Final Review of MATH256-103, 2018-2019

Coverage of this course in the book ” Elementary Differential Equations and Boundary value
Problems” by Boyce and DiPrima:

Chapter 2: 2.1, 2.2, 2.3, 2.4, 2.5

Chapter 3: 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8

Chapter 4: 4.2, 4.3

Chapter 6: 61., 6.2, 6.3, 6.4, 6.5, 6.6

Chapter 7: 7.4, 7,5, 7.6, 7.7, 7.8, 7.9

Chapter 10: 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8

Formulas to be provided on your final exam paper:

I. Reduction of order formula: v, is given, then y, = y,v and v satisfies v’ = yﬂz
1
II. Laplace transform formulas (as in Midterm II)
ITI. Fourier series coefficients
~ — —|— Z (@, cos( —x + b, sm(n%x))dx
1 (L
@ =7 LL f(x) cos(n%a:)da:,n =0,1,...;b, =7 / sin a:)d$

1. First order equations
1.1. Homogeneous linear first order

y +p(t)y =0, R LLOL

1.2. Inhomogeneous linear first order



1.3. Separable equation
dy _ dy _
= = Ftg) | = [ rwt

1.4. Bernoulli equation

y +pt)y =qt)y", letv=y'"
v+ (L=n)p(t)v = (1 = n)q(t)
1.5. Homogeneous equation

W_ ply

de "'z

y dv
let v = el = f(v) —v
1.6. Interval of Existence: three factors a) The solution, b) The Equation, c) the Initial
Condition
1.7. Difference between linear and nonlinear: for linear equation, existence is global and unique-
ness is guaranteed; for nonlinear equation, existence and uniqueness depends on whether or not
|g—£(t0, Yo) is bounded.
1.8. Applications in banking, falling objects, escaping velocity problem
1.9. Autonomous ODEs: p

Y

o =W
Classification of critical points: f(yo) = 0, f (yo) < 0 then yq is stable; f(yo) = 0, f (yo) > 0
then g, is unstable. Population models.

2. Linear Second Order Equations

y +pt)y +alt)y =g(t)

2.1. Homogeneous case

y )y +alt)y =0
2.1.1. Wronskian W yy, %2](t) = 1195 — ¥, 92

Abel’s equation W' + pW = 0

2



W(t) = Ce JP)s

2.1.2. Set of Fundamental Solutions ¥, y2. All solutions are given by y = c1y1 + Coys
2.1.3. Constant Coefficients:

ay” + by/ +cy=0

Characteristic equation ar? +br+c¢=0
e b2 — 4ac > 0, two unequal real roots 7| # ry.
yr =€y = e
e b2 —4ac < 0, two complex roots: 71 = XA+ i, ry = X\ — ip
— AL A
g = M cos(ut), g = e sin(yu)
e b2 —4ac = 0, two equal roots: | =15 =7

Yy = 67“1&7 Yy = tert

2.1.4. Euler’s type equation

at’>y” + bty +cy =0

Characteristic equation ar(r —1)+br+c=0, ar*+(b—a)r+c=0
e (b—a)? —4ac > 0, two unequal real roots ry # ry.
=1y = 1"
o (b—a)?—4ac =0, two equal roots: 7 =1y =7
yp =1t", yp =1t"logt

e (b—a)? —4ac < 0, two complex roots: 11 = X+ iy, 79 = X\ — ip

y1 = t*cos(ulogt), o = t*sin(plogt)



2.1.5. Reduction of Order
y +pt)y +q(t)y=0

If y; is known, we can get y, by letting yo = v(t)y;. Then v satisfies
W

V= —
2
U

where W = e~ [ ot is the Wronskian.

2.2 Inhomogeneous equations

y +py +qy = h(t)

Y= yp(t) + cryn + couo

where y, is a particular solution and y;, yo—set of fundamental solutions of homogeneous prob-
lem

é.2.1 Method I: Method of Undetermined Coefficients. Works only for
ay’ +by +cy = h(t)
o h(t) =ag+ art + ... + a,t"
yp = (Ao 4 Agt + ... + Apt™)
o h(t) =e(ap + art + ... + a,t™)
yp = t°e*(Ag + Art + ... + A,t")
o h(t) = e“(ag + art + ... + a,t"™) cos(Bt) or g(t) = e*(ag + ait + ... + a,t") sin(St)

yp = t°e™[(Ag + Ast + ... + Ant™) cos(Bt) + (Bo + Byt + ... + B,t") sin(8t)]

e s equals either 0, or 1, or 2, is the least integer such that there are no solutions of the
homogeneous problem in y,

h(t) =hy + ... + hpyp,
Yp = Yp1 T --Ypm



2.2.2. Method of Variation of Parameters

Yp(t) = wr ()Y (t) + ua(t)y2(t)

where ) )
ul/yll—l— u2/yg =0,
Uyy; + ugys = g(t)

Formula:

t t
ulz—/yQVgV()du “2:/y1vgv()dt

Yp = —yl(t)/yQéJét)dt +y2(t)/ylgv(ﬂdt

2.3. Applications: Spring-Mass System
mu” 4 yu' + ku = F(t)
231. 7v=0, Fy =0
u = Acos(wpt) + Bsin(wot) = Rcos(wot — d), Rcosd = A, Rsind = B

2.3.2. v =0, Fy = Fycos(wt). If w = wy, resonance, solution becomes unbounded
2.3.3. v # 0. All solutions approach zero as t — +o0o. 2 > 4mk-over-damping; > = 4mk
critical damping; v? < 4mk under damping.

2.4. Higher order ODEs with constant coefficients:
any () + a1y ™V 4+ . 4 a1y + agy = g(t)

2.4.1. Homogeneous case: solutions are sums of t*¢™, where s = 0,1,...,m — 1 and m is the
algebraic multiplicity of the root r.

2.4.2: Inhomogeneous case: t°(same type), s=smallest integer so that no part of y, is a
solution of homogeneous ODE.

3. Systems of Equations
3.1. General Theory

!

x (1) = A(t)x + g(t)

T =1Tp+ Tp



3.2. Homogeneous Systems

ap =Y c;x(t)
=1

3.3. Homogeneous Systems with Constant Coefficients

/

x = Ax

(2 x 2 case only)
3.3.1. Two linearly independent eigenvectors

T = i€l et
3.3.2. Complex eigenvalue
& = ¢y Re(£eMY) 4y I (€AY
3.3.3. Repeated eigenvalues, only on eigenvector
ot = et =Ete" +n, (A—rl)n=¢

3.3.4. Types and stabilities and trajectories.

Types: unstable saddle, stable node, unstable node, improper node, stable spiral, unstable
spiral, center

3.3.5. Euler type systems

tx = Ax
x = £t AL =1¢
3.3.6. Fundamental Matrix W(¢) and ®(¢): ®(t) = U(¢)(¥(0))~L.
3.4. Inhomogeneous Systems with Constant Coefficients
x = Ax +g(t)

Method I: Method of undetermined coefficients
If g is ae* cos(ut) or polynomials or sum of these types, then

xj, = t*(the same type) + lower order terms



Special case: r is an eigenvalue, g = eag. x, = ate™ + be'"
Aa=ra,Ab+ay=rb+a

Method II: Method of variation of constants

!

z, =Pc(t),¥c =g
Method III: Diagonalization
r=Tyy =T AT + T 'g
where T AT is a diagonal matrix.

4. Laplace Transforms
4.1 The Laplace transform is defined by

4.2 List of Formulas

f(t) L[f1(s)
1 1
: .
6at Si
cos at SQJFLGQ
sin at 32;#(12
e cos(ut) (‘f\ﬁ
Sln(:ut) (s—A)Q—Hﬂ
“tf(t) LIf](s — a)
tf(t) —L(LIF1()f(t = cuc(t)
( C) e—cs

f () sL[f](s) = f(0)
F(t) s*LUf(s) = sf(0) — f(0)
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e L[f](s)



0,t<c
uc(t):H(t—c):{ 14>

4.3. Write piecewise continuous functions as sums of H(t —c¢), f(t — ¢)H(t — ¢)
4.4. §(t — ¢) and covolutions
4.5. Use of Laplace transforms to solve:

any™ + a1y + o ary +agy = g(t), 4P (0) =y, = 0,..;n — 1

where
g(t) = e cos(bt) or ™ sin(bt) or polynomials
or .
g(t) = di(t)ue,(t),0 < ey < o < ... < ey
j=1
or

g(t) =6(t —c)
5. Fourier Series and Method of Separation of Variables
5.1. Eigenvalue problems

Yy +My=0,0<z<L,y0)=y(L)=0\= (%)Q,y = sin(n%),n =1,2,..

/ nim nmw

Y+ y=0,0<z< L,y/(()) =y (L)=0;\= (T)Q,y = cos(f),n =0,1,2,...

, nm nw . nm
(—L)=y (L);\= (T)Q, Yy =c cos(f)—i—cQ sm(f), n=0,1,

I

Yy 4+ y=0—L <z <Ly(—L)=y(L),y

5.2. Fourier Series
Let f be a function of 2L periodic, i.e., f(z +2L) = f(x). Its Fourier Series is

ap = nm . nm
f(z) 5 +nz::1(an cos( 7 x) + by, sin( 7 x))
where .
nm
== — =0,1,2, ...
an L[Lf(x)cos( 7 x)dx,n=0,1,2,
1 L
b, = Z/_L f(z) sin(%x)dx,n =1,2,..



Convergence Formula:

?0 z:: ay, cos( —az )+ bn sm(fa:)) ~(f(z=) + f(z+))

5.3. Fourier Sine Series
Let f be an odd function of 2L periodic, i.e. f(z) = —f(—z), f(x +2L) = f(z). Its Fourier

Sine Series is -
z)~ Y by, sin(@x
n=1 L
where
by, L/ ) sin —a:)dm n=12.
5.4. Fourier Cosine Series
Let f be an even function of 2L periodic, i.e. f(z) = f(—x), f(x +2L) = f(x). Its Fourier
Sine Series is -
% + nz::l an cos(n—Lﬂx)
where
an, L/ ) sin —x)dx n=0,1,2,..

5.5. Even or Odd Extension
Let f(z) be defined in [0, L). We can extend it to an even 2L-periodic function, or an odd
2 L-periodic function as follows

feven(x) = { ;Ei{;?’ ELJ:<<;7< O feven(x + 2L> = feven(x);

foda(z) = { ]i(;f()’_(;ff;f; <0 foda(x +2L) = foqa(2)

5.6. Method of Separation of Variables applied to Heat Equation
5.6.1. The solution to heat equation with Dirichlet boundary condition

Up = kg, 0 < x < L,t >0,
u(0,t) = 0,u(L,t) =0
u(z,0) = f(x)



is -
g sm( )y an L/ ) sin( )dx n=1,2.

5.6.2. The solution to heat equation with Neumann boundary condition

Uy = kg, 0 < x < L,t >0,
uz(0,t) = 0,u,(L,t) =0
u(z,0) = f(z)

is

'n.Tr

- + Z ane R cos( an, L/ ) cos —x)dm n=0,1,..
5.6.3. The solution to heat equation with periodic boundary condition

U = oz2um, —L<x<L,t>0,
( ) ) u( )aua:(_L’t) = ux(Lvt)
u(z,0) = f(z)

1s
t) = % Z e FCE (q,, cos(%x) + by sin(%x),

an L/ ) cos( )dx, n=20,1,...,b, L/ sin( —x Ydz,n =1,.
5.6.4. The solution to

U = kg, + f(2),0 <z < L,t >0,
u(0,t) = Th,u(L,t) =T
u(z,0) = f(z)

is

u(x, ) + Z ane T sm(%x)

where u? satisfies the steady-state: kul, + f(z) = 0,u°(0) = Ty, u’(L) = Ty. When f = 0, we
have

T
WO(z) =T + —=>— L z, ap L/ Sm(%x)dm‘ n=1,2,.

5.6. Method of Separation of Variables applied to Wave Equation
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5.6.1. The solution to
Uy = AUy, 0 < 2 < L, > 0,
u(0,t) = 0,u(L,t) =0
u(z,0) = f(z), w(z,0) = g(x)
is
> nm
Z a, cos( —ct + b, sm(fct

))sin(a)

L
ay, = i/o f(z) sin(fx)dx,bnfc = i/o f(x) sin(%x)dx,n =12, ..,
5.6.2. The solution to
Uy = CPlUgy,0 < x < Lt >0,
uz(0,t) = 0,u, (L, t) =0
U<J],0) = f(.T),Ut(l’,O) = g(ZE)

is

bot &
u(z,t) = %o+ o +) (a, cos(n—ct) + b, 8111(71—025))cos(mr )
2 =t L L
an L/ ) cos —:B)d:v n=0,1,...bg = L/ x)dx, b L/ ) cos( )d:v n=12.

For inhomogeneous boundary conditions, we subtract a steady—state first u = u’(z )—i—v(:ﬁ, t).
5.7. Method of Separation of Variables applied to Laplace Equation
5.7.1. The solution to

{ Upy + Uy =0,0<z<a,0<y<b
u(z,0) =0,u(z,b) =0
u(0,y) = 0,u(a,y) = g(y)
is

n

u(z, Z a,, sinh( ?x) sin( bﬂy)
a,, sinh( —a =3 / )sin(—y)dy,n = 1,.

5.7.2. For the problem

Upy T Uy = 0,0 <2 <a,0<y<b
{ u(x,O) = fl(x)au(xam = f2($)
u(0,y) = 91(y), u(a,y) = ga(y)
we decompose into four problems: each of them having three homogeneous boundary conditions
and one inhomogeneous boundary condition.
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