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Abstract. In this paper, we consider the magnetic Ginzburg-Landau equa-
tion with external potentials:

−∆Aψ +
λ

2
(|ψ|2 − 1)ψ + µV (x)ψ = 0 in R2,

∇×∇×A+ Im(ψ∇Aψ) = 0 in R2,

|ψ| → 1 as |x| → +∞,
where λ > 1 is a coupling constant, µ > 0 is a parameter, ∇A = ∇ − iA
and ∆A = ∇A · ∇A are, respectively, the covariant gradient and Laplacian,

∇× is the curl operator in R2 and V (x) is a potential of impurities. We

prove, by secondary Liapunov-Schmidt reduction method, that under suitable
conditions on V (x) and a smallness condition on µ > 0, the magnetic Ginzburg-

Landau equation with external potentials in R2 has infinitely many multi-

vortex solutions.
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1. Introduction

The Ginzburg-Landau theory [20] is a central part of theory of superconductivity.
It gives a macroscopic description of a superconducting material in terms of a
complex-valued function ψ(x) (named order parameters) and the vector field A(x),
so that |ψ(x)|2 gives the local density of (Cooper pairs of) superconducting electrons
and B(x) = ∇×A(x) is the magnetic field. Here, ∇× is the curl operator. In this
theory, equilibrium configurations of superconductors are described by a system
of nonlinear PDE called the Ginzburg-Landau equations. Since in the idealized
situation of a superconductor occupying, all space are homogeneous in one direction,
the Ginzburg-Landau equations can be written down as follows: −∆Aψ +

λ

2
(|ψ|2 − 1)ψ = 0 in R2,

∇×∇×A+ Im(ψ∇Aψ) = 0 in R2,
(1.1)

where for a vector function A, ∇× A = ∂1A2 − ∂2A1 and for a scalar function A,
∇×A = (−∂2A, ∂1A).
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It is well known that (1.1) is the Euler-Lagrange equation of the following
Ginzburg-Landau energy functional:

Eλ(ψ,A) =
1

2

∫
R2

|∇Aψ|2 + |∇ ×A|2 +
λ

4
(|ψ|2 − 1)2, (1.2)

which models the difference in free energy between the superconducting and normal
states near the transition temperature in the Ginzburg-Landau theory. As above,
in the Ginzburg-Landau energy functional (1.2), ψ indicates the local state of the
material: If |ψ| ≈ 1 then the material is in the superconducting phase while if
|ψ| ≈ 0 then the material is in the normal phase. A is the vector potential where
∇×A is the induced magnetic field. The parameter λ is a material constant, corre-
sponding to the ratio between characteristic lengthscales of the material: If λ < 1
then the material is of type I superconductor while if λ > 1 then the material is
of type II superconductor. λ = 1 is the critical case of these two types. Experi-
mentally, type I and type II materials differ in their magnetic behavior. In type I
superconductors, magnetic fields are excluded from the bulk of the material except
for a very thin layer near the surface. In type II superconductors, magnetic fields
penetrate the material in vortex structures. In general, type II superconductors
can sustain magnetic fields much higher than type I superconductors without los-
ing their superconducting state. The existence of magnetic vortices and of type
II superconductors was predicted in 1957 by Abrikosov [1]. We remark that the
Ginzburg-Landau energy functional (1.2) (and also the Ginzburg-Landau equa-
tions (1.1)) also arise in particle physics, as the energy of a static configuration in
the Yang-Mills-Higgs classical gauge theory on the plane, with abelian gauge group
U(1). For more details of the physical backgrounds of the Ginzburg-Landau equa-
tions (1.1) and the Ginzburg-Landau energy functional (1.2), we would like refer
the readers to [23,25,38,43] and the references therein.

It has been proved in [25] that finite energy solutions of the Ginzburg-Landau
equations (1.1) satisfy the boundary condition:

(|ψ|, |∇Aψ|, |∇ ×A|)→ (1, 0, 0) as |x| → +∞.

Thus, their topological degrees which are also called winding numbers or vortex
numbers, are well defined in the following way:

deg(ψ) = deg

(
ψ

|ψ|
||x|=R

)
=

1

2π

∫
|x|=R

d(arg(ψ)) for R sufficiently large.

It is worth pointing out that by the Stokes theorem, this degree of ψ satisfies

2πdeg(ψ) =

∫
R2

∇×A,

so that deg(ψ) is also related to the flux quantization of the magnetic field B =
∇ × A. Except global minimizers of (1.2), other finite energy solutions of (1.1)
must satisfy deg(ψ) 6= 0, so that ψ must have zeros. These zeros are often called
vortices of ψ and the presence of vortices in solutions is one of the most inter-
esting mathematical and physical phenomenon connected with Ginzburg-Landau
equations (1.1), which make it to be a hot topic in the community of nonlinear
PDEs in the past thirty years or so. The first non-trivial, finite energy, rigorously
known solutions of the Ginzburg-Landau equations (1.1) are the radially symmetric
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solutions, which are given by

φλ,N (x) = fλ(r)eiNθ; Bλ,N (x) = Naλ(r)∇θ,

where |N | ≥ 1 is its degree deg(φ). We remark that the discrete symmetry ψ → ψ
and A → −A of (1.1) interchanges the negative degrees to the positive degrees.
Thus, we can assume the degrees of solutions to be nonnegative in what follows.
The existence of these radial solutions is established in [13] by variational arguments
(see also [30]). The uniqueness of these radial solutions is proved in [5] and [15], re-
spectively for λ > 0 sufficiently large and λ sufficiently close to 1 (including λ = 1).
The stability of these radial solutions is also studied in the literature. It has been
proved in [21] that (φλ,N , Bλ,N ) are all stable for λ < 1 while for λ > 1, (φλ,1, Bλ,1)
is stable and (φλ,N , Bλ,N ) are unstable for N ≥ 2. By considering the singular limit
(“extreme type II”) λ → +∞, which seems to be the major direction in studying
Ginzburg-Landau equations, non-radial vortex solutions of Ginzburg-Landau equa-
tions were first established in bounded domains for λ sufficiently large. A significant
finding in these studies is that for λ sufficiently large, the locations of vortices is
determined by some reduced finite-dimensional problem under some suitable as-
sumptions. Since it seems almost impossible for us to provide a complete list of
references for these studies, we refer the readers only to the books [11, 31, 37, 38]
for their detailed introductions and references. The existence of non-radial vortex
solution of Ginzburg-Landau equations (1.1) for any value of λ, which seems to be
another major direction in studying Ginzburg-Landau equations nowadays, is not
very clear except the critical case λ = 1. In this case, all solutions can be classified
by its vortices according to Taubes’ work [42, 43]. A review of this theory can be
found in the book of Jaffe and Taubes [25]. For other cases λ 6= 1, it is conjectured
in [29] by numerical evidence that for the non-magnetic Ginzburg-Landau equations
on the whole plane, non-radial solutions do exist, while the studies in [23] suggest
that for magnetic vortices, stationary multi-vortex configurations of degrees ±1
occur with discrete symmetry group. The later conjecture was proved in [46] by
reduction arguments for large degrees and large number vortices. We also world like
to refer the readers to the paper [23], which reviews some mathematical aspects of
the Ginzburg-Landau equations of superconductivity and of particle physics, and
the very recent work [40], which considers the Abrikosov lattices, also for their
detailed introductions and references.

As mentioned above, type II superconductors can sustain very large magnetic
fields (over 105 Gauss). However, a major obstacle in the attempt to produce large
magnetic fields is the dissipation of energy due to the creeping or flow of vortices [48].
One way to overcome this problem is to pin down the vortices to particular locations
in the material. Since as pointed out in [17], the pinning down of vortices is achieved
by the presence of point defects, impurities, or inhomogeneities, or by a variation
in the thickness of the sample of superconducting material, to adapt this idea, the
Ginzburg-Landau equations (1.1) will be modified by external potentials as follows:

−∆Aψ +
λ

2
(|ψ|2 − 1)ψ + µV (x)ψ = 0 in R2,

∇×∇×A+ Im(ψ∇Aψ) = 0 in R2,

|ψ| → 1 as |x| → +∞,

(1.3)
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where µ > 0 is a parameter and V (x) is a potential of impurities. The pinning phe-
nomenon was first observed from numerical evidence, in [16,18], that fundamental
magnetic vortices(degrees of ±1) of the same degree are attracted to maxima of
V (x). Such pinning phenomenon is rigorously proved in [39] by proving the exis-
tence and uniqueness of single-vortex solution of (1.3) for µ > 0 sufficiently small
under some suitable conditions on V (x). Moreover, it is also shown in [39] that
within the standard macroscopic theory of superconductivity, a single-vortex so-
lution will localize near a critical point of V (x) for µ > 0 sufficiently small. The
effective dynamics of the parabolic version of (1.3) and dynamics stability of the
single-vortex solution obtained in [39] were studied in [41] and [24], respectively. Re-
cently, more pinning phenomenon has been observed in [33] by proving that under
suitable assumptions on the potential V (x), multi-vortex solutions of (1.3) exist.
Moreover, these multi-vortex configurations can either be localized near multiple
critical points of the impurity potential, one to one, or one can pin an arbitrary
number of vortices to one critical point and near infinity, respectively. Effective
dynamics of multi-vortices of (1.3) was also considered in [44]. We remark that
the pinning phenomenon is also a hot topic for other nonlinear PDEs, see, for
example, [2–4,6, 7, 10,12,19,28,32,34,36,45,47,51] and the references therein.

In this paper, we shall find out more pinning phenomenon of (1.3). Before
we state our main results, we need first introduce some necessary notations. Let
(φ,B) = (f(r)eiθ, b(r)∇θ) be the fundamental vortex solution of the magnetic
Ginzburg-Landau equation:

−∆Aψ +
λ

2
(|ψ|2 − 1)ψ = 0 in R2,

∇×∇×A+ Im(ψ∇Aψ) = 0 in R2,

|ψ| → 1 as |x| → +∞,

(1.4)

m ≥ 2 be an integer and z = (z1, z2, · · · , zm) ∈ Rm. Then our main result can be
stated as follows.

Theorem 1.1. Suppose that the potential V (x) satisfies

(V1) V (x) ∈ L∞(R2) such that ‖V ‖L∞(R2) = 1 and V (x) ∼ e−(1−σ0)|x| as
|x| → +∞ for some σ0 ∈ (0, 1).

Then there exists µ0 > 0 sufficiently small such that for all 0 < µ < µ0, (1.3) has
a sequence of solutions {(ψm, Am)} where

(ψm, Am) =

( m∏
j=1

φ(x− zj) + ξ,

m∑
j=1

B(x− zj) +D

)
with ‖(ξ,D)‖L∞(C×R2) << 1 and minl 6=j |zl − zj | >> 1.

Remark 1.1.
(a) By Theorem 1.1, one can pin down infinitely many vortices of (1.3) near
infinity under the slow decay assumption (V1).

(b) Comparing with the pinning phenomenon of (1.3) near infinity which is ob-
served in [33], in Theorem 1.1, we do not need the the impurity potential V (x) to
be radially symmetric. Thus, we enlarge the class of impurities which can be used
to pin down vortices of (1.3) near infinity.
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For the convenience of the readers, let us now sketch our proof of Theorem 1.1.
Our plan in proving Theorem 1.1 is mainly to adapt the strategies in [33,46], which
can be traced back to [39], to pin down infinitely many vortices of (1.3) near infinity,
that is, solving (1.3) in the orthogonal direction and the tangential direction of
(1.3), respectively, by reduction arguments. Since we will deal with the non-radial
potentials which are not considered in [33, 46], some nontrivial modifications are
needed. We start the reduction arguments by constructing approximate solutions.
As in [22,33,39,46], we define approximate solutions by vz,χ = (ψz,χ, Az,χ), where

ψz,χ = ei(Fz(x)+χ(x))
m∏
j=1

φ(x− zj)

and

Az,χ =

m∑
j=1

B(x− zj) +∇(Fz(x) + χ(x)),

with Fz(x) =
∑m
j=1 zj ·B(x−zj) and χ ∈ H2(R2). Here, · is the usual inner product

in R2. We also set

Mε = {vz,χ | (z, χ) ∈ Σε} (1.5)

with
Σε = {(z, χ) | Q(z) = min

i 6=j
|zi − zj | > ε−1 and χ ∈ H2(R2)}.

For the sake of simplicity, we denote fj(x) = f(x − zj), φj(x) = φ(x − zj) and
Bj(x) = B(x − zj). For every vz,χ ∈ Mε, we choose the tangent space of Mε at
vz,χ as in [22,33,46], which is given by

Tvz,χMε = span

{
Gz,χγ , T

z,χ
j,k | j = 1, 2, · · · ,m; k = 1, 2; γ ∈ H2(R2)

}
.

where

Gz,χγ := 〈γ, ∂χ〉vz,χ = ∂χvz,χ |γ= (iγψz,χ,∇γ)

and

T
z,χ
j,k : = ∂Bkzj,kvz,χ = −∂zj,kvz,χ + 〈zj · ∂zj,kBj , ∂χ〉vz,χ

= (ei(Fz(x)+χ(x))
∏
l 6=j

φl(∇Bjφj)k,∇×Bje⊥k ), (1.6)

with ∇Bjφj = ((∇Bjφj)1, (∇Bjφj)2) and e⊥1 = (0, 1) and e⊥2 = (−1, 0). It is

known in [21] that T
z,χ
j,k ∈ L2(R2;C × R2). By our choice, we can roughly divide

the equation (1.3) near vz,χ into two parts: the orthogonal direction Tvz,χM⊥ε and
the tangential direction Tvz,χMε, where the tangential direction Tvz,χMε can be
further divided into the gauge-transformational direction

Tvz,χMg
ε = span

{
Gz,χγ | γ ∈ H2(R2)

}
and the translational direction

Tvz,χMT
ε = span

{
T
z,χ
j,k | j = 1, 2, · · · ,m; k = 1, 2

}
.

Since we want to pin down infinitely many vortices of (1.3) near infinity, we need
to keep the estimates in reduction arguments to be independent of the number of
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vortices. However, because the impurity potential V (x) may be non-radial now,
the functional framework in [33, 39, 46], that is, solving (1.3) in L2(R2;R2 × C), is
not very suitable. Indeed, if we work in L2(R2;R2 × C) then by the well-known
estimates (cf. [25, 30]),

|f(r)− 1| . e−mλr and |b(r)− 1| . e−r;
|f ′(r)| . e−mλr;

Im(φ∇Bφ) = βK(|x|)[1 + o(e−mλr)]x⊥0 ;

∇×B = βK(r)[1− 1

2r
+O(

1

r2
)],

(1.7)

where mλ = min{
√
λ, 2}, x⊥0 = (− sin θ, cos θ) and K(x) is the modified Bessel

function of order 1 of the second kind such that K(r) ∼ 1√
r
e−r as r → +∞, the

error of vz,χ to be a solution of (1.3) will be of the form∑
l 6=j

cl,j
e−|zj−zl|√
|zj − zl|

(
1 +O

(
1

|zl − zj |

))
. (1.8)

It is easy to see that such kind of error can not be uniformly for the number
of vortices. Thus, to keep the error to be sufficiently small, we need to enlarge
the distance of all zj and zl, which will make µ → 0 in construction, in adding
the number of vortices, and thus, only arbitrary number of multi-vortex solutions
of (1.3) can be pinned down near infinity for fixed µ > 0 sufficiently small if
we use this framework. Hence, our nontrivial modifications should begin with

the functional setting. We remark that the norm ‖u‖] = supx∈R2
|u|
Wz,σ

, where

Wz,σ =
∑m
j=1 e

−(1−σ)|x−zj | for a small σ > 0, has been used to construct infinitely

many solutions of the scalar field equations in RN (cf. [8,27]) and optimal number
of solutions of the Lin-Ni-Takagi problem (cf. [9]). Therefore, we shall adapt the
ideas in [8, 9, 27] to modify the functional setting in our study on (1.3). We also
remark that since the fundamental vortex solution (φ,B) do not decay at infinity,
we need to slightly strengthen the slow decay assumption used in [8] (see also [14])

to (V1) and modify the norm introduced in [8, 27] to ‖u‖] = supx∈R2
|u|
W∗z,σ

, where

W ∗z,σ(x) = Wz,σ(x) + e−(1−σ0)|x|, so that we can obtain a good error estimate of

vz,χ in the space generated by the norm ‖u‖]. To continue the reduction argument,
we need to establish a good linear theory. Our ideas to prove the linear theory is
standard (cf. [8,9,27]), based on blow-up arguments. However, since we want to find
infinitely many multi-vortex solutions, the main difficulty in establishing the linear
theory is to keep the estimates in the linear theory to be uniformly for the number
of vortices. To achieve this goal, we establish a basic lemma (Lemma 2.1), choose
good gauges for the approximate solution vz,χ and apply some cutoff technique to
control the decay property at infinity to be uniformly for the number of vortices.
When a good linear theory is established, the corresponding nonlinear problem
Fλ,µ(vz,χ + η) = 0, which can be expanded as

Fλ,µ(vz,χ + η) = Fλ,µ(vz,χ) + Lz,χ(η) +Nλ,µ(vz,χ, η),

can be solved in the orthogonal direction Tvz,χM⊥ε directly by applying the con-
traction mapping theorem in the Banach space generated by the norm ‖u‖]. After
doing these, we are in the position to solve (1.3) in the tangential direction Tvz,χMε.
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As pointed out in [33,46], since (1.3) is gauge invariant and the perturbations η are
in the orthogonal direction of (1.3), the gauge-transformational direction Tvz,χMg

ε

can be solved automatically. For the translational direction Tvz,χMT
ε , we will use

variational arguments to solve it by considering a minimizing problem of the re-
duced energy functional about the locations of vortices, as that in [33]. However,
the crucial energy estimates used in [33] (see [33, Lemma 6.1]), which is essentially
established in [22], is also not very suitable to deal with the non-radial cases of
pinning vortices at infinity, since it still contains the term (1.8) so that it is still not
uniformly for the number of vortices. Thus, we shall establish some other energy
estimates to continue our reduction arguments, which is the crucial in our proof.
We start our energy estimates by expanding the reduced energy functional, which
is slightly different from that in [22, 33, 46]. We then use the secondary reduction
arguments, as that in [8, 9], to obtain a good upper bound of the reduced energy
functional when the configuration z is splitting in minimizing the reduced energy
functional in a suitable configuration space. We remark that since the magnetic
Ginzburg-Landau equation (1.3) is actually a four-coupled system and it is gauge
invariant, the estimates are very complicated and we need to analyze (1.3) very
carefully and choose good gauges to control the errors very well in this secondary
reduction argument. When a good upper bound of the reduced energy functional
is established, then the slow decay assumption (V1) will help us to exclude the case
that the configuration z will split in minimizing the reduced energy functional in a
suitable configuration space, as that in [8,9,14]. To finish the reduction arguments,
we also need to drive a good lower bound of the reduced energy functional to kill
the chance that the configuration z will move to the boundary of the configuration
space in minimizing the reduced energy functional in this space, which need us to
find out the leading order term in expanding the reduced energy functional. This
leading order term in expanding the reduced energy functional is given by∫

R2

(

m−1∑
j=1

∇×Bj)∇×Bm +

m∏
j=1

f2j (

m−1∑
j=1

(Bj −∇θj))(Bm −∇θm)

and it looks like
∑m
j=1 d

′
j |zj−zm|

1
2 e−|zj−zm| as ε→ 0+, which is good enough to kill

the chance that the configuration z will move to the boundary of the configuration
space in minimizing the reduced energy functional in this space by taking µ > 0
sufficiently small. After doing these, the translational direction can be solved by
adapting the standard variational arguments.

This paper is organized as follows. In section 2, we estimate the approximate
solution to know how far it to be a true solution in the Banach space generated
by the norm ‖u‖]. We then establish the linear theory in section 3 and solve the
nonlinear problem in the orthogonal direction in section 4. The section 5 is devoted
to the property of the reduced energy functional, while in section 6, we will drive
the crucial energy estimates by the secondary reduction. In section 7, we finish
our reduction argument by solving a minimizing problem of the reduced energy
functional.

Notations. Throughout this paper, C and C ′ are indiscriminately used to denote
various absolutely positive constants. a ∼ b means that C ′b ≤ a ≤ Cb and a . b
means that a ≤ Cb.
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2. Approximate solution

Clearly, (1.3) is variational in H1
loc(R2;C×R2) and its corresponding functional

is given by

Eλ,µ(u) =
1

2

∫
R2

|∇Aψ|2 + |∇ ×A|2 +
λ

4
(|ψ|2 − 1)2 + µV (x)(|ψ|2 − 1),

where u = (ψ,A) ∈ H1
loc(R2;C× R2). Let us write Fλ,µ(u) = E ′λ,µ(u), that is,

Fλ,µ(u) =

(
−∆Aψ +

λ

2
(|ψ|2 − 1)ψ + µV (x)ψ,−∇×∇×A− Im(ψ∇Aψ)

)
.

Then solving (1.3) is equivalent to solving Fλ,µ(u) = 0 in D−1(R2;C× R2), where
D−1(R2;C×R2) is the dual space of C∞0 (R2;C×R2). As in [22, (92)], by a direct
calculation, we have Fλ,µ(vz,χ) = ([Fλ,µ(vz,χ)]ψ, [Fλ,µ(vz,χ)]A), where

[Fλ,µ(vz,χ)]ψ = ei(Fz+χ)
(
λ

2

m∏
l=1

φl(

m∑
j=1

(1− f2j )− (1−
m∏
j=1

f2j ))

−2
∑
j<l

∏
k 6=j,l

φk∇Bjφj · ∇Blφl + µV (x)

m∏
j=1

φj

)
(2.1)

and

[Fλ,µ(vz,χ)]A =

m∑
j=1

(1−
∏
l 6=j

f2l )Im(φj∇Bjφj). (2.2)

To carry on the reduction arguments, we will start by the estimate of approximate
solutions vz,χ = (ψz,χ, Az,χ) in a suitable sense. Let

Wz,σ(x) =

m∑
j=1

e−(1−σ)|x−zj |, (2.3)

where σ < min{σ0, 1
100 ,

mλ−1
100mλ

}. Then we have the following lemma, which will be
useful below.

Lemma 2.1. We have ‖Wz,σ‖L∞(R2) . 1 uniformly for z ∈Mε and m ∈ N.

Proof. We re-denote z by zm to emphasize its dependence on m. Let us fix x ∈ R2

and without loss of generality, we assume |x − z1| ≤ |x − zj | for all other j. Then
Wzm,σ

(x) ≤ Wz∗m,σ
(x), where z∗m = {x, z2, · · · , zm} ∈ M ε

2
. Since z∗m ∈ M ε

2
,

Wz∗m,σ
(x) ≤ Wz∗∗,σ(x), where z∗∗ = {x, z∗∗2 , · · · , z∗∗m , · · · } ∈ M ε

2
has infinitely

many points such that x is the center, every 7 points in z∗∗ will form a regular
hexagon and every side in regular hexagons is equal to 1

2ε . Clearly, Wz∗∗,σ(x) =
maxz∈M ε

2
Wz,σ(x). We choose one line, which cross x and is parallel with one

side of the regular hexagon centered at x, to re-label it as the zero line, and we
re-label the line which is orthogonal to the zero line to be the zero row. We next
re-label every z∗∗l in −→z ∗∗ by z∗∗t,s to denote the distance of z∗∗l and x in regular
hexagons in this new coordinate. Clearly, s ∈ Z. Moreover, when s is odd then
t = ±(j − 1

2 ) and when s is even then t = ±j where j ∈ N. Thus, it is easy to see

that |x− z∗∗t,s|2 ≥ 3
4 |s|

2( 1
2ε )2 + min{(j − 1

2 )2, j2}( 1
2ε )2 for all (t, s). It follows that

Wz∗∗,σ(x) .
+∞∑
j=0

e−(1−σ)j
1
2ε

+∞∑
s=0

e−(1−σ)s
1
2ε . 1.
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Thus, for every x ∈ R2, we have Wz,σ(x) . 1, which is uniformly for z ∈ Mε and
m ∈ N. It completes the proof. �

Based on Lemma 2.1, we introduce the following norm:

‖u‖] = sup
x∈R2

|u|
W ∗z,σ

,

where W ∗z,σ(x) = Wz,σ(x) + e−(1−σ0)|x| with Wz,σ given by (2.3). Since

m∑
j=1

(1− f2j )− (1−
m∏
j=1

f2j ) = f2j

(∏
l 6=j

(f2l − 1 + 1)− 1

)
−
∑
l 6=j

(f2l − 1)

= (f2j − 1)(
∑
l 6=j

(f2l − 1) + h.o.t.)

and

e−(1−σ)|x−zj |e−(1−σ)|x−zl| ≤ e−
1−σ
2ε (e−(1−σ)|x−zj | + e−(1−σ)|x−zl|),

by (1.7) and Lemma 2.1, it is easy to see that

‖Fλ,µ(vz,χ)‖] . e−
1−σ
2ε + µ. (2.4)

Therefore, if µ, ε is sufficiently small, then Fλ,µ(u) = 0 in D−1(R2;C× R2) has an
almost solution vz,χ = (ψz,χ, Az,χ) in H1

loc(R2;C×R2). Thus, to solve Fλ,µ(u) = 0
in D−1(R2;C × R2), it is sufficient to write u = vz,χ + η and find ηz,χ sufficiently
small in a suitable sense such that Fλ,µ(vz,χ + ηz,χ) = 0 in D−1(R2;C × R2) for
µ, ε > 0 all sufficiently small.

3. Linear theory

If we write Lz,χ = E ′′λ,0(vz,χ), then for η = (ξ,D) ∈ H2(R2;C× R2), it is known

in [21] that Lz,χ(η) = ([Lz,χ(η)]ψ, [Lz,χ(η)]A), where

[Lz,χ(η)]ψ = −∆Az,χξ +
λ

2
(2|ψz,χ|2 − 1)ξ +

λ

2
ψ2
z,χξ

+2i∇Az,χψz,χ ·D + iψz,χdiv(D)

and

[Lz,χ(η)]A = −∇×∇×D + |ψz,χ|2D + Im(∇Az,χψz,χξ − ψz,χ∇Az,χξ).

As in [21,35], we define the space

Xz,χ =

{
(ξ,D) ∈ H2(R2;C× R2) | 〈(ξ,D), (iγψz,χ,∇γ)〉 = 0,∀γ ∈ H2(R2)

}
=

{
(ξ,D) ∈ H2(R2;C× R2) | Im(ψz,χξ)− div(D) = 0

}
.

For η = (ξ,D) ∈ H2(R2;C × R2), div(D) − Im(ψz,χξ) ∈ H1(R2). Thus, by the
classical regularity theorem, the following equation,

−∆γ + |ψz,χ|2γ = div(D)− Im(ψz,χξ) in R2,

has a unique solution γηz,χ in H3(R2). It follows that

η̃ = η + (iψz,χγ
η
z,χ,∇γηz,χ) ∈ Xz,χ.
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Because (iψz,χγ
η
z,χ,∇γηz,χ) ∈ Tvz,χMg

ε , where

Tvz,χMg
ε = span

{
Gz,χγ | γ ∈ H2(R2)

}
,

we have Lz,χ(η) = Lz,χ(η̃). On the other hand, it is also known in [21] that for
η = (ξ,D) ∈ Xz,χ, we have

Lz,χ(η) = L̃z,χ(η) = ([L̃z,χ(η)]ψ, [L̃z,χ(η)]A), (3.1)

where

[L̃z,χ(η)]ψ = −∆Az,χξ + (
λ

2
+

1

2
)|ψz,χ|2ξ +

λ− 1

2
ψ2
z,χξ

+
λ

2
(|ψz,χ|2 − 1)ξ + 2i∇Az,χψz,χD

and

[L̃z,χ(η)]A = −∆D + |ψz,χ|2D + 2Im(∇Az,χψz,χξ).

We define

T̃
z,χ
j,k = T

z,χ
j,k ζj , (3.2)

where ζj(x) is a smooth cutoff function such that ζj(x) = 1 for |x − zj | ≤ Q(z)−1
2

and ζj(x) = 0 for |x− zj | ≥ Q(z)+1
2 , and T

z,χ
j,k is given by (1.6). Let

X⊥z,χ =

{
(ξ,D) ∈ Xz,χ | 〈(ξ,D), T̃

z,χ
j,k 〉 = 0,∀j, k

}
and

Y⊥z,χ =

{
(ξ,D) ∈ L∞ ∩ L2(R2;C× R2) | 〈(ξ,D), T̃

z,χ
j,k 〉 = 0,∀j, k

}
,

where 〈·, ·〉 is the usual inner product in L2(R2;C×R2). Then we have the following
linear theory.

Proposition 3.1. There exists ε0 > 0 such that for 0 < ε < ε0, the linear problem

L̃z,χ(η) = g has a unique solution in X⊥z,χ for all g ∈ Y⊥z,χ with all m ≥ 2, all

χ ∈ H2(R2) and all z ∈ Mε. Moreover, ‖η‖∗ . ‖g‖], where ‖η‖∗ = ‖η‖] +
‖∇Az,χξ‖L∞(R2).

Proof. The ideas of the proof mainly come from [27]. We first prove the a-prior
estimate ‖η‖] . ‖g‖] for ε > 0 sufficiently small which is uniformly for all m ≥ 2,
all χ ∈ H2(R2) and all z ∈ Mε. Assume the contrary that there exist εn → 0 as
n → ∞, mn ∈ N, χn ∈ H2(R2), zn ∈ Mεn and gn ∈ Y⊥zn,χn such that ‖gn‖] → 0

as n→∞ and ‖ηn‖] = 1, where L̃zn,χn(ηn) = gn, that is,

gn,1 = −∆Azn,χn
ξn + (

λ

2
+

1

2
)|ψzn,χn |2ξn +

λ− 1

2
ψ2
zn,χnξn

+
λ

2
(|ψzn,χn |2 − 1)ξn + 2i∇Azn,χnψzn,χn ·Dn (3.3)

and

gn,2 = −∆Dn + |ψzn,χn |2Dn + 2Im(∇Azn,χnψzn,χnξn). (3.4)
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Let γ̃j,n be a smooth cutoff function such that γ̃j,n = 0 in B1(znj ) and γ̃j,n = 1 in

R2\B2(znj ). Since θj,n are all smooth functions in R2\B 1
2
(znj ), ω̃j,n = γ̃j,nθj,n are

also smooth in R2. Moreover,

‖∇ω̃j,n‖L∞(R2) . ‖θj,n‖C1(R2\B 1
2
(znj ))

. 1. (3.5)

We define

ξ̃n = e−i(Fzn+χn+
∑mn
j=1 ω̃j,n)ξn and Ãzn,0 =

mn∑
j=1

B̃j,n, (3.6)

where B̃j,n = bj,n∇θj,n −∇ω̃j,n. Then by the gauge invariance, (3.3) is equivalent
to

g̃n,1 = −∆ξ̃n + 2iÃzn,0 · ∇ξ̃n + idiv(Ãzn,0)ξ̃n + |Ãzn,0|2ξ̃n

+(
λ

2
+

1

2
)

mn∏
j=1

e2i(θj,n−ω̃j,n)f2j,nξ̃n +
λ− 1

2

mn∏
j=1

e2i(θj,n−ω̃j,n)f2j,nξ̃n

+
λ

2
(

mn∏
j=1

f2j,n − 1)ξ̃n + 2i

mn∑
j=1

mn∏
j=1

ei(θj,n−ω̃j,n)
∏
l 6=j

fl,nf
′
j,nx

0
j,n ·Dn

+2

mn∑
j=1

mn∏
j=1

ei(θj,n−ω̃j,n)
∏
l 6=j

fl,nfj,n(bj,n∇θj,n −∇θj,n) ·Dn, (3.7)

where g̃n,1 = gn,1e
−i(Fzn+χn+

∑mn
j=1 ω̃j,n) and x0j,n = (cos θj,n, sin θj,n). By Lemma 2.1,

(1.7) and (3.5),

|Ãzn,0| .W ∗zn,σ(x) . 1 (3.8)

and

|
mn∑
j=1

∏
l 6=j

fl,n(f ′j,nx
0
j,n − ifj,n(bj,n∇θj,n −∇θj,n)| .W ∗zn,σ(x) . 1. (3.9)

Let %y,R be a smooth cutoff function in BR+1(y) for all y ∈ R2 and R > 0 such
that %y,R = 1 in BR(y) and %y,R = 0 in R2\BR+ 1

2
(y). Then, by multiplying (3.7)

with ξ̃n%y,R on both sides and integrating by parts,∫
BR(y)

|∇ξ̃n|2 . |
∫
BR+1(y)

Re(∇ξ̃nξ̃n) · ∇%y,R|+ C(‖ηn‖2] + ‖gn‖2] )R2

+|
∫
BR+1(y)

%y,RÃzn,0 ·Re(∇ξ̃nξ̃n)|

.
1

2
|
∫
BR+1(y)

∇|ξ̃n|2 · ∇%y,R|+ C(‖ηn‖2] + ‖gn‖2] )R2

+
1

2
|
∫
BR+1(y)

%y,RÃzn,0 · ∇|ξ̃n|2|

. (‖ηn‖2] + ‖gn‖2] )R2. (3.10)

Here, we have used the fact that

|div(Ãzn,0)| ≤
mn∑
j=1

|(∆γ̃j,n)θj,n| . 1, (3.11)
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which comes from the well-known facts that div(B) = 0 in R2 and ∆θ = 0 in
R2\{0}, and the assumption εn → 0 which leads to ∆γ̃j,n∆γ̃k,n = 0 if j 6= k for n

sufficiently large. Now, by (3.10), (3.11) and multiplying (3.7) with ∆ξ̃n on both
sides and integrating over BR(y) for all y ∈ R2 and R > 0,∫

BR(y)

|∆ξ̃n|2 .
∫
BR(y)

Re(iÃzn,0 · ∇ξ̃n∆ξ̃n) + (‖ηn‖2] + ‖gn‖2] )R2

+

∫
BR(y)

Re|div(Ãzn,0)ξ̃n∆ξ̃n|

≤ 1

2

∫
BR(y)

|∆ξ̃n|2 + C(‖ηn‖2] + ‖gn‖2] )R2. (3.12)

Thus, {ξ̃n} is bounded in H2
loc(R2;C). On the other hand, by (3.4), it is easy to see

that {Dn} is also uniformly bounded in H2
loc(R2;R2). By the Sobolev embedding

theorem, we may assume, without loss of generality, that η̃n = (ξ̃n, Dn) ⇀ η0 =

(ξ̃0, D0) weakly in H2
loc(R2;C × R2) and η̃n = (ξ̃n, Dn) → η0 = (ξ̃0, D0) strongly

in C1,α
loc (R2;C × R2) as n → ∞ for some α ∈ (0, 1). Moreover, since the estimates

in (3.10) and (3.12) is independent of y, {∇ξ̃n} is bounded in L∞(R2). Let us

now go back to (3.4) and (3.7). By multiplying (3.4) and (3.7) with ξ̃n and Dn,
respectively, these two equations in R2\(∪mnj=1BR(znj )) can be re-written as

−∆|Dn|2 + 2(1− σ

2
)|Dn|2 . (‖gn‖2] + e−2σR)(W ∗zn,σ(x))2

and

−∆|ξ̃n|2 + 2(1− σ

2
)|ξ̃n|2 . (‖gn‖2] + e−2σR)(W ∗zn,σ(x))2.

Here, we have used (1.7) and Lemma 2.1. Now, by the maximum principle,

|ξ̃n|+ |Dn| . (‖gn‖] + e−σR + max
1≤j≤mn

‖ξ̃n‖L∞(∂BR(znj ))

+ max
1≤j≤mn

‖Dn‖L∞(∂BR(znj ))
)W ∗zn,σ, (3.13)

in R2\(∪mnj=1BR(znj )). Since ‖ηn‖] = 1, without loss of generality, we must have

max
1≤j≤mn

(‖ξ̃n‖],BR(zj,n) + ‖Dn‖],BR(zj,n)) & 1,

which implies that there exists zjn,n such that

‖ξ̃n‖],BR(zjn,n)
+ ‖Dn‖],BR(zjn,n)

& 1. (3.14)

Here, R > 0 is a sufficiently large constant and the norm ‖ · ‖],BR(zj,n) is defined in
BR(zj,n) which is similar to that of ‖ · ‖]. Clearly,

η̂n = (ξ̂n, D̂n) = (ξ̃n(·+ znjn), Dn((·+ znjn))) ⇀ η̂0 = (ξ̂0, D̂0)

weakly in H2
loc(R2;C×R2), η̂n → η̂0 strongly in C1,α

loc (R2;C×R2) for some α ∈ (0, 1)
and η̂n → η̂0 in R2 as n → ∞. Because εn → 0 as n → ∞, we have Q(zn) → +∞
as n→∞. Thus, by (1.7) and lemma 2.1,

Ãzn,0(·+ znjn)→ b(r)∇θ −∇(γ̃θ) and ∇Azn,χnψzn,χn(·+ znjn)→ ∇Bφ
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for all x ∈ R2, where γ̃ is a cutoff function such that γ̃ = 0 in B1(0) and γ̃ = 1
in R2\B2(0). It follows from (3.8), (3.9) and (3.10) and the Lebesgue dominated

convergence theorem that η̂0 = (eiγ̃θ ξ̂0, D̂0) satisfies the following equation: −∆B ξ̂0 + (
λ

2
+

1

2
)|φ|2ξ̂0 +

λ− 1

2
φ2ξ̂0 +

λ

2
(|φ|2 − 1)ξ̂0 + 2i∇BφD̂0 = 0,

−∆D̂0 + |φ|2D̂0 + 2Im(∇Bφξ̂0) = 0

We claim that (ξ̂0, D̂0) ∈ L2(R2;C× R2). Indeed, for every x ∈ R2\BR(znjn), since

Q(zn)→ +∞ as n→∞, x ∈ R2\(∪mnj=1BR(znj ))) for n sufficiently large. It follows

from η̂n → η̂0 strongly in C1,α
loc (R2;C×R2) as n→∞ and (3.13) that in R2\BR(0),

either

|ξ̂0|+ |D̂0| . e−(1−σ)|x|

if |znj | → +∞ as n→∞ or

|ξ̂0|+ |D̂0| . e−(1−σ)|x| + e−(1−σ)|x−z0|

if |znj | . 1. Thus, (ξ̂0, D̂0) ∈ L2(R2;C× R2) and it is known in [35] that

(eiγ̃θ ξ̂0, D̂0) = α1T1 + α2T2,

where

T1 = ((∇Bφ)1,∇×Be⊥1 ) and T2 = ((∇Bφ)2,∇×Be⊥2 ).

Since

T
zn,χn
jn,k

= (ei(Fzn+χn)
mn∏

l=1;l 6=j

φl(∇Bjnφjn)k,∇×Bjne⊥k )

and 〈(ξn, Dn), T̃
zn,χn
jn,k

〉 = 0 for all k = 1, 2, we have∫
R2

Re(ξ̃n(·+ znjn)

mn∏
j=1

e−i(θj,n−ω̃j,n)
mn∏

l=1;l 6=j

fl(·+ znjn)(∇Bφ)kζjn(·+ znjn))

+Dn((·+ znjn)) · ∇ ×Be⊥k ζjn(·+ znjn) = 0.

Note that

|Re(ξ̃n(·+ znjn)

mn∏
j=1

e−i(θj,n−ω̃j,n)
∏
l 6=j

fl(·+ znjn)(∇Bφ)kζjn(·+ znjn)|

≤ |ξ̃n(·+ znjn)||(∇Bφ)k)|
and fl(· + znjn) → 1 for l 6= jn, ζjn(· + znjn) → 1 as n → ∞, by the Lebesgue
dominated convergence theorem,

〈α1T1 + α2T2, Tk〉 = 0 for all k = 1, 2.

It follows from 〈T1, T2〉 = 0 that α1 = α2 = 0, which contradicts (3.14). Thus,
we have proved the a-prior estimate ‖η‖] . ‖g‖] for ε > 0 sufficiently small which
is uniformly for all m ≥ 2, all χ ∈ H2(R2) and all z ∈ Mε. We next to prove
the desired a-prior estimate ‖η‖∗ . ‖g‖]. For this, we only need to further prove

the estimate ‖∇Az,χξ‖L∞(R2) . ‖g‖] by L̃z,χ(η) = g. By the gauge invariance of

the operator ∇A, we only need to prove that ‖∇Ãz,0 ξ̃‖L∞(R2) . ‖g‖], where ξ̃ is

defined similar to that of (3.6). Let us go back to (3.12). By ‖η‖] . ‖g‖], we could
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obtain ‖ξ̃‖H2(B1(y)) . ‖g‖] via the estimates in (3.12) for all y ∈ R2. Then, the
desired estimate comes from the Sobolev embedding theorem and (3.8). It remains

to prove the existence and the uniqueness of η to the linear problem L̃z,χ(η) = g.

By the a-prior estimate, we know that the linear operator L̃z,χ is injective from

X⊥z,χ → L∞(R2;C× R2). On the other hand, we can rewrite L̃z,χ to be

L̃z,χ(η) = Tz,χ
(
ξ +Kz,χ(ξ,D), D + Yz,χ(ξ,D)

)
,

where Tz,χ is an operator from H2(R2;C× R2) to L2(R2;C× R2) given by

Tz,χ(ξ,D) = (Tz,χ,1(ξ), Tz,χ,2(D))

=

(
−∆Az,χξ + (

λ

2
+

1

2
)|ψz,χ|2ξ

+
λ− 1

2
ψ2
z,χξ,−∆D + |ψz,χ|2D

)
and,

Kz,χ(ξ,D) = T −1z,χ,1

(
λ

2
(|ψz,χ|2 − 1)ξ + 2i∇Az,χψz,χD

)
and

Yz,χ(ξ,D) = T −1z,χ,2

(
2Im(∇Az,χψz,χξ)

)
are two operators from H2(R2;C × R2) to H2(R2;C × R2). Since ∇Az,χψz,χ ∈
L2(R2;C), |ψz,χ|2 − 1 ∈ H1(R2), we can run the above arguments for the com-
pactness to show that Kz,χ and Yz,χ are all compact. Moreover, since λ > 1
and |ψz,χ| → 1 as |x| → +∞, we also know that Tz,χ is a bijection by the

Riesz representation theorem. Thus, T −1z,χ ◦ L̃z,χ is a Fredholm operator with

index 0 from H2(R2;C × R2) to H2(R2;C × R2). Since for all γ ∈ H2(R2),

ηγ = (iγψz,χ,∇γ) 6∈ Xz,χ, L̃z,χ(ηγ) 6= Lz,χ(ηγ) = 0 for all γ ∈ H2(R2). Thus,

by X⊥z,χ ⊂ H2(R2;C × R2), Y⊥z,χ ⊂ L∞(R2;C × R2) ∩ L2(R2;C × R2) and the

Fredholm alternative, L̃z,χ is also surjective from X⊥z,χ → Y⊥z,χ. Therefore, the

linear problem L̃z,χ(η) = g has a unique solution in X⊥z,χ for all g ∈ Y⊥z,χ if ε > 0

sufficiently small, which is independent of m ≥ 2, χ ∈ H2(R2) and z ∈ Mε. It
completes the proof. �

4. Nonlinear problem

So far, we have established a linear theory which looks good to continue the
reduction arguments. Let us now consider the nonlinear problem Fλ,µ(vz,χ+η) = 0,
where Fλ,µ(u) = E ′λ,µ(u). By expanding Fλ,µ(u) at the approximate solution vz,χ,

we can rewrite Fλ,µ(vz,χ + η) as

Fλ,µ(vz,χ + η) = Fλ,µ(vz,χ) + Lz,χ(η) +Nλ,µ(vz,χ, η),
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where Nλ,µ(vz,χ, η) is the nonlinear part given by

Nλ,µ(vz,χ, η) =

(
λ

2
(2ψz,χξ + ψz,χξ + |ξ|2)ξ + |D|2(ψz,χ + ξ)

+i[(divD)ξ + 2D∇Az,χξ] + µV (x)ξ,

−Im(ξ∇Az,χξ) +D(2Re(ψz,χξ) + |ξ|2)

)
with η = (ξ,D) (cf. [46, (3.14)]). Thus, the nonlinear problem now reads as

Fλ,µ(vz,χ) + Lz,χ(η) +Nλ,µ(vz,χ, η) = 0.

Proposition 4.1. Let ε, µ > 0 sufficiently small which are independent of m ≥ 2,
χ ∈ H2(R2) and z ∈ Mε. Then the nonlinear problem Fλ,µ(vz,χ + η) = 0 in Y⊥z,χ
has a unique solution ηz,χ in X⊥z,χ such that ‖ηz,χ‖∗ . (e−σε

−1

+µ). Moreover, the
map: z → ηz,χ is smooth for z ∈Mε.

Proof. The main ideas of the proof also come from [27]. Let us consider the equation
Fλ,µ(vz,χ + η) = 0 in Y⊥z,χ for η ∈ X⊥z,χ. As pointed out before, the equation now
reads as

L̃z,χ(η) = −(Fλ,µ(vz,χ) +Nλ,µ(vz,χ, η)) +
∑
j,k

α
z,χ
j,k (η)T̃

z,χ
j,k , (4.1)

where

α
z,χ
j,k (η) = 〈Fλ,µ(vz,χ) +Nλ,µ(vz,χ, η), T̃

z,χ
j,k 〉. (4.2)

By (2.4) and Lemma 2.1, we know that Fλ,µ(vz,χ), given by (2.1) and (2.2), belongs
to L∞(R2;C×R2) ∩ L2(R2;C×R2). On the other hand, let us define the Banach
space

X̂z,χ =

{
η = (ξ,D) ∈ X⊥z,χ | ‖η‖∗ < +∞

}
. (4.3)

For η = (ξ,D) ∈ X̂z,χ, we have div(D) = Im(ψz,χξ). Thus, the nonlinear part now
reads as

Nλ,µ(vz,χ, η) =

(
λ

2
(2ψz,χξ + ψz,χξ + |ξ|2)ξ + |D|2(ψz,χ + ξ)

+i[Im(ψz,χξ)ξ + 2D∇Az,χξ] + µV (x)ξ,

−Im(ξ∇Az,χξ) +D(2Re(ψz,χξ) + |ξ|2)

)
. (4.4)

It is easy to check that Nλ,µ(vz,χ, η) ∈ L∞(R2;C×R2)∩L2(R2;C×R2) for η ∈ X̂z,χ.

Since it is known in [13, 21] that T̃
z,χ
j,k ∈ L∞(R2;C × R2) ∩ L2(R2;C × R2), by

Proposition 3.1, we can rewrite the equation (4.1) to be the following fixed point

problem in X̂z,χ:

η = L̃−1z,χ(−(Fλ,µ(vz,χ) +Nλ,µ(vz,χ, η)) +
∑
j,k

α
z,χ
j,k (η)T̃

z,χ
j,k ). (4.5)

Let us consider this fixed point problem in the ball

Bz,χ,µ =

{
η = (ξ,D) ∈ X̂z,χ | ‖η‖∗ ≤M(e−

1−σ
2ε + µ)

}
,
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where M > 0 is a sufficiently large constant. By Lemma 2.1, it is easy to check
that

‖Nλ,µ(vz,χ, η)‖] . (e−
1−σ
2ε + µ)2

for η ∈ Bz,χ,µ with µ, ε > 0 sufficiently small which are independent of m ≥ 2,
χ ∈ H2(R2) and z ∈Mε. It follows from (1.7), (2.4) and Lemma 2.1 that

|αz,χj,k (η)| . e− 1
2ε + µ (4.6)

for η ∈ Bz,χ,µ. On the other hand, by Lemma 2.1, we also have

‖Nλ,µ(vz,χ, η1)−Nλ,µ(vz,χ, η2)‖] . (e−
1−σ
2ε + µ)‖η1 − η2‖∗ (4.7)

for η1, η2 ∈ Bz,χ,µ. Thus, applying the a-prior estimates in Proposition 3.1, it is
standard to use the contraction mapping theorem to solve the fixed point prob-
lem (4.5). We remark that thanks to Proposition 3.1, µ, ε > 0 sufficiently small
are independent of m ≥ 2, χ ∈ H2(R2) and z ∈ Mε. It remains to check the

smoothness of the map: z → ηz,χ. For this, we consider the map from Cm × X̂z,χ
to Ŷz,χ given by

G(z, η) = Fλ,µ(vz,χ + η)−
∑
j,k

α
z,χ
j,k (η)T̃

z,χ
j,k ,

where

Ŷz,χ =

{
η = (ξ,D) ∈ L∞ ∩ L2(R2;C× R2) | ‖η‖] < +∞

}
.

Then, G(z, ηz,χ) = 0. A direct computation yields that

∂ηG(z, ηz,χ)[%] = L̃z,χ(%) +Remz,χ(%)−
∑
j,k

α̃
z,χ
j,k (ηz,χ, %)T̃

z,χ
j,k

for all % ∈ X̂z,χ, where

α̃
z,χ
j,k (ηz,χ, %) = 〈∂ηNλ,µ(vz,χ, η)[%], T̃

z,χ
j,k 〉

and Remz,χ(%) = ((Remz,χ(%))ψ, (Remz,χ(%))A) with

(Remz,χ(%))ψ = iIm(ψz,χξz,χ)%1 + 2i∇Az,χ%1 ·Dz,χ + |Dz,χ|2%1

+
λ

2
(2Re(ψz,χξz,χ) + |ξz,χ|2)%1 +

1

2
ψz,χξz,χ%1

+
λ

2
(2ψz,χξz,χ + ξ2z,χ)%1 −

1

2
ψz,χξz,χ%1

+2i(∇Az,χξz,χ − iξz,χDz,χ − iψz,χDz,χ) · %2
and

(Remz,χ(%))A = (2Re(ψz,χξz,χ) + |ξz,χ|2)%2

+2Im((iξz,χAz,χ + iξz,χDz,χ + iψz,χDz,χ)%1)

+Im(∇ξz,χ%1 −∇%1ξz,χ).

Since ηz,χ ∈ Bz,χ,µ, it is easy to check that

‖Remz,χ(%)‖] . (e−
1−σ
2ε + µ)‖%‖∗

and
‖∂ηNλ,µ(vz,χ, η)[%]‖] . (e−

1−σ
2ε + µ)‖%‖∗.
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Thus, by choosing µ, ε > 0 small enough if necessary and applying Proposition 3.1,
we know that

‖∂ηG(z, ηz,χ)[%]‖] & ‖%‖∗

for all % ∈ X̂z,χ. Since it is known in [13, 35] that (φ,B) is of class C2 in R2,

G(z, η) = Fλ,µ(vz,χ + η) −
∑
j,k α

z,χ
j,k (η)T̃

z,χ
j,k is of class C1 for the parameter z.

Thus, applying the implicit function theorem to the equation G(z, η) = 0 yields
that the map: z → ηz,χ is smooth for z ∈Mε. �

5. The reduced functional

So far, we have solved the equation

Fλ,µ(vz,χ + ηz,χ) = 0

in Y⊥z,χ for a unique ηz,χ ∈ Bz,χ,µ, that is,

L̃z,χ(ηz,χ) = −(Fλ,µ(vz,χ) +Nλ,µ(vz,χ, ηz,χ)) +
∑
j,k

α
z,χ
j,k (ηz,χ)T̃

z,χ
j,k . (5.1)

Thus, to complete the reduction arguments, we need to solve the remaining problem
α
z,χ
j,k (ηz,χ) = 0 for all j = 1, 2, · · · ,m and k = 1, 2, which is a nonlinear and nonlocal

system. Since (1.3) is variational, we shall use variational arguments to solve this
system. Let

Iλ,µ(z, χ) = Eλ,µ(vz,χ + ηz,χ).

Proposition 5.1. Let the same assumptions of Proposition 4.1 be satisfied. Then
Iλ,µ(z, χ) is independent of gauges χ ∈ H2(R2).

Proof. The ideas of the proof come from [33, 46]. Clearly, the conclusion fol-
lows immediately from ∂χIλ,µ(z, χ) = 0 in the dual space of H2(R2). To prove
∂χIλ,µ(z, χ) = 0, it is sufficiently to show that

vz,χ + ηz,χ = (ψz,χ + ξz,χ, Az,χ +Dz,χ)

= (eiχ(ψz,0 + ξz,0), Az,0 +Dz,0 +∇χ),

since Eλ,µ(u) is gauge invariant. Let us define

η̂z,χ = (eiχξz,0, Dz,0).

Since χ ∈ H2(R2) and (ξz,0, Dz,0) ∈ X̂z,0 which is given by (4.3), by the Sobolev
embedding theorem, η̂z,χ ∈ H2(R2;C× R2). By direct calculations,

Im(ψz,0ξz,0) = Im(ψz,χe
iχξz,0)

and

〈ηz,0, T̃ z,0j,k 〉 = 〈η̂z,χ, T̃ z,χj,k 〉,
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where T̃
z,χ
j,k is given by (3.2). It follows from ηz,0 ∈ X⊥z,0 that η̂z,χ ∈ X⊥z,χ. Moreover,

by (2.1) and (4.4),

Fλ,µ(vz,0) +Nλ,µ(vz,χ, ηz,0)

= ((Fλ,µ(vz,0))ψ, (Fλ,µ(vz,0))A)

+((Nλ,µ(vz,0, ηz,0))ψ, (Nλ,µ(vz,0, ηz,0))A)

= (e−iχ(Fλ,µ(vz,χ))ψ, (Fλ,µ(vz,χ))A)

+(e−iχ(Nλ,µ(vz,χ, η̂z,χ))ψ, (Nλ,µ(vz,χ, η̂z,χ))A)

and

L̃z,0(ηz,0) = ((L̃z,0(ηz,0))ψ, (L̃z,0(ηz,0))A)

= (e−iχ(L̃z,χ(η̂z,χ))ψ, (L̃z,χ(η̂z,χ))A),

where L̃z,0(ηz,0) is given by (3.1). Thus, by (5.1) and ηz,0 ∈ Bz,0,µ, we have

Fλ,µ(vz,χ+ η̂z,χ) = 0 in Y⊥z,χ and η̂z,χ ∈ Bz,χ,µ. By the uniqueness of ηz,χ in Bz,χ,µ,
we must have ηz,χ = η̂z,χ. It completes the proof. �

By Proposition 5.1, we can fix χ = 0 in Iλ,µ(z, χ). As in the proof of Proposi-
tion 3.1, we define ω̃j = γ̃jθj , where γ̃j be a smooth cutoff function such that γ̃j = 0
in BQ(z)

4
(zj) and γ̃j = 1 in R2\BQ(z)

4 +1
(zj). Since θj are all smooth functions in

R2\B 1
2
(zj). ω̃j are all smooth in R2 for ε > 0 sufficiently small. Let

η̃z,0 = (eiχ
∗
ξz,0, Dz,0),

where χ∗ = −Fz −
∑m
j=1 ω̃j . Since it is known in [13, 35] that B(x) = b(|x|)∇θ

is of class C2 in R2, by (1.7) and the equation satisfied by b(r) (cf. [21, (12)]),
η̃z,0 ∈ H2(R2) and by Proposition 4.1, η̃z,0 is of class C1 for z. We define

Jλ,µ(z) = Eλ,µ(ṽz,0 + η̃z,0),

where ṽz,0 = (ψ̃z,0, Ãz,0) = (
∏m
j=1 e

i(θj−ω̃j)fj ,
∑m
j=1(bj∇θj −∇ω̃j)). Then, Jλ,µ(z)

is of class C1 for z.

Proposition 5.2. Let the same assumptions of Proposition 4.1 be satisfied. If

∇Jλ,µ(z0) = 0, then α
z0,χ
j,k (ηz0,χ) = 0 for all j = 1, 2, · · · ,m and k = 1, 2.

Proof. Let ∇Jλ,µ(z0) = 0. Then

0 = ∂zj,kJλ,µ(z0) = 〈Fλ,µ(ṽz0,0 + η̃z0,0), ∂zj,k ṽz0,0 + ∂zj,k η̃z0,0〉

for all j, k. As pointed out in the proof of Proposition 5.1, we have η̃z,0 = ηz,χ∗ .
Thus, by Proposition 4.1,

0 = 〈Fλ,µ(vz0,χ∗ + ηz0,χ∗), ∂zj,k ṽz0,0 + ∂zj,k η̃z0,0〉

=
∑
l,s

α
z0,χ∗

l,s (ηz0,χ∗)〈T̃
z0,χ∗

l,s , ∂zj,k ṽz0,0 + ∂zj,k η̃z0,0〉 (5.2)

for all j, k. By direct calculations, we also have

∂zj,1 ṽz0,0 =

(
(∂zj,1 ṽz0,0)1, (∂zj,1 ṽz0,0)2

)
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and

∂zj,2 ṽz0,0 =

(
(∂zj,2 ṽz0,0)1, (∂zj,2 ṽz0,0)2

)
,

where

(∂zj,1 ṽz0,0)1 = ei(θj−ω̃j)
m∏
l 6=j

ei(θl−ω̃l)fl,0[f ′j,0 cos θj,0

+ifj,0(
− sin θj,0(1− γ̃j,0)

rj,0
− θj,0γ̃′j,0 cos θj,0)],

(∂zj,1 ṽz0,0)2 = (
bj,0 − γ̃j,0

rj,0
)′(− sin θj,0 cos θj,0, cos2 θj,0)

+
bj,0 − γ̃j,0

r2j,0
(sin θj,0 cos θj,0, sin

2 θj,0)

−θj,0γ̃′′j,0(cos2 θj,0, sin θj,0 cos θj,0)

+
γ̃′j,0
rj,0

(sin θj,0 cos θj,0, sin
2 θj,0)

−
θj,0γ̃

′
j,0

rj,0
(sin2 θj,0,− sin θj,0 cos θj,0)

and

(∂zj,2 ṽz0,0)1 = ei(θj−ω̃j)
m∏
l 6=j

ei(θl−ω̃l)fl,0[f ′j,0 sin θj,0

+ifj,0(
cos θj,0(1− γ̃j,0)

rj,0
− θj,0γ̃′j,0 sin θj,0)],

(∂zj,2 ṽz0,0)2 = (
bj,0 − γ̃j,0

rj,0
)′(− sin2 θj,0, sin θj,0 cos θj,0)

+
bj,0 − γ̃j,0

r2j,0
(− cos2 θj,0,− sin θj,0 cos θj,0)

−θj,0γ̃′′j,0(sin θj,0 cos θj,0, sin
2 θj,0)

−
γ̃′j,0
rj,0

(cos2 θj,0, sin θj,0 cos θj,0)

−
θj,0γ̃

′
j,0

rj,0
(− sin θj,0 cos θj,0, cos2 θj,0)

Recall that

T̃
z0,χ∗

l,s =

(
(T̃

z0,χ∗

l,s )1, (T̃
z0,χ∗

l,s )2

)
, (5.3)

where

(T̃
z0,χ∗

l,s )1 = ei(θl−ω̃l)
∏
t6=l

ei(θt−ω̃t)ft(f
′
lx

0
l − ifl(bl∇θl −∇θl))sζl
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and (T̃
z0,χ∗

l,s )2 = ∇×Ble⊥s ζl. Thus, by symmetry, 〈T̃ z
0,χ∗

j,s , ∂zj,k ṽz0,0〉 = 0 for s 6= k.

Moreover, by (1.7), Lemma 2.1 and the choices of cutoff functions,

|
∑
l,s;l 6=j

〈T̃ z
0,χ∗

l,s , ∂zj,k ṽz0,0〉|

.
∫
R2

∑
l 6=j

ζl(f
′
l,0f
′
j,0 + |∇ ×Bl,0||

bj,0 − γ̃j,0
r2j,0

+ (
bj,0 − γ̃j,0

rj,0
)′|)

.
∑
l 6=j

e−(1−σ)|z
0
l−z

0
j |

. e−σε
−1

.

On the other hand,

〈T̃ z
0,χ∗

j,1 , ∂zj,1 ṽz0,0〉

=

∫
R2

∏
t6=j

f2t,0[(f ′j,0)2 cos2 θj,0 + sin2 θj,0
(1− γ̃j,0)f2j,0(1− bj,0)

r2j,0

−θj,0 sin θj,0 cos θj,0
γ̃′j,0f

2
j,0(bj,0 − 1)

rj,0
]ζj,0

+

∫
R2

[(
bj,0 − γ̃j,0

rj,0
)′ cos2 θj,0 +

bj,0 − γ̃j,0
r2j,0

sin2 θj,0]∇×Bj,0ζj,0

+

∫
R2

[−θj,0γ̃′′j,0 sin θj,0 cos θj,0 +
γ̃′j,0
rj,0

sin2 θj,0

+
θj,0γ̃

′
j,0

rj,0
sin θj,0 cos θj,0]∇×Bj,0ζj,0.

It is known (cf. [21]) that 1− b(x) > 0, thus,

sin2 θj,0
(1− γ̃j,0)f2j,0(1− bj,0)

r2j,0
≥ 0.

On the other hand, by a direct calculation, we know that

∇×Bj,0 =
bj,0
r2j,0

+ (
bj,0
rj,0

)′ =
b′j,0
rj,0

.

It follows from the choices of cutoff functions and (1.7) that∫
R2

[(
bj,0 − γ̃j,0

rj,0
)′ cos2 θj,0 +

bj,0 − γ̃j,0
r2j,0

sin2 θj,0]∇×Bj,0ζj,0

=

∫
R2

1

2
[(
bj,0
rj,0

)′ +
bj,0
r2j,0

]2ζj,0 +O(e−
1−σ
4ε ).

Thus, by the choices of cutoff functions and (1.7) once more,

〈T̃ z
0,χ∗

j,1 , ∂zj,1 ṽz0,0〉 =
1

2

∫
R2

[(f ′)2 + [(
b

r
)′ +

b

r2
]2 +

f2(1− b)
r2

] +O(e−
1−σ
4ε ).

Similarly, we also have

〈T̃ z
0,χ∗

j,2 , ∂zj,2 ṽz0,0〉 =
1

2

∫
R2

[(f ′)2 + [(
b

r
)′ +

b

r2
]2 +

f2(1− b)
r2

] +O(e−
1−σ
4ε ).
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Since 〈T̃ z,0l,s , ηz,0〉 = 0 for all l, s, 〈T̃ z
0,χ∗

j,k , η̃z,0〉 = 0 for all l, s. Thus,

〈T̃ z
0,χ∗

l,s , ∂zj,k η̃z0,0〉 = −〈∂zj,k T̃
z0,χ∗

l,s , η̃z0,0〉

for all l, s. Since ηz,χ in Bz,χ,µ, by (5.3) and the choices of cutoff functions, we can
compute as before and obtain

|
∑
l,s;l 6=j

〈∂zj,k T̃
z0,χ∗

l,s , η̃z0,0〉| .
∫
R2

∑
l 6=j

ζl,0f
′
j,0(f ′l,0 +

1− bl,0
rl,0

) . e−σε
−1

and

|〈∂zj,k T̃
z0,χ∗

j,s , η̃z0,0〉| . ‖η̃z0,0‖L∞(R2) . e
− 1−σ

2ε + µ

for all j, k, s, where we have used (1.7). Therefore, by choosing ε, µ > 0 sufficiently
small if necessary, we can see that the system (5.2) is diagonally dominant, so

that it is uniquely solved by α
z0,χ∗

l,s (ηz0,χ∗) = 0 for all l, s. Note that by gauge

invariance, we have α
z0,χ∗

l,s (ηz0,χ∗) = α
z0,χ
l,s (ηz0,χ) for all j, k. Thus, we also have

α
z0,χ
l,s (ηz0,χ) = 0 for all l, s, which completes the proof. �

6. Secondary reduction and crucial estimates

So far, by Proposition 5.2, we have reduced the problem (1.3) to find critical
points of Jλ,µ(z). Thus, let us now consider the following minimizing problem:

em = min
zm∈Mε

Jλ,µ(zm).

Then the equation (1.3) can be solved if the above minimizing problem has a solu-
tion in the interior ofMε, whereMε is given by (1.5). We shall drive some energy
estimates to prove that Jλ,µ(z) has critical points in Mε for ε, µ > 0 sufficiently
small. We recall that

Jλ,µ(z) = Eλ,µ(ṽz,0 + η̃z,0).

In what follows, we shall establish estimates of em, as that in [8]. Since em is related
to m, the number of vortices, we re-denote ṽz,0 + η̃z,0 by ṽzm + η̃zm for the sake of
clarity.

Proposition 6.1. Suppose that zm ∈Mε such that

min
j=1,2,··· ,m−1

|zm − zj | >> 1 and |zm| >> 1,

then we have

Jλ,µ(zm) < Jλ,µ(zm−1) + Eλ,0(φ,B)

for fixed ε, µ > 0 sufficiently small which are independent of m and zm.

Proof. We recall that ṽzm+η̃zm = (ψ̃zm,0+ξ̃zm , Ãzm,0+Dzm), by direct calculations,

Jλ,µ(zm) = Eλ,µ(ṽzm,0) +O1
λ(ṽzm , η̃zm) +O2

λ(ṽzm , η̃zm) +O3
µ(ṽzm , η̃zm) (6.1)
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where

O1
λ(ṽzm , η̃zm)

=

∫
R2

(Re(∇Ãzm,0 ψ̃zm,0 · (∇Ãzm,0 ξ̃zm − iψ̃zm,0Dzm − iξ̃zmDzm))

+

∫
R2

(∇× Ãzm,0)(∇×Dzm)

+

∫
R2

λ

4
(|ψ̃zm,0|2 − 1)(2Re(ψ̃zm,0ξ̃zm) + |ξ̃zm |2)),

O2
λ(ṽzm , η̃zm) =

1

2

∫
R2

(|∇Ãzm,0 ξ̃zm − iψ̃zm,0Dzm − iξ̃zmDzm |2

+
1

2

∫
R2

|∇ ×Dzm |2 +
λ

4
(2Re(ψ̃zm,0ξ̃zm) + |ξ̃zm |2)2,

and

O3
µ(ṽzm , η̃zm) =

µ

2

∫
R2

V (x)(2Re(ψ̃zm,0ξ̃zm) + |ξ̃zm |2).

For the term Eλ,µ(ṽzm,0), by (1.7) and [22, Lemma 12],

Eλ,µ(ṽzm,0) =
1

2

∫
R2

|∇
m∏
j=1

fj |2 +

∫
R2

m∏
j=1

f2j |
m∑
j=1

(Bj −∇θj)|2

+

∫
R2

|∇ × (

m∑
j=1

Bj)|2 +
λ

4
(

m∏
j=1

f2j − 1)2

+
µ

2

∫
R2

V (x)(

m∏
j=1

f2j − 1)

= Eλ,µ(ṽzm−1,0) + Eλ,0(φ,B) +
µ

2

∫
R2

V (x)(f2m − 1)

+Uλ,m +O(

m−1∑
j=1

e−2(1−σ)mλ|zj−zm|), (6.2)

where

Uλ,m =

∫
R2

(

m−1∑
j=1

∇×Bj)∇×Bm

+

∫
R2

m∏
j=1

f2j (

m−1∑
j=1

(Bj −∇θj))(Bm −∇θm)

+

∫
R2

f2m(

m−1∏
j=1

f2j − 1)|Bm −∇θm|2

+

∫
R2

(f2m − 1)

m−1∏
j=1

f2j (

m−1∑
j=1

|Bj −∇θj |2). (6.3)
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By (1.7) and [22, Lemma 12],

|Uλ,m| .
m−1∑
j=1

e−(1−σ)|zj−zm|. (6.4)

For the terms O1
λ(ṽzm , η̃zm) +O2

λ(ṽzm , η̃zm) +O3
µ(ṽzm , η̃zm), by the fact that

div(Dzm) = Im(ψ̃zm,0ξ̃zm)

and integrating by parts, we observed that

O1
λ(ṽzm , η̃zm) +O2

λ(ṽzm , η̃zm) +O3
µ(ṽzm , η̃zm)

= 〈Fλ,µ(ṽzm), η̃zm〉+
1

2
〈L̃m(η̃zm), η̃zm〉+

∫
R2

(

∫ η̃zm

0

Nλ,µ(ṽzm , t)dt)

where, for the sake of simplicity, we re-denote L̃zm,−χ∗ = L̃m. Thus, by denoting

ϕzm = (ςzm , Czm) = η̃zm − η̃zm−1 ,

we have

O1
λ(ṽzm , η̃zm) +O2

λ(ṽzm , η̃zm) +O3
µ(ṽzm , η̃zm)

= 〈Fλ,µ(ṽzm)−Fλ,µ(ṽzm−1), η̃zm−1〉+ 〈Fλ,µ(ṽzm)−Fλ,µ(ṽzm−1), ϕzm〉

+〈Fλ,µ(ṽzm−1), ϕzm〉+
1

2
〈L̃m−1(ϕzm), ϕzm〉+ 〈L̃m−1(η̃zm−1), ϕzm〉

+〈Gm(η̃zm), η̃zm〉+

∫
R2

(

∫ η̃zm−1

0

(Nλ,µ(ṽzm , t)−Nλ,µ(ṽzm−1 , t))dt)

+

∫
R2

(

∫ η̃zm−1+ϕzm

η̃zm−1

Nλ,µ(ṽzm , t)dt) + Jλ,µ(zm−1)− Eλ,µ(ṽzm−1,0),

where Gm(η̃zm) = ($̃m(η̃zm), G̃m(η̃zm)) with

$̃m(η̃zm)

=

(
2i(bm∇θm −∇ω̃m) · ∇ξ̃zm + |bm∇θm −∇ω̃m|2ξ̃zm

+(2

m−1∑
j=1

(bj∇θj −∇ω̃j) · (bm∇θm −∇ω̃m))ξ̃zm

+

m−1∏
j=1

f2j (f2m − 1)
1 + 2λ

2
ξ̃zm

)

+

(m−1∏
j=1

e2i(θj−ω̃j)f2j (f2me
2i(θm−ω̃m) − 1)

λ− 1

2
ξ̃zm

+2i((fme
i(θm−ω̃m) − 1)

m−1∑
j=1

m−1∏
j=1

ei(θj−ω̃j)
∏
j 6=l

fj(f
′
lx

0
l − ifl(bl∇θl −∇θl) ·Dzm)

+2iei(θm−ω̃m)(

m−1∏
j=1

ei(θj−ω̃j)fj(f
′
mx

0
m − ifm(bm∇θm −∇θm)) ·Dzm)

)
, (6.5)
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G̃m(η̃zm)

= 2Im

( m∏
j=1

ei(θj−ω̃j)
m−1∏
l=1

fl(f
′
mx

0
m + ifm(bm∇θm −∇θm)ξ̃zm

)

+2Im

(
(fme

i(θm−ω̃m) − 1)

m−1∏
j=1

ei(θj−ω̃j)
∏
j 6=l

fj(f
′
lx

0
l + ifl(bl∇θl −∇θl)ξ̃zm

)

+

m−1∏
j=1

f2j (f2m − 1)Dzm . (6.6)

By (1.7), Lemma 2.1, Proposition 4.1 and [22, Lemma 12],

|〈Fλ,µ(ṽzm)−Fλ,µ(ṽzm−1), η̃zm−1〉|

+|
∫
R2

(

∫ η̃zm−1

0

(Nλ,µ(ṽzm , t)−Nλ,µ(ṽzm−1 , t))dt)|

. (e−
1−σ
2ε + µ)(

m−1∑
j=1

e−(1−σ)|zj−zm| + µe−(1−σ0)|zm|)

and

|〈Fλ,µ(ṽzm)−Fλ,µ(ṽzm−1), ϕzm〉|

.
m−1∑
j=1

e−2(1−σ)|zj−zm| + µe−2(1−σ0)|zm| + ‖ϕzm‖2H1 .

Since Gm(η̃zm) is linear for η̃zm , we have

〈Gm(η̃zm), η̃zm〉 = 〈Gm(η̃zm−1), η̃zm−1〉+ 〈Gm(η̃zm−1), ϕzm〉
+〈Gm(ϕzm), η̃zm−1〉+ 〈Gm(ϕzm), ϕzm〉,

which together with Lemma 2.1, (1.7), Proposition 4.1 and [22, Lemma 12], implies
that

|1
2
〈L̃m−1(ϕzm), ϕzm〉|+ |〈Gm(η̃zm), η̃zm〉|

. (e−
1−σ
2ε + µ)2(

m−1∑
j=1

e−(1−σ)|zj−zm| + µe−(1−σ0)|zm|) + ‖ϕzm‖2H1 .
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By (5.1), Lemma 2.1, Proposition 4.1 and the Taylor expansion,

〈Fλ,µ(ṽzm−1), ϕzm〉+ 〈L̃m−1(η̃zm−1), ϕzm〉

+

∫
R2

(

∫ η̃zm−1+ϕzm

η̃zm−1

Nλ,µ(ṽzm , t)dt)

= 〈
∑
j,k

α̃
zm−1,−χ∗m−1

j,k (η̃zm−1)T̃
zm−1,−χ∗m−1

j,k , ϕzm〉

−〈Nλ,µ(ṽzm−1 , η̃zm−1), ϕzm〉+

∫
R2

(

∫ η̃zm−1+ϕzm

η̃zm−1

Nλ,µ(ṽzm , t)dt)

= 〈
∑
j,k

α̃
zm−1,−χ∗m−1

j,k (η̃zm−1)T̃
zm−1,−χ∗m−1

j,k , ϕzm〉+O(‖ϕzm‖2H1)

+〈Nλ,µ(ṽzm , η̃zm−1)−Nλ,µ(ṽzm−1 , η̃zm−1), ϕzm〉.

By Proposition 4.1, (1.7), Lemma 2.1 and [22, Lemma 12],

|〈Nλ,µ(ṽzm , η̃zm−1)−Nλ,µ(ṽzm−1 , η̃zm−1), ϕzm〉|

. (e−
1−σ
2ε + µ)2(

m−1∑
j=1

e−2(1−σ)|zj−zm| + µe−2(1−σ0)|zm|) + ‖ϕzm‖2H1 .

We recall that ϕzm = η̃zm − η̃zm−1 . Then, by the orthogonal conditions satisfied by
η̃zm and η̃zm−1 , and (1.7), (4.6), Proposition 4.1 and [22, Lemma 12] once more, we
have

|α̃z
m−1,−χ∗m−1

j,k (η̃zm−1)〈T̃ z
m−1,−χ∗m−1

j,k , ϕzm〉|

. (e−
1−σ
2ε + µ)|〈T̃ z

m−1,−χ∗m−1

j,k , η̃zm〉|

. (e−
1−σ
2ε + µ)‖ξ̃m‖L∞(R2)

∫
R2

|1− fm||(∇Bjφj)k|

. (e−
1−σ
2ε + µ)2e−(1−σ)|zj−zm|,

which implies that

|
∑
j,k

α̃
zm−1,−χ∗m−1

j,k (η̃zm−1)〈T̃ z
m−1,−χ∗m−1

j,k , ϕzm〉| . (e−
1−σ
2ε + µ)2

m−1∑
j=1

e−(1−σ)|zj−zm|.

Therefore, inserting the above estimates into (6.1) and by (6.4), we will arrive at

Jλ,µ(zm) = Jλ,µ(zm−1) + Eλ,0(φ,B) +
µ

2

∫
R2

V (x)(f2m − 1)

+O(‖ϕzm‖2H1(R2)) +O(

m−1∑
j=1

e−(1−σ)|zj−zm|)

+O((e−
1−σ
2ε + µ)2e−(1−σ0)|zm|). (6.7)

Here, we remark that this estimate is obtained by taking

min
j=1,2,··· ,m−1

|zm − zj | >> 1 and |zm| >> 1
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for fixed ε, µ. In what follows, we shall use the secondary reduction argument to
estimate the term ‖ϕzm‖2H1(R2), as that in [8]. We recall that η̃m = η̃z,0 and

η̃z,0 = (e−iχ
∗
mξz,0, Dz,0) = (ξ̃z,0, Dz,0),

where χ∗m = −Fz −
∑m
j=1 ω̃j . We divide ϕzm by

ϕzm =
∑
j,k

β̃mj,kT̃
zm,−χ∗m
j,k + ϕ⊥zm ,

where 〈ϕ⊥zm , T̃
zm,−χ∗m
j,k 〉 = 0 for all j, k. By the orthogonal conditions satisfied by

η̃zm and η̃zm−1 , Proposition 4.1, (1.7) and [22, Lemma 12],

|β̃mj,k| . ‖ξ̃m−1‖L∞(R2)

∫
R2

|1− fm||(∇Bjφj)k|

. (e−
1−σ
2ε + µ)e−(1−σ)|zm−zj | (6.8)

for j = 1, 2, · · · ,m− 1 and k = 1, 2 and

|β̃mm,k| . (e−
1−σ
2ε + µ)

∫
R2

W ∗zm−1,σ|(∇Bmφm)k|

. (e−
1−σ
2ε + µ)(

m−1∑
j=1

e−(1−σ)|zm−zj | + e−(1−σ0)|zm|). (6.9)

It follows that

‖
∑
j,k

β̃mj,kT̃
zm,−χ∗m
j,k ‖2H1(R2)

. (e−
1−σ
2ε + µ)2(

m−1∑
j=1

e−2(1−σ)|zm−zj | + e−2(1−σ0)|zm|). (6.10)

To estimate ϕ⊥zm , we recall that by gauge invariance, η̃m satisfies the following
equation:

L̃m(η̃zm) = −(Fλ,µ(ṽzm) +Nλ,µ(ṽzm , η̃zm)) +
∑
j,k

α̃
m,−χ∗m
j,k (ηzm)T̃

zm,−χ∗m
j,k .

Thus, ϕ⊥zm satisfies

L̃m(ϕ⊥zm) = (Fλ,µ(ṽzm−1) +Nλ,µ(ṽzm−1 , η̃zm−1))

−(Fλ,µ(ṽzm) +Nλ,µ(ṽzm , η̃zm)) +
∑
j,k

α̃
zm,−χ∗
j,k (η̃zm)T̃

zm,−χ∗m
j,k

−
∑
j,k

α̃
zm−1,−χ∗m−1

j,k (η̃zm−1)T̃
zm−1,−χ∗m−1

j,k

−
∑
j,k

β̃mj,kL̃m(T̃
zm,−χ∗m
j,k )− ($̃m(η̃zm−1), G̃m(η̃zm−1)), (6.11)
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where

[L̃m(ϕzm)]ψ

= −∆Ãzm,−χ∗m
ςzm + (

λ

2
+

1

2
)

m∏
j=1

f2j ςzm +
λ

2
(

m∏
j=1

f2j − 1)ςzm

+
λ− 1

2

m∏
j=1

e2i(θj−ω̃j)f2j ςzm

+2i

m∑
j=1

m∏
j=1

ei(θj−ω̃j)
∏
l 6=j

fl(f
′
jx

0
j − ifj(bj∇θj −∇θj)) · Czm ,

[L̃m(ϕzm)]A

= −∆Czm +

m∏
j=1

f2j Czm

+2Im(

m∑
j=1

m∏
j=1

ei(θj−ω̃j)
∏
l 6=j

fl(f
′
jx

0
j + ifj(bj∇θj −∇θj)ςzm)

and ($̃m(η̃zm−1), G̃m(η̃zm−1)) is given by (6.5) and (6.6). We claim that

‖ϕ⊥zm‖2H1(R2) . ‖gzm‖
2
L2(R2) (6.12)

for ε, µ > 0 sufficiently small, where gzm is the right hand side of (6.11). Indeed,
we assume the contrary that there exist εn → 0 as n → ∞, mn ∈ N and zmn ∈
Mεn such that ‖gzmn ‖2L2(R2) → 0 as n → ∞ and ‖ϕ⊥zmn ‖2H1(R2) = 1. By similar

arguments as that for (3.10) and using the fact that R2 is paracompact, we can
show that

‖ϕ⊥zmn ‖2H1(R2) . ‖ϕ
⊥
zmn ‖2L4(R2) + on(1). (6.13)

Indeed, by similar arguments as that for (3.10), we have∫
B1(y)

|∇(ςzmn )⊥|2 + |(ςzmn )⊥|2

.
∫
B2(y)

|(ςzmn )⊥|2 + |(Czmn )⊥|2 +

∫
B2(y)

|gzmn |2

.

(∫
B2(y)

|(ςzmn )⊥|4
) 1

2

+

(∫
B2(y)

|(Czmn )⊥|4
) 1

2

+

∫
B2(y)

|gzmn |2

and by the second equation of (6.11) and (1.7), we also have∫
B1(y)

|∇(Czmn )⊥|2 + |(Czmn )⊥|2

.
∫
B2(y)

|(ςzmn )⊥|2 + |(Czmn )⊥|2 +

∫
B2(y)

|gzmn |2

.

(∫
B2(y)

|(ςzmn )⊥|4
) 1

2

+

(∫
B2(y)

|(Czmn )⊥|4
) 1

2

+

∫
B2(y)

|gzmn |2
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where ϕ⊥zmn = ((ςzmn )⊥, (Czmn )⊥). Then, by the fact that R2 is paracompact,

R2 ⊂
⋃∞
j=1B2(yj) such that for every x ∈ R2, it is only covered by uniformly

finitely many times. It follows that

‖ϕ⊥zmn ‖2H1(R2) .
∞∑
j=1

‖ϕ⊥zmn‖2H1(B1(yj))

.
∞∑
j=1

(∫
B2(yj)

|(ςzmn )⊥|4
) 1

2

+

∞∑
j=1

(∫
B2(yj)

|(Czmn )⊥|4
) 1

2

+

∞∑
j=1

∫
B2(yj)

|gzmn |2

. ‖ϕ⊥zmn ‖2L4(R2) + ‖gzmn ‖2L2(R2),

which is the desired estimate (6.13). Thus, by combining with similar arguments as
that for (3.12) and the Lions lemma ( [26, Lemma I.1], see also [49, Lemma 1.21]), we

can show that there exist {yn} such that ϕ⊥zmn (·+yn)→ ϕ0 6= 0 strongly in C1,α
loc (R2)

as n → ∞. If |yn − zmnjn | . 1 for some {zmnjn } up to a subsequence, then ϕ⊥zmn (· +
zmnjn )→ ϕ∗ 6= 0 strongly in C1,α

loc (R2) as n→∞. Since 〈ϕ⊥zmn , T̃
zmn ,−χ∗mn
j,k 〉 = 0 for

all j, k, we can obtain a contradiction by applying similar arguments as that used
in the proof of Proposition 3.1. Thus, |yn − zmnj | → +∞ for all j. In this case, by

(1.7), (3.4) and (3.7), ϕ0 satisfies the following equation:−∆ξ0 + (
λ

2
+

1

2
)ξ0 +

λ− 1

2
ξ0 = 0,

−∆D0 +D0 = 0.

It is still impossible since ϕ0 ∈ H1(R2;C × R2). Therefore, it remains to estimate
‖gzm‖2L2(R2). By (1.7)-(2.2) and [22, Lemma 12], we have

‖Fλ,µ(ṽzm−1)−Fλ,µ(ṽzm)‖2L2(R2) .
m−1∑
j=1

e−2(1−σ)|zm−zj | + µ2e−2(1−σ0)|zm|.

By (6.10), Proposition 4.1 and similar estimates in (4.7), we have

‖Nλ,µ(ṽzm−1 , η̃zm−1))−Nλ,µ(ṽzm , η̃zm)‖2L2(R2)

. ‖Nλ(ṽzm−1 , η̃zm−1))−Nλ(ṽzm , η̃zm−1)‖2L2(R2)

+‖Nλ,µ(ṽzm , η̃zm−1))−Nλ,µ(ṽzm , η̃zm)‖2L2(R2)

. (e−
1−σ
2ε + µ)2

m−1∑
j=1

e−2(1−σ)|zm−zj | + (e−
1−σ
2ε + µ)‖ϕzm‖2L2(R2)

+(e−
1
2ε + µ)2e−2(1−σ0)|zm|

. (e−
1−σ
2ε + µ)2

m−1∑
j=1

e−2(1−σ)|zm−zj | + (e−
1−σ
2ε + µ)‖ϕ⊥zm‖2L2(R2)

+(e−
1−σ
2ε + µ)2e−2(1−σ0)|zm|,
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where

Nλ(vz,χ, η) =

(
λ

2
(2ψz,χξ + ψz,χξ + |ξ|2)ξ + |D|2(ψz,χ + ξ)

+i[Im(ψz,χξ)ξ + 2D∇Az,χξ],

−Im(ξ∇Az,χξ) +D(2Re(ψz,χξ) + |ξ|2)

)
.

Thus, by (4.2), the choice of cutoff functions and similar estimates as used before,

‖
m−1∑
j,k;j=1

(α̃
zm,−χ∗
j,k (η̃zm)T̃

zm,−χ∗m
j,k − α̃z

m−1,−χ∗m−1

j,k (η̃zm−1)T̃
zm−1,−χ∗m−1

j,k )‖2L2(R2)

.
m−1∑
j,k;j=1

|α̃z
m,−χ∗m
j,k (η̃zm)− α̃z

m−1,−χ∗m−1

j,k (η̃zm−1)|2

. ‖Nλ,µ(ṽzm−1 , η̃zm−1))−Nλ,µ(ṽzm , η̃zm)‖2L2(R2)

+‖Fλ,µ(ṽzm−1)−Fλ,µ(ṽzm)‖2L2(R2)

+

∣∣∣∣〈Nλ,µ(ṽzm−1 , η̃zm−1)) + Fλ,µ(ṽzm−1),

m−1∑
j,k;j=1

(T̃
zm,−χ∗m
j,k − T̃ z

m−1,−χ∗m−1

j,k )〉
∣∣∣∣2

.
m−1∑
j=1

e−2(1−σ)|zm−zj | + (e−
1−σ
2ε + µ)‖ϕ⊥zm‖2L2(R2)

+(e−
1−σ
2ε + µ)2e−2(1−σ0)|zm|.

Since it has been established in [22] that

‖L̃m(T
zm,−χ∗m
j,k )‖2L2(R2) .

∑
l 6=j

e−2(1−σ)|zj−zl|.

By the choice of cutoff functions and Lemma 2.1, we know that

‖L̃m(T̃
zm,−χ∗m
j,k )‖2L2(R2) . 1

for all fixed j. Thus, by (6.8) and (6.9), we have

‖
∑
j,k

β̃mj,kL̃m(T̃
zm,−χ∗m
j,k )‖2L2(R2)

. (e−
1−σ
2ε + µ)2(

m−1∑
j=1

e−2(1−σ)|zm−zj | + e−2(1−σ0)|zm|).

For the term ($̃m(η̃zm−1), G̃m(η̃zm−1)), by Lemma 2.1, (1.7) and Proposition 4.1,
we can obtain the following estimates by the similar arguments as above:

‖($̃m(η̃zm−1), G̃m(η̃zm−1))‖2L2(R2) . (e−
1−σ
2ε + µ)2

m−1∑
j=1

e−2(1−σ)|zm−zj |

+(e−
1−σ
2ε + µ)2e−2(1−σ0)|zm|.
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It remains to estimate the term ‖α̃z
m,−χ∗
j,k (η̃zm)T̃

zm,−χ∗m
j,k ‖2L2(R2). By Lemma 2.1 and

(1.7)-(2.2),

|Fλ,µ(ṽzm)| .
m−1∑
j=1

e−(1−σ)|x−zj | + µe−(1−σ0)|x|.

On the other hand, we recall that

η̃zm = η̃zm−1 + ϕzm = η̃zm−1 +
∑
j,k

β̃mj,kT̃
zm,−χ∗m
j,k + ϕ⊥zm .

Thus, by Proposition 4.1 and (6.8),

|Nλ,µ(ṽzm , η̃zm)| . (e−
1−σ
2ε + µ)(

m−1∑
j=1

e−(1−σ)|x−zj | + e−(1−σ0)|x| + |ϕ⊥zm |)

+(e−
1−σ
2ε + µ)2(

m−1∑
j=1

e−(1−σ)|zm−zj | + e−(1−σ0)|zm|).

Thus, by (1.7), (4.2) and [22, Lemma 12],

|α̃z
m,−χ∗m
j,k (η̃zm)|2 .

m−1∑
j=1

e−2(1−σ)|zm−zj | + (e−
1
2ε + µ)2e−2(1−σ0)|zm|

+(e−
1−σ
2ε + µ)2‖ϕ⊥zm‖2H1 .

Therefore, by (6.12),

‖ϕ⊥zm‖2H1(R2) = O

(
(e−

1
2ε + µ)2(

m−1∑
j=1

e−(1−σ)|zm−zj | + e−(1−σ0)|zm|)

)
for ε, µ > 0 sufficiently small which are independent of m and zm. Thus, by (6.7),
we have

Jλ,µ(zm) = Jλ,µ(zm−1) + Eλ,0(φ,B)

+
µ

2

∫
R2

V (x)(f2m − 1) +O(

m−1∑
j=1

e−(1−σ)|zm−zj |)

+O((e−
1
2ε + µ)2e−(1−σ0)|zm|). (6.14)

Since by the slow decaying condition (V1) and (1.7), it is easy to estimate∫
R2

V (x)(f2m − 1) . −e−(1−σ0)|zm|,

we obtain the conclusion by (6.14) and σ < σ0. �

7. Critical points of the reduced functional

So far, by Proposition 5.2, we have reduced the problem (1.3) to find critical
points of Jλ,µ(z), and by Proposition 6.1, we have established a good estimate for
em, where

em = min
zm∈Mε

Jλ,µ(zm). (7.1)
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Since our above arguments do not include the case m = 1, which is the start point
of our iteration arguments for the general case m ≥ 2, we shall first consider the
case m = 1. Since in this situation, we only have one vortex, we will re-denote z1

by z. Moreover, we point out that Mε = C in this case. Thus, for m = 1, we
actually consider the following minimizing problem:

e1 = min
z∈C
Jλ,µ(z). (7.2)

Proposition 7.1. The minimizing problem (7.2) has a solution ẑ1 for µ > 0
sufficiently small.

Proof. The ingredient of this proof is essentially contained in our above arguments,
so we only sketch it here. The approximate solution in the case m = 1 is given by
vz,χ = (ψz,χ, Az,χ), where

ψz,χ = ei(Fz(x)+χ(x))φ(x− z) and Az,χ = B(x− z) +∇(Fz(x) + χ(x))

with Fz(x) = z · B(x − z). Since u = (φ,B) is the fundamental vortex solution of
(1.4), the error of this approximate solution is given by

Fλ,µ(vz,χ) = ([Fλ,µ(vz,χ)]ψ, [Fλ,µ(vz,χ)]A) = (µV (x)ψz,χ, 0).

By (1.7) and the assumption (V1),

‖Fλ,µ(vz,χ)‖2L2(R2;C×R2) . µ
2.

We now consider the linear problem L̃z,χ(η) = g in H2(R2;C × R2), where g ∈
L2(R2;C × R2). Then by similar arguments as that used for (6.12), we can prove
the following a-priori estimate:

‖η‖H2(R2;C×R2) . ‖g‖L2(R2;C×R2), (7.3)

where η ∈ X⊥z,χ and g ∈ L2(R2;C× R2) such that

〈(ξ,D), T̃ z,χk 〉 = 0

for k = 1, 2 with g = (ξ,D). Here, with a bit of abuse of notations, we use T̃ z,χk
to denote translational zero modes of the equation (1.4) at vz,χ, as that of T̃

z,χ
j,k .

As in Proposition 4.1, the nonlinear problem Fλ,µ(vz,χ + η) = 0 can be solved now
by the contraction mapping theorem with the help of (7.3), that is, there exists a
unique ηz,χ ∈ X⊥z,χ such that

Fλ,µ(vz,χ + ηz,χ) =

2∑
k=1

αz,χk (ηz,χ)T̃ z,χk

where

αz,χk (η) = 〈Fλ,µ(vz,χ) +Nλ,µ(vz,χ, η), T̃ z,χk 〉.
Moreover, ηz,χ is smooth for z and ‖ηz,χ‖2H2(R2;C×R2) . µ2. Now, let {zn} be a

minimizing sequence of e1. We claim that {zn} is bounded for µ > 0 sufficiently
small. Suppose the contrary that |zn| → +∞ as n → ∞ up to a subsequence.
Without loss of generality, we assume that |zn| → +∞ as n → ∞. By the Taylor
expansion, we have

Jλ,µ(z) = Eλ,0(φ,B) +
µ

2

∫
R2

V (x)(f(x− z)2 − 1)

+〈Fλ,µ(vz,0), ηz,0〉+O(‖ηz,χ‖2H2(R2;C×R2)).
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Therefore, by (1.7), the assumption (V1) and [22, Lemma 12], we have

Jλ,µ(zn) = Eλ,0(φ,B)− µ

2
e−(1−σ0)|zn| +O(µ2),

which implies e1 = Eλ,0(φ,B) + O(µ2). On the other hand, we choose |zε| = 1
ε .

Then by the Taylor expansion once more and taking ε > 0 sufficiently small, we
can use (1.7) and [22, Lemma 12] to show that

Jλ,µ(zε) ≤ Eλ,0(φ,B)− µ

2
e−

1−σ0
ε +O(µ2).

Since e1 ≤ Jλ,µ(zε), we must have e−
1−σ0
ε . µ, which is impossible for µ >

0 sufficiently small. Thus, {zn} is bounded and zn → ẑ1 as n → ∞ up to a

subsequence. It follows from Proposition 5.2 that e1 is attained by ẑ1 for µ > 0
sufficiently small. �

Let us now solve the minimizing problem (7.1) in the general case m ≥ 2.

Proposition 7.2. The minimizing problem (7.1) has a solution ẑm in the interior
of Mε for ε, µ > 0 sufficiently small which are all independent of m and zm.

Proof. The conclusion for any m ≥ 2 will be proved by iterations. By Proposi-
tion 7.1, the conclusion holds for m = 1. Suppose that the conclusion has been
already true for m = 1, 2, · · · , k − 1 and then let us consider the case m = k. We
consider a configuration

zk = {ẑk−11 , ẑk−12 , · · · , ẑk−1k−1 , zk} ∈ Mε,

where ẑk−1 is the minimizer of ek−1 and

min
1≤j≤m−1

|ẑk−1j − zk| >> 1 and |zk| >> 1.

Then by Proposition 6.1, we have

ek < ek−1 + Eλ,0(φ,B) (7.4)

for ε, µ > 0 sufficiently small. As for the case m = 1, we can prove that {zkn} is
bounded. Otherwise, without loss of generality, we may assume that |zkk,n| → ∞ as

n→∞. Let us go back to (6.3). By [22, Lemma 12] and (1.7), we have∫
R2

f2m(

m−1∏
j=1

f2j − 1)|Bm −∇θm|2 + (f2m − 1)

m−1∏
j=1

f2j (

m−1∑
j=1

|Bj −∇θj |2)

= O

(m−1∑
j=1

dj

(
1

|zj − zm|

) 1
2

e−|zj−zm|
)

for ε > 0 sufficiently small. On the other hand, by (1.7) and Lemma 8.1, we have∫
R2

(

m−1∑
j=1

∇×Bj)∇×Bm +

m∏
j=1

f2j (

m−1∑
j=1

(Bj −∇θj))(Bm −∇θm)

∼
m−1∑
j=1

d′j |zj − zm|
1
2 e−|zj−zm|
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for ε > 0 sufficiently small. Thus, using these two new estimates in (6.2) and using
the assumption |zkk,n| → ∞ as n→∞, we can rewrite the estimate (6.14) for zkn as
follows:

ek ≥ Jλ,µ(zk−1n ) + Eλ,0(φ,B) +O

(m−1∑
j=1

dj

(
1

|znj − znm|

) 1
2

e−|z
n
j −z

n
m|
)

+

m−1∑
j=1

d′j |znj − znm|
1
2 e−|z

n
j −z

n
m| + on(1) (7.5)

≥ ek−1 + Eλ,0(φ,B) + on(1).

It contradicts (7.4). Thus, {zkn} must be bounded. Without loss of generality, we

may assume that zkn → ẑk as n → ∞. It remains to prove that ẑk belongs to the

interior of Mε for k ≥ 2. Suppose the contrary that ẑk ∈ ∂Mε. Then without loss
of generality, we may assume that |ẑk1 − ẑkk | = ε−1. Similar to (7.5), by (6.14), the

energy estimate for ẑk now reads as:

ek ≥ Jλ,µ(ẑk−1) + Eλ,0(φ,B) +O

( m∑
j=1

dj |ẑk−1j − ẑk−1m |− 1
2 e−|ẑ

k−1
j −ẑk−1

m |
)

+

m∑
j=1

d′j |ẑk−1j − ẑk−1m | 12 e−|ẑ
k−1
j −ẑk−1

m | +O(µ)

≥ ek−1 + Eλ,0(φ,B) + d′′1e
− 1
ε +O(µ)

for ε > 0 sufficiently small. Hence, by (7.4) and taking µ << e−
1
ε , we will obtain a

contradiction. Therefore, we must have ẑk belong to the interior of Mε and thus,

ẑk is a critical point of Jλ,µ(zm) for ε, µ > 0 all sufficiently small. It completes the
proof. �

We close this section by the proof of Theorem 1.1.

Proof of Theorem 1.1: It follows immediately from Propositions 4.1, 5.2 and
7.2. 2

8. Appendix: A useful estimate

Lemma 8.1. Let w ∈ H1(R2) such that w(|x|) ∼ |x|− 1
2 e−|x| as |x| → +∞. Suppose

e1 ∈ R2 such that |e1| = 1. Then as R→ +∞,

∫
R2

w(x)w(x−Re1)dx ∼ R 1
2 e−R.
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Proof. The proof is almost same as that of [50, Lemma 4.1], we give it here for
reader’s convenience. Without loss of generality, we assume that e1 = (0, 1). Thus,∫

R2

w(x)w(x−Re1)dx

=

∫
{|x|≤M}

w(x)w(x−Re1)dx+

∫
{|x−Re1|≤M}

w(x)w(x−Re1)dx

+

∫
{M<|x|≤R2 }

w(x)w(x−Re1)dx+

∫
{M<|x−Re1|≤R2 }

w(x)w(x−Re1)dx

+

∫
{|x|>R

2 }∩{|x−Re1|>
R
2 }
w(x)w(x−Re1)dx

for R > 0 sufficiently large, where M > 0 is a sufficiently large constant such that
w(|x|) ∼ |x|− 1

2 e−|x| for |x| ≥ M . For
∫
{|x|≤M} w(x)w(x − Re1)dx, we estimate it

as follows:∫
{|x|≤M}

w(x)w(x−Re1)dx ∼
∫
{|x|≤M}

w(x)|x−Re1|−
1
2 e−|x−Re1|dx

. R−
1
2 e−R

∫
{|x|≤M}

w(x)e|x|dx

as R → +∞. For
∫
{|x−Re1|≤M} w(x)w(x − Re1)dx, the estimate is similar to that

of
∫
{|x|≤M} w(x)w(x − Re1)dx. For

∫
{|x|>R

2 }∩{|x−Re1|>
R
2 }
w(x)w(x − Re1)dx, we

estimate it as follows:∫
{|x|>R

2 }∩{|x−Re1|>
R
2 }
w(x)w(x−Re1)dx

∼
∫
{|x|>R

2 }∩{|x−Re1|>
R
2 }

(|x||x−Re1|)−
1
2 e−|x|e−|x−Re1|dx

. R−
1
2 e−

R
2

∫ +∞

R
2

e−rr
1
2 dr

∼ e−R

as R → +∞. For
∫
{M<|x|≤R2 }

w(x)w(x − Re1)dx, we denote x = (x′, x1). Then

x′ = |x| cos ρ and x1 = |x| sin ρ. It follows that

|x−Re1| −R ≥ −x1 for x ∈ {M < |x| ≤ R

2
}.

On the other hand, we observe that

|Re1 − x| −R =
−2Rx1 + |x|2

|Re1 − x|+R
.

Thus, if |Re1 − x| − R ≤ 0, then |Re1 − x| + R ≤ 2R while if |Re1 − x| − R ≥ 0,
then |Re1 − x|+R ≥ 2R, which implies that

|Re1 − x| −R ≤ −x1 +
|x|2

2R
for x ∈ {M < |x| ≤ R

2
}.
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Then by symmetry, we can estimate the upper bound of
∫
{M<|x|≤R2 }

w(x)w(x −
Re1)dx as follows:∫

{M<|x|≤R2 }
w(x)w(x−Re1)dx

∼
∫
{M<|x|≤R2 }∩{0≤ρ≤π}

w(x)w(x−Re1)dx

. R−
1
2 e−R(

∫ π
2

0

∫ R
2

M

e−(r−r sin ρ)r
1
2 drdρ+

∫ π
2

0

∫ R
2

M

e−(r−r cos ρ)r
1
2 drdρ)

∼ R−
1
2 e−R

∫ π
2

0

∫ R
2

M

e−(r−rsinρ)r
1
2 drdρ

. R−
1
2 e−R

∫ π
2

0

∫ R
2

M

e−
1
2 r(cos ρ)

2

r
1
2 drdρ

= R−
1
2 e−R

∫ π
2

0

∫ R
2

M

e−
1
2 rρ

2( sin ρ
ρ )2r

1
2 drdρ

. R−
1
2 e−R

∫ π
2

0

∫ R
4

2M
π2

e−rρ
2

r
1
2 drdρ

∼ R−
1
2 e−R

∫ R
4

2M
π2

dr

∫ +∞

0

e−y
2

dy

∼ R
1
2 e−R.

For the lower bound of
∫
{M<|x|≤R2 }

w(x)w(x − Re1)dx, the estimates is similar to

that of the upper bound:∫
{M<|x|≤R2 }

w(x)w(x−Re1)dx

∼ R−
1
2 e−R

∫
{M<|x|≤R2 }

|x|− 1
2 e−(|x|+

|x|2
2R −x1)dx

& R−
1
2 e−R

∫ π
4

0

∫ R
2

M

e−(r+
r2

2R−r sin ρ)r
1
2 drdρ

& R−
1
2 e−R

∫ π
4

0

∫ R
2

M

e−2r cos
2 ρr

1
2 drdρ

& R−
1
2 e−R

∫ π
4

0

∫ R
2

M
2

e−2r cos
2 ρr

1
2 drdρ

∼ R−
1
2 e−R

∫ R
2

M
2

dr

∫ +∞

0

e−y
2

dy

∼ R
1
2 e−R.

The estimate of
∫
{|x−Re1|≤M} w(x)w(x−Re1)dx is also similar. Thus, the proof is

completed. �
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