5. Properties of Entire Solutions

5.1. **Gradient bound.** The following gradient bound was proven by Modica.

Proposition 5.1. Suppose u is a solution to (1.1) in \mathbb{R}^n . Then

(5.1)
$$|\nabla u(x)|^2 \le 2F(u(x)), \quad x \in \mathbb{R}^n.$$

Proof. Define

$$G(x) := F(u(x)) - \frac{1}{2} |\nabla u(x)|^2, \quad x \in \mathbb{R}^n.$$

The standard gradient estimate for elliptic equation implies $G(x) > -C > -\infty, x \in \mathbb{R}^n$ for some constant C.

Assume that there exists a sequence $\{x_n\}$ such that $\inf_{x\in\mathbb{R}^n}G(x)=\lim_{n\to\infty}G(x_n)$. We define $u_n(x):=u(x_n+x), x\in\mathbb{R}^n$ and $G_n(x):=G(x_n+x), x\in\mathbb{R}^n$. It is easy to see that $||u_n||_{C^{2,\alpha}(\mathbb{R}^n)}\leq C<\infty$ and a subsequence of $\{u_n\}$ has a limit u_∞ in $C^2_{loc}(\mathbb{R}^n)$. It is easy to see that u_∞ is also a solution to (1.1) and $G_\infty(x):=F(u_\infty(x))-\frac{1}{2}|\nabla u_\infty(x)|^2, \quad x\in\mathbb{R}^n$ satisfies

$$G_{\infty}(0) = \inf_{x \in \mathbb{R}^n} G_{\infty}(x) = \inf_{x \in \mathbb{R}^n} G(x).$$

Hence we may assume that $G(0) = \inf_{x \in \mathbb{R}^n} G(x)$ since we otherwise we can replace u by u_{∞} . We shall prove that $G(0) \geq 0$.

Straightforward computations lead to

$$\begin{split} |\nabla u(x)|^2 \Delta G(x) &= \sum_{i=1}^n b_i(x) G_{x_i}(x) \\ &+ \sum_{i=1}^n \left(\sum_{j=1}^n u_{x_j}(x) u_{x_j x_i}(x) \right)^2 - \sum_{i,j=1}^n (u_{x_j x_i}(x) |\nabla u(x)|^2 \end{split}$$

where

$$b_i(x) = G_{x_i}(x) + 2\sum_{j=1}^n u_{x_j}(x)u_{x_jx_i}(x).$$

Since

$$\begin{split} & \Sigma_{i=1}^{n} \left(\Sigma_{j=1}^{n} u_{x_{j}}(x) u_{x_{j}x_{i}}(x) \right)^{2} \\ & \leq \Sigma_{i=1}^{n} \left(\Sigma_{j=1}^{n} (u_{x_{j}x_{i}})^{2} \right) |\nabla u|^{2} \leq \left(\Sigma_{i,j=1} (u_{x_{j}x_{i}})^{2} \right) |\nabla u|^{2}, \end{split}$$

we obtain

$$|\nabla u(x)|^2 \Delta G(x) = \sum_{i=1}^n b_i(x) G_{x_i}(x) \le 0, \quad x \in \mathbb{R}^n.$$

If $|\nabla u(0)|^2 = 0$, we conclude immediately $G(x) \ge 0$ and (5.1) holds.

If $|\nabla u(0)|^2 \neq 0$, by the strong maximum principle we obtain $G(x) \equiv C$ since G attains the maximum at interior point x = 0. Assume that $\lim_{n\to\infty} u(\xi_n) = M := \max_{x\in\mathbb{R}^n} u(x)$ for some sequence $\{\xi_n\}$. We obtain that $C = \lim_{n\to\infty} G(\xi_n) = F(M) \geq 0$.

Therefore we have proven $G(x) \geq 0$ for $x \in \mathbb{R}^n$.

5.2. A Symmetry Result.

Proposition 5.2. (Caffareli-Gafafelo-Segale) Suppose u is a solution of (1.1) and

(5.2)
$$\frac{1}{2}|\nabla u|^2 = F(u(x)), \ x \in \mathbb{R}^n,$$

then u(x) = g(ax + b) for some $a \in S^{n-1}, b \in \mathbb{R}^n$.

Proof. Let $v(x) = g^{-1}(u(x)), x \in \mathbb{R}^n$, i.e. g(v(x)) = u(x). Then

$$u_{x_i} = g'(v(x))v_{x_i},$$

hence

$$|\nabla u|^2 = |g'(v(x))|^2 |\nabla v|^2$$
$$= 2F(g(v(x)))|\nabla v|^2$$
$$= 2F(u(x))|\nabla v|^2.$$

By (5.2), we get

$$(5.3) |\nabla v|^2 = 1, x \in \mathbb{R}^n.$$

Furthermore,

$$u_{x_{i}x_{i}} = g''(v(x))v_{x_{i}}^{2} + g'(v(x))v_{x_{i}x_{i}},$$

$$\triangle u = g''(v(x))|\nabla v|^{2} + g'(v(x))\triangle v$$

$$= F'(g(v(x))) + g'(v(x))\triangle v(x)$$

$$= F'(u(x)) + g'(v(x))\triangle v(x).$$

By (1.1), we obtain

$$(5.4) \Delta v = 0, x \in \mathbb{R}^n.$$

(5.3)-(5.4) implies

$$v(x) = a \cdot x + b, x \in \mathbb{R}^n \text{ for } a \in \mathbb{S}^n, b \in \mathbb{R}^n.$$

A generalization is the following.

Proposition 5.3. Suppose u is a solution to (0.1) with

(5.5)
$$F(u(x)) - \frac{1}{2} |\nabla u|^2 = C > 0, \ x \in \mathbb{R}^n.$$

Then C = F(M) = F(m), where $M = \sup_{x \in \mathbb{R}^n} u(x)$, $m = \inf_{x \in \mathbb{R}^n} u(x)$. Furthermore,

$$(5.6) u(x) = g_M(ax+b), x \in \mathbb{R}^n.$$

Proof. From last part of proof of Proposition 5.3, we know $C = F(M) = \mathbb{I}(M)$

Define

$$v_{\alpha}(x) = g_{\alpha}^{-1}(u(x)), x \in \mathbb{R}^n, \alpha > M.$$

Since $g'_{\alpha}(s) < 0$, $s \in [m, M]$, we know $v_{\alpha}(x) \in C^{2,\alpha}(\mathbb{R}^n)$ and $0 < v_{\alpha}(x) < T_{\alpha}$, $x \in \mathbb{R}^n$. We compute

$$u_{x_{i}} = g'_{\alpha}(v_{\alpha}(x))(v_{\alpha})_{x_{i}},$$

$$|\nabla u|^{2}(x) = |g'_{\alpha}(v_{\alpha}(x))|^{2}|\nabla v_{\alpha}|^{2} = 2(F(g_{\alpha}(v_{\alpha}(x))) - F(\alpha))|\nabla v_{\alpha}|^{2}$$

$$= 2(F(u(x)) - F(\alpha))|\nabla v_{\alpha}|^{2}, x \in \mathbb{R}^{n}.$$

Hence for $1 > \alpha > M$,

(5.7)
$$|\nabla v_{\alpha}|^{2} = \frac{F(u(x)) - F(M)}{F(u(x)) - F(\alpha)} < 1, x \in \mathbb{R}^{n}.$$

Furthermore

$$u_{x_{i}x_{i}} = g_{\alpha}''(v_{\alpha}(x))(v_{\alpha})_{x_{i}}^{2} + g_{\alpha}'(v_{\alpha}(x))(v_{\alpha})_{x_{i}x_{i}},$$

$$\Delta u = g_{\alpha}''(v_{\alpha}(x))|v_{\alpha}|^{2} + \sqrt{2(F(g_{\alpha}(v_{\alpha}(x))) - F(\alpha))}\Delta v_{\alpha}$$

$$= F'(g_{\alpha}(v_{\alpha}(x)))|v_{\alpha}|^{2} + \sqrt{2(F(u(x)) - F(\alpha))}\Delta v_{\alpha}.$$

Hence by (0.1), for any $\alpha > M$,

Therefore for $x \in \Omega = \{x|m < u < M\}, v \in C^{2,\alpha}(\Omega) \cap C(\mathbb{R}^n)$ and letting $\alpha \to M$, we have

which gives

$$v_{x_i x_j} \equiv 0, x \in \Omega, \forall i, j,$$

 $v \equiv a \cdot x + b, a \in \mathbb{S}^n,$

in any connected set. We also have

$$(5.10) |\nabla v|^2 \le 1, |v| \le T_M, x \in \mathbb{R}^n.$$

We claim $\mathbb{R}^n \backslash \Omega$ non intersecting points, lines, planes and hyperplanes.

Suppose $u(x_0) = M_0$. If $p \in \mathbb{R}^n \setminus \Omega$, u(p) = M.

$$u(x) M + \sum_{i=1}^{n} a_i(x_i - p_i) + \sum_{i=1}^{n} b_i(x_i - p_i)^2 + o(|x - p|^2)$$
 for x near p .

Since $\nabla u(p) = 0$, $\triangle u(p) = F'(M) < 0$, $u(x) \le M$, x near p, then $a_i = 0$, $i = 1, 2, \dots, n$, $b_i \le 0$, $i = 1, 2, \dots, n$, and $b_{i_0} < 0$ for some i_0 . Then if u(x) = M, $x \in B_{r(p)}(p)$, then $x_i = p_i$ for i with $b_i < 0$.

Since $\mathbb{R}^n \setminus \Omega$ is closed, then for any bounded region $(\mathbb{R}^n \setminus \Omega) \cap \bar{B}_R$, there exists finite many points, lines, planes, \cdots , hyperplanes such that their union contains $(\mathbb{R}^n \setminus \Omega) \cap \bar{B}_R$. (by compactness)

By (5.9) and (5.10), we conclude that any connected component Ω_1 has diameter in direction of \vec{a} at most T_M . On the other hand, $\partial \Omega_1 \subset \{ax+b=T_Mor0\}$ must have distant in direction \vec{a} equal to T_M . Then solving (*), we have $\Omega_1 = \{x|0 \leq ax+b \leq T_M\}$, $u(x) = g_M(ax+b)$ in Ω_1 .

Similarly, we can show $u(x) = g_M(\tilde{a}x + b), x \in \Omega_2$. Further, $\tilde{a} = a, \tilde{b} = -2T_M + b$. So $u(x) = g_M(ax + b)$ in $x \in \Omega_2$. Keep going, we can conclude $u(x) = g_M(ax + b), x \in \mathbb{R}^n$.

5.3. Monotonicity Formula. We shall show a monotonicity formula regarding the energy of entire solutions in balls. We first show the Pohazaev identitiy.

Proposition 5.4. Let $B_r = \{x \in \mathbb{R}^n : \frac{x}{r} \in A\}$, then

(5.11)
$$\int_{B_r} (n-2)|\nabla u|^2 + 2nF(u)dx = r \int_{\partial A_r} (|\nabla u|^2 + 2F(u))ds$$
$$-2 \int_{\partial B_r} (\nabla u \cdot v_r)(\nabla u \cdot x)ds.$$

Proof. Let

$$\psi(r) = r^{-n} \int_{B_r} (|\nabla u|^2 + 2F(u)) dx,$$

then

$$\psi'(r) = -nr^{-n-1} \int_{B_r} (|\nabla u|^2 + 2F(u)) dx + r^{-n} \int_{\partial B_r} (|\nabla u|^2 + 2F(u)) dS.$$