

(∂νWkφ
k
0 −∂νφ

k
0Wk) = o(εε

k ).

Thus from (3.40) we have

(3.41)
d
dr

W k
0 (r) =

1
2πr

∫
∂Br

∂νWk = o(εε
k )/r+O(1/r3), 1 < r < τε

−1
k .

Since we have known that
W k

0 (τε
−1
k ) = o(1).

By the fundamental theorem of calculus we have

W k
0 (r) =W k

0 (τε
−1
k )+

∫ r

τε
−1
k

(o(εε
k )

s
+O(s−3)

)
ds = O(1/r2)+O(εε

k log
1
εk
)

for r ≥ 1. Thus c0 = 0 because W k
0 (r)→ c0φ0, which means when r is large, it is

−c0 +O(1/r2).

Step two c1 = c2 = 0. We first observe that Lemma 3.3 follows from this. Indeed,
once we have proved c1 = c2 = c0 = 0 around each eiβl , it is easy to use maximum
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principle to prove w̃k = o(1) in B3 using w̃k = o(1) on ∂B3 and the Green’s repre-
sentation of w̃k. The smallness of w̃k immediately implies w̃k = o(1) in BR for any
fixed R >> 1. Outside BR, a crude estimate of v0,kk is

v0,k(y)≤−µk −4(N +1) log |y|+C, 3 < |y|< τδ
−1
k .

Using this and the Green’s representation of wk we can first observe that the oscil-
lation on each ∂Br is o(1) (R < r < δ

−1
k /2) and then by the Green’s representation

of w̃k and fast decay rate of eVk we obtain w̃k = o(1) in B(0,δ−1
k ). A contradiction

to max |w̃k|= 1.
There are N + 1 local maximums. Correspondingly there are N + 1 global so-

lutions Vl,k that approximate vk accurately near Qk
l for l = 0, ...,N. For Vl,k the

expression is

Vl,k = log
eµk

l

(1+ eµk
l h0,k(Qk

l )
D |yN+1 − (e1 + pk

l )|2)2
, l = 0, ...,N,

where pk
l = E and

(3.42) D = 8(N +1)2.

The equation that Vl,k satisfies is

∆Vl,k + |y|2Nh0,k(Qk
l )e

Vl,k = 0, in R2.

Note that there is no need to define a φl,k and vl,k = vk −φl,k because the difference
is insignificant.

Since h0,k(y) = eφ1 for some harmonic function φ1(y) = O(δ ∗
k ) for |y| ∼ 1, we

have

(3.43) h0,k(Qk
l )−h0,k(Qk

s) = O(δ ∗
k ) = o(1)Mk.

Since v0,k and Vl,k have the same common local maximum at Qk
l , it is easy to see

that

(3.44) Qk
l = eiβl +

pk
l eiβl

N +1
+O(|pk

l |2), βl =
2lπ

N +2
.

Let Ml,k be the maximum of |v0,k −Vl,k| and we claim that all these Ml,k are com-
parable:

(3.45) Ml,k ∼ Ms,k, ∀s ̸= l.

The proof of (3.45) is as follows: We use Ls,l to denote the limit of (v0,k−Vl,k)/Ml,k

around Qk
s :

(v0,k −Vl,k)(Qk
s + εkz)

Ml,k
= Ls,l +o(1), |z| ≤ τε

−1
k

where

Ls,l = c1,s,l
z1

1+ 1
8 |z|2

+ c2,s,l
z2

1+ 1
8 |z|2

, and Ll,l = 0, s = 0, ...,N.
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If all c1,s,l and c2,s,l are zero for a fixed l, we can obtain a contradiction just like
the beginning of step two. So at least one of them is not zero. For each s ̸= l, by
Lemma 3.2 we have

(3.46) v0,k(Qk
s + εkz)−Vs,k(Qk

s + εkz) = o(εk)(1+ |z|)Ms,k, |z|< τε
−1
k .

Let Mk = maxi Mi,k (i = 0, ...,N) and we suppose Mk = Ml,k. Then to determine Ls,l
we see that

v0,k(Qk
s + εkz)−Vl,k(Qk

s + εkz)
Mk

=o(εk)(1+ |z|)+
Vs,k(Qk

s + εkz)−Vl,k(Qk
s + εkz)

Mk
.

This expression says that Ls,l is mainly determined by the difference of two global
solutions Vs,k and Vl,k. In order to obtain a contradiction to our assumption we will
put the difference in several terms. The main idea in this part of the reasoning is
that “first order terms” tell us what the kernel functions should be, then the “second
order terms” tell us where the pathology is.

We write Vs,k(y)−Vl,k(y) as

Vs,k(y)−Vl,k(y) = µ
k
s −µ

k
l +2A−A2 +O(|A|3)

where

A(y) =
eµk

l

D |yN+1 − e1 − pk
l |2 −

eµk
s

D |yN+1 − e1 − pk
s |2

1+ eµk
s

D |yN+1 − e1 − pk
s |2

.

Here for convenience we abuse the notation εk by assuming εk = e−µk
s /2. Note that

εk = e−µk
t /2 for some t, but it does not matter which t it is. The difference between

hl,k(Qk
l ) and hl,k(Qk

s) is in (3.43). From A we claim that

Vs,k(Qk
s + εkz)−Vl,k(Qk

s + εkz)(3.47)
=φ1 +φ2 +φ3 +φ4 +R,

where

φ1 = (µk
s −µ

k
l )(1−

hs

8
|z+ N

2
εkz2e−iβs |2)/B,(3.48)

φ2 =
hs

2B
Re((z+

N
2

εke−iβsz2))(
p̄k

s − p̄k
l

εk
e−iβs))

φ3 =
|pk

s − pk
l |2

4(N +1)2ε2
k B

(
1− |z|2(1+2cos(2θ −2θst −2βs)

8B

)
,

φ4 =
hs

4
hl −hs

hl
|z+O(εk)|z|2|2/B.

B = 1+
hs

8
|z+ N

2
z2e−iβsεk|2,

where hs = h0,k(Qk
s), hl = h0,k(Qk

l ), Rk is the collections of other insignificant
terms. Here we briefly explain the roles of each term. φ1 corresponds to the radial
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solution in the kernel of the linearized operator of the global equation. In other
words, φ k

1/Mk should tend to zero because in step one we have proved c0 = 0.
φ k

2/Mk is the combination of the two other functions in the kernel. φ3 + φ4 is the
second order term which will play a leading role later. The derivation of (3.47) is
put in the appendix.

Here φ1, φ2 correspond to solutions to the linearized operator. Here we note that
if we set εl,k = e−µk

l /2, there is no essential difference between εl,k and εk = e−
1
2 µ1,k

because εl,k = εk(1+o(1)). If |µs,k −µl,k|/Mk ≥C there is no way to obtain a limit
in the form of Ls,l mentioned before. Thus we must have |µs,k − µl,k|/Mk → 0.
After simplification (see φ2 of (3.47)) we have

c1,s,l = lim
k→∞

|pk
s − pk

l |
2(N +1)Mkεk

cos(βs +θsl),(3.49)

c2,s,l = lim
k→∞

|pk
s − pk

l |
2(N +1)εkMk

sin(βs +θsl)

We omit k for convenience. It is also important to observe that even if Mk = o(εk)
we still have Mk ∼ maxs |pk

s − pk
l |/εk. Since each |pk

l |= E, an upper bound for Mk
is

(3.50) Mk ≤Cµkεk.

Equation (3.49) gives us a key observation: |c1,s,l|+ |c2,s,l| ∼ |pk
s − pk

l |/(εkMk).

So whenever |c1,s,l|+ |c2,s,l| ≠ 0 we have |pk
s−pk

l |
εk

∼ Mk. In other words for each l,

Ml,k ∼ maxt ̸=l
|pk

t −pk
l |

εk
. Hence for any t, if |pk

t −pk
l |

εk
∼ Mk, let Mt,k be the maximum

of |vk −Vt,k|, we have Mt,k ∼ Mk. If all |pk
t −pk

l |
εk

∼ Mk (3.45) is proved. So we prove
that even if some pk

t is very close to pk
l , Mk

t is still comparable to Mk. The reason

is there exists q such that
|pk

l −pk
q|

εk
∼ Mk, if |pk

t −pk
l |

εk
= o(1)Mk,

|pk
t − pk

q| ≥ |pk
l − pk

q|− |pk
t − pk

l | ≥
1
2
|pk

l − pk
q|.

Thus
|pk

t −pk
q|

εk
∼ Mk and Mk

t ∼ Mk. (3.45) is established. From now on for conve-
nience we shall just use Mk, which has an upper bound in (3.50).

Set wl,k = (v0,k −Vl,k), then we have wl,k(Qk
l ) = |∇wl,k(Qk

l )| = 0. Correspond-
ingly we set

w̃l,k = wl,k/Mk.

The equation of wl,k can be written as
(3.51)

∆w̃l,k + |y|2Nh0,k(Qk
l )e

ξ k
l w̃l,k = o(σk)(y−Qk

l )|y|2NeVl,k +o(σk)|y−Qk
l |2eVl,k ,

where ξ k
l comes from the Mean Value Theorem and satisfies

(3.52) eξ k
l = eVl,k(1+

1
2

wl,k +O(w2
l,k)) = eVl,k(1+

1
2

Mkw̃l,k +O(M2
k )).
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The function w̃l,k satisfies

(3.53) lim
k→∞

w̃l,k(Qk
s + εkz) =

c1,s,lz1 + c2,s,lz2

1+ 1
8 |z|2

and around each Qk
s (3.46) holds with Ms,k replaced by Mk.

Now for |y| ∼ 1, we use w̃l,k(Qk
l ) = 0 to write w̃l,k(y) as

w̃l,k(y) =
∫

Ωk

Hy,l(η)|η |2Nh0,k(η)eξl w̃l,k(η)dη(3.54)

+o(1)δ N+1
k e−µk .

where the last term is based on (3.16) and

Hy,l(η) := Gk(y,η)−Gk(Qk
l ,η).

If we only consider |y| ∼ 1, we use

(3.55) Hy,l(η) =− 1
2π

log
|y−η |
|Qk

l −η |
+O(δ 2

k ).

To evaluate the right hand side of (3.54), we only need to concentrate on B(Qk
s ,τ)

for s ̸= l because the integration around Qk
l and outside bubbling disks only con-

tribute o(εk). Around each Qk
s the eξl can be replaced by eVs,k with controllable

error because from Lemma 3.2, the difference between them only leads to o(εk) in
error. Also, h0,k(η) can be replaced by h0,k(Qk

s) because

h0,k(η) = h0,k(Qk
s)+∇h0,k(Qk

s)(η −Qk
s)+O(δ ∗

k )(η −Qk
s)

2.

Since ∇h0,k(Qk
s) = O(δ ∗

k ), we see that the difference between h0,k(η) and h0,k(Qk
s)

only leads to o(εk) in its corresponding integration.
From the decomposition in (3.47) we can now estimate the integral of w̃l,k more

precisely. Clearly we only need to evaluate integrals around each Qk
s . For this we

have

(3.56)
∫

B(Qk
s ,τ)

w̃l,k(η)h0,k(Ql)|η |2NeVs,k dη +o(εk) = Dk
s,l +o(εk).

where

Dk
s,l =

π

2(N +1)2

|pk
s − pk

l |2

ε2
k M2

k
Mk +2π

hl −hs

Mk

and for convenience we skip k in Ql , and we shall write the two components of Ql
as Ql = (Q1

l ,Q
2
l ). The derivation of (3.56) can be found in Appendix B. Then for

|y| ∼ 1

w̃l,k(y) =−∑
s ̸=l

(Hy,l(Qs)+O(δ 2
k ))D

k
s,l

−∑
s̸=l

∫
B(Qs,τ)

(
(∂1Hy,l(Qs)η1 +∂2Hy,l(Qs)η2)h0,k(Ql)|η |2Neξl w̃l,k(η)

)
dη +o(εk).
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After evaluation we have

w̃l,k(y) =− 1
2π

∑
s̸=l

(log
|y−Qs|
|Ql −Qs|

+O(δ 2
k ))D

k
s,l

−∑
s ̸=l

8
( y1 −Q1

s

|y−Qs|2
−

Q1
l −Q1

s

|Ql −Qs|2
)

c1,s,lεk

−8
( y2 −Q2

s

|y−Qs|2
−

Q2
l −Q2

s

|Qs −Ql|2
)

c2,s,lεk +o(εk).

where we used ∫
R2

z2
1

(1+ 1
8 |z|2)3

dz =
∫
R2

z2
2

(1+ 1
8 |z|2)3

dz = 16π.

Recall that

c1,s,l =
|ps − pl|

2(N +1)Mkεk
cos(βs +θsl)

c2,s,l =
|ps − pl|

2(N +1)Mkεk
sin(βs +θsl)

For |y| ∼ 1 but away from the N +1 bubbling disks, we have, for l ̸= s,

v0,k(y) =Vl,k(y)+Mkw̃l,k(y)

and
v0,k(y) =Vs,k(y)+Mkw̃s,k(y).

Thus for s ̸= l we have

(3.57)
Vs,k(y)−Vl,k(y)

Mk
= w̃l,k(y)− w̃s,k(y).

For |y| ∼ 1 away from bubbling disks, we have

Vs,k(y)−Vl,k(y)

=µ
k
l −µ

k
s +2log

hs

hl

+2log(1+
D
hl

e−µk
l − D

hs
e−µk

s + |yN+1 −1− pl|2 −|yn+1 −1− ps|2
D
hs

e−µk
s |yN+1 − e1 − ps|

To evaluate the above, we use

|yN+1 − e1 − pl|2

=|yN+1 − e1 − ps|2 +2Re((yN+1 − e1 − ps)(p̄s − p̄l))+ |pl − ps|2.

and set

σk := (µk
l −µ

k
s +2log

hs

hl
)/Mk.
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Then we see that σk = o(1) and D
hl

e−µk
l − D

hs
e−µk

s = o(Mk)ε
2
k . Thus

Vs,k(y)−Vl,k(y)
Mk

=4Re(
yN+1 −1
|yN+1 −1|2

p̄l − p̄s

Mkεk
)εk +σk +o(εk).

We are going to derive a contradiction based on (3.57). For this purpose we choose
s = 0 in (3.57), which means w̃s,k = o(εk), then by taking |pk

l | ∼ εkMk we have

4Re(
yN+1 −1
|yN+1 −1|2

p̄l

εkMk
)εk +σk +o(εk)(3.58)

=− 1
2π

∑
s̸=l

(log
|y−Qk

s |
|Qk

l −Qk
s |
+O(δ 2

k ))D
k
s,l

+∑
s̸=l

8
(
(

y1 −Q1
l

|y−Ql|2
−

Q1
l −Q1

s

|Ql −Qs|2
)(

|ps − pl|
2(N +1)Mkεk

)cos(βs +θsl)

+(
y2 −Q2

l
|y−Ql|2

−
Q2

l −Q2
s

|Ql −Qs|2
)

|ps − pl|
2(N +1)εkMk

sin(βs +θsl)

)
εk, ∀l.

If |σk| ≥Cεk, it is easy to see that (3.58) does not hold for different |y| ∼ 1. When
σk = o(1)σk we observe Dk. If |Dk| ≥ Cεk one can also see the contradiction for
different y. Finally for σk = o(εk),Dk = o(εk), the equality still cannot hold if
choose |y| >> 1 because the last two terms of (3.58) will majorize the left-hand-
side. Lemma 3.3 is established. □

Proposition 3.1 is an immediate consequence of Lemma 3.3. □.

4. PROOF OF THE MAIN THEOREMS

First we make a simple observation. If we let

ŵk = w0,k/δ
∗
k .

It is easy to see that ŵk tends to a harmonic function away from the N + 1 local
maximums of v0,k. Since ŵk is bounded, the global harmonic function ŵk tends to
has to be a constant. If we focus on the neighborhood of Qk

0, by standard Fourier
analysis as before we see that this constant is zero. Thus over compact subset away
from the N +1 local maximum points of v0,k we have ŵk = o(1) and ∇ŵk = o(1),
which means in this region w0,k = o(δ ∗

k ) and ∇w0,k = o(δ ∗
k ).

In the next step we consider the difference between two Pohozaev identities. For
s = 1, ...,N we consider the Pohozaev identity around Qk

s . Let Ωs,k = B(Qk
s ,r) for

small r > 0. For vk we have∫
Ωs,k

∂ξ (|y|2Nh0,k(y))ev0,k −
∫

∂Ωs,k

ev0,k |y|2Nh0,k(y)(ξ ·ν)(4.1)

=
∫

∂Ωs,k

(∂νv0,k∂ξ v0,k −
1
2
|∇v0,k|2(ξ ·ν))dS.
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where ξ is an arbitrary unit vector. Correspondingly the Pohozaev identity for V0,k
is

∫
Ωs,k

∂ξ (|y|2Nh0,k(Qk
0))e

V0,k −
∫

∂Ωs,k

eVk |y|2Nh0,k(Qk
0)(ξ ·ν)(4.2)

=
∫

∂Ωs,k

(∂νVk∂ξV0,k −
1
2
|∇V0,k|2(ξ ·ν))dS.

Using w0,k = v0,k −V0,k and |w0,k(y)| ≤Cδ ∗
k we have

∫
∂Ωs,k

(∂νv0,k∂ξ v0,k −
1
2
|∇v0,k|2(ξ ·ν))dS

=
∫

∂Ωs,k

(∂νV0,k∂ξV0,k −
1
2
|∇V0,k|2(ξ ·ν))dS

+
∫

∂Ωs,k

(∂νV0,k∂ξ w0,k +∂νw0,k∂ξV0,k − (∇V0,k ·∇w0,k)(ξ ·ν))dS+o(δ ∗
k ).

If we just use crude estimate: ∇w0,k = o(δ ∗
k ), we have∫

∂Ωs,k

(∂νv0,k∂ξ v0,k −
1
2
|∇v0,k|2(ξ ·ν))dS

−
∫

∂Ωs,k

(∂νV0,k∂ξV0,k −
1
2
|∇V0,k|2(ξ ·ν))dS = o(δ ∗

k ).

The difference on the second terms is minor: If we use the expansion of v0,k =
V0,k +w0,k around e1, it is easy to obtain∫

∂Ωs,k

ev0,k |y|2Nh0,k(y)(ξ ·ν)−
∫

∂Ωs,k

h0,k(Qk
0)e

V0,k |y|2N(ξ ·ν) = o(δ ∗
k ).

To evaluate the first term, we use∫
Ωs,k

∂ξ (|y|2Nh0,k(y))ev0,k(4.3)

=
∫

Ωs,k

∂ξ (|y|2N(h0,k(Qk
s)+∇h0,k(Qk

s)(y−Qk
s))e

V0,k(1+w0,k)dy+o(δ ∗
k )

=
∫

Ωs,k

(∂ξ (|y|2N)h0,k(Qk
s)e

V0,k +∂ξ h0,k(Qk
s)|y|2NeV0,k

+∂ξ (|y|2N)h0,k(Qk
s)e

V0,k w0,k)dy+o(δ ∗
k ).

where in the evaluation above the second derivative of h0,k contributes o(δ ∗
k ) be-

cause its magnitude is O(δ ∗
k ) but it has a scaling factor O(|y−Qk

s |2 which makes
the whole term o(δ ∗

k ).
For the third term on the right hand side of (4.3) we use the equation for w0,k:

∆w0,k + eV0,k |y|2Nh0,k(Qk
s)w0,k = (h0,k(Qk

s)−h0,k(y))|y|2NeV0,k +D2h

where D2h represents the term with the second derivatives of h0,k, since it only
leads to o(δ ∗

k ) in evaluation, we omit its specific form.
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From integration by parts we have∫
Ωs,k

∂ξ (|y|2N)h0,k(Qk
s)e

V0,k w0,k(4.4)

=2N
∫

Ωs,k

|y|2N−2yξ h0,k(Qk
s)e

V0,k w0,k

=2N
∫

Ωs,k

yξ

|y|2
(−∆w0,k +(h0,k(y)−h0,k(Qk

s))|y|2NeVk dy+o(δ ∗
k )

=2N
∫

∂Ωs,k

(∂ν(
yξ

|y|2
)w0,k −∂νw0,k

yξ

|y|2
)+o(δ ∗

k ) = o(δ ∗
k )

where we have used ∇w0,k,w0,k = o(δ ∗
k ) on ∂Ωs,k. For the second term on the right

hand side of (4.3), By (3.12) we have, for some 0 ≤ s ≤ N and ξ ∈ S1,

(4.5)
∫

Ωs,k

∂ξ h0,k(Qs)|y|2NeVs,k = cδ
∗
k eiβs ·ξ +o(δ ∗

k ).

for some c ̸= 0. Using (4.4) and (4.5) in the difference between (4.1) and (4.2), we
have

δ
∗
k = o(δ ∗

k ).

This contradiction finishes the proof of Theorem 2.1. □

Proof of Theorem 1.2: First it is a well known fact that all the blowup points
are in the interior of Ω (see [33]). Let p be a blowup point of {uk}, if p is a
regular point or a non-quantized singular point, the blowup solutions are known to
be simple [3, 44]. So we only consider the case that q is a quantized singular source.
Obviously we can use a fundamental solution to reduce the study to equation (2.2).
Because there is at least one other blowup point, we can see that around p, the
harmonic function that eliminates the oscillation of uk around p does not tend to 0,
because around the other blowup point, the harmonic function is tending to infinity.
Theorem 1.2 is an immediate consequence of Theorem 2.1. □

Proof of Theorem 1.1: We consider the blowup solutions of uk + logλk. It is
well known that if λk does not tend zero, uk is uniformly bounded. So we use ûk to
denote uk+ logλk and we assume that ûk is a sequence of blowup solutions. If there
are at least two blowup points, the argument for Theorem 1.2 can be applied here
to say that each blowup point is simple. So we only consider the case that there is
one blowup point. Without loss of generality we take this blowup point to be the
origin. If the origin is a regular point or a singular point with non-quantized Dirac
mass, the blowup sequence is well known to be simple. Thus we assume that at 0
there is a quantized singular source 4πNδ0. If the domain is a disk centered at the
origin, the proof of Theorem 2.1 also applies in this case that the only blowup point
is simple. So the only case is that Ω is not a disk centered around the origin. In this
case we assume that B1 ⊂ Ω ⊂ BR for some R > 1. Now we recall the asymptotic
expansion of

Vk(y) = µk −2log(1+
eµk

D
|yN++1 −1− pk|2)
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where |pk|= O(µke−µk). Thenf or r large, say, comparable to δ
−1
k ,

Vk(y) =−µk +2logD−4(N +1) logr+
4

rN+1 cos((N +1)θ)

+O(δ N+1
k µke−µk)+O(δ 2N+2

k ).

We define a harmonic function φ0,k that eliminates all the oscillation of Vk on ∂Ωk.
Consider the Fourier expansion of φ0,k:

∞

∑
n=1

(ak
n cos(nθ)+bk

n sin(nθ))rn.

Note that there is no projection on 1 because φ0,k(0) = 0. Since the value of the
absolute value of φ0,k on ∂Ωk (which is between |y| = δ

−1
k and |y| = Rδ

−1
k ) is

comparable to δ
N+1
k , we make two observations. First the restriction of φ0,k on

∂B(0,δ−1
k ) is between −Cδ

N+1
k and Cδ

N+1
k . This is because of the asymptotic

expansion of Vk for |y| ∼ δ
−1
k . This provides an upper bound of ak

n and bk
n:

|ak
n|+ |bk

n| ≤Cδ
N+1+n
k .

Second, we shall prove there is a point pk ∈ ∂B(0,δ−1
k ) such that

(4.6) |φ0,k(pk)| ≥Cδ
N+1
k , |pk|= δ

−1
k .

Without loss of generality we can assume that ∂Ωk is tangent to ∂B(0,δk). It
is more convenient to consider this problem before scaling: Let φ be a harmonic
function on Ω with φ(0) = 0 and the value of φ on ∂Ω can be described as

φ(x) = f (|x|)cos((N +1)θ), x = |x|eiθ ∈ ∂Ω,

where f (r)∼ 1 for 1 < r < R. Let eiθ0 be the tangent point between ∂B1 and ∂Ω, if
cos((N+1)θ0 ̸= 0, we already have φ(eiθ0) ̸= 0, which certainly gives |φ(eiθ0)| ≥C
for some C > 0 independent of k. Once this is done, after scaling and normalization
with δ

N+1
k we have (4.6) for pk = δ

−1
k eiθ0 and φ0,k(y) = δ

N+1
k φ(δky).

If cos((N + 1)θ0) = 0, we just consider a neighborhood of eiθ0 . If θ is just
slightly different from θ0, the magnitude of φ on |x|eiθ ∈ ∂Ω is comparable to 1
because f (|x|) is comparable to 1. The curvature of ∂Ω is bounded, it is easy to
use the Green’s representation formula of φ to find x1 = eiθ1 ∈ ∂B1, close to eiθ0

such that |φ(x1)| ≥C for some C > 0. Scaling back to ∂Ωk we have pk = δ
−1
k eiθ1

and (4.6) holds.
Based on these two observations we set

δ
∗
k =

N+1

∑
n=1

(|ak
n|+ |bk

n|),

we have
Cδ

2N+2
k ≤ δ

∗
k ≤Cδ

N+2
k .

By setting h0,k(y) = eφ0,k as before, we have, using the same proof of Lemma 3.1,
that

|∇h0,k(Qk
s)| ≥Cδ

∗
k ,
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for at least one Qk
s . Then the remaining part of the proof is similar to that of

Theorem 1.2. Theorem 1.1 is established. □.

5. APPENDIX A

In this section we derive (3.47) and (3.48). We use simplified notations:

Vs = µs −2log(1+
eµs

Ds
|yN+1 −1− ps|2).

Vl = µl −2log(1+
eµl

Dl
|yN+1 −1− pl|2).

where Ds =
8(N+1)2

hs
, hs = h0,k(Qk

s).

Vs −Vl = µs −µl +2log(1+A) = µs −µl +2A−A2 +O(A3),

where

A =

eµl

Dl
|yN+1 −1− pl|2 − eµs

Ds
|yN+1 −1− ps|2

1+ eµs

Ds
|yN+1 −1− ps|2

eµl

Dl
=

eµs

Ds
eµl−µs

Ds

Dl
(5.1)

=
eµs

Ds
(1+(µl −µs)+O(µl −µs)

2)(1+
hl −hs

hs
+O(δ 2∗

k ))

=
eµs

Ds
(1+µl −µs +

hl −hs

hs
+O((µl −µs)

2 +δ
2∗
k )).

where we used (Ds −Dl)/Dl = (hl − hs)/hs = O(δ ∗
k ) and we use δ 2∗

k to denote
(δ ∗

k )
2.

Using this we now write A as

A =

(
eµs

Ds
(|yN+1 −1− pl|2 −|yN+1 −1− ps|2)

+
eµs

Ds
(µl −µs +

hl −hs

hs
+E)|yN+1 −1− pl|2

)
/

(
1+

eµs

Ds
|yN+1 −1− ps|2

)
where E = O((µl −µs)

2 +δ 2∗
k ).

The derivation of (3.47) is as follows: Recall that the expression of Qs is in
(3.44):

Qs = eiβs(1+
ps

N +1
)+O(|ps|2).

and y = Qs + εkz. Direct computation shows

yN+1 = 1+ ps +(N +1)εkze−iβs +
N(N +1)

2
ε

2
k z2e−2iβs +O(ε3

k µk|z|).

Then

|yN+1 −1− ps|2 = (N +1)2
ε

2
k |z+

N
2

εkz2e−iβs |2 +O(ε4
k µk)|z|2
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|yN+1 −1− pl|2 = (N +1)2
ε

2
k |z+

N
2

εkz2e−iβs +
(ps − pl)eiβs

(N +1)εk
|2 +O(ε4

k µk|z|2).

With these expressions one can check easily that the expression of B in (3.47)
holds:

B = 1+
hs

8
|z+ N

2
εkz2e−iβs |2 +O(ε2

k µk)|z|2.

Then the expression of A is

A =
hs

8

(
2Re(z+

N
2

εkz2e−iβs)
p̄s − p̄l

(N +1)εk
e−iβs +

|ps − pl|2

(N +1)2ε2
k

+(µl −µs +
hl −hs

hs
+Eµ)|z+

N
2

εkz2e−iβs +O(ε2
k µkz)|2

)
/B.

where Eµ = O(|µl −µs|2 +δ 2∗
k ). Note that Ds = o(Mk), so Eµ = o(M2

k ).

(5.2) A2 =
1

16(N +1)2

(
Re(z

p̄s − p̄l

εk
e−iβs)

)2

/B2 +other terms.

The numerator of A2 has the following leading term:

1
32(N +1)2

(
|z|2( |ps − pl|

εk
)2(1+2cos(2θ −2θsl −2βs)

))
where z = |z|eiθ , ps − pl = |ps − pl|eiθsl . Using these expressions we can obtain
(3.47) by direct computation.

6. APPENDIX B

In this section we prove (3.56) based on (3.48). The terms of φ1 and φ2 lead to
o(εk) The integrations involving φ3 and φ4 provide the leading term. More detailed
information is the following: First for a global solution

Vµ,p = log
eµ

(1+ eµ

λ
|zN+1 − p|2)2

of

∆Vµ,p +
8(N +1)2

λ
|z|2NeVµ,p = 0, in R2,

by differentiation with respect to µ we have

∆(∂µVµ,p)+
8(N +1)2

λ
|z|2NeVµ,p∂µVµ,p = 0, in R2.

By the expression of Vµ,p we see that

∂r

(
∂µVµ,p

)
(x) = O(|x|−2N−3).

Thus we have

(6.1)
∫
R2

∂µVµ,p|z|2NeVµ,p =
∫
R2

(1− eµ

λ
|zN+1 −P|2)|z|2N

(1+ eµ

λ
|zN+1 −P|2)3

dz = 0.
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From Vµ,p we also have∫
R2

∂PVµ,p|y|2NeVµ,p =
∫
R2

∂P̄Vµ,p|y|2NeVµ,p = 0,

which gives

(6.2)
∫
R2

eµ

λ
(z̄N+1 − P̄)|z|2N

(1+ eµ

λ
|zN+1 −P|2)3

=
∫
R2

eµ

λ
(zN+1 −P)|z|2N

(1+ eµ

λ
|zN+1 −P|2)3

= 0.

Based on (6.1) and (6.2), the expressions of φ1, φ2 and B in (3.48) lead to∫
B(0,τε

−1
k )

φ1

Mk
B−2 = o(εk),

∫
B(0,τε

−1
k )

φ2

Mk
B−2 = o(εk).

The integrations involving φ3 and φ4 lead to the expression of Dk
s,l in (3.56). Thus

(3.56) holds.

7. APPENDIX C: LOCATION OF LOCAL MAXIMUMS OF vk

In this section we use standard arguments to prove that the local maximum
points of vk is evenly distributed around the origin. Recall that vk satisfies (3.3).
Here we abuse the notation by assuming that Qk

1 = e1 is one local maximum of vk
and we use µk instead of µ̄k to denote vk(e1) for convenience.

Now we consider vk around Qk
l . Using the results in [15, 45, 21] we have, for vk

in B(Qk
l ,ε), the following gradient estimate:

(7.1) 2N
Q̃k

l

|Q̃k
l |2

+∇φ
k
l (Q̃

k
l ) = O(µke−µk),

where φ k
l is the harmonic function that eliminates the oscillation of vk on ∂B(Qk

l ,ε)

and Q̃k
l is the maximum of vk −φ k

l that satisfies

(7.2) Q̃k
l −Qk

l = O(e−µk).

Using (7.2) in (7.1) we have

(7.3) 2N
Qk

l

|Qk
l |2

+∇φ
k
l (Q

k
l ) = O(µke−µk).

The first estimate of ∇φ k
l (Q

k
l ) is

Lemma 7.1. For l = 0, ...,N,

(7.4) ∇φ
k
l (Q

k
l ) =−4

N

∑
m=0,m̸=l

Qk
l −Qk

m

|Qk
l −Qk

m|2
+E

where
E = O(µke−µk).
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Proof of Lemma 7.1:
From the expression of vk on Ωk = B(0,τδ

−1
k ) we have, for y away from bub-

bling disks,

vk(y) = vk|∂Ωk +
∫

Ωk

G(y,η)|η |2Nevk(η)dη(7.5)

= vk|∂Ωk +
N

∑
l=0

G(y,Qk
l )
∫

B(Ql ,ε)
|η |2Nevk dη

+∑
l

∫
B(Ql ,ε)

(G(y,η)−G(y,Qk
l ))|η |2Nevk dη +O(µke−µk).

We have, by standard estimates

vk(y) = vk|∂Ωk −4
N

∑
l=0

log |y−Qk
l |+8π

N

∑
l=0

H(y,Qk
l )+O(µke−µk).

The harmonic function that kills the oscillation of vk around Qk
m is

φ
k
m =−4

N

∑
l=0,l ̸=m

(log |y−Qk
l |− log |Qk

m −Qk
l |)

+8π

N

∑
l=0

(H(y,Qk
l )−H(Qk

m,Q
k
l ))+O(µke−µk).

The corresponding estimate for ∇φ k
m is

∇φ
k
m(Q

k
m) =−4

N

∑
l=0,l ̸=m

Qk
m −Qk

l

|Qk
m −Qk

l |2
+8π

N

∑
l=0

∇1H(Qk
m,Q

k
l )+O(µke−µk).

where ∇1 stands for the differentiation with respect to the first component. From
the expression of H, we have

∇1H(Qk
m,Q

k
l ) =

1
2π

Qk
m − τ2δ

−2
k Qk

l /|Qk
l |2

|Qk
m − τ2δ

−2
k Qk

l /|Qk
l |2|2

(7.6)

=
1

2π
τ
−2

δ
2
k

τ−2δ 2
k Qk

m −Qk
l /|Qk

l |2

|Qk
l /|Qk

l |2 − τ−2δ 2
k Qk

m|2

=− 1
2π

τ
−2

δ
2
k e

2πil
N+1 +O(σkδ

2
k ).

where σk = maxl |Qk
l − e

2πil
N+1 |. Later we shall obtain more specific estimate of σk.

Thus

∇φ
k
m(Q

k
m)(7.7)

=−4
N

∑
l=0,l ̸=m

Qk
m −Qk

l

|Qk
m −Qk

l |2
−4τ

−2
δ

2
k

N

∑
l=0

e
2πil
N+1 +O(σkδ

2
k )+O(µke−µk)

=−4
N

∑
l=0,l ̸=m

Qk
m −Qk

l

|Qk
m −Qk

l |2
+O(σkδ

2
k )+O(µke−µk)
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where we have used ∑
N
l=0 e2πli/(N+1) = 0. Since we don’t have the estimate of σk

now we have

∇φ
k
m(Q

k
m) =−4

N

∑
l=0,l ̸=m

Qk
m −Qk

l

|Qk
m −Qk

l |2
+O(µke−µk)+O(σkδ

2
k ).

Lemma 7.1 is established. □

Using
E1 = O(µke−µk)+O(σkδ

2
k ).

The Pohozaev identity around Qk
l now reads

−4
N

∑
j=0, j ̸=l

Qk
l −Qk

j

|Qk
l −Qk

j|2
+2N

Qk
l

|Qk
l |2

= E1.

We have, treating every term as a complex number,

N
1

Q̄k
l
= 2

N

∑
j=0, j ̸=l

1
Q̄k

l − Q̄k
j
+E1,

where Q̄k
l is the conjugate of Qk

l . Thus

(7.8) N = 2
N

∑
j=0, j ̸=l

Qk
l

Qk
l −Qk

j
+E1.

Let βl = 2πl/(N +1), we write Qk
l = eiβl + pk

l for pk
l → 0. Then we write the first

term on the right hand side of (7.8) as

Qk
l

Qk
l −Qk

j
=

eiβl + pk
l

eiβl − eiβ j + pk
l − pk

j

=
eiβl + pk

l

(eiβl − eiβ j)(1+(pk
l − pk

j)/(eiβl − eiβ j))

=
eiβl

eiβl − eiβ j
+

pk
l

eiβl − eiβ j
− eiβl

(eiβl − eiβ j)2
(pk

l − pk
j)+O(σ2

k )

=
eiβl

eiβl − eiβ j
+

eiβl pk
j − eiβ j pk

l

(eiβl − eiβ j)2
+O(σ2

k ).

Using

(7.9) N = 2
N

∑
j=0, j ̸=l

eiβl

eiβl − eiβ j
,

we write (7.8) as

(7.10)
N

∑
j=0, j ̸=l

eiβl pk
j − eiβ j pk

l

(eiβl − eiβ j)2
= E1 +O(σ2

k )
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for l = 0,1,2, ....,N. For convenience we set

pk
l = eiβl mk

l and β jl = β j −βl

to reduce (7.10) to
N

∑
j=0, j ̸=l

eiβ jl mk
j

(1− eiβ jl )2
−
( N

∑
j=0, j ̸=l

eiβ jl

(1− eiβ jl )2

)
mk

l(7.11)

= E +O(σ2
k )+O(δkσk)

for l = 0,1.....,N. It is easy to verify that

(7.12)
eiθ

(1− eiθ )2 =
1

2(cosθ −1)
= (−1

4
)

1
sin2(θ/2)

.

To deal with coefficients of mk
j in (7.11) we set

d j =
1

sin2( jπ
N+1)

, j = 1, ...,N

and

D =
N

∑
j=0, j ̸=l

d| j−l|.

Since dl = dN+1−l it is easy to check that D does not depend on l:

(7.13) D =
N

∑
k=1

dk =
N

∑
k=1

1
sin2( kπ

N+1)
=

N2 +2N
3

.

Now (7.11) can be written as

(7.14) −
N

∑
j ̸=l, j=0

d| j−l|m
k
j +Dmk

l = E1 +O(σ2
k ), l = 0, ....,N.

For l = 0, we have β0 = 0 and mk
0 = 0. Thus from (7.14) we have

(7.15) −
N

∑
j=1

d jmk
j = E1 +O(σ2

k ).

If we take (mk
1, ...,m

k
n) as unknowns in (7.14), the last N equations of (7.14) ( for

l = 1, ...,N) can be written as

(7.16) A


mk

1
mk

2
...

mk
N

= E1 +O(σ2
k ).

where

A =


D −d1 ... −dN−1
−d1 D ... −dN−2

...
... ...

...
−dN−1 −dN−2 ... D





32 TERESA D’APRILE, JUNCHENG WEI, AND LEI ZHANG

Since D = |d1|+ ...+ |dN | and each di > 0, we see that the matrix is invertible,
thus |mk

i |= E for all i.
One consequence about v0,k is that the local maximum points of v0,k, being per-

turbed by the amount of O(δ ∗
k ), are O(e−µk δ ∗

k ) away from the corresponding loca-
tions of the local maximum points of vk. The reason is vk is non-degenerate near
each blowup point.
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