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5. PROPERTIES OF ENTIRE SOLUTIONS

9.1, Gradient bound. The following gradient bound was proven by
Modica.

Proposition 5.1. Suppose u is a solution to (1.1) in R™. Then
(5.1) Vu(z)]? < 2P (u(@), e R™
Proof. Define

Guy:F@un—%wwmﬂ € R

The standard gradient estimate for elliptic equation implies G(z) >
—C > —00,z € R™ for some constant (.

Assume that there exists a sequence {z,} such that Wfpepn Glz) =
limy, . G(z,). We define Un(z) = ulz, + ),z € R" and Golz) =
Gla, + ),z € R Tt is easy to sec that Hunﬂczﬂ(Rn) < C < oo and a
subsequence of {u, } has a limit u., in Cioe(R™). Tt is easy to see that 1.,
is also a solution to (1.1) and G (z) 1= Flu(z)) ~ 5 Vus(2)]2, z¢
R™ satisfies

Goo(0) = inf Guo(x) = inf G(x).

zeR™ zER”
Hence we may assume that G(0) = infzepn G(2) since we otherwise we
can replace u by us,. We shall prove that G(0) > 0.
Straightforward computations lead to

Vu(@)PAG(2) = £ b(2)G, ()

n n 2 n ) [ 2
+ X, (ijluw; (l)uw(r)) - Ez’,j=1(”%:@(I)‘VUQNZ
where
bi(z) = G, (z) + 20 U, (T o ().
Since
n n 2
Ei=l (ijlufj (‘T)ul‘jln (7))
<X (E?ﬂ(“r]an)Q) }VUF < (Ei,j=1<“$]‘l‘z)2> SVUP,
we obtain
V(@) PAG(2) = T1bi(2)Con(x) <0, © e R™
If [Vu(0)? = 0, we conclude immediately G'(z) > 0 and (5.1) holds.
If [Vu(0)[? £ 0, by the strong maximum principle we obtain G/(z) =
C since G attains the maximum at interior point z = 0. Assume
that lim, o u(&,) = M = maxgern 4(x) for some sequence {&.}. We
obtain that C' = lim,,_,, G(&,) =F(M)>0.
Therefore we have proven G(z) > 0 for = € R".
a
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5.2. A Symmetry Result.
Proposition 5.2. (Caffareli- Gafafelo-Segale) Suppose u is a solution
of (1.1) and
(5.2) %|Vu’2 = F(u(z)), z € R,
then u(x) = glaz + b) for some a € S*~1 b e R™,

Proof. Let v(z) = g~ ' (u(x)),x € R, i.c. g(v(x)) = uls).
Then
ua:i = g/<U(I))U1M’
hence
[Vul* = |g'(v(z))*| Vo ?
2P (g(v(2)))|Vul?
2F (u(z))|Vvl?.

I

By (5.2), we get

(5.3) Vol =1,z € R™
Furthermore,
Uaw, = 9" (@)1, + ¢ (0(2))Vgea,,
D= " (@) Vol? + g'(v(a)) A
:F’(G(v(r))) g'(v(x))Dv(x)
= F'{u(z)) + g'(v(x)) Lu(z).

By (1.1), we obtain
(5.4) Av=0,z¢€R"
(5.3)-(5.4) implies
v(z)=a-x+b recR" forac 8§ beRY

A generalization is the following.

Proposition 5.3. Suppose u is a solution to (0.1) with
(5.5) Flu(z)) - —W7u|2 C>0,zeR™

Then O = F(M) = F(m), where M = sup,egs u(), m = infcpn u(z).
Furthermore,

(5.6) uw(z) = gap(az +b), z € R™.
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Proof. From last part of proof of Proposition 5.3, we know (¢ = F(M) =]
F(m).
Define

Vo) = g7 (u(z)), 2 € R, a > M.
Since gl (s) < 0, s € (m, M}, we know v,(z) € C*(R™) and 0 <
Vo(2) < T,y z € R*. We compute

Us;, = Go(Va(®)) (Va)a,
Vul*(z) = |90 (va(@) | Vval? = 2(F(ga (va(2))) — F{a)) Vv f*
= 2(F(u(x)) — INa))[Vue|*, © € R™

Hence for 1 > o > M,
Flu(z)) — F(M)
Flu(z)) - F(a)

(5.7) [Vu,|? = <l zeR"

Furthermore

Uz, = 9a(Val))(Va)Z, + 0 (val®)) (Ve)s .,

z))
A= g (va(@))val® + v/ 2(F(ga(va(2))) - F(a)]Ave
= Fgalva(@))lval® + 2(F(u(2)) = F(a)) Av,.
Hence by (0.1), for any a > M,
F(u(a])(1 = [V ?)
[;"((Fiugf()flj f(aﬂzj\i))
u(z))(Fla) - F(M .
" RO - Fape

Therefore for z € Q = {2jm < v < M}, v e C*(Q) N C(R™) and
letting &« — M, we have

(5.8) Dvg =

(5.9) Av=0,[Vel*=1u0€Q,
0=AVol* =) (u,,,,)%
]
which gives
U‘L‘z‘.?lj = O)fl? € quz':j)

v=a-z+bac S
in any connected set. We also have
(5.10) IVl <1, vl < Th oz € R,

We claim R"\Q non intersecting points, lines, planes and hyper-
planes.
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Suppose u(zg) = My. If p € R™\Q, u(p) = M.

u(z) M 4+ Z a;(z; — p;) + Z bi(zi — pi)* + oo — p|?) for z near p.
i=1 i=1

Since Vu(p) = 0, Aulp) = FI{M) <0, u(z) < M, = near p, then
a;=0,1=1,2,--- n b <0i=12- - y 1, and by, < 0 for some 4.
Then if u(z) = M, z By (p), then z; = p, for ¢ with b, < 0.

Since R™\Q is closed, then for any bounded region (R™\Q)NBp, there
exists finite many points, lines, planes, - -, hyperplanes such that their
union contains (R™\Q) N By. (by compactness)

By (5.9) and (5.10), we conclude that any connected component
§); has diameter in direction of @ at most Trro On the other hand,
o C {az+b = Taror0} must have distant in directioin & equal to Thy.
Then solving (*), we have 0, = {210 < ax+b < Tork, u(a) = g (ax=+D)
in Q.

Similarly, we can show u(z) = gu(az +b),x € Qy. Further, 4 =
a,b=—2Ty +b. So u(z) = gylaz +b) in z € Q. Keep going, we can
conclude u(z) = gp(aw +b), 2 € R™. U

5.3. Monotonicity Formula. We shall show a monotonicity formula
regarding the energy of entire solutions in balls. We first show the
Pohazaev identitiy.

Proposition 5.4, Let B, = {z € R": 2 € A}, then

(5.11) /B (n— Q)JV‘u?Q +2nF(u)de = 7‘/6 (IVul* + 2F(u))ds

A
—2/ (Vu-v,) (V- x)ds.
9B,
Proof. Let
Y(r) = T‘”/ (1Vul® + 2P (u))dx,
B,

then

Y(r) = —nr ! /B (IVul® + 2F (u))dz + r_”/ (IVul® + 2P(w))ds.

9B,



