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ABSTRACT. In this paper, we consider the multi-species nonlinear Schrodinger
systems in RYV:

d
— Auj 4+ Vj(z)u; = uju? + Z ,Bi,ju?uj in RY,
i=T5i%j
u;(z) >0 inRY,
uj(z) >0 as x| > +oo, j=1,2,---,d,

where N = 2,3, u; > 0 are constants, 3; ; = (3;,; # 0 are coupling parameters,
d > 2 and Vj(z) are potentials. By Ljapunov-Schmidt reduction arguments,
we construct infinitely many nonradial positive solutions of the above system
under some mild assumptions on potentials Vj(z) and coupling parameters
{Bi,;}, without any symmetric assumptions on the limit case of the above
system. Our result, giving a positive answer to the conjecture in Pistoia and

Vaira [50] and extending the results in [50,52], reveals new phenomenon in the
case of N = 2 and d = 2 and is almost optimal for the coupling parameters
{Bii}:
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1. INTRODUCTION

1.1. Backgrounds. In this paper, we consider the multi-species nonlinear Schrodinger
systems in RV:

d
- AUj + Vj(x)uj = 'uju? + Z ﬁiJU?Uj in RN,
i=15i#£] (1 1)
. N :
uj(z) >0 inRY,
uj(z) =0 as|z] = 400, j=1,2,---,d,

where N = 2,3, p; > 0 are constants, 3;; = 8;; # 0 are coupling parameters,
d > 2 and Vj(x) are potentials.
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It is well known that solutions of (1.1) are related to the bright solitons of the
Gross-Pitaevskii equations (cf. [10]),

d
oV,
LT%] = AV, — V(@)U + |5 P05+ Y By WYy,
i=1;i#] (12)

U, =,(t,z) € HH®RYT,C), j=1,2,---,d, N=2,3,

by the relation W, (t,z) = e~ **'u;(x), where ¢ is the imaginary unit. The Gross-
Pitaevskii equations (1.2) have applications in many physical models, such as in
nonlinear optics (cf. [1]) and in Bose-Einstein condensates for multi-species con-
densates (cf. [23,37,54]). In Bose-Einstein condensates for multi-species conden-
sates, pu; and f3; ; in (1.1) are the intraspecies and interspecies scattering lengths
respectively, while V;(z) stands for the magnetic trap (cf. [70]) arising from the
chemical potentials. The sign of the scattering length j3; ; determines whether the
interactions of states ¢) and j) are repulsive (8; ; < 0) or attractive (5;; > 0).

In the autonomous case, i.e., the potentials V; are positive constants for all
j=1,2,---,d, multi-species nonlinear Schrédinger systems (1.1) have been stud-
ied extensively in the pase two decades after the pioneer work [41]. By using
variational methods, Lyapunov-Schmidt reduction methods or bifurcation meth-
ods, various theorems, about the existence, multiplicity and qualitative properties
of nontrivial solutions of autonomous multi-species nonlinear Schrodinger systems
like (1.1), have been established in the literature under various assumptions on the
coupling parameters. Since it seems almost impossible for us to provide a complete
list of references, we refer the readers only to [2,3,6-10,16-18,22,23,25,26,31,32,34,

—49,55,67,68,71-73,77] and the references therein for the two coupled case

d =2, [24,28-30,42,50,57,59,62—64] and the references therein for the multi-coupled
case d > 3 with the purely repulsive couplings or the purely attractive couplings
and [11-15,21,27,33,41,51,56,58,60,61,65,74] and the references therein for the

multi-coupled case d > 3 with the mixed couplings. Here, we call the couplings
{B:;} is purely repulsive if §; ; < 0 for all ¢ # j, we call the couplings {8; ;} is
purely attractive if 5; ; > 0 for all ¢ # j and we call the couplings {f; ;} is mixed
if there exist (i1,71) and (ig, j2) such that §;, ;, > 0 and 8, ;, <O0.

In the non-autonomous case, it is well known nowadays that the magnetic trap-
ping potentials will play important roles in constructing nontrivial solutions of
nonlinear Schrédinger equations or systems, see, for example, [5,19,20,35,50,52,53,

,69,76] and the references therein. In particular, in [76], Wei and Yan constructed
infinitely many nonradial positive solutions of the nonlinear Schrédinger equation,

—Au+V(z)u=|uPtu inRY,
{ (@)u = |u| (1.3)

u(z) = 0 as |z| = +oo,
where V() satisfies the assumption:

(Vi)  V(x) > 0 is continuous and radial with V(z) =1+ ﬁ + O(llliﬁ> as

|z| = 400, where § € R and v > 1 and € > 0.
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Let us briefly sketch Wei and Yan’s construction in [76]. Let w; be the unique (up
to translations) positive solution of the following equation:

—Au+ \ju = uju?’ in RY,
u(z) >0 inRY, (1.4)
u(z) -0 as |z] = +oo,

where j =1,2,---,d. Then it is well known that there exists Ay ; > 0, which only
depends on N and j, such that

w;i(z) = An;(1+ O(jz| ))|z| 7 e VAlel as |z — +oo. (1.5)

For the sake of clarity, we denote w; = w; in the partially symmetric case A\; =1
for all j and we denote w; = w in the totally symmetric case A\; = 1 and p; = 1 for
all j. Then by the assumption (V.), (1.4) and (1.5), Zle w(x — ne) + ve I8 very
close to a genuine solution of (1.3) if

rr;én |ne —ns| = +o0  and mtin|77t| — 400
t#£s

as ¥ — +o0o by the Lyapunov-Schmidt reduction, where ¥ € N, ¢t =1,2,--- 4 and
v, is much smaller than the approximation Zle w(z — 1) in a suitable sense. To
prove Zle w(z — n) + v is a genuine solution of (1.3), the adjustment of the
locations of {n;} is needed. In [76], the key idea is to put {n:} on a circle with a
large radius, which are invariant under the action of a discrete subgroup of SO(N),
to reduce the number of parameters in adjusting {n;} and using ¥, the number
of spikes, as a parameter in the construction of spiked solutions of (1.3). More
precisely, Wei and Yan choose 17, = py&; where py ~ 9#log is the radius and the
locations &; satisfies

& = (cos (W),sin (W),o). (1.6)

Then the adjustment of the locations of {n;} is reduced to find a critical point of
the reduced energy functional of the parameter ¥ which can be solved by taking
the maximum of this reduced energy functional of the parameter 1 over a suitable
set. We point out that generated by the fact that the building block shares the
same decaying property (1.5), the locations of {n;} in [70] are invariant under the
rotation of the angle %” and this invariance is crucial in the above construction.

Wei and Yan’s idea in [70] is applied by Peng and Wang in [52], where by
Ljapunov-Schmidt reduction arguments, Peng and Wang proved that for the two
coupled case d = 2, multi-species nonlinear Schrédinger systems (1.1) has infinitely
many nonradial positive solutions in dimension three N = 3 under the following
assumptions on Vj(z),

(Vo) Vj(x) > 0 is continuous and radial with V;(z) =1+ ‘jﬁ + O(l_)

‘Z|u3+a
as |x| = 400, where §; € R and v; > 1 and € > 0,

and some further assumptions on the parameters d; and 81 2. The solutions con-
structed by Peng and Wang in [52] either look like ¥ copies of synchronized spikes

(gaw@c - pﬁfo,tz:bw(x _ pﬁgt))
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where & is given by (1.6), or look like ¥ copies of segregated spikes
9

( 2 w(z — po&e), f:@(m - P«sﬁé))

t=1

- (o (25) 0 (252):)

with py ~ ¥1og? as ¥ — 400 and (a,b) being the unique solution of the following
algebraic equation:

where

{Mla + [0 =1,
p2b+ B12a = 1.

Again, we point out that generated by the fact that the building block shares the
same decaying property (1.5), the locations of spikes in [52] are still invariant under
the rotations of the angle %’T or 5, respectively, and these invariance is also crucial
in Peng and Wang’s construction in [52], since the adjustment of the locations of
spikes can still be reduced to find a critical point of the reduced energy functional of
the parameter 9 which can be solved by taking the maximum of this reduced energy
functional of the parameter 1) over a suitable set. Moreover, to our best knowledge,
there is no results about the existence of infinitely many nonradial positive solutions
of multi-species nonlinear Schrédinger systems (1.1) for the two coupled case d = 2
in the dimension two N = 2.

Peng and Wang’s results in [52] have been extended in a recent interesting pa-
per [50] by Pistoia and Vaira to the case d > 3 and N = 2,3. More precisely,
Pistoia and Vaira proved in [50], by Ljapunov-Schmidt reduction arguments too,
that there exists g > 0 such that for every ¢ > ¢¢, (1.1) has a positive solu-
tion (¥1,9,U2.9, - ,Uqw) for d > 3 and N = 2,3 under the following symmetry
assumption

Vi(x) = Vj(x), i = py, Biy = B, for all i, j (L.7)
where Vi(z) = Vj(z) satisfies the assumption (V.) and § satisfies the smallness
assumption

B €(0,8y) for § >0 or B € (—Fy,0) for § <0 (1.8)

with By — 0 as ¥ — +00. Moreover,

9
g~ Y w(e— poby;) forall j=1,2,--.d,
t=1

and (U1,9,Ua2,9, - , Ug,9) is invariant under the rotation of the angle % in R?, where

py ~ Pdlogd as ¥ — +oo and

(COS (2(j —Ur 2t - 1)7T>,sin (2(j —Ur At - 1)#))7 N=2,

3 dd 9 dd 9
t!j = . .
2 —1)m  2t-1)m\ . [(20—-D7m  2t—-1D)7 B
(cos( 70 + 3 ,sin 70 + 3 ,0], N =3
The idea of Pistoia and Vairia in [50] is to combine the two symmetries of the

system (1.1) under the assumption (1.7): First of all, under the condition (1.7)
the system (1.1) is invariant under any permutation of (uq,...,uq). Secondly, the
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system (1.1) is rotationally invariant if the potentials V;(x) are radial. Under these
two invariance, it is possible to arrange the (ug,...,uq) first in a sector, and then
use the rotational symmetry to extend.

1.2. Main Results. The main purpose of this paper is to extend the results in
[50,52] to obtain an almost optimal existence results of infinitely many nonradial
positive solutions of (1.1) under some mild assumptions on the potentials Vj(z)
which are more general than (V). In particular, we shall remove the symmetry
assumption (1.7) and the smallness assumption (1.8) in [50, Theorem 1]. We also
include the results in the case of N = 2,d = 2, not covered in [52].

To state our result precisely, let us first introduce some necessary notations and
assumptions. We make the following assumptions on Vj(x):

(Vi) Vj(x) > 0 is continuous and Vj(a/,2") = V;(|2'],|z"]) in RY, where

2 = (x1,75) € R? and 2" € RV—2;

(V2)  Vi(x) = A\ + \II +O< e ]+E> as |x| — 4oo in the Cl-sense, where
)\j > 0, (Sj € R and Vj,5>0.

Remark 1.1. In the assumptions (V1) and (Vz), we do not require that the poten-
tials V;(z) are symmetric at infinity, i.e. we do not assume that A\; = A; for all
i # j. Note that in [50,52] the symmetry assumption A\; = A; at oo plays key roles
in the construction.

By rearranging if necessary, we may assume that
M= =y <Apg1 = = Ay < < App_ 11 = = Anysy (1.9)

where 1 < nj; <ng < -+ <np=dand 1 <k < d. For the sake of simplicity,
we denote ng = 0 and n, = {n,—1 +1,n,—1 +2,--- ,n;} forall 7 =1,2,--- k.
By [4, Lemma 3.7] and (1.5),

[l e = = (B, o), (1.10)

[ wtust =0t = (€ olel'F e VA, (111)

22 (D +o(1)[g]~2e VAl N =2,
/ wi(-—&dr = (1.12)
RN (D, + o(1))[¢] 22V Elog ], N =3,

forall i,j € n, with all 7 =1,2,--- |k,

[ wh = e = (D +o(1) g VeV (113)
forall7=1,2,--- ,k—1 and

[, whiu, (= e = (D + o)€MV (114)

as || — +oo, where B;, C;, D, and D’ are positive constants. Moreover, it is also
well known that by (1.5), the spectrum of —A + \; in L?(RY;w?) is discrete for
all 4, j. Let B3; ;. be the first eigenvalue of —A + )\; in L2(RY;w?) and we denote
v, = min{y,;} and m, = {j = 1,2,--- ,d | v; = v,}. Then our main result can be
stated as follows.
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Theorem 1.1. Let N = 2,3, d > 2, (V1)-(V2) hold and f; ; be not an eigenvalue
of =A+ \; in L2(RN;w?) for all i, j with Bj j+1 < Bjj+1,« for all j. Assume that
Ve > 1 and the following pinching condition is satisfied

A < 4, (1.15)

Then (1.1) has infinitely many nonradial positive solutions, provided that one of
the following conditions are satisfied
(a) ZjEm* Bjdj > 0, and Z;L;;j_1+1 Bj,j+1 > 0, ﬁnT’nTJrl >0 fO’f‘ all T =
1,2, k-1,
() Yem. Bid; <0, and 770t B <0, Bui o1 <0 forall T =
1,2,--- .k —1 in the case of d > 3,
(¢)  Xjem, Bidj >0, and —2172D7IC) < Bio < 0 in the case of N = 2
and d = 2 with Ay = Ay while, 512 <0 in the cases of N =3 andd =2 or
N =2 and d = 2 with A\ # )Xo,
(d) ZjEm* B;d; <0, and f12 < —27T_%D1_101 < 0 in the case of N = 2
and d = 2 with A\ = Ag,
where B;,C;, Dy > 0 are given by (1.10), (1.11), and (1.12), respectively.

In what follows, let us give several corollaries of Theorem 1.1 to make it to be
easier to understand.
Corollary 1.1. Let N = 2,3, d = 2 and suppose that the assumptions (V1)—(Va)
hold. If minj—1ov; > 1 and Ao < 4\ then

(1) for N =2, (1.1) has infinitely many nonradial positive solutions, provided

(@) Yjem, Bjdi >0 and 0 < Bia < B2,
(0)  Xjem, Bidj >0 and P12 <0 in the case of A\ # Aa,
) Zjen* Bjo; > 0 and —QW_%DflC& < Bi,2 <0 1in the case A1 = Ag,
) ZjEm* Bjd; <0 and B2 < —27T7%D1_1C'1 < 0 in the case of A\ =

>\27
(2)  for N =3, (1.1) has infinitely many nonradial positive solutions, provided

Y jem, Bid; >0 and Bia < B2,

By (1) of Corollary 1.1, one can see that for the two coupled case d = 2, multi-
species nonlinear Schrodinger systems (1.1) has infinitely many nonradial positive
solutions in dimension two N = 2, under some suitable conditions on the potentials
Vj(x), if the coupling paramter f; » is not very large. Moreover, when the crossing

=]

)

(
(d

happens at infinlty, that is, Ay = A3, then —27T%D1_101 is a jumping point of 3 o
for the existence of infinitely many nonradial positive solutions. (2) of Corollary 1.1
is a generalization of [52, Theorem 1.2] in two fronts. First of all, we allow Ay <
41 in Corollary 1.1 while the symmetric condition Ay = Ay is assumed in [52,
Theorem 1.2]. Secondly, we give a description of 3., whose existence is asserted
in [52, Theorem 1.2], by proving that 8, > f(12.. In the symmetric condition
A1 = Ao, by rearranging, it is well known that £ 2. = min{p, po}.
Next we discuss the case of N =2,d = 3.

Corollary 1.2. Let N =2, d =3, \1 < Ay = A3. Suppose that the assumptions
(V1)~(V2) hold and B;; is mot an eigenvalue of —A + \; in L2(RN;w2) for all
1,7 =1,2,3 and i # j with B 11 < Bjj+1,+ for all j = 1,2. If minj—123v; > 1
and A3 < 4\; then (1.1) has infinitely many nonradial positive solutions, provided
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(a) ZjEm* B;d; >0 and B12 > 0,
(b) Zjem* Bj(Sj <0 and 51’2 < 0.

Corollary 1.3. Let N =2, d =3, A\ = Aa < A3. Suppose that the assumptions
(Vi)~(V2) hold and B;; is mot an eigenvalue of —A + \; in L2(RN;w2) for all
1,7 =1,2,3 and @ 7&] with ﬂj,]‘+1 < ﬂj,]‘+17* forall j =1,2. If minj=172,3 v > 1
and A3 < 4\; then (1.1) has infinitely many nonradial positive solutions, provided
(@) Yjem, Bjdi >0 and B2+ P23 >0, B12 >0,
(b)  Yjem. Bidj <0 and pr2+ P23 <0, 1,2 <0.

Corollary 1.4. Let N =2, d =3, A1 < A2 < A3. Suppose that the assumptions
(Vi)~(V2) hold and B;; is mot an eigenvalue of —A + X; in L*(RN;w?2) for all
1,7 =1,2,3 and ¢ # j with B 11 < Bjj+1,+ for all j = 1,2. If minj—y03v; > 1
and Az < 4\y then (1.1) has infinitely many nonradial positive solutions, provided
(a) Zjem* Bj5j >0 and ﬂlyg,ﬂgvg >0,
(b) EjEm* Bj(Sj <0 and 617275273 < 0.

By Corollaries 1.2, 1.3 and 1.4, we can see that for the three-coupled case d = 3,
under some suitable conditions on the potentials V;(x), multi-species nonlinear
Schrodinger systems (1.1) in dimension two N = 2 has infinitely many nonradial
positive solutions with some suitable restrictions only on ;2 and fg 3, which also
allows the couplings {f; ;} to be mixed.

Finally in the case of d > 3 we have the following

Corollary 1.5. Let N = 2,3, d > 3 and suppose that the assumptions (V1)—(Va)
hold. If \j =X, pj =p, 0 =0 andv; =v > 1 forall j, B;; = B for all i,j, then
(1.1) has infinitely many nonradial positive solutions, provided

(a) §>0and B < p,

(b) d<0andp<o.

Corollary 1.5 is a generalization of [50, Theorem 1.1] in the sense that, we remove
the smallness assumption (1.8) in [50, Theorem 1] by giving a uniformly upper
bound of 3 for the existence of infinitely many nonradial positive solution of (1.1)
in the case of § > 0 and by showing that there is no lower bound of 3 for the
existence of infinitely many nonradial positive solution of (1.1) in the case of § < 0.

1.3. Further remarks. Our strategy is still to use the Ljapunov-Schmidt reduc-
tion arguments to construct infinitely many solutions of (1.1). In this procedure,
by the assumption (V3), (1.4) and (1.5),

9 9 9
W= wiw—n), > walw—nea)y, Y wal@ —1r.a))
t=1 t=1 t=1

is a natural approximation of (1.1) if
min i —Nsi| = +oo and min|n ;| = o0
i e = sl nin [7), |
as ¥ — +oo. To continue, we need to construct a correction v, which is much
smaller than the approximation W in a suitable sense and then, to prove that
W + Vv, is a genuine solution of (1.1) by adjusting the locations of {n; ;}.

As that in [50,52, 76], we want to put {n ;} on a circle with a large radius
p to reduce the number of parameters in adjusting the locations of {n:;} and
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using the number of bumps of the solutions, as a parameter in the construction
of spiked solutions of (1.1). In [50,52,76], the locations of {n; ;} are constructed
to be invariant under the rotation of the angles 27” or %, respectively. Thus, the
adjustment of the locations of {n; ;} will be reduced to the solvability of a one-
dimensional equation of ¥ under these invariance. However, we do not assume
Aj = A for all j or 3;; =3 for all ¢ and j in Theorem 1.1, thus, the limit
system of (1.1) at infinity can not be rotationally invariant anymore. This
requires us to introduce more parameters in adjusting the locations of {7 ;}. Note
that the parameter p used in [50,52, 76] is in the normal direction of the circle.
Therefore, we shall introduce another d parameters in the tangential direction of
the circle in adjusting the locations of {n; ;}. The locations of the spikes {n;}
is roughly summarized in the Figure 1 and we refer the readers to (2.1) for more
details.

Vi34 M ',”f‘ 0
Ne-1,1 No-11 ’ .
FIGURE 1. The locations of {n; ;}
As pointed out in [50], due to the linear coupling term, the correction v, needs

to be divided into two parts, say Q. (the main term) and v, (the high order term),
even in the symmetric case where the potentials V;(x) = Vi(z) for all j,i satisfy
the symmetric condition (V). In this paper, by using the representation
formula and making careful and almost sharp estimates, we find out the
leading term of the main term of the correction in the reduced problem
in the general case (V7)—(V3), see Lemma 6.2 for more details. This gives
a precise expansion of the reduced energy functional up to the leading order term
in the general case (V1)—(V2). Surprisingly, our estimates show that due to the
crossing interaction among the peaks of different components for 4,5 € n, with all
T=1,2,---, k, the correction v, can be negligible in the reduced energy functional
for these terms labelled by j # n, and the main terms of the correction do have con-
tributions to the reduced energy functional for these terms labelled by j = n., see
(6.8) and (6.9) for more details. With these two precise expansions of the reduced
energy functional up to the leading order term, we observed that, according to our
construction of {7 ;}, there is only the interaction among the peaks of different

el Bjj+1 > 0 and

components in the tangential direction. Moreover, if > e 141
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Bn,m,+1 > 0 forall 7 =1,2,---  k — 1, then the reduced energy functional takes
maximum in this direction while, if Z;};;j_l-«-l Bjj+1 <0 and By, n, +1 <O for all
7=1,2,--- ,k—1, then the reduced energy functional takes minimum in this direc-
tion. Thus, according to the assumption (1.9), the balanced conditions in the tan-
gential direction should obey the relations |1 ;1 —n¢ ;| = (1+0(1))|n:,; — ¢, j+1| for
allj =n,_1+42,-- ;n—1lwithall7=1,2,--- |k, |77t,n7—1_77t,n7| > |"7t,n7_7]t,n7+1‘
forall 7 = 1,2,--- k=1 and [0, -1 — Ntn, | = (L4 0o(1) M0, -1 — Men, |- We
refer the readers to the Figure 1 for a better understanding of the balanced condi-
tions in the tangential direction stated above. On the other hand, as that observed
in [50,52], the potential effect, the interplay between peaks of the same component
and the interaction among the peaks of different components will compete in the
normal direction. For d > 3, thanks to the precise expansion of the reduced energy
functional up to the leading order term in the general case (V1)—(V2), we observed
that the interaction among the peaks of different components always dominates
the interplay between peaks of the same component. Thus, the competition in the
normal direction is reduced to the potential effect and the interaction among the
peaks of different components for d > 3, which help us to give a positive an-
swer to the conjecture in [50] and remove the smallness assumption (1.8)
in [50, Theorem 1.1] even in the general case (V;)—(V2). For d = 2, again,
thanks to the precise expansion of the reduced energy functional up to the leading
order term in the general case (V1)—(V2), we observed that the situation is com-
pleted different, that is, the interplay between peaks of the same component always
dominates the interaction among the peaks of different components except in the
symmetric case Ay = Ao of dimension two IV = 2 while, in this case, according to the
crossing phenomenon of the interaction among the peaks of different components,
the interplay between peaks of the same component and the interaction among the
peaks of different components are the same order term. Thus, the competition in
the normal direction is always reduced to the potential effect and the interaction
among the peaks of the same component for d = 2 except in the symmetric case
A1 = A of dimension two N = 2 while, in this case, the second term is generated
by the competition of the interplay between peaks of the same component and
the interaction among the peaks of different components. Roughly speaking, in
the normal direction, if the interplay between peaks of the same component dom-
inates the interaction among the peaks of different components then the reduced
energy functional takes maximum in this direction for 3 jem. Bjé; > 0 while, the
reduced energy functional takes minimum in this direction for »°. . B;d; < 0 if
the interaction among the peaks of different components dominates the interplay
between peaks of the same component. Now, summarizing the above observations,
we can use variational arguments to find out the balanced conditions in the normal
direction and in the tangential direction to solve the reduced problem by taking
the maximum of the reduced energy functional over a suitable set in the case (a)
of Theorem 1.1 and taking the minimum of the reduced energy functional over a
suitable set in the cases (b) and (d) of Theorem 1.1 while, a min-max variational
argument to the reduced energy functional over a suitable set is needed in the
case (c) of Theorem 1.1, see Proposition 6.1 for more details. We remark that
the reduced problem is much more delicate than that of [50,52,76] and
the competition of the interplay between peaks of the same component
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and the interaction among the peaks of different components also gener-
ates a new phenomenon for N = 2 and d = 2, that is, there is a jumping
point of the coupling 3 2 for the existence of infinitely many nonradial
positive solutions of (1.1) in the symmetric case A\; = A\, which has never
been observed in the literature to our best knowledge.

It is also worth pointing out that the conditions (a)—(d) is almost optimal since
these conditions completely capture the leading order terms of the reduced energy
functional. Moreover, the conditions §; ;11 < Bjj+1,« for all j also seems to
be necessary in constructing infinitely many nonradial positive solutions of (1.1),
since the potential solution U = W + Q. + v, constructed by us in the proof of
Theorem 1.1, can not be positive anymore for ) sufficiently large if 5 ;41 > B, j+1,+
for some j, see Remark 6.1 for more details. Thus, it will be very interesting to
construct infinitely many nonradial positive solutions of (1.1) if B; 41 > B j+1+
for some j. On the other hand, the pinching condition (1.15) is also crucial in our
construction of the correction v, in proving Theorem 1.1, which can be understood
as a condition that the natural approximation W is very close to a genuine solution
of (1.1), since the natural approximation W dominates every step of our construc-
tion under this condition. We believe this pinching condition (1.15) is optimal
in the constructions of solutions of (1.1) which are started from the natural ap-
proximation W. Thus, it will also be very interesting to construct infinitely many
nonradial positive solutions of (1.1) without this pinching condition (1.15).

A very challenging problem for (1.1) is the existence of infinitely many positive
solutions when the potentials V;(z) are not radially symmetric. In [36], infinitely
many nonradial positive solutions are constructed to the single scalar equation (1.3)
with nonradial potential V' (z) satisfying the decaying property as same as that of
(Vo). In a future work, we will remove all the radial symmetries of potentials for
the full system (1.1).

Notations. Throughout this paper, C and C’ are indiscriminately used to denote

various absolutely positive constants. a ~ b means that C'b < a < Cb and a < b
means that a < Cb.

2. THE FIRST APPROXIMATION

For every j € n, with 7 =1,2,--- |k, we define

(e (04 2507 (0,4 22 07Y), v
(e (0 20507 i (0,4 25 07) o),

where 0; = Zz;& a; with ag = o(¥971), t = 1,2,--- 9 for ¥ € N sufficiently large
and

gt,j = (21)

U

2m !

Ty

Sl

Qi oy ~

s
I
o
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forall j =1,2,--- ,d— 1. For the sake of simplicity, we denote ag = %’T - Z?:_Ol ;.
For every j € n, with 7 =1,2,--- |k, we also define

0
Wj=) @,
t=1
where wy j = w;(ry ;) with ¢ ; = |z — p;& ;| and p, > 0 sufficiently large satisfying

P #1 = Py yi2 = =pu, =p+O0(1) forallT=12-- k

with p ~ ¥ 1og ¥ being chosen later. By the definition of & ; and the radial symmetry
of wj, we know that W; is invariant under the rotation of the angle 27” for every
jen, withall7=1,2,--- | k. We denote

Ntj = PiSt.-
Then for ¥ > 0 sufficiently large, by the geometry of the constructions of {&; ;},
0, —0; t—
Mg — Nsi = 2psin | [—— + (= s)m + h.o.t.
El ) 2 19
for all (¢,7) # (s,i). In particular,
- . 2wp
Mj = W (15 = 1| = |g = 25| = —= + hoot.. (2.2)
m#n )
If n, —n,_1 > 1, then we can define
0 = i i — Mn.i| = pa . 2.
A R Mm,i = Nn,j| = pir + R, o0, t., (2.3)
where
2 i
a, = min{nT-lﬂigj<nT % g~ Z a;}.
Jj=nr_1+1

Clearly, iy < 7; for all j € n; and all 7 =1,2,--- , k. Finally, we denote
n= (m,zI'?;léI(ln,j) i — il and @ = 121]1£d a;. (2.4)

For every j =1,2,--- ,d, we define

Uj = Wj + ©j,
then by (1.9), U = (Uy,Us,---,Uy) is a solution of (1.1) if and only if ¢ =
(¢1,%2, - ,pq) is a solution of the following system:

3
L; = E; _|_]\7,7 iHRN,
i() ; N/ J (2.5)
pj(x) =0 as|z|—+o0, j=1,2,---,d,

where

d
Li(p) = —Ap; + Vi (x)p; — 3u; W3 o; — Z Bi,i (Wig; + 2W;W;p;)
i=15i#]
is the linear operator,
9 d
Ejx =\ = V@)W, Ejo=p(WP=> wi,), Ejs= Y Bi;WW;(2.6)
t=1 i=13i]
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are the errors and
d
D Bii@Wigip; + Wi} + 0705) + 3u; W03 + b
i=15i]

is the nonlinear part.

Lemma 2.1. Suppose the assumptions (V1)—-(Vz) hold. If A, < 4X\,, under the
condition (1.9) then for ¥ sufficiently large, we have

No1_ oy /s )
|Ejal < <Z:1+th el T”’]X{rt] 1y

o
+<Z(1+n,j~)‘<21‘”>e\/“f’“td‘)x ﬁj}>, (2.7)

9
p Ny_i{re ;>4

v
~17 An e _\/>\n j
[Ej2l < 0 Tn](;_l L+re5)” e T”’”X{m] iy

[
V=B =0) =\ Anr e )
—l—(Z(l—i—rw) 7 %) )Xn;’l{m,p’y}) (2.8)

k N, 9
1N - O .
Ejsl S 0 7e A””(Z Do D (r) Tr eV iy, sy

T=1i=n,_1+1 t=1
k nr 9 N
5 =S\ An, Tt
+<Z Z Z(l + Tt’i) 2 e S +Tt, )Xﬁ?lmf=l{rt’i>6ﬁ}>7 (29)
r=1i=n,_1+1t=1

where o > max{v;, 1}, ¢ € (0,1) is sufficiently small such that

2=V > VA, forallT=2,3,--- k. (2.10)

and

66( VAns 7 v ”1> (2.11)
VA, — S/ A

Proof. Let us begin with the proof by estimating |Ej1|. For |z| < £, by the triangle

inequality, we have r; ; = |v — ;| > § 2 7; for all ¢, where 7); is given by (2.2).

Thus, by the assumptions (V1) and (V2) and (1.5),

9
1—-N
Bl S n] e "*”7<p—“§jr “emV A (212)
t=1

for |z| < £. For |z| > £, by the assumption (V3) and (1.5),

9

Bial Sp7 Y (1ry) 7 e VAners, (2.13)
t=1
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Now if 4 j < 7771 for some ¢, then ry; > %J for all s # t and |z| > |ng ;| — e > g.
Thus, by similar arguments as that used in [75, Lemma 2.1],
19 —_ —
S0 o) T e VI S (1 ) B VR, (2.14)
s=1
ifr,; < %] for some ¢, which, together with (2.13), implies
1Bl S p (14 ,) eV Ancres (2.15)

for [z| > £ and 7 ; < 7’ for some t. On the other hand, if [x| > £ and r;; > %’
for all ¢, then by (2.13),
0
|Bjal S p7 (Zu + rt,j><1%1“>e-WT“=j>. (2.16)
t=1
Thus by (2.12), (2.15) and (2.16), we have (2.7). We next estimate |E;2|. By
(2.14), it is easy to see that

|Ejal ~ D @@y + Y D, j D, jD1j ~ Y Wi 0y (2.17)
m#n m#n,m#lL,n#l m#n

ifr,; < %J for some t. In this case, s ; > %] for all s # t. Thus, similar as (2.14),
by similar arguments as that used in [75, Lemma 2.1],

) 2 Az 3 Moy (27475
~ ~ ~— 3 =/ Ay (2rm i+ T
wm,jwnvj SJ nj € ! !
m#n;n,m#t m#n,n,m#t
3(1 N)
< E -\ 717—7mj E -/ nq—"nj
m#t n;ét
_301=N) N)
5 nj 2 VvV "7‘77]6 V nT 2

S ﬁ}-‘Ne* AT (1 47y )~ VA (218)

Similarly,
Sk, S (1+Tt7j)%e_\/mrtdzr7ln_,;ve_2 Badie
m#t m#t
< ~1 N Ze nfrm] (H_Tt,j)%e— Anp Tt
m#t
S ANV (L) OV (219)
and

1-N
NL=N _—/An, 7e,; 7 =/ Anr (Tm i +7e5)
E F jmy S (L+re) e T -7E Tl e T ATm g T

m#£t m#£t

< 7\/)\n-,—|77m,j777t,j|)(1 + rtj)l—Nef,/An.,rt,j
m#t
1—N — —
< ﬁj T o Amnj(l + rtj)*(%"’)e_\/)‘nﬂ‘w'. (2.20)

Thus, by (2.17),
1-N _ _
|E'2 <,"7A Z o~ /\1L7—77j(1+Tt7j)—(¥—g)€7\//\n77’t,j

Dral ~o My
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ifry; < % for some ¢. If 7 ; > %’ for all ¢, then

9 ) 9
Bjal S (Do @sy)" Y i
s=1 t=1

[
< i Ne” A"TﬁjZ(ler,j)_¥€7‘/ﬁm“"
t=1
]
< NV Y 1) CE e 2a1)
t=1

Thus, by (2.20) and (2.21), we have (2.8). We finally estimate |E; 3|. Clearly, by
(2.6),

|Ejsl = |Ej31+ Ej32|
S E E Wy, iWn,j + E E Wy, iWn,js
i€ny ij nm ient rAr nm
where
_ 2~ o =2 =
Ejs1 = E E Bi,j Wy ;Wn,; and  Ejzo = E E Bi,j Wiy, i Wn ;-
i€n,,iF£j n,m ien’  T#T n,m

For Ej; 3 1, the estimate is similar to that of E; . The difference is that we shall use
7 in stead of 7j; according to the construction of & ;, where 7. is given by (2.3).
Let us sketch the estimates of F;31. If r,; < %* for some n, then ry, ; > %’ for
all i € n, with (m,4) # (n,j). Now, by similar estimates of (2.18),

Ejsal S0 D W,

ieny,i#j I,m

< ANV (1, ) CF e VR (2.09)

If oy < %* for some ¢ and m then r,; > %’ for all I € n, with (n,l) # (m,1).
Then by similar estimates of (2.20),

|Ejsal S Z Z%JZ“’M
lenmlijp 1
S ﬂjgn,i Z wn,j
n=1
1—N oy —
N ’\"*"T(l+rm,i)7(¥70)6_mm’i- (2.23)

If ryy > % for all ¢ and I, then by similar estimates of (2.21),

1 Ej3,

[
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which, together with (2.22) and (2.23), implies that

9
Aﬂ _ —~ _ Nﬁl—o’ _ e
|Ejsal S -7 e A"WT(ZZ(“”“M) e A TIPS

ien, t=1

9
N-1 )
+ ( Z(]_ + rtyj)(2U)E_N/AWTTLJ)X(}E“TN?l{m,i>ﬁ{}> . (224)

t=1
For Fj 3.2, the estimate is slightly different from that of F; 5 and E; 3 1. Note that
Ej 3.9 exists only when A,,, > Ay, thus, we always assume A,, > A,, in estimating
|Ej 32| By (2.10), it is easy to check that § < . If r,, ; < 67 for some n, then
rey > (1 —0)n for all (t,1) # (n,j), where 7 is given by (2.4). Thus, by similar
estimates of (2.18) and (2.19),

Ejsol S0, > im0,

ienl , 7#T I,m
9
S E E wm,iwﬂqj + E : E wm,iwlaj
ienl ,7#T m=1 ien’ ,7#T I,m;l#n
~— —2(1— 7 _(N-—1 _ )
< plNe21-9) A (] + 1) (T ==V Anrni (2.25)

If rp,,; < 07 for some ¢ and m then r,; > (1 — 6)7 for all (p,l) # (m, ). Moreover,
by (2.11),

\//\nfrn,j'i'gw/)\n;'rm,i > ((1_6)\/)‘717 +§(5‘/)\n17)7/7\
Z ((175) )‘nz +§5V>‘n1)77
> VAl

for all n,m and 4, j with 7/ < 7. Furthermore, if we suppose
o =g = min o — |
without loss of generality, then by (2.10) and similar estimates of (2.14),

9
|Ejs2l < S i,

len” m'" %1 p=1

9 9
E E Wy 1 Wt j + § : E :wp,lwtaj

<
~J
lenll, 7" <1 p=1 lenll, 7" > p=1
[
1—N 1-N _(92_ — .
< pe Z Z(lJFTp,l)Te 2=y An ot o= (VA Ty Anr Tp,0)
len? 7' <7 p=1
N —2(1— 7 1-N .
+771 Ne 2(1-9) A"1"(1+7‘m,¢) T e An,Tt,j
~I=N n (N1 — )
S 7z e VAT 4y, )T T e VAT (2.26)

If rp; > 67 for all p and I then by the construction of {n, ;} and (2.10),
20/ AT F NV ATy 2 VA Mg — Mmil + (24 Anr — VA, )Tm {2.27)
> VA |77n,j - 77m,i| + S/ )\n;"'m,z‘-
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It follows that

|Ejs2l < S i,

len’, T AT n,p

(1—|—7‘mz)1 N - ,T"LIZE V ”1'77713 "7ml|

A

mz

B o I =R

S

eTVAMTN (1 1y ) N emEV AT (2.28)
where we choose € < 5. Thus, by (2.25), (2.26) and (2.28),

k n 9
~A=N = _(N-=-1_ _ X
Bjssl S A7 e (Z S S ) T e VA, oy

T=1li=n,_1+1t=1
k nr 9
1-N _ . /)\711'7‘ B
+(Z Z Z(l—i—rt’i) ze " Xﬁg:1mf:1{7't,1257’7\} ’
T=1i=n,_1+1t=1

which, together with (2.24), implies that (2.9) holds. O

3. LINEAR THEORY
‘We introduce the norms

lells; = Z Z Zsuplwll+m)7 JeVAneriy o

T=1i=n,_1+1 t=1

|l
+sup - XA A9 (o507
ZT 121 nr_1+1 Lat= 1(1+7"t i) S emeV AT MimaMima {re,: >0

and

lells; = Z Z Zsuplcp|1+m) B e eV An iy 1y

T=1i=n,_1+1 t=1
]

+Supz 12 +1 2ut= 1(1+7'tz) ENefax/Kn,iXm?zlm?:l{”’pgﬁ_l}'
T= P=N,_1

We also introduce the Banach spaces

d d
=[x and Y-=]]Y/,
j=1

Jj=1

where

le ={uec H*RY) | ||uly; < —I—oo,/ Dy Wy judz = 0,u(z) = uw(©Fx) for all [ and t}
RN

and

Yj* ={ue L*RY) | |Jully; < +oo,/ O, Wt judz = 0,u(z) = u(OF x) for all [ and t}
RN
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with
cos 2(t:91)7r sin 2(t:91)7r 0
+ _ . 2(t—D)7 2(t—1)m
07 = | —sin 25 cos = 0 (3.1)
0 0 Tl(N_2)x(N-2)
For u = (uy,ug, - ,uq) € Xt v = (vi,v, -+ ,v4) € Y, we define

d d
ally =D llwllegs VI =D [l
j=1 j=1

Now we can state our main result in this section.
Proposition 3.1. Suppose the assumptions (V1)—(Vz) hold and B; ; is not a eigen-
value of —A + \; in L2(RN;w?), that is,

—Av+ N = B jwiv in RY

has no solutions in H?(RN), then for ¥ and pa = p 1r<n_i£1d o sufficiently large,
<<

= in RY
{E(v) =h, RY, (3.2)

v e Xt
is unique solvable for every h = (hy,ha, -+ ,hq) € Y-, where
L(v) = (£1(v), L2(v), -~ La(v))
with

d
ﬁj (V) = —AUj + ij(x)ﬂj — 3,ujo2vj — Z ﬁi’j(WiQ’Uj + 2WZWJ’UZ)
i=15i]
Moreover, |[v|[y < [[hlf;-

Proof. We start the proof by showing that there exists Ry > 0 large enough which
is independent of ¥ and pa sufficiently large such that

1N ,
[o3@)] % (e +sup ||vz||Loo<aBR0<m,i>>>(Z(l ) e W) (33)
g T,t,1
for x € RV\ Us.i Bro(nt,4)- Indeed, by (1.5), it is well known that o(—A+A;) = {0}
in L2(RN;w?) with o0y — 400 as | — oo, where o(—A + ;) is the spectrum of
—A + \; in L2(RN;w?). Thus, 8{l | oy < B:;} is finite. Note that it is also well
known that the Morse index of w; is one for all j. Thus, by the construction of

{n,;}, for ¥ and pa sufficiently large, it is standard to use the Riesz representation

theorem to show that £(v) = h is uniquely solvable in H;lzl (H;)* foreveryh € Y,
where

H; ={uec H'(RY) | / D, Wy judz = 0,u(z) = uw(©Fx) for all I and t}.
RN

Now, by elliptic estimates, we know that v; € L°(RY) for all j. By the assump-
tions (V1) and (V2), we can choose ¢; < A; such that V;(z) > 2¢; > 0 in R for all
j. By a direct computation,

7AS0w + CiPuw 2 Pw in RN\BRO (nt,i) (34)
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for Ry > 0 sufficiently large, where

Z Z Z L4r) 7 eV etV e,

T=1li=n,_1+1t=1

Note that by (1.5), for ¢ > 0 sufficiently large,

—Alvj| + ¢jlvs| S(em VAo Sup lvtllLee mv\ U, , Brg e T 11R1l5.5)

x (2(1 + rt)”veW> (3.5)

T,t,%

in RV\ Ut’i Bpr, (n:,;) for Ry > 0 sufficiently large. Thus, by the maximum principle,

lvj(z)| < (emRO sup [oellLoe @N\U, | Brg e F 115 + Sup ||’UjLOO(aBRO(m,i)))<Pw»(3~6)

in RM\ U, ;, Br, (n,s) for every j, where we take e > 0 sufficiently small if necessary.
In particular, by letting w — 0, we know that

SUp [l @MU, Brg e S em VAt SUp [l @\ U, By (ne.0))

+hlly + sup [lvill L (0B7, (n0,0))»

t,i,

which implies

Sup [vtll oo @A\ U, , Bryre.0)) < SUP [Vl oo 0By (ne0)) + Pll5-

)ty

It follows from letting w — 0 in (3.6) once more that (3.3) holds. Recall that by
(2.10) and (2.11), § < 5. Thus, we have |z| ~ p in every Bo7(n:;). It follows from
the assumption (V3) and (3.3) that

= Al + (A = Cp™")|vy]

d
< (Iosl Yo W2+ W5 Y- Wilul + [hg1)

=1 1#£5

AnsTp,l
< (e el + ) (35 3 )

70'
b P o 1+Tpl( 7 %)

=/ AnsTti
< (e VMR gup vl e o N+ Ih ¢
~ ( Iy || ||L ( BRo(nt,t)) || Hh) (1 + Tt)i)(Nglfo')

(3.7)

in every Bsz(n:,i)\BRr, (1:,:) for Ry > 0 sufficiently large. Here, we also apply similar
arguments of (2.14) for the last inequality. For every T and every j € n., we define

) o —Cp i)y
T A S

foralli=1,2,--- ,dand t = 1, 2,-+- ,1. Then by direct computations,
Byt <0

t,i

—Ajir+ (N —Cp ™ )djir 2 in RN\ Bg, (n:.4) (3.8)
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for Ry > 0 sufficiently large. Let 11 (¢) and 12 (t) be unique solutions of the following
ODEs, respectively,
— ) — 2 + %Py =1,
P1(0) =1, ¥i(0)=
and
— 9y — 260 + %y = 1,
Ua(1) =0, ¥5(1)=0
where ¢ > 0 is sufficiently small. Then

() = 7 = (VB e VR (VB 1))

and
5*2 ( \/i_ ]. ei(\/7+1 er f+ ]. (\/571)67“)'
2V2 e~ (V2+1)e e(f e
It is easy to see that 9j(r) < 0 and ¥5(r) < 0 for r € (0,1) and there exists
ro € (0,1) such that ¢](ro) = ¥4(ro). Now, let
¥1(0) — 1(ro) + ta(rg), t <0,
Y1(t) — ¥1(ro) +2(ro), 0 <t <ro,
Pa(t), 1o <t <1,
t>1,

’(ﬁg(T) = 672 —

P(t) =
0,
then 9 (t) € L>(R) N CY(R) N W2°°(R) is a cut-off function. Let

b= Z ¢j.i 0 (rei — 0N + 1) + (¥1(0) — ¥1(ro) + P2(r0) Z’l/J (rei —on+1))p.,

i,t i,t

Clearly, supp((ros — 67 + 1)) N supp(b(rsy — 57+ 1)) = 0 for all (£,4) £ (5,).
Since ¢+ = o(1)p,, in supp((ry,; — 06n+ 1)) for every i and t, by (3.4) and (3.8),

— AQA% +ch§w 2 Yw, ae 1y >0n—1for all (t,1),
(3.9)

DGt O~ Cp g 2 P ae. Ry < 1y < 67— 1 for some (17).

~Y
Tt,i

Thus, by (3.3), (3.5), (3.7) and (3.9), we can apply the maximum principle to show
that

0@ 5 (s ol @8y ) + Il )6

t,i,l

in RV\ Us.i BRro(nt,i), which, together with letting w — 0, implies that

- u707 - nyTt,i
lvi(z)] < (SupHUl”L‘X’ (0B (s, L))+||h|u)<2(1+7“t,z’) 2 Ve VAN Thix  py<r,  <oi-1}

£l 7,6,

nr

3 S e F eV g oz

T=1i=n,_1+1 t=1

(3.10)
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in RV \Us.i Bro(nt,i)- Now, we can use the blow-up arguments to establish the
a-priori estimate ||v||; < |Ih|;. We assume the contrary that there exists ¥,, — 400
and p,a&, — +0o as n — oo, and h,, € Y+ and v,, € X+ such that

L,(v,)=h, inRY
with ||hjnlly; — O for all j as n — oo and there exists jo such that

1wjo nlle o = max [[vgnlls; = 1.
Since [n;;| = pjn — +oo for all ¢, j, we have |z| > % — +oo and ry; > ?’7 — +o0
for all (s,[) # (m, 1) if there exists 1 <m <9, and n,_; < i <n, for some 7 such

that 7,,; < Z-. Clearly, {vj,,n(- + n7,)} is bounded in L{%,(RV) for all i. Thus,
by elliptic regularity estimates and Ascoli-Arzela’s theorem, it is standard to show

that 0j, i.n — vj,.i,00 Uniformly on every compact set of RY, where
e — n
Ujo,in () = Vjo,n (& +175)-

Moreover, if i = jg, then vj, j, o is a bounded (weak and then strong) solution of
the equation

—Au—|—)\jou—3,uj0w32»0u =0 inRY, (3.11)

while if ¢ # jo, then vj, ;0 is @ bounded (weak and then strong) solution of the
equation

—Au+ Njou— Bijwiu=0 in RN, (3.12)
For the sake of simplicity, we denote v, j,,co BY Vjy,00- Since wj, is non-degenerate

N

in H2(RY), by (3.11), vj5.00 = Y. 10z, wj,. Note that by passing to the limit in
I=1

the orthogonal conditions of vj, », we have

/ (O3, wj )Vjg.00dz =0 foralll=1,2,--- N.
RN

Thus, we must have vj, oo = 0, which implies that vj, »(- + 77 ;) — 0 uniformly on
every compact set of RY. On the other hand, from the assumption on 3;, ; by (3.12),
we also must have v, ; o = 0 for all i # jo, which implies that vj, »(- +n7;) = 0
uniformly in every compact set of RY and all i # jo. In both cases, since Vjo,n
is invariant under the action of the group O, for all ¢, where ©, is given by (3.1),
we have vj, »(- + n;%;) — 0 uniformly on every compact set of RN for all t,1,
which, together with (3.10), implies that ||vj, nlls,j0 = 0n(1). It is impossible since
lvjo.nlltjo = 1. Thus, we have proved the a-priori estimate ||v||y < ||h]y. Finally,
the solvability and uniqueness of (3.2) follows from the a-priori estimate ||v||3 <
|||, and the Fredholm alternative. O

4. THE ANSATZ AND THE NONLINEAR PROBLEM
Let us consider the linear equation:
L(v)=E3, inRY,
n (4.1)
veXT,

N 9 ~ .
where Eé’ = (Ef:SvEé:BV" vEdl,:a)v Ejl,?, = Ej3 — Zl:l Zt:l Vi,t,50z,We,; With
Vit € R
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Lemma 4.1. Suppose the assumptions (V1)—~(Vz2) hold and B; ; is not a eigenvalue
of —A+ )\; in L2(RN;w?), that is,
—Av+ \jo = B jwiv in RY

has no solutions in H?(RN), then for ¥ and pa = p 1I<r111<1d o sufficiently large,

B3y = Ejs — 70,00, W; — p,0p, W; (4.2)
where
190, Will7 2 vy S Ej,300, Wida — [ 09, W;0p, Wjda [ Ej 30, Wjda A

b 108, W3 12 ey 19, Wi ey — o 9, Wy, W2
and

90, Wil ey Jen EjsOp, Wide — [y 00, W;0p, Wjda [n Ej30p,Wjda »
o 100, Wil oy 00, Wil oy — U 005 0, W
with

18, Will7aggny ~ 0 and (|09, Wil 72y ~ P30 (4.5)
Moreover, (4.1) has a unique solution Q. satisfying
1Qul S 777 e VA, (4.6)

Proof. Since Ej3 =", oy B; jW2W; is invariant under the action of the group Oy,
we have

—~ 1
/ Ej’Sawlthdx = 7/ Ej»36Iledmv
RN J Jrw
where ©; is given by (3.1). Moreover, since w; ; = w(z — p;& ;), by (2.1),
(8Pjﬁjt’j7 86jwt,j) = Mvz’ﬁjt,j7

where 2’ = (z1,22) and
—cos | 05 + 2t 1)” —sin (9 + 2 D”)

M =
pj sin 9j+w —pj cos <9 4 20 l)ﬂ)

Clearly, M is invertible and u is even for 3 in the case of N = 3 if u € Y. Thus,
f]RN Oz, Wt judr = 0 for all ¢ and [, the orthogonal conditions in Xj- and ij is
equivalent to

/ 0p, Wt judr =0 and / 0p, Wy judx =0 for all ¢.
RN RN

It follows from |& ;| = 1 and the invariance of u under the action of the group ©,
that the orthogonal conditions in Xj- and Yj- are

/ 0p;Wjudr =0 and / 09, Wiudz = 0.
RN RN
By the construction of {&; ;},

100, Wy = 910y, 0 ey +2 3 [ 00,0, Bugde. (47

s,tit#s
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Since [0,,w; ;| < wy; for every 7 and every j € n,, by [50, Lemma A.2], (2.2),
p ~ Y¥log ¥ and similar estimates of (2.14),

D /3pjwt,j3pjws,jdl‘| S /wt,jws,jdl‘
RN RN

s, tit#s s, tit#s
3-N
S5 oV A M55
~ Y g —megl 7 e b5~ 10|
t#s
9
3—N N
S E E |77t,j*77$,j| 2 e n—rlntJ 775,]'
t=1 s#t
< 19"’% =/ An, 1
~ IrI] € ’
1_ !
S U7, (4.8)

where ¢’ > 0 is a constant. Thus, by (4.7), ||9,, Wj”iQ(RN) ~ 1. Note that by

10, @13 ° + p; 2|00, W15 |° = |V 517,

we also have |0p,wy ;| S pjwyj, thus, the estimates of HangszLz(RN) ~ p?z? is
similar and we omit it. On the other hand, by similar estimates of (4.8) and
Jon 09, W;40,,W;j¢dx = 0 for all ¢, we have

3—-N ~
|/RN 8ngj6ijjda:| S | Z /RN 6pj@t,j89j1ﬂs,jdx| 5 pjﬁﬁj 2 e )\7L7-77J7 (49)

t,s;t#s
therefore, by (4.5) and (4.9), (4.2) and (4.3) hold. Clearly, by (4.2) and (4.5),
9
VB3| S 1Bzl + (Mo, 105 + o, ) D e
t=1
Note that by (2.9) (4.3) and and (4.4),
1 _ _1~l=N n
e, | S 00721 Bjallpeeny S 7 IE alley S 72 T VAT (4.10)
and
< -3 < < LN )‘n ﬁ
Vo, | SO Ejsll2emy S 1Ejslls ST 2 e Vom?, (4.11)

thus, |[EL|ly < |Bslly S 772 e V1. By Proposition 3.1, (4.1) has a unique
solution Q. satisfying
_1-N  _ PN
1Qully S 77 e VAmT, (4.12)
It completes the proof. O

Let Ej* = Ej’l + Ej,g, then by (27) and(2.8),

0

* 2] ~% —/ A1 (N 5y - An Tt ~
v N—-1
N~ (FF==0) g/ AnrTe g -
O ) L) R

t=1
We use U, = (W1 + Q1.+, Wo + Q2.x, -+, Wg + Qq.«) as the final ansatz and write
Uj = Wj + Qj,* + Vj 5



INFINITELY MANY POSITIVE SOLUTION 23

where v; . are the correction terms. By (2.5) and (4.1), Vix = (V1 44, V25005 " - * 5 Udix)
satisfies the nonlinear problem

L(v.e) =EL +NL, inRY,
{ i (4.14)
veX,
where B, = (Ei*, E3*, -+, E5*) with
d
B = B+ Y. BiiCWiQi.Qi. +WiQ7 . 4+ Q7.Q;.) + 3, W,Q%, + Q5
i=15i#]
—l—’}/gj@ngj + ’)/pjaijj
= B+ 799,00, W + 7,00, W; (4.15)
and N,, = (N;*, N3*,--- ,N3*) with
d
N o= Z Bij (Wi (Vi wx Qg + Qi wVj sx + Vises Vg wx) + Wi(2Q4 40 s + %2**)
i=1;i#]
F (V7w + 2Qi 5 Vi i) (Vjsx + Qji) + QF L0j0x) + ;W5 (V7 + 2040 Qj )
07 1 4 307, Qj s + 305, Q7 (4.16)

Lemma 4.2. Suppose the assumptions (V1)—(Vz2) hold and B; ; is not a eigenvalue
of —=A+ \; in L2(RN;w?), that is,

—Av+ \jov = B jwiv in RY
has no solutions in H*(RY), then for ¥ and pa = p1r<n_i£1d o sufficiently large,
<<
(4.14) is uniquely solvable in the set
B={veX"||[valsSp+7 7 e 2V in}

Proof. Since d > 2, we have min; 7; > 27. It follows from (4.13) and (4.12) and
similar estimates of (4.10) and (4.11) that

Hokok Hokok —v AN o XD
1B g S IE; ey S o7 +77 2 e 2V (4.17)

for all i. Note that (Ya,0a, W; 4+ 7p,0p, W)+ = 0, thus, by (4.17),

1B ey S o7 7= e 2V,

Since
d
IN oy S0 D (neelleill@ielleg + 107sllog Qi e llgi + 103 sl | Qi llai + 107w l1Z,
i=Tyiti
Vi el Vg 0x l.5) + 1050 5,5 1@ s+ vg0xl1F 5

by (4.12), we can use a fix-point argument to solve (4.14) in the set B and the
unique solution v, satisfies

y | SN o Sh
Vs Sp9 +7 2 e VAN (4.18)

It completes the proof. [
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5. ESTIMATES OF [,y FEj 30, Wjdx AND [,y Ej;30, W;dx

Clearly,

9 d 9
19*1 \/RN Ej,389jodJC ES 19*1 Z Z Z/ ’[Dii’[ﬁt,jagj’tzt,jdz

and

9 d [
19—1 /RN E»,38Pjod.13 = ’(9—1 Z Z Z/R ﬂjiiwt,japjat,jdx

Let
(— sin <9j + W),cos

(— sin <9j + Q(t_ﬁl)?T),cos

Lemma 5.1. Suppose the assumptions (Vi)—~(Va2) hold and B; ; is not a eigenvalue
of —A+ \; in L*(RN;w?), that is,

—Av+ \jov = B jwiv in RY

has no solutions in H2(RN). If An, < 4\, under the condition (1.9), ., < o,
forallT=1,2,--- k=2 and o, = (1 + 0o(1))a, with

max{max{/An, &, }, vV Agg—1} < 2min{min{y/ A an_, b, v/ Agoqg1}

in the case of k > 1, then for ¥ and pa = p1r<ni2d o sufficiently large,
<<

(1) forj#n,,l—l—l,j#nT ork=1,

1 _1

) p% (Cloéj_Qe—Q\/AnTpOéj _ 02aj_216_2 An,pajfl) + h.O.t., N = 2,
9 / E;j30p Wide =¢ | ¢ _ _ Cs
RN J ) p 1(?6 24/ Anypaj log(pozj) _ -

: 2
J j—1

1
ft,j =

)

N N

9j+M),O>, N =3.

e 2V nrritlog(pa; 1)) + hot., N=3

and

—loy 5 _o2./x o7} I3 —2./A j
p Z(ciaje nrPY —cha? e nrP-1) 4+ hot., N =2,

/
p 2 (e Ao log (pay) —

Qa; Q51

!
C2

19_1/ E; 30, W;dx =
RN P e 2VAneP%i-1og(pa; 1)) + hot., N =3.

(2) Forj=mn,_1+1witht>1, ifn, —n._1 > 1 then
clp%a;%(fzv Anrp@i _ coem 2V APt Lot N =2,
2 e—2v Anr-1P%-1) L hot., N =3

2
a]

19*1/ E; 300, W;dz =
RN 3,300, YV 5 pfl(%e—%/)\n_rpaj log(paj)—

% : 4
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and
R : —1_—2./X i
cip zale 2V Anepoi _ eop~le nr-1P-t 4 hot., N =2,
672’”\""_1[)0‘]‘_1) +hot, N=3

19*1/ E; 30, Widx =

RN 7,3%p; J p—2(%€72,/)\nﬂ_pa]‘+1 log(paj) _ o ,
J J—

while if n, —n._1 =1 then

(2672 A poiy _ 6726*2\/M771P%'—1) +hot, N=2,

&%} Q51

_ C1 _ ) Co _o. / )

P 1(2—6 2y Anr P41 - —e 2 ’\”T’lp%)Jrh.o.t., N=3
(o] s
Jj+1 J

1971 /N Ejvgangjd[E =
R

and
Yepe 2V Anpas _ o™ 2V AneaP%i-ty L oy N =2,
2( L2V Aucpoy 2 -2 Muipeiay 4 hot, N =3

e} Q51

(3) Forj=1, ifny > 1 then

p,
19_1 / Ej738ijjda: = _
RN P

_ Qg
9 1 E17369 Wldl‘ =
RN ' p_l(%eﬂv AP Jog(pay ) — %672 AniPedy 4 hot., N =3
1 d
and

1 -1 Coy _
{cm?al 2em 2V Ampar _ 2 =2 Ampda Lot N =2,
1 L 1 9 /n
cp iaZe VAP _ g pmlem VAP L ot N =2,
19—1/ B4 30, Widx =
,3Vp1 YV 1
RN

p*Q(Cile_Z\/ Anypay log(pal) — 26_2 Anlpad) + h.O.t., N = 3,
o1 &%)

while if ny = 1 then

Cc1 _ Co _
(—e 2\ Anypen 2 o2 )‘"'lpad)Jrh.o.t., N =2,
_ aq Qq
9t [ By 300, Widz = L el o Somn €2 3 —oa
RN P~ (*6 n P _ 2, n1 P d)+h.0.t., N=3
a? a?
d

and

1(616_2 Angpor _ oo o™2 ’\”1”‘“) + h.ot., N =2,

o
19—1/ Fy 30, Widx =
. 1,3Up1 VV1 p_2(071672 Angpor 672672 >\”1pad)+h.0.t.7 N = 3.
aq Qq

(4) For j =n,; withT <k, if ny —n,_1 > 1 then

c1 _ ) 1 -1 _ )
L em2VPneroi _ pioya, Be 2V Pt L hot, N =2,

o Z
19—1/ E; 309 Wide = 7
RN J pfl(%e—2 Angpog _ agile—Q\/)\nq—POtj—l log(pOéj71)) + h.ot., N=3
J Jj—1

and

1
) Clpfle—%/km_paj _ Czpiéa;_le_Q Angpoj-1 4 h.ot., N =2,
9 / Ega W.dx = c C
Ry T p_2(071672 Anr oty _ — 2o 2V nrri-tlog(pay_q)) + hot., N =3,
J Jj—1
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while if n, —n,_1 =1 then

c1 _ . C2 _ ;
(—e WAnrpey = o2V AP0y L ot N =2,
9 [ E,a0s Wid I @i
) Wdx =
v 33%0 T 1,4 2 /3 pa C2 o/ paj_i _
R (e TP — e TP%-1) 4 hot., N =3
Q; Qj-1
and
p (e VAP _yem 2V A Pi-1) L hot., N =2,
19—1/ E; 30, Widx =
3,3%0; YV _9,C1 _ P Co P
RN j P 2(7e 2/ Anppay T2 =2 /\nTPanl)_i_h_O.t.’ N = 3.
o i1
J J

(5) Forj=d, if n —ng_1 > 1 then
L g2 Anypea —02/)204(;l 2 Ampdd-t L pot., N =2,
aq

pfl(%e_z Ay poa 571672, [ Any PQa—1 log(pag_1)) + h.ot., N =3
ay g1

1971\/ Ed,389ded:c =
RN

and

1
c1p le 2 nlpad*CQp 2045 e 2V Anprast 4 ot N =2,
19—1/ E430,,Wadx =
RN 4:5%aTd Anpaa _ 2 =2\/Anypaa-s log(pag—1)) + h.ot., N =3,
Qg—1

while if n, —ng_1 =1 then

C2 2 /3. _
Anppad _ 2 o po1PSLy L hot., N =2,

Qd—1
9! E4309,Wadz =
BN , d )\nlpad o %B—QMPOZd—l) + h.O.t., N =3

g1

and

p- 016 AnqPQd _ 02672’ /)\nk_lﬂlld—l) + h.ot., N=2,
¥ / Ey30,,Wadx =
RN

P Anypad 2 672\/ )‘”kflpadfl) + h.o.t., N =3.
dg—1
Proof. By [50, Lemma A.2] and similar calculations in [50, Lemma 2.6],

9 d 9
Z Z Z/ w Wy jO0p, Wy jd

0
-2 A/ s,i—Mt, gsz gt
~ 2 XX e R G i)

9 9
/N s — &t
+ D i = el 2e AV A el SRS el

[€s.i = &

=1
[V [V,
1 _2\/ n ‘7]5 i—Nt, J‘ 59 i é}vj 1
+ Z ZZMM Negl™ " <ﬁyﬂjft,g‘>
i 2]
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for N = 2 and
9 d 9
Z Z/ Wy Wy, ;O0p, Wy ;AT
t=1 i=1;ij s=1 7 RY

—92 72\/V|775 i Wt1|< £Sl gtd ]é‘tl>
) P, »J

1s=1 |£5 (2 ,J|

90
+ Z Z 1s,i — Mt,j

~2,=2y/An, [Ms,i=7¢,5] log |775,i - nt,j|< €s i ft,] o jgtl,j>

i€n, t=1 s=1 |§€ i =&t
9 9
-2 72\/77-'77@ =Nt 58 @ St’j
+ Z ZZ|”S’L nt,jl <§7|7pj§t >
ien_ 7/ >T t=1 s=1 5,0 7]
for N = 3, while
9 d 9
S [ a0, duds
t=1i=1,i#j s=1 7 RY
9 9
—1,=2y/ A 15,710, §si — &y
SHD SED 3 SR ()
i€n 7T/ <7 t=1 s=1 851 t,j
9
5 =24/ An Msi—ne5 gs 7 gt,J
+ ZZMSJ Nl Ze ' < s |7£t,j>
ien, t=1 s=1 (2%
9
-1 _2\/ nr|Ms,i—Nt,5] 551 gtv]
+ Z ZZ|7’S’L nt,] T < g |7§t,j>
ien_/>T t=1 5=1 t,j
for N =2 and

[ d 9
)OID D DY BRI

t=1i=1;i#j s=1

[V é. f
N Z ZZ'ns,i_nt,ﬂiz _2\/ﬁ‘7]sz ntj‘< 5,1 t,j 7£t,j>

ien 7T/ <7 t=1 s=1 ‘gs i Et,]
9 09
+ 1.0 — me. 4|22 Anpms,i=me,51 _ Ssi = 8tj o
DD e =l P 8 s = 1 (e S, 609)
ien, t=1 s=1 8,1 t,j

90
2 —2\/7\77“ Nt,5] 5” Efﬂ
+ Z ZZWH el T (277 60)

i€En ;7' >T t=1 5= |€S,Z gt,jl
for N = 3. Note that
i 0j+1—0i41)—1
{ 51 7'—51] &15) = W ~ =011 —0it1),
1€1,i—E1,5] [€1,i—&1 5]

1781 _ sin(0j41—0iv1)
<\51 i—&1, 7|’£1)3> - [€1,6—&1,5] L

—

and

I, — M| = pjl0j+1 — O] + hoot.,
Thus,
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(1) for j#n,—1+1,j#n, or k=1,

¥ E /]RN wy ;W jOp; Wy jdx
t,i,8517£]
_ 1

1 3 _a/ -1 _ .
PQ(Claj 272V Anr Py czozjfle 2 )\nrpajfl) +hot., N=2,
C2

_1,¢C _ )
p~ (=5 2V AP log(pay) —
a;j i1

=2V - parj 1 log(paj—1)) + hot.,, N=3

and
¥ E / ws7iwt7j69jwt7jdx
JRN

t,i,8;1#£]
1 1
p_% (Clla; 672 /\"Tpaj — 0/205‘7.271672 )\"Tpajfl) + h.O.t., N == 2,
ch A c N pos
p2(Le 2V AP Jog(paj) — —2—e 2V APt log(par; 1)) + heot., N =3.
Qi Q1
(2) For j=n,_1+1with7>1,if n, —n,_q > 1 then
Y / 2 iy, ;O W,y
ti,s5i) 7 RY

_1 _ .
clp%aj 272V AP gV APl L oy N =2,
e 2V Anr—1p%i-ny L h ot N =3

_1,C _ )
p~ (=5 2V AP log(pay) —
& j—1

and
9 E / wmwm@pj Wy ;dx
JRN

t,1,89#]
_1 L ) 1 —2./X o
cap zale I Anrpai _eopTle VAnr 10 '+ hot, N=2
e "2V )‘"T*I”O‘jfl) + h.ot., N =3,

p2 (e rini log(pay) —

Q Q51

while if n, —n,_1; =1 then

Y / wg Wy, 0, Wt jdx
. JRN

t,1,89#]
1 _ ; C2 2 /X i
(—e 2VAnrpas _ 2 ¢ nr-1PYy 4 hod., N =2,
. Qg 51
- _ &1 _ . Co )
pH—L o2V Anrpai _ 2, 2\//\”,7_1;111_7) +hot, N=3
Qj+1 Q;
and
Y / | Ws,iWe,jOp, e jd
ti,siiztj K

pHere 2V AP _ pem AV APy L ot N =2,
/)_2(0—1672 Mcpag _ 2 =2y Anr-1P@i-1) L hot., N =3.

Qi Q51
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(3) For j =1, if ny > 1 then

Y g / ws7iwt71891wt,1dx
RN

t,i,8;1#1
1 -1 _ Co _
cipzap Te VAP _ 2 o2V Ampd L of o N =2,
_ Qd
- _q,C1 _ Cy _
p (e ?V AP Jog(pay ) — —e? Ampad) Lot N =3
of aj
and
Y g /N wmwt?laplwt,ldx
ti,si£l YR

R 1 —2./
cip FaZe WAL _ o pmlem AP L h ot N =2,

P2 (e VA log(pag) — eV APy Lo, N =3,
aq g

while if ny = 1 then

0, g / wy ;Wi 109, Wy 1dx
RN

ti,syi#£1
C1 _ Cy _
(—e 2VAmpo _ ZomtAmpedy L ot N =2,
Qi Qq
= 1,0 _ Cy _
p 1(76 2y/Anypor _ —e 2 )\nlpad) +hot, N=3
oy ay

and
v E / w3 ;Wi 10,, Wi 1dT
ti,sitl Y RY
pHere VAP _yem VAP L hot N =2,

_9,C1 _ Co _
p 2(76 2y/Anypor _ e 2 )\nlpad) + hot., N=3.
ai Qd

(4) For j =n, with 7 < k, if n, —n,_1 > 1 then

9 E /N wsyiwtyjagj Wy jdx
R

t,i,851#£]7
c1 ) 1 - _ )
e 24/ An,pay _ p202a'721€ 24/ An, poj—1 +hot, N=2,
O[j J
= c c
—1,C6 2. /\,._ pa; 1 -2/ i
p (726 ny PG __ Te ny POj—1 10g(POé]—1)) + h.o't'7 N = 3
o o5
J J
and
9 E /N wg Wy jOp, Wy jdx
tyi,siij

1 —2./ ) R W4 )
cip e 2V AP _ ey Za e WA pdizi f p ot N =2,

p—2(%672 Anypoy _ O[ie*%/)\n,pajf1 log(paj_l)) + h.ot., N =3,
J j—1
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while if n, —n,_1; =1 then

9 E / ws,z‘wtyj(%j wy jdx
]RN

t,i,851#£]
c1 _ ) Co _ )
(;8 2 A"Tpaj — 7@ e 2 /\nTpajil) + h.O.t., N = 2,
J j—1
- _q,C1 _ ) Co _ )
p(—e? Ane Pty _ ——e? AnrP-1) 4 hot., N =3
a; Qj-1

U | WsiWejOp,
iy siis

pH(cre VAP _ pem2V A Pi-1y L hot., N =2,

_9,C1 _ ) . C2 _ .
p A (—e W Anpas 2 o= Anrpo1) L hot., N =3.
a; Q51

(5) For j =d, if ny —ng—_1 > 1 then

¥ E / wy ;W 40, Wt adx
RN

t,i,s;17#d
c1 1 -1
L2V Amraa —copiay e W Agpra-1 L p ot N =2,
(o7}
= c c
1, _2./x . 1 —2. /%, poa_
p (e mped .~ e #PY-1og(pag—1)) + hoot., N =3
Qg Qg1
and
19_1 E / @g’iwt’dapd@t’ddl'
t,i,8;17#d RN

1 - _1 L _
cipte? A’”’1”%—02;) 2o g€ W Apra-1 L p ot N =2,

(et Amres 2 o0/ Apea log(pay_y)) + hot., N =3,
(e%] ad—1

while if ny — ng_1 = 1 then

9 E / wy ;W a0, Wi, adT
]RN

t,i,s;i7#d
C1 C2 -2/, _
(76 2 )\nlpad _ e ng_1PXd 1) + h.O.t., N = 2’
. aq Qg—1
- C C _
N SGeAVAmees 2 oA APy Lo N =3
o ag_y

9 E /N wg ;Wi 40p, Wt adx
t,i,8;17#d R

— — —2./An -
p 1(016 2 /\nlpad_c2e k_1PCd 1)+h.0.t., N =2,

—2,C1 _ C2 2. /X, -
p 2(76 24/ An poa _ _Z e k_1PCd 1) + h.ot., N =3.
Aq Ad—1
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On the other hand, for every s and i, by symmetry,

Z Z / w? W 0wy jdr = Z Z Z / 0p; (W jwy 5 )dx

11=1;1#t 1i=1i#51=1;1>t

= Z / sz /)J wthle)d

tl|s—11<|s—t|

/ sz PJ wta]wlj)d

t,l;|s— t\<\s 1]

= / Wg 4 Op; (Wt ja0y,5)dz

t,l;|s— t|<|s 1

and
90 9
~2 ~ ~ ~
E g /N wy Wy j0p, Wy jdr = E g E / W3 ;0p, (W ;0 j)da
t=11=1;l#t 'R t=1i=1 =1;>t

= Z / ws 189 wtjwlj)

t 1| s—1<|s—t|

LD SR AT

t.li|s—t|<|s—1]

Y / 2,0 (50,3 )

t0s)s—t]<|s—1] * R’

By [1, Lemma 5.1] and the assumption \,, < 4\,,, for every j € n, with 7 =
1,2,--- ,kand l #t,

~2 o~ o~ _ =/ Ay Max
/N Wy Wy jwy jdr = o(e ).
R

where 7, <7 with ) = mingegn {|y —ns4| + [y —n¢,5| + |y —m 51} Thus, by similar
arguments as that used for [50, Lemma A.2],

it [ 00,y e = oY) (5.1)
and
[ .80, @t e = ofe V), (52)
RN

Since {ns;} C R?, it is well known that 7 is attained by the Fermat point. Thus,
in the case of |s — t| < |s — | for every s, either
_ INs,i — Ne.jl + [Ms,i — mijl,  Ms,i is the middle point,
INsi — Nt + e, — mjl, ey is the middle point

or 77 > 5(Insi — el + nsi — m sl + e —ml) 2 p- For these points n;,; and 1,
which Satley s —t] < |s 1l and 7 > 5(|nsi = 7e5] + 05,0 = Ml + 10eg —m50) 2 p-
We call them “good points” for the sake of simplicity. Then, by (5.1) and (5.2),

/N w3 09, (W, ;0 5)dz = o) /N Wy Wy, 0, Wy, jd)
R R
.l

t,l;good points
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and

Z / 0y, (Wy 1wy, 5) dm—OZ/ w Wi10p, Wy jdx)

t,l;good points

for all s and ¢ # j. For these points n; ; and 7; ; which satisfy |s —¢| < |s — | and
1 =1|Ns,i — Ne,j| +|1s,s — m,;]. We call them “bad points” for the sake of simplicity.
For these points, we observe that since a; ~ %, then for d > 3,

1 =10+ 2min{[ns ;41— ns 51, s, -1 — 551} + O(%>'

Thus, by similar arguments of (2.14),

Z / wy O, (Wy jwy j)dr = O(Z/ w§7i@t7j8‘9j@t7jdw)

l;bad points t,l RN

and

W2 ,;0p, (W4 10y 5)dz = o> /R N W2 Wy 10,, Wy, jdx)

RN t,1

t,l;bad points

for d > 3. For d = 2, except the terms
/ Wi 1 Op, (W 2wy -1 ,2)d, / Wi 1 0p, (W,2Wi—1,2)d,
RN RN
and
[ 00 @adids, [ @0 (@i,
RN RN

the other terms in )°, | [on W2 0, (We W1, 5)dx and Y-, | [on W2 0, (Wy, 50, 5)dx are
O(Zt’l Jan wiiwt,jagjwt,jdx) and O(Ztyl Jan 11)?7111),5,18,,1.w,g,jdac)7 respectively, even
if we sum them up in terms of [ and ¢ by similar arguments for d > 3. For the term

~2 ~ ~
/ Wi Wt 2We—1 2dT,
RN

Without loss of generality, we may assume that |92 — n.1| < |m—1,2 — M1| and
denote 17 = |12 — ne1| = afjz with a < % Moreover, by translations and rotations
if necessary, we may assume that 72 = 0 and denote 7,12 = (7)_; 5,0,0,--- ,0).
Note that 7,2, 7,1 and 1,1 2 are almost on the same line by p; = p+O(1) for all j.
Thus, 7¢,1 = (701, 0(1),0(1),- -+ ,0(1)). Now, as that in the proof of [1, Lemma 3.7],
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we rewrite = (z1,2’). Then,

~9 o~ ~o ~ o~ /
/ wmwt,gwt_lgdx ~ / wtlwt,gwt_l’zdxldx
RN z1<1

+

~o o~ o~ /
0 Wy 1 Wt oW1 2dT1dT
<I1<t712 |z1‘<z1 ’

~9 ~ /
“r/ﬁ wt71wt72wt_172dx1dx
t71 2 <x1<77t0 -1z’ |<z1

2 o~ o~ !
+/ wt’lwt’gwt,1’2d$1d$
z12>7)

~0 ~ o~ ’
+/ wuwt,gwt_mdxlda:
1<z <—5== Flz ! |[>x

~2 ~ -~ ’
+/; Lo wt71wt,2wt_172dx1da: .
17 <I1<7]1_1 s Lz’ >

By (1.5),

o2 / 0 V2O (2 An?  +vxen?
/ W} oW1 pdarda’ S (nfy) " 7 em GV AmaTVA L 2)
z1<1

~ 17‘3(17;1\7)@—(2\/ AMT+VA272)

Since [& —n2y| = \/loy =00 [2 + 272 ~ a1 = | + |2, by [1, (5.6)],

=y = /
f1<m1§ngl;|x'|gw1 Wy We,2Wi—1,2dx1 dw

(1, )1~ NemVAerie

3

/‘2

" ; ! =N ; —(Cll |42y
o [ el [ »
! 7 |z'[<z1
Since
s \ \2
: ) ) )
/ (lzy — m1| + |2 + 1)1_Ne—0\w1—m,1|/ o (ele [+
! 7 |2/ | <z
0
o N N
S (lxl — M, 1| + 1)1 e~ cler— 7811 / e—cl’l gy
! |z’ | <xy
~ 1
and
s \ \2
: . ) )
/ (lzy = md4| + |2 + 1)17Ne*0\901*77¢,1|/ o (ele [+ 22
! 7 |z/| <z
0
o 0 / 1-N 0 1y ,
2 / (|$1 - nt,1| + |$C | + 1) =N g=clzi=m; 1] / <"1zl g
et /|1

33
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we have

~9 ~  ~ ’ 0 \1-N _—+vAan?
/ Wy Wi 2Wy—1,2dv1dx’  ~ (1) TeTVMo12
1<z <nY 5l | <z

VAN
~ ﬁl—Ne— 02 "flt,z—m‘ﬂ_

Note that w7, < (ngﬁl)l_Ne*V”‘”’gl, by similar arguments as that used for [4,
Lemma 3.7],

31=N) 0 0
~9 o~ / 0 —(vV2an? L +vVRan?_
/ 0 Wi Wy oW1 odxrdx’ S (ng1) 2 e (VA VA2 2)
1<m1§%1’2;|z’\>11
-~ 77 M ,( [INIT+ /*)\27,2)
The other terms can be estimated similarly and thus, we have
~1— N |"]t z—m.,1|.

~9
/ w;, LWt 2We—1,2dT ~ 1)
RN

Similarly, if we assume that |12 — m—11] < |m—12 — 1| and denote 7§ =
1.2 — Mi—1,1] = o with a < %, we also have

|1_Ne_ \/ij

~2 ~ ~ —_ — —_
/ wt_l,zwt,lwt—mdl‘ ~ |77t—1,2 — Mt—1,1 [me—1,2—7¢ 1,1\.
]RN

Now, by similar arguments as that used for [50, Lemma A.2], similar calculations
in [50, Lemma 2.6] and the symmetry of the construction of {n; ;},

_ - . _Vas &o— &
/ W7 109, (Wr,2Wy—1,0)dw ~ 7 Ne "5 1(2E220L pogh)
RN €t,2 — &e1l
and
Vs, o — &
/ wflapz (Wt 2Wi—1 2)dx ~ 7 " Ne™ n<¥7ft,2>7
RN 1€¢,2 — &enl
while
5 S N Vg &1 — -1 1
Wi 908, (Wi 1Wi—11)dr ~ 7 e (—————,,&11)
RN |£t—1,2 - Et—l,l‘
and
_ SO Vg, 12 — -1
/ Wiy 90, (W1 Wp—1,1)da ~ Ve w T(ZERE SR g ),
RN €6—1,2 — §e—1,1]

It follows that in the case of d = 2,
/ W7 10, (W 21 2)d, / W7 10p, (W4, 2wy -1 2)de,
RN RN
and
/ W;—1,209, (W1 Wi -11) / Wy—1,20p, (W1 Wy—1,1)d
RN

are also h.o.t. for Ay = Ay, while

/N Wy, 7 100, (We,2W—1,2)dx ~ /N wt 1We,200, (Wy,2)d,
R R

/ w;, 2100, (Wt 2W; 1 2)da N/ wt 1Wt 20, (We 2)dx,
RN

RN
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and
/ wt—1,2801 (W1 W—1,1)dx ~ / wt—l,th,1891 (wy,1)d,
RN RN
/ ﬁt—1,25'p1 (Wi W—1,1)dx ~ / @?—1,2@t,13p1 (wy1)dz
RN RN
for A1 < Ag. The conclusion then follows from the above computations. [l

6. THE REDUCED PROBLEM

So far, by (4.1) and (4.14), we have proved that U = W + Q. + V., solves the
following equation:

d
— AU; + V(@)U = w;UP + > BijUIU; = v5,00,W; — 75,0, W;  inRY,
i=1,i4j
/ By, W1 Q; ud :/ Oy, Wr jVjundr =0, j=1,2,-+ dil=1,2,--- Nit=1,2-- 9,
RN RN

(6.1)
where U = (U1, Us, - -+ ,Uy) with U; = W, 4+ Qj « + vj 4, and

. Ho”'ijjH%z(RN) fRN (E]*** -+ N;*)angjdx — f]RN 89jo8pj W]dx fRN (Eg*** + NJ’F*)aijjdx

Yo.
% ||a9j Wj||2L2(RN)Haﬂjo||2L2(RN) - (f]RN 89]' Wjapj Wjd$)2

and

’y* _ ||69jo||%2(RN) fRN (E]*** -+ N;*)aijjd.T — fRN 89]. Wjaijjd.T f]RN (EJ*** + Nj**)angjdx
Pi ||89jo||2L2(RN)||apj Wjuiz(RN) - (fRN a9j Wjaﬂjodx)z

with E7** and NJ* being given by (4.15) and (4.16), respectively.

Lemma 6.1. Suppose the assumptions (V1)—(Vz) hold and B; ; is not an eigenvalue
of —A+ \; in L2(RN;w?), that is,

—Av+ N\ = Bijwiv in RY

has no solutions in H*(RYN), then for ¥ and pa = p1r<n_i£1d o sufficiently large,
J<

Y, =0 and~;, =0 foralll=1,2,---,d if and only iij(?,ﬁ) =0, where

with ? = (p1,p2,--~ 7pd)} a> = (a17a27"' 7ad) and

d
1 Bij 22
ujdr — Z e /]RN ujusde

1=13i#j

d

1 I

E(u) = Zi/RN V| + V](m)ugdx— ZJ
i=1

RN
being the energy functional of (1.1).

Proof. Since Q, and v, are obtained by applying Proposition 3.1 (the linear the-
ory) through the fix-point argument, it is standard to show that Q. and v, are
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Lipschitz in terms of the parameters 7 and . Thus, J (7, @) is of class CL.
Moreover, by (6.1),

d

aplj(ﬁﬁﬁ) = 279/ 69 Waplde+7p/ 8PJW8PlUdz)

Jj=1

d
= Z%/ 59W8plex+7p/ 0, W;0,, Wjdx)
=1

S

d
+> (s, /RN 09, W;0p, (Qjx + vjus)dx + 7, /RN 0p,W;i0p, (Qj,x + vj s )dir)
j=1

and
d

90, T (7, d) = Zyg/ agwaaldeﬂp/ 8, W;0p,U;dx)

1

<.
Il

I
Mg

70/ (99 W@ngdervp/ 3P7W83lex)
1

<.
Il

(’75} / 89j Wjael (Qj,* + ’Uj,**)dfll‘ + ’7;). / 8pj Wjagl (Qj,* + ij**)dx)
RN RN

_|_
1=

foralll=1,2,---,d. By (4.5) and (4.9),

d
S, / 0o, W;0p W;da + 7, / By, Wiy Wydz) ~ 07y +o(3" 07,) + (o> 973, ))
Jj=1 J#l j=
and
d d d
S0, / 0o, W00, Widax + 7, / Oy, W00, Wydz) ~ 20035, +0( S i) +0@ S pi)
i=1 J=Lij#l J=Lij#l

foralll =1,2,---,d. Moreover, by the orthogonal conditions of Q; . and v; .«, and
(4.12) and (4.18),

Jan 00, W;00,(Qj i + vjsi)da = — [gn 99,09, W;(Qjx + vj4)dx = 0(9p?),
Jan 00, W00, (Qj s + Vjws)dx = — [on 09,0, Wi(Qj s 4 vjux)d = 0(Ip),
e 00, W;0p (Qjix + V) = = [ 0,00, W;(Qjx + 0jux)d = 0(Ip),
Jan 00, W00, (Qjis + vj)d = = [gn 0p,0p, Wi (@ + Vjsx)d = o)
for all j,0=1,2,---,d. Thus, by pj =p+o0(1) forall j =1,2,--- ,d,

d d
P10, T (7, 0) ~9piys, +o( Y Ipivs)+ (00 p393;,))
J=LiAl =1
and
d
09, T (7, ) ~ Dpivs, + of Z 9p375.) + 0¥ pivs,)
J=15#1 j=1

forall | =1,2,---,d, which implies that 77 = 0 and 75, =0 for all { =1,2,--- . d
if and only if Vj(? o) =0. O
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Let K;(z) be the Green function of the operator —A + \;, that is, K; solves the
following equation:
{ ~AK; +\K; =8, inRY,
K;(z) -0 as|z| = +o0,
where d¢ is the Dirac mass supported at z = 0. Then it is well known that K;(z) =

I'(xz) — H;(x), where I'(z) is the fundamental solution of —A and Hj(x) is the
regular part which is of class C' since N = 2,3. Moreover,

Kj(z) ~ |x|_N;167\/7j|m| as |z| = +o0.

By the representation formula,

Qo / K — )05 (9)dy

where

Qje(y) = (N —Viy)Qyu(y) + 31,W;()*Qy. (y Z BiiWi(¥)2Qj..(y)

i=151#]
d
+2 3 BiWi)Wi(0) Qi () + Ej3(y) — 76,00, Wi (y) = 70,05, Wi (v).
i=13ij

Lemma 6.2. Suppose the assumptions (V1)—(V2) hold and B; ; is not an eigenvalue
of —=A+ \; in L2(RN;w?), that is,

—Av+ M\ = B jwiv in RN

has no solutions in H*(RN). If A, < 4\,, under the condition (1.9), ., < ay.
forallTt=1,2,--- k=2 and o, = (1 +0(1))o,, with

max{max{ /A, @, }, vV Agg—1} < 2min{min{y/ A, b, v/ Agog—1}

in the case of k > 1 and oij = (L +0(1))a,, forallj=n,_1+1,n._1+2,--- ,n,,
then

Q4] £ (pyag) = eV 3T (g ) 2 eV A
T,8,mM
in RN with ||Q.|| Lo myy ~ (picv; EERPRRVAY LY orj=1,2,---,d—1, and
Js (R) A
Qas| < (pdadfl)%e—\/ﬁpdadq Z (1 +Tm)i)%efa\/mnm,i
T,%,m
in RN with ||Qq,|| oo vy ~ (pdad,l)%e_m"do‘dﬂ.

Proof. By (2.27) and (2.3), an, 41 < @, forall 7 =1,2,--- [k —2, ap,, = (1 +
o(1))ay, and oj = (1 + o(1))ay,, for all j =n,—1 +1,n,_1 +2,--- ,n,. Thus by
similar estimates of (2.14),

S (pjaj)%ei\/rjpjaj Z (1 + rm,i)%e*E\/ )‘n-,—rvn,i

T,%,m

|Ej 3

and

1—N _ R .
1B sll oo ey ~ (pjay) = e~V ieaei (6.2)
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forall j=1,2,---,d—1, and

|Basl S (paa—) = e~ VAipa0as N2 (1 g p,, )57 eV Nirms

and
-N
| Ea,3ll Lo @ny ~ (paceg_1) 7 e VAapioa—, (6.3)

Note that by (2.3) and similar estimates of (2.14),

1-N
(pic) 2 e VAP for i < j,
WZW] S 10

(pjoy) = e VNP for i > j,

thus, by An, <4Xn,, o, <oy, forallT =1,2,--- k=2 and o, = (14+0(1))an,
with

max{max{/An, an, }, vV Agg—1} < 2min{min{y/ A an_, b, v/ Agog—1}

in the case of k > 1, we can apply the maximum principle and blow-up arguments
similarly as that in the proof of Proposition 3.1, we have

1Qisl S (pjey) T e VI ST (L1 ) 7 eV e (6.4)

inRN for j=1,2,---,d—1, and
Qael S (paa—1) = e VAapaca—s N7 (1 gy, )77 eV A (6.5)

in RY. Since by (4.3), (4.4), (4.5), (4.9) and Lemma 5.1,

- fRN Ej7389j Wjdl‘
PV

fRN Ej738pj W]dl‘
9

Yo, and 7, ~ (6.6)

for all 7, by Lemma 5.1 once more,

/ Ko~ )5 )y = ol Byl vy
RN\(Ut,1 Bs7(n¢,1))

For fUt,lBSﬁ(nt,l) K(z —)Qj(y)dy, if & € RN\(U;,1Bss(ne.)), then by Lemma 5.1,
An,, < 4Ap, and (6.6) once more,

/ K(@ — )0, (y)dy
Ut,1Bss(me,1)

o(nEj,guLm(RN)( / K@=y + | (e y)dy>)
Ut,ng;’(nt,z) Ut,z(Béﬁ(m,z)\B%ﬁ(m,z))

= 0(||Ej73||L°°(RN))'
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It remains to consider fUHBSﬁ(mJ) Kj(x— y)@J*(y)dy in the cases of € Bsz(ns,p)
for some s and p. In these cases, by similar arguments as used above,

/ Kz — )0 (4)dy
Ut,1 Bsn(me,1)
té ()Kﬂw—wa@meQm@W+E3@WM+OMEwhwmmL p=7
51 Nt,j

/B - Ki(z = y)(Bij0,i(1)* Q) (y) + Ej3(y)dy + o(| Ej 3l o ®yy)), p=1i.
saMt,i

Moreover, it is easy to see that
Bjialy) ~ ((pjay)' ~Ne 2V 0% 4 (pjay_q) = Ne 2V A=10i%-1)i, 4 (y)
in Bg(m,;) for all ¢ and
Eay) ~ Iy —meal = em VATl (y)
in Br(m;) for all ¢ # j and all ¢ with any R > 0 sufficiently large. Let

Qi (- + 1et)
(pjay) =" e VAris
forall[,tand j=1,2,--- ,d—1, and

Qj,**,t,l =

Qax(- + 1)
(pdad) 1_2N e_mpdad—l

for all I,t. We recall that Q. is the solution of (4.1). Then by Lemma 5.1, A,,, <
4\, and (6.6), it is easy to show that @ .. ; — 0 uniformly on every compact
subset of RY for all [ # j — 1 and j + 1. For Qj .t j+1, either Qj s j+1 — 0 or
Qj wxtj+1 — ¢j¢j+1 uniformly on every compact set of RY, where

— Ayt g1+ Nj@je i1 — Bigwi b1 = Bijw;, in RY (6.7)

Note that f3;; is not an eigenvalue of —A + A; in L?(RN;w?), thus, ¢; ;41 are
unique. It follows that

/ Kz — 9)0;.(y)dy
Ut,1 Bsq(ne,1)

O™ B|B 3l Lo @ry), 1#5 %1,

Qd,**,t,l =

15,31l Loo () /B . Kj(x = y) @t 41 ()% (bj1,j41 + D)dy + O(e™ B B sl poo ()
R(Me,j+1

1 £ 3]l Loo () /B ( : Kj(x = y)@j—1(9)*(bj,-1 + 1)dy + O(e™ B|| B 5| oo vy
R\Mt,j—1

where §’ > 0 is sufficiently small and R > 0 is sufficiently large. Now, summarizing
the above estimates,

o([|Ejsllpe@®ny), € RN\(UriBsa(me)),
Qj«(x) = qo(lEjsllremny), =€ Bsg(ne) with [ #j£1,
Dj(z)|1Ej 3]l oo rry + o(|1Ej 3]l e ryy), @ € Bsg(ney) with 1 =35 £1,

l=j+1,

l=j—1,



40 T. LI, J. WEI, AND Y. WU

where

Dj(z) ~ / Kj(x — y)@t,jﬂ(y)Q(éf)j,t,jH +1)dy
Br(nt,j+1)

JF/ Kj(z = y)@,j-1(y)* (@) -1 + Ddy + O(e™*'F),
Br(nt,j-1)

which, together with (6.2), (6.3), (6.4) and (6.5), completes the proof. O
Remark 6.1. By Lemmas 2.1, 4.1-4.2, 5.1 and 6.2, we know that

1N 7
Y, S(A+o(1)p (p™ +7 2 e 2V )

and

S S Ao (p i i e VAN,

Thus, by (6.1) and , we can go through the arguments in the proof of Lemma 6.2
to show that
0, I#j+1,

U'** — .
bl {szsj,t,jih l=j+1

on every compact set of RN, where

Ujpor,t1 =

foralll, t and j =1,2,--- ,d—1,

Ua(- +ne1)
(pdad)%e_mpdad—l

Ud,**,t,l -

for alll,t and ¢ j+1 is a solution of (6.7). Moreover, it is easy to see that ¢;j ¢ j+1
are positive if B j+1 < Bjit1,« and ¢j+ j+1 are sign-changing if Bji+1 > Bj i+l
where fj j+1.. are the first eigenvalue of —A + Aj in L*(RN; w3y ). It follows that
U =W + Q. + v can not be a solution of (1.1) if B; jx1 > B j+1,+ for some j.

Let m; be the energy of w;. Then by (4.1), (4.14), the symmetry of the con-
struction of {n; ;} and Lemmas 4.1-4.2 and 6.2,

d

J(7,d) = Z(ﬁmj—i—%/RN(V( ) = \)W2dz — p; Z/ W} W jda

j=1 s<t

3 I
—3 E wt P jWs Wy, jdx — E : Wy, jWs Wy, Wy, ;dT)
N

t,l,s;8F#t,lF#L t,l,s,p;s#t, £t p#t,s#Ll#p,s#p R

_Z Z 517]/ W2W2de — / E;(Qj« 4 vj i )dx

1,551#]

+’ya/ 09, W. Qj*+vj**)dm+7p/ 0p, Wi(Qj s + vj s )d)

d

+0(19(Z(||Qj,*IILw(RN) 050l e @3)) D (1Qi | T vy + [0ie |7 (v ))))-

j=1 i=1
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Proposition 6.1. Suppose the assumptions (V1)—-(V2) hold and B, ; is not an eigen-
value of —A + \; in L2(RN;w?), that is,

—Av+ N\ = B jwiv in RN

has no solutions in H*(RN) with B; 41 < Bjj+1,+ for all j where Bj j11,. are the
first eigenvalue of —A + \; in L*(RN;w J+1) IfN = 2,3, A\, < 4\, under the
condition (1.9), o, ., < @y, forallT =1,2,--- k=2 and ay,, = (1+o(1))ay,,
with

max{max{/An, on, }, VAaaa—1} < 2min{min{y/Ap: n_, }, v/ Aga—1}

in the case ofk >1and oy = (14+0(1))ouy,, forallj=n._1+1,n,1+2,---,n
then J (7, @) has a critical point for mln] v; > 1, provided

(a) Zjem Bjdé; > 0 and Zj —n,_ 141 Bij+1 >0, Bn,m.41 > 0 forall 7 =
1,2, k—1,

(0)  Yjem. Bidj <0 and Z] 1B+ <0, Bupna1 <0 forall T =
1,2,-+- k—1 in the case of d > 3,

(c) ZjEm* Bjo; >0, and _27T_%Df101 < P12 <0 and Ay = Ay in the case
of N =2 and d = 2 while, 512 < 0 in the cases of N =3 and d =2 or
N:2,d:2 ’Ll)ith)\l#)\z,

(d) Zjem Bjo; <0, f12 < _QW_%Dl_lcl < 0 and A\ = Xy in the case of
N=2andd=2,

T

where B;,C;, Dy > 0 are given by (1.10), (1.11), and (1.12), respectively.

Proof. Let
d 1
T.(7,d) = Z(ﬁmj+§/ (Vi(z) — \; W2dm—uJZ/ W} jwy jdx
j=1 RN s<t
- Z Bw/ WEW2dz).
i=15i#7

Then by the assumption (V2), the symmetry of the construction of {n ;}, the
assumptions on {«;}, [76, Proposition A.2] and [4, Lemma 3.7],

d
(T @) = Sy + 2D oy o)) e VD)
j:1 p]
n—1
_Z Yo DeBigiilpay) ren VA pic
T=1j=n,_1+1
k—1
=S DL B 1 () eV A

T=1

— D} Ba.1(pny, 0, ) Le VAP L ot
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for N =2 and

d
OIIFR) = Sy PG - € o V)

_Z Z DB j1(pja;) %€ 2V AnrPi% log(pjary)
T=1j=n,_1+1
k—1

=3 DLt )2 B

T=1

— DBt (prycin, )" 2e 2V AP 4 h ot

for N =3, where B;,C}, D, D’ > 0 are given by (1.10), (1.11), (1.12), (1.13) and
(1.14), respectively. On the other hand, by [, Lemma 3.7],

1—N
Z / wtjws’jwljdac—o( 2 e \F’“)

t,l,s;8%#t,l#t

and

1-N _
Z /N Wy, jWs Wy ;W jdr = o(ﬁj 2 Q—Wm).

t1,5,pi57t I p#t, s 1#p,s#p U R

By An, < 4\, the symmetry of the construction of {n; ;}, the assumptions on
{a;}, Lemmas 2.1, 4.1-4.2, 5.1 and 6.2, we know that the terms including Q) .
and v . are all h.o.t. of j*(?,ﬁ), expect the terms fRN E; 3Qj«dx, where by
Lemma 6.2,

/N Ej3Qjdx ~ ﬂj,j+1(Pjaj)_2€72\/)\>jpjaj for all j.
R

Now, by Remark 6.1, if 8; 11 < Bj+1,+ for all j, then

d N i
NI(B D) = S my+ BUE o T e V)

J
]:1 p]

n,—1

_Z Z DTﬁj,jH(pjaj)_%e*? Ary 00

T=1j=n,_1+1

k—1
/" —1_—2+4/An e}
72 :DTﬂnnnr-‘rl(pnTO‘n,—) € nr P Cng
T=1

—Dy/ B (pnyom, )"t e PV AP ot (6.8)
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for N =2 and

d
1971‘7(?73) _ Z B5 +0() (C+O( )) ‘2 6\/717])
j=1 i
k ny—1
=3 Y DeBignlpiay) e VA% log(pja)
T=1j=n,_1+1
k—1
_ZD/T//@TLT,nT+1(me‘nT)72€_2 Ane Py nr
T=1

D} a1 (puy iy ) eV AP o, (6.9)

for N = 3, where D!/ > 0 for all 7. Recall that p; ~ ?log¥ and o; ~ % with
(,:9]*-
where p; > 0 and o] € (0,27) with Z?zl o = 2m. By the assumptions of {a;},

af=a} +o(l)forall j=n,_y+1,--,n, and

2?21 aj = %’T for all j. Thus, we assume that p; = pjdlogd and a; =

k—1
Z(nT —nr_1)ay, + (n1+ng —ng_1)a;, =21+ o(1). (6.10)

T=2

Now, intersecting these into (6.8) and (6.9) and noting that p; = p+O(1), we have

d
Bjé; +o(1) Cj +o(1)
@) = 0 < N _ J >
.7(7 a) Z m; (p*0log 0)¥s (" logﬂ)%192ﬂ /3 p*

j=1
k—1 =1
_ < DT Z;‘L:n771+1 ﬁj,j-{-lﬂ + Df;-lﬁnmn7+119 )
= \(prag logé‘)lﬁ2 Anrprog (p*a log 9)1¥? Angprag,
D,y an LB i0(ng 4+ g —ng_1)?
2r -3k ;<nr no_ 1>an,

(p*(2m — YAy o, ) log ) 3™V T

. DY 5n1,m+1?9(”1 + g — nk—1) ) + h.o.t.

k—1
2Ly 1ok,

(p*(2m — YT e ) log )9V i T

=

= j(p*, «) + hot.
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for N = 2 and
’ - J * Vi *
i (p7010g V)" (p* log )y o7
_ ny—1 * ok
. Zl DT Zj:n,.,lJrl Bj,j+1'l910g(p an-r log 19) + Dfr/ﬁn,.,nﬂ.Jrl'l?
S\ (rap logapyreres (o, Tog )27V v
< Dy Y By jad(na + g — 1) log(p* sy, log )
- . 2ﬂ_z’;‘;1(nf_n771)a¢”
(p*(2r — 5L ag, Y log 9)29°V P T i
D o ] _ _ 2
+ B9 + i — Zlk),l( : > + hodt.
*27r7 F_a(nr—n,s_1)aj
(p*(2m — P75 o ) log )29V 7 T
= J(px, 3*) + h.o.t.
— * *
for N = 3, where o = (a,,, -+, ). Let

M={a;,_ €(0,27) | ap, 41 <y, forallT=2,---  k—1}.

Since M is compact, the restriction of J(px, 3*) on M attains its maximum and
minimum at some points, say ﬁw and 3*’1, respectively. We claim that HM €
int(M) in the case of (a) and @, 1 € int(M) in the cases of (b), (¢) and (d). Indeed,
assume that 3*» € OM, then one of the three cases must happen:

(i) =0 for some T,

nr
b
"

(i4) o’ =2m for some 7,

(iit) o’ = a:,b for some 7' > T.
Clearly, J(p, a’») — —oco as a* — 0 or a* — 2 for some 7 in the case of (a).
Thus, we must have the case (#i7). Note that

Dot

(p*(2m =375 o,
is equivalent to

. . L 2m — Zﬁ:;(nT —N,_1)o
2V A, p ey =2y Aip - ;nk E— T 4+0(1)<0 (6.11)

for all a,b > 0 and DX, D} > 0. Thus, (7*7%3”) must satisfies (6.11) for 7/ and
satisfies

k—
- Z‘r:é(n"' - nT—l)a’TLT

+0(1)>0 6.12
ny +ng — Ng—1 )=z ( )

2
2y An, pay, —2y/Aip” T

for 7 since 7’ > 7. It follows from (6.11) and (6.12) that \/)\T/p:,ai’,b <VApiad?,

which is impossible since 7/ > 7 and ¥’ = a:}b. Thus, maxz, T (pe, @) is

attained at some point of int(M) for N = 2. For N = 3, the argument is similar so
we omit it. In the cases (b), (¢) and (d), we know that J(p, @,) — +00 as a* — 0
or af — 27 for some 7. Thus, by similar arguments, we have 3*71 € int(M). We
denote this point (the maximum point in the case (a) and the minimum point in

E—— |
nr * ¥ a2kl ny—n,o_j1)ak
(p*a, log 9)e9?V AnrP"ns k-1 )1og19)b192mp*2 Er=p(tr_hr_1)%h,

nitng—ng_q

)

<0
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the cases (b), (¢) and (d)) by @.o(p«) for every p, > 0. By (6.11), we know that
3*70(/)*) satisfies

VIrai®ps) = 1w al(pn) +o(1)
k—1 *
N v DA L Vi PN S T

ny +ng —Ng—1

forall T =2,--- ,k—1, which, together with o, = (14+0(1))a,, and (6.10), implies
that

a;‘lf(p*) — o O 4o(l) forall7=1,2,---k,

where

2
a0 = il forall7=1,2,--- ,k—1 and a**ofa**’o.

nr )\n N —Tk_1 + k— 1 Ng—MNg_1 ni
VA v v DN R’ )
Now, suppose that p, > € for a sufficiently small € > 0 which is independent of .
Recall that v, = min{uj} and m, ={j=1,2,--- ,d| v; = v.}, then by (6.13),

Zm > jem. Bid; 201+7T_%D131,2
7T (p9log W) (p*log ) F9AeeT

j(p*, & 4x0) ) + h.o.t.

in the case d = 2 and N = 2 with \; = Ag,

B;5; o
\7 %9 Oé sk m; ]Em* ) — + hOt
(p 0) Z it (p.0log 9)= (p* logﬂ)%w\*p*>

in the case d =2 and N = 2 with \; # Ao,

ng—1
J(p o 0) = Zm Jem* B;d; _ ijnk +1 DB
' T (pu0log ) (pramt? log )z 9rer”

_ D;clflﬂnkflvnk—l"rl
(s, log0)302err”
in the case d > 3 and N = 2,

)+ h.o.t.

d ni
o> m, > jem, Bid; >im1 Gy

_>
ws X yx0) = — * h.o.t.
Tlows ) =90, ms 4 5 ooy ~ G logoynr) * 1
in the case of N =3 and d = 2 and
ni—1 * sk
Tp = 0 . Z . ij* Bj‘sj Zjink,ﬁl DTﬁj’jJrl log(p (ST log )
* 9 * % — _7

(pOlog V)= (prag,  log9)29r-r"
B DZ_lﬂnk_l,nk_lﬂ log(p*ay,,_, log )
(7, log D)07-+"
in the case d > 3 and N = 3 for ¢ > 0 sufficiently large, where A,, A.x > 0 are

constants which are independent of €. Thus, by direct calculations and taking € > 0
sufficiently small if necessary, we can see that

) + h.o.t.

max J (pu, @ w0
pPx €
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is attained at p. = £* + o(1) in the case (a) and (c), and
min J (px, @ wx0)
px €

attained at p. = X* + o(1) in the case (b) and (d). It follows from the fact that
@..0(ps) is the maximum point in the case (a) that max, >. 7. em J (P a,) is
attained by some points of (P, 3***) in the case (a), which implies that J(?, E>)
has a critical point with pf > 0 and o ; € (0, 27) for all j if J > 0 sufficiently large in
the case (a). In the case (b) and (d), by the fact that @, o(p.) is the minimum point,
we know that min, >. 7. cm I (ps, 3*) is attained by some points (p***,ﬁ***),
which implies that 7 (7', @) has a critical point with p% > 0 and oo € (0,2m) for
all j if ¥ > 0 sufficiently large in the case (b) and (d). In the case (c), we denote
j(p,ME)*) = =T (ps, 3*) Then, we know that min,, cn maxg cag j(p*, 3*) is
attained by some points of int(N x M), where N' = {p,. > ¢}. Again, we denote
this point by (s, 3***) Now, let

Mso = {0 € M| |T s = A sne| < 6,00 = pann}
and
Ne={p>e|ds=To}
where we take § > 0 small such that

Zoo= F =
R T e @) < g T )
Since M . is homeomorphic to the ball of RF=2 it is standard to show that
OM;,, links to N, (cf. [78, Chapter 2]). Thus, by the linking theorem (cf. [7,
Theorem 2.9]),

C = min max J s e
min e (p(p )
is a critical value, where T' = {p € C(M;.,R¥"1) | o(OM;.) = id}. Tt follows
that (7, @) has a critical point with Pjo > 0and o € (0,27) for all j if 9 >0
sufficiently large in the case (c). O

We close this section by the proof of Theorem 1.1.

Proof of Theorem 1.1: This proof follows immediately from Lemma 6.1 and
Proposition 6.1. O

7. ACKNOWLEDGEMENTS

The research of J. Wei is partially supported by NSERC of Canada and the
research of Y. Wu is supported by NSFC (No. 11971339, 12171470).

REFERENCES

[1] N. Akhmediev, A. Ankiewicz, Partially coherent solitons on a finite background, Phys. Rev.
Lett., 82(1999), 2661-2664.

[2] A. Ambrosetti, E. Colorado, Bound and ground states of coupled nonlinear Schrédinger
equations, C. R. Math. Acad. Sci. Paris, 342(2006), 453-458.

[3] A. Ambrosetti, E. Colorado, Standing waves of some coupled nonlinear Schrédinger equa-
tions, J. Lond. Math. Soc., 75 (2007), 67-82.

[4] A. Ambrosetti, E. Colorado, D. Ruiz, Multi-bump solitons to linearly coupled systems of
nonlinear Schrodinger equations, Calc. Var., 30 (2007), 85-112.



(5]

(6]

INFINITELY MANY POSITIVE SOLUTION 47

T. Bartsch, Bifurcation in a multicomponent system of nonlinear Schrodinger equations, J.
Fized Point Theory Appl., 13(2013), 37-50.

T. Bartsch, N. Dancer, Z.-Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating
branches of positive solutions for a nonlinear elliptic system, Calc. Var. PDEs, 37(2010),
345-361.

T. Bartsch, L. Jeanjean, N. Soave, Normalized solutions for a system of coupled cubic
Schrodinger equations on R3, J. Math. Pures Appl. (9), 106 (2016), 583-614.

T. Bartsch, N. Soave, A natural constraint approach to normalized solutions of nonlinear
Schrodinger equations and systems, J. Funct. Anal., 272 (2017), 4998-5037.

T. Bartsch, N. Soave, Multiple normalized solutions for a competing system of Schrédinger
equations, Calc. Var. PDEs 58 (2019), Paper No. 22.

T.Bartsch, X. Zhong, W. Zou, Normalized solutions for a coupled Schrodinger system, Math.
Ann., 380 (2021), 1713-1740.

J. Byeon, Y. Lee, S.-H. Moon, Partly clustering solutions of nonlinear Schrédinger systems
with mixed interactions, J. Funct. Anal., 280 (2021), Paper No. 108987.

J. Byeon, Y. Lee, Z.-Q. Wang, Formation of radial patterns via mixed attractive and repul-
sive interactions for Schrodinger systems, SIAM J. Math. Anal., 51 (2019), 1514-1542.

J. Byeon, S.-H. Moon, Z.-Q. Wang, Nonlinear Schrédinger systems with mixed interactions:
locally minimal energy vector solutions, Nonlinearity, 34 (2021), 6473-6506.

J. Byeon, Y. Sato, Z.-Q. Wang, Pattern formation via mixed attractive and repulsive inter-
actions for nonlinear Schrodinger systems, J. Math. Pures Appl., 106 (2016), 477-511.

J. Byeon, Y. Sato, Z.-Q. Wang, Pattern formation via mixed interactions for coupled
Schrodinger equations under Neumann boundary condition, J. Fized Point Theory Appl.,
19 (2017), 559-583.

H. Berestycki, S. Terracini, K. Wang, J. Wei, On entire solutions of an elliptic system
modeling phase separations, Adv. Math., 243 (2013), 102-126.

T. Bartsch, Z.-Q. Wang, Note on ground states of nonlinear Schrédinger systems, J. Partial
Differential Equations, 19 (2006), 200-207.

T. Bartsch, Z.-Q. Wang, J. Wei, Bound states for a coupled Schrodinger system, J. Fized
Point Theory Appl., 2 (2007), 353-367.

G. Cerami, G. Devillanova, S. Solimini, Infinitely many bound states for some nonlinear
scalar field equations, Calc. Var. PDEs 23 (2005), 139-168.

G. Cerami, D. Passaseo, S. Solimini, Infinitely many positive solutions to some scalar field
equations with nonsymmetric coefficients, Commun. Pure Appl. Math., 66 (2013), 372-413.
E. Colorado, Positive solutions to some systems of coupled nonlinear Schrédinger equations,
Nonlinear Anal., 110 (2014), 104-112.

E. Crooks, E. Dancer, Highly nonlinear large-competition limits of elliptic systems, Nonlin-
ear Anal., 73 (2010), 1447-1457.

S.-M. Chang, C.-S. Lin, T.-C. Lin, W.-W. Lin, Segregated nodal domains of two-dimensional
multispecies Bose-Einstein condensates, Phys. D., 196 (2004), 341-361.

S. Correia, F. Oliveira, H. Tavares, Semitrivial vs. fully nontrivial ground states in co-
operative cubic Schrodinger systems with d > 3 equations, J. Funct. Anal., 271 (2016),
2247-2273.

M. Conti, S. Terracini, G. Verzini, Asymptotic estimates for the spatial segregation of com-
petitive systems, Adv. Math., 195 (2005), 524-560.

Z. Chen, W. Zou, An optimal constant for the existence of least energy solutions of a coupled
Schrédinger system, Calc. Var. PDEs, 48 (2013), 695-711.

M. Clapp, A. Pistoia, Fully nontrivial solutions to elliptic systems with mixed couplings,
Nonlinear Anal., 216 (2022), Paper No. 112694.

M. Clapp, A. Szulkin, A simple variational approach to weakly coupled competitive elliptic
systems, Nonlinear Differ. Equ. Appl., 26 (2019), Paper No. 26.

S. Correia, Characterization of ground-states for a system of M coupled semilinear
Schrodinger equations and applications, J. Differ. Equ., 260 (2016), 3302-3326.

S. Correia, Ground-states for systems of M coupled semilinear Schrédinger equations with
attraction-repulsion effects: characterization and perturbation results, Nonlinear Anal., 140
(2016), 112-129.

E. Dancer, J. Wei, Spike Solutions in coupled nonlinear Schrédinger equations with Attrac-
tive Interaction, Trans. Amer. Math. Soc., 361(2009), 1189-1208.



48

(32]

(33]

43]
44]

(45]

[46]

T. LI, J. WEIL, AND Y. WU

E. Dancer, J. Wei, T. Weth, A priori bounds versus multiple existence of positive solutions
for a nonlinear Schrodinger system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010),
953-969.

E. Dancer, T. Weth, Liouville-type results for non-cooperative elliptic systems in a half-
space, J. Lond. Math. Soc., 86 (2012), 111-128.

E. Dancer, K. Wang, Z. Zhang, The limit equation for the Gross-Pitaevskii equations and
S. Terracini’s conjecture, J. Funct. Anal., 262 (2012), 1087-1131.

G. Devillanova, S. Solimini, Min-Max solutions to some scalar field equations, Adv. Nonlin-
ear Stud., 12 (2012), 173-186.

M. del Pino, J. Wei, W. Yao, Intermediate reduction method and infinitely many positive so-
lutions of nonlinear Schrdinger equations with non-symmetric potentials, Cale. Var. PDEs,
53 (2015), 473-523.

B. Esry, C. Greene, J. Burke, J. Bohn, Hartree-Fock theory for double condesates, Phys.
Rev. Lett., 78(1997), 3594-3597.

T. Gou, L. Jeanjean, Existence and orbital stability of standing waves for nonlinear
Schrodinger systems, Nonlinear Anal., 144 (2016), 10-22.

T. Gou, L. Jeanjean, Multiple positive normalized solutions for nonlinear Schrédinger sys-
tems, Nonlinearity, 31 (2018), 2319-2345.

D. Hall, M. Matthews, J. Ensher, C. Wieman, E. Cornell, Dynamics of component separation
in a binary mixture of Bose-Einstein condensates, Phys. Rev. Lett., 81(1998), 1539-1542.
T.-C. Lin, J. Wei, Ground state of N coupled nonlinear Schrédinger equations in R, n < 3,
Comm. Math. Phys., 255 (2005), 629-653.

Z. Liu, Z.-Q. Wang, Multiple bound states of nonlinear Schrédinger systems, Comm. Math.
Phys., 282 (2008), 721-731.

L. Maia, E. Montefusco, B. Pellacci, Positive solutions for a weakly coupled nonlinear
Schrodinger system, J. Differ. Equ., 229 (2006), 743-767.

R. Mandel, Minimal energy solutions for cooperative nonlinear Schrédinger systems, Nomn-
linear Differ. Equ. Appl., 22 (2015), 239-262.

B. Noris, H. Tavares, S. Terracini, G. Verzini, Uniform Ho6lder bounds for nonlinear
Schrodinger systems with strong competition, Comm. Pure Appl. Math., 63 (2010), 267-
302.

B. Noris, H. Tavares, S. Terracini, G. Verzini, Convergence of minimax structures and
continuation of critical points for singularly perturbed systems, J. Fur. Math. Soc., 14
(2012), 1245-1273.

A. Pistoia, N. Soave, On Coron’s problem for weakly coupled elliptic systems, Proc. Lond.
Math. Soc., 116 (2018), 33-67.

A. Pistoia, H. Tavares, Spiked solutions for Schrédinger systems with Sobolev critical expo-
nent: the cases of competitive and weakly cooperative interactions, J. Fized Point Theory
Appl., 19 (2017), 407-446.

A. Pistoia, N. Soave, H. Tavares, A fountain of positive bubbles on a Coron’s problem for a
competitive weakly coupled gradient system, J. Math. Pures Appl., 135 (2020), 159-198.
A. Pistoia, G. Vaira, Segregated solutions for nonlinear Schrédinger systems with weak
interspecies forces, Comm. PDEs, 2022, DOI: 10.1080/03605302.2022.2109488.

S. Peng, Q. Wang, Z.-Q. Wang, On coupled nonlinear Schrodinger systems with mixed
couplings, Trans. Amer. Math. Soc., 371 (2019), 7559-7583.

S. Peng, Z.-Q. Wang, Segregated and synchronized vector solutions for nonlinear Schrodinger
systems, Arch. Rational Mech. Anal., 208(2013), 305-339.

P.H. Rabinowitz, On a class of nonlinear Schrédinger equations, Z. Angew. Math. Phys., 43
(1992), 207-291.

Ch. Riiegg et al., Bose-Einstein condensation of the triple states in the magnetic insulator
TICuCls, Nature, 423 (2003), 62-65.

B. Sirakov, Least energy solitary waves for a system of nonlinear Schrédinger equations in
RN, Comm. Math. Phys., 271 (2007), 199-221.

N. Soave, On existence and phase separation of solitary waves for nonlinear Schrédinger
systems modelling simultaneous cooperation and competition, Cale. Var. PDEs, 53 (2015),
689-718.

N. Soave, S. Terracini, Liouville theorems and 1-dimensional symmetry for solutions of an
elliptic system modelling phase separation, Adv. Math., 279 (2015), 29-66.



INFINITELY MANY POSITIVE SOLUTION 49

[58] N. Soave, H. Tavares, New existence and symmetry results for least energy positive solu-
tions of Schrédinger systems with mixed competition and cooperation terms, J. Differential
Equations, 261 (2016), 505-537.

[59] N. Soave, H. Tavares, S. Terracini, A. Zilio, Hélder bounds and regularity of emerging free
boundaries for strongly competing Schrodinger equations with nontrivial grouping, Nonlin-
ear Anal., 138 (2016), 388-427.

[60] Y. Sato, Z.-Q. Wang, Least energy solutions for nonlinear Schrodinger systems with mixed
attractive and repulsive couplings, Adv. Nonlinear Stud., 15 (2015), 1-22.

[61] Y. Sato, Z.-Q. Wang, Multiple positive solutions for Schrédinger systems with mixed cou-
plings, Calc. Var. PDEs, 54 (2015), 1373-1392.

[62] N. Soave, A. Zilio, Uniform bounds for strongly competing systems: the optimal Lipschitz
case, Arch. Ration. Mech. Anal., 218 (2015), 647-697.

[63] H. Tavares, S. Terracini, Sign-changing solutions of competition-diffusion elliptic systems
and optimal partition problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012),
279-300.

[64] H. Tavares, S. Terracini, Regularity of the nodal set of segregated critical configurations
under a weak reflection law, Calc. Var. PDEs, 45 (2012), 273-317.

[65] H. Tavares, S. Terracini, G. Verzini, T. Weth, Existence and nonexistence of entire solutions
for non-cooperative cubic elliptic systems, Comm. PDEs, 36 (2011), 1988-2010.

[66] H. Tavares, T. Weth, Existence and symmetry results for competing variational systems,
NoDEA, 20 (2013), 715-740.

[67] H. Tavares, S. You, Existence of least energy positive solutions to Schrodinger systems with
mixed competition and cooperation terms: the critical case, Calc. Var., 59 (2020), Paper
No. 26.

[68] H. Tavares, S. You, W. Zou, Least energy positive solutions of critical Schrédinger systems
with mixed competition and cooperation terms: the higher dimensional case, J. Funct.
Anal., 283 (2022), Paper No. 109497.

[69] S. Terracini, G. Verzini, Multipulse phases in k-mixtures of Bose-Einstein condensates, Arch.
Ration. Mech. Anal., 194 (2009), 717-741.

[70] T. Tsurumi, M. Wadati, Collapses of wavefunctions in multi-dimensional coupled nonlinear
Schrédinger equations under harmonic potentials, J. Phys. Soc. Japan 67 (1998), 93-95.

[71] J. Wei, T. Weth, Nonradial symmetric bound states for a system of coupled Schrédinger
equations, Attt Accad. Naz. Lincei Rend. Lincei Mat. Appl., 18 (2007), 279-293.

[72] J. Wei, T. Weth, Radial solutions and phase separation in a system of two coupled
Schrédinger equations, Arch. Ration. Mech. Anal., 190 (2008), 83-106.

[73] J. Wei, T. Weth, Asymptotic behaviour of solutions of planar elliptic systems with strong
competition, Nonlinearity, 21 (2008), 305-317.

[74] J. Wei, Y. Wu, Ground states of nonlinear elliptic systems with mixed couplings, J. Math.
Pures Appl., 141 (2020), 50-88.

[75] J. Wei, Y. Wu, Infinitely many multi-vortex solutions of the magnetic Ginzburg-Landau
equation with external potentials in R2, J. Math. Phys., 62 (2021), Paper No. 041509.

[76] J. Wei, S. Yan, Infinitely many positive solutions for the nonlinear Schrédinger equations in
RN, Calc. Var., 37 (2010), 423-439.

[77] J.Wei, X. Zhong, W. Zou, On Sirakov’s open problem and related topics, Ann. Sc. Norm.
Super. Pisa Cl. Sci., 23 (2022), 959-992.

[78] M. Willem, Minimax Theorems. Birkhauser, Boston, 1996.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, B.C., CANADA,
V6T 172
E-mail address: tuoxin@math.ubc.ca

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, B.C., CANADA,
V6T 172
E-mail address: jcwei@math.ubc.ca

SCHOOL OF MATHEMATICS, CHINA UNIVERSITY OF MINING AND TECHNOLOGY, XUZHOU, 221116,
P.R. CHINA
E-mail address: wuyz850306@cumt . edu.cn



	1. Introduction
	1.1. Backgrounds
	1.2. Main Results
	1.3. Further remarks

	2. The first approximation
	3. Linear theory
	4. The ansatz and the nonlinear problem
	5. Estimates of RNEj,3jWjdx and RNEj,3jWjdx
	6. The reduced problem
	7. Acknowledgements
	References

