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MULTI-VORTEX TRAVELING WAVES FOR THE
GROSS-PITAEVSKII EQUATION AND THE ADLER-MOSER
POLYNOMIALS*

YONG LIUT AND JUNCHENG WET!

Abstract. For each positive integer n < 34, we construct traveling waves with small speed for
the Gross-Pitaevskii equation, by gluing n(n+1)/2 pairs of degree £1 vortice of the Ginzburg-Landau
equation. The location of these vortice is symmetric in the plane and determined by the roots of
a special class of Adler-Moser polynomials, which are originated from the study of Calogero-Moser
system and rational solutions of the KdV equation. The construction still works for n > 34, under
the additional assumption that the corresponding Adler-Moser polynomials have no repeated roots.
It is expected that this assumption holds for any n € N.

Key words. Gross-Pitaevskii equation, Ginzburg-Landau equation, Adler-Moser polynomial

AMS subject classifications. 35B08, 35Q40, 37K35

1. Introduction and statement of the main results. The Gross-Pitaevskii
(GP for short) equation arises as a model equation in Bose-Einstein condensate as
well as various other related physical contexts. It has the form

(1.1) i0,® = AD + @ (1 - |<I>|2), in R? x (0, +00),

where ® is complex valued and i represents the imaginary unit. For traveling wave
solutions of the form U (z,y — et), the GP equation becomes

(1.2) —ied,U = AU+ U (1 - |U|2) , in R,

In this paper, we would like to construct multi-vortex type solutions of (1.2) when the
speed ¢ is close to zero. Note that when the parameter € = 0, equation (1.2) reduces
to the well-known Ginzburg-Landau equation:

(1.3) AU+ U (1 - \U|2) —0, in R2.

Let us use (r,0) to denote the polar coordinate of R?. For each d € Z\ {0}, it is
known that the Ginzburg-Landau equation (1.3) has a degree d vortex solution, of
the form Sy (r) €', The function Sy is real valued and vanishes exactly at r = 0. It
satisfies

1 d?
-5 - ;S(’i + T—QSd =54(1—83), in (0,+00).

This equation has a unique solution Sy satistying Sg (0) = 0 and S4 (+00) = 1 and
S’ (r) > 0. See [22, 27] for a proof. The “standard” degree +1 solutions S (r) e*?
are global minimizers of the Ginzburg-Landau energy functional(For uniqueness of the
global minimizer, see [37, 45]). When |d| > 1, these standard vortice are unstable([36,
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2 Y. LIU, J. WEI

31]). It is also worth mentioning that for |d| > 1, the uniqueness of degree d vortex
S4(r) e in the class of solutions with degree d is still an open problem. We refer
to [7, 43, 44] and the references therein for more discussion on the Ginzburg-Landau
equation.
Obviously the constant 1 is a solution to the equation (1.2). We are interested in
those solutions U with
U(z) = 1, as |z| = +oo.

The existence or nonexistence of solutions to (1.2) with this asymptotic behavior
has been extensively studied in the literature. Jones, Putterman, Roberts([28, 29])
studied it from the physical point of view, both in dimension two and three. It turns
out that the existence of solutions is related to the traveling speed . When ¢ > V2
(the sound speed in this context), nonexistence of traveling wave with finite energy
is proved by Gravejat in [24, 25]. On the other hand, for € € (0,/2), the existence
of traveling waves as constrained minimizer is studied by Bethuel, Gravejat, Saut
[10, 12], by variational arguments. For ¢ close to 0, these solutions have two vortice.
The existence issue in higher dimension is studied in [11, 15, 16]. We also refer to
[9] for a review on this subject. Recently, Chiron-Scheid [14] performed numerical
simulation on this equation. We also mention that as e tends to v/2, a suitable
rescaled traveling waves will converge to solutions of the KP-I equation([8]), which
is a classical integrable system. In a forthcoming paper, we will construct transonic
traveling waves based on the lump solution of the KP-I equation.

Another motivation for studying (1.2) arises in the study of super-fluid passing
an obstacle. Equation (1.2) is the limiting equation in the search of vortex nucleation
solution. We refer to the recent paper [33] for references and detailed discussion.

To simplify notations, we write the degree 1 vortex solutions of the Ginzburg-
Landau equation (1.3) as

vy = €S (r), v =e S (r).

In this paper, we construct new traveling waves for ¢ close to 0, using v, ,v_ as basic
blocks. Our main result is

THEOREM 1.1. For each n < 34, there exists eg > 0, such that for all € € (0,¢9),
the equation (1.2) has a solution U, which has the form

n(n+1)/2

Ue = H (s (z=e"pr) v (z+e " pi)) +0(1),
k=1

where pg, k= 1,...,n(n+ 1) /2 are the roots of the Adler-Moser polynomial A,, defined
in the next section, and o (1) is a term converging to zero as e — 0.

Remark 1.2. The case n = 1 corresponds to the two-vortex solutions constructed
by variational method ([12]) as well as reduction method ([32]). For large n, U,
are higher energy solutions which have been observed numerically in [14]. It is also
possible to construct families of traveling wave solutions using higher degree vortice
of the Ginzburg-Landau equation under suitable nondegeneracy assumption of these
vortice.

Remark 1.3. For general n, the theorem remains true under the additional as-
sumption that A, has no repeated roots. The condition n < 34 is only technical. In
this case, we can verify, using computer software, that the Adler-Moser polynomial
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MULTI-VORTEX TRAVELING WAVES 3

A, has no repeated roots. We also know that if A,,_; and A,, have no common roots,
then A, has no repeated roots. On a usual personal laptop, it takes around 5 hours
to compute the common factors of A3z and Az, using Maple. It is possible to develop
faster algorithms to verify this for large n(for instance, using the recursive identity
(2.5) to compute the Adler-Moser polynomials, instead of computing the Wronskian
(2) directly), but we will not pursue this here. We conjecture that the special Adler-
Moser polynomial A, (as constructed in this paper) has only simple roots for all n.

Remark 1.4. If A,, has repeated roots(For instance, suppose p is a root of multi-
plicity j > 1, and other roots are simple), to do the construction, we then have to put
a degree j vortex at the point e~ 'p. However, we still don’t know the nondegeneracy
of higher degree vortice(although they are believed to be nondegenerated). Hence in
this paper we need the assumption that A,, has no repeated roots.

Our method is based on finite dimensional Lyapunov-Schmidt reduction. We
show that the existence of multi-vortex solutions is essentially reduced to the study of
the nondegeneracy of a symmetric vortex-configuration. To show this nondegeneracy,
we use the theory of Adler-Moser polynomials and the Darboux transformation. An
interesting feature of the solutions in Theorem 1.1 is that the vortex location has a
ring-shaped structure for large n, see Figure 1. The emergence of this remarkable
property still remains mysterious.

In Section 2, we introduce the Adler-Moser polynomials and prove the nondegen-
eracy of the symmetric configuration. In Section 3, we recall the linear theory of the
degree one vortex of the Ginzburg-Landau equation. In Section 4, we use Lyapunov-
Schmidt reduction to glue the standard degree one vortice together and get a traveling
wave solution for sufficiently small € > 0.

Acknowledgement Y. Liu is partially supported by “The Fundamental Re-
search Funds for the Central Universities WK3470000014,” and NSFC grant 11971026.
J. Wei is partially supported by NSERC of Canada. Part of this work is finished while
the first author is visiting the University of British Columbia in 2017. He thanks the
institute for the financial support. Both authors thank Professor Fanghua Lin for
stimulating discussions and suggestions.

2. Vortex location and the Adler-Moser polynomials. Adler-Moser[1] has
studied a set of polynomials corresponding to rational solutions of the KdV equa-
tion. Around the same time, it is found that these polynomials are related to the
Calogero-Moser system [2]. It turns out that the Adler-Moser polynomials also have
deep connections to the vortex dynamics with logarithmic interaction energy. This
connection is first observed in [6], and later studied in [3, 4, 5, 17, 30]. It is worth
pointing out that Vortex configuration for more general systems have been studied
in [21, 34, 38, 39, 40] using polynomial method and from integrable system point of
view. On the other hand, periodic vortex patterns have been investigated in [26]. See
also the references cited in the above mentioned papers. While the above mentioned
results mainly focus on the generating polynomials of those point vortice, we haven’t
seen much work on the application of these results to a PDE problem, such as GP
equation. One of our aims in this paper is to fill this gap. In this section, we will first
recall some basic facts of these polynomials and then analyze some of their properties,
which will be used in our construction of the traveling wave for the GP equation.

Let p1, ..., pi designate the position of the positive vortice and ¢y, ..., ¢, be that
of the negative ones. In general, p; and g; are complex numbers. Let ;1 € R be a
fixed parameter. As we will see later, the vortex location of the traveling waves will

This manuscript is for review purposes only.
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4 Y. LIU, J. WEI

be determined by the following system of equations

LSyl fora=1,..k
2.1) (T e S P

. 1 L B
j;a pra— *%:qa_pj =—pu, fora=1,..,m.

Adding all these equation together, we find that if p # 0, then m = k(In the case of
w = 0, this is no longer true). That is, the number of positive vortice has to equal that
of the negative vortice. Solutions of this system(see for instances [5]) are related to the
Adler-Moser polynomials. To explain this, let us define the generating polynomials

P =][G-r), Q@) =][(z-a).

J J
If pj, g; satisfy (2.1), then we have(see equation (68) of [5], or equation (3.8) of [17])

(2.2) P'Q—2P'Q + PQ" = —2u(P'Q — PQ').

This equation is usually called generalized Tkachenko equation. Setting ¢ (2) = gel‘z,

we derive from (2.2) that

W4 2(InQ)" b = 2.
This is a one dimensional Schrodinger equation with the potential 2 (In Q)". It is
well known that this equation appears in the Lax pair of the KdV equation. Hence
equation (2.2) is naturally related to the theory of integrable systems.

For any z € C, we use Z to denote its complex conjugate. To simplify the notation,
we also write —Z as z*. Note that this is just the reflection of z across the y axis. Let
K = (ko,...), where k; are complex parameters. Following [17], we define functions
0., depending on K, by

too © 7.325—1
Zﬁn(z;K)/\”zeXp ZA — L
. 27 —1
n=0 j=2

Note that 6, is a degree n polynomial in z and 6], ; = 6,,. Let ¢, = Hl (25+1)
=

n—j )
For each n € N, the Adler-Moser polynomials are then defined by
O, (2, K) := ¢, W (01,03, ...,00,_1),

where W (61,03, ...,02,—1) is the Wronskian of 61, ..., 02, 1. In particular, the degree
of O, is n(n+ 1) /2. The constant ¢, is chosen such that the leading coefficient of
©,, is 1. Note that this definition is slightly different from that of Adler-Moser[1](The
parameter 7; in that paper is different from k; here). We observe that for a given p,
0,, depends on n—1 complex parameters ks, ..., k. This together with the translation
in z give us a total of n complex parameters.

Let p be another parameter, the modified Adler-Moser polynomial O is defined
by

0, (z,p, K) := c,e ™ "*W (61,03, ..., 00,1, "%).

It is still a polynomial in z with degree n (n + 1) /2.

Let K = (ko + p =3, ks + =5, ..., ky, + p~21) . The following result, pointed out
without proof in [17], will play an important role in our later analysis.
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MULTI-VORTEX TRAVELING WAVES 5

LEMMA 2.1. The Adler-Moser and modified Adler-Moser polynomials are related
by
O, (2,1, K) = u"0,, (z — ;fl,K') .

Proof. We sketch the proof for completeness. First of all, direction computation
shows that

+oo
N 0, (2 K) A" = H“_iiZe (z— -1, )A
n=0

From this we obtain

+oo 1
pl Zoen,l (2, K) A" = H “_1; Ze ( ) A"

Hence using the fact that 0/, = 6,1, we get

—+oo

. -1 . _ a7 n
;(enu,m W (2 K) b, (2 ,K)))\

We observe that

1 —1) 1 —1)\

Ll—l—/fA +M — V1221
1—p=tA 1-—

The Taylor expansion of this function contains only even powers of A\. Hence for odd

n, On (2, K) — =10, (2, K) — 0, (z —u Y K’) can be written as a linear combination
of 6y, (z —puh f() with k being odd. The desired identity then follows. ]

The next result, which essentially follows from Crum type theorem, reveals the
relation of the Adler-Moser polynomial with the vortex dynamics([5], see also Theorem
3.3 in [17]).

LEMMA 2.2. The functions Q = 0, (z,K),P = 6., (z, 1, K) satisfy (2.2).

By definition, 6,, is a polynomial in z. A general degree m term in this polynomial
has the form k2 - - k;J 2™, We define the index of this term to be (—1)2" ™ e
now prove the following

LEMMA 2.3. For each term of 02y,41, its index is —1.

Proof. Let kéz S k:;" z™ be a degree m term in 63,.1. By Taylor expansion of
the generating function and using the fact that 2n + 1 is odd, this term comes from

functions of the form,
(03

where « is an odd integer. Hence Iy +...+1; = a—m. Then the index is (—1)* = —1.0
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6 Y. LIU, J. WEI

n(n+1)
2

LEMMA 2.4. For each term of ©,, its index is equal to (—1)

Proof. Let us consider a typical term of ©,,, say 9105,...952:?, where the notation

(n — 1) represents taking n— 1-th derivatives. By Lemma 2.3, terms in 9,(5 ) have index
. -~ n(n+1)

(=1)"*7 . Hence the index of terms in 9195...%2_? is (—1)' T2 F = (—1)" 2 This

finishes the proof. ]
Let t be another parameter, we introduce the notation
Ont (2, K):=0,(z—-tK).
For any polynomial ¢ (with argument z), we use R (¢) to denote the set of roots of
¢. We have the following
LEMMA 2.5. Suppose i is a real number. Assume t = —% and k; = —%,qu_l for

2
j=2,.... Then

n(n+1)
g 712 +1

(Ont (2, K))" = (-

As a consequence, in this case, the reflection of R (O, (2, K)) across the y axis is

R ((:)nt (z, pt K)) , and R (0, (2, K)) is invariant respect to the reflection across
the x axis.

Proof. By Lemma 2.4, for each term f = kil ce k;] (2 —t)™ of the function

Ot (2, K), there is a corresponding term k! k:;J (2" —t—p)"inO,, (", 0 1K),
denoted by g. Due to the choice of k;, we have

én,t (z*,/fl,K) .

n(n+1)

By Lemma 2.4, the index of k% - - - k;-jzm is (—1)" 2 . Hence using the fact that p
is real, we get

Fr=—k ek (2 ="

= ()T R ()"
n(n+1)
= (-1 g
This completes the proof. 0

In the sequel, for simplicity, we shall choose y =1 andt = k; = —%. Let us denote
the corresponding polynomial ©,, ; (z, K) by A, (z). Then A, (z) is a polynomial with
real coefficients. In particular, the roots of A, (z) is symmetric with respect to the z

axis. Then from Lemma 2.5, we infer that the polynomial ©,, ; (z,p7', K) and A, (—z)

have the same roots. Hence in view of their leading coefficients, ©,,; (2, p1, K) is
equal to (—1)""+1)/24, (—z), which we denote by B, (z) . We observe that since A,,
is a polynomial with real coefficients, automatically we have —(A,(z*))* = A,(—2).
See Figure 1 for the location of the roots of Ass.

Since our traveling wave solutions will roughly speaking have vortice at the roots
of A,, it is natural to ask that whether all the roots of A,, are simple. This question

seems to be nontrivial. Following similar ideas as that of [13], we have

LEMMA 2.6. Let P(2),Q (2) be two polynomials satisfying
(2.3) P'Q - 2P'Q' + PQ" = —2u(P'Q - PQ),

This manuscript is for review purposes only.
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F1G. 1. Roots of Ass

- w|
.
or
24) P'Q - 2P'Q' + PQ" =0.

Suppose P (§) =0 and Q (&) # 0 at a point £&. Then £ is a simple root of P.

Proof. We prove the lemma assuming (2.3). The case of (2.4) is similar.
Suppose ¢ is root of P with multiplicity £ > 2. We have

P'Q=2P'Q' - PQ" —2u(P'Q - PQ).
Then ¢ is a root of the right hand side polynomial with multiplicity at least k — 1.

But its multiplicity in P”Q is k — 2. This is a contradiction. d

LEMMA 2.7. Suppose P (z),Q (z) are two polynomials satisfying (2.3) or (2.4).
Let € be a common root of P and Q. Assume & is a simple root of Q. Then & can not
be a simple root of P.

Proof. We prove this lemma assuming (2.4) . The case of (2.3) is similar.
Assume to the contrary that ¢ is a simple root of P. Then

2P (§) Q" (&) # 0.

But this contradicts with the equation (2.4). This finishes the proof. |

LEMMA 2.8. Suppose A, and A,_1 have no common roots. Then A, has no
repeated roots. Moreover, A, (z) and A,, (—z) have no common roots.

Proof. We know(See [17], Theorem 3.1) that the sequence of Adler-Moser poly-
nomials satisfy the following recursion relation

(2.5) AlA,_y — 24l AL+ AA =0

By Lemma 2.6, any root of A, is a simple root. Similarly, any root of A, (—z) is a
simple root.

This manuscript is for review purposes only.
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Now suppose to the contrary that £ is a common root of A, (z) and A4, (—z2).
Note that(—1)""+1)/24, (~2) = B,(z). We have

A"B, — 24" B! + A,B = —2u (A B, — A,B.).

Then by Lemma 2.7, either £ is a repeated root of A, (z), or it is a repeated root of
Ay, (—%). This is a contradiction. O

2.1. Linearization of the symmetric configuration. Our construction of
traveling wave solutions requires that the vortex configuration we found is nondegen-
erated in the symmetric setting(in the sense of Lemma 2.5). For small number of
vortice, the nondegeneracy can be proved directly. To explain this, we now consider
the case of n = 2. Let p1, p2, p3 be the three roots of the Adler-Moser polynomial As.
Here p; is the real root and p3 = p2. Note that py, po, p3 lie on the vertices of a regular
triangle. Let ¢; = p;. For z; € R, 25 € C, we define the force map

A ) 1 n 1 1 1 1

21,29) 1= R — —

List =2 z1—22 21—Z2 221 2tz 21—z
1 1 1 1 1

F: = _ _ = _ )

2 (21, 22) 29 — 21 + 29— 22 zo+2z1 220 29— 2%

We have in mind that z; represents the vortex on the real axis and z5 represents the
one lying in the second quadrant. Note that by symmetry, F} (21, 22) € R. The name
“force map” comes from the fact that if z;1 = p1, 20 = po, then

Fl(zl7z2) = 13F2(21722) == 1,

which reduces to the equation (2.1).
Writing z1 = a1, 29 = ag + bai, where a;,b; € R, we can define

F (al, as, b2) = (Fl, Re F27 ImFQ) .
The configuration (p1,p2,P3,q1,qe, ¢3) is called nondegenerated, if
det DF (p1, Rep2, Impy) # 0.

Numerical computation shows that det DF (p1, Repa, Imps) # 0. Hence it is nonde-
generated. It turns out for n large, this procedure is very tedious and we have to find
other ways to overcome this difficulty.
In the general case, let p = (p1, ..., Pu(nt1)/2) >4 = (q1: - Gn(nt1)/2) - Define the
map F':
(pv CI) - (Fh o0y Fn(n+1)/2a le ey Gn(n+1)/2) ’

where

ReY Y

#kpk—;ﬂg k_q
=20 Y
#k%*% qr — P

Let a= (al, e an(n+1)/2), where a; are the roots of A,,. Set b = — (&1, e &n(n+1)/2) .
Moreover, we assume that there exists ig such that for j =1, ..., i,

Q251 = G2y,
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while for j = 2ip+1,...,n(n+1) /2, Ima; = 0. We consider the linearization of F at
(p,q) = (a,b) . Denote it by DF|(, ). It is a map from C("+1) to Cn(n+D),

The map DF|, ;) always has kernel. Indeed, for any parameter K = (ka, ..., k,),
O, (2, K) and O, (z, K) satisfy

06, — 206" +0,0" = —2 (@;én - ené;) .

Differentiating this equation with respect to the parameters ¢, k;, j = 2,...,n — 1, we
get correspondingly n linearly independent elements of the kernel. Denote them by

(2.6) W1,y weey W

Let g = (fla ---75n(n+1)/2) € Cn(n+1)/2a n= (771,"'7nn(n+1)/2) € (Cn(n+1)/2' The
pair (&,n), with n = £*, is called symmetric if for j = 1, ..., 4o,

€aj—1 = &y,

while for j = 2ig+1,...,n(n+1) /2, Im¢; = 0.
The main result of this section is the nondegeneracy of the vortex configuration
given by A, :

PROPOSITION 2.9. Suppose DF|qp) (§,m) = 0 and (§,n) is symmetric. Then
§=n=0.
The rest of this section will be devoted to the proof of this result.

2.2. Darboux transformation and nondegeneracy of the symmetric con-
figuration. Before going to the details of the proof of Proposition 2.9, let us explain
the main idea of the proof. We would like to investigate the relation between the n-th
and (n — 1)-th Adler-Moser polynomials A,,, A,_1. This will enable us to transform
elements of the kernel of DF for A,, to that of A,,_1, and finally to that of Ay, which
is much easier to be handled.

We first recall the following classical result on Darboux transformation([35], The-
orem 2.1).

THEOREM 2.10. Let A\, A1 be two constants. Suppose

—U" 4wl = \T,
—\Illl/ + U\Ill = /\1\111.

Then the function ® := W (U, V) /U, satisfies

—®" +ad = \P,

where @ :=u — 2 (In¥;)"

The function @ is called the Darboux transformation of W. Since later on we
need a linearized version of this result, we sketch its proof below. For more detailed
computation, we refer to Sec. 2.1 of [35].

This manuscript is for review purposes only.



10 Y. LIU, J. WEI

Proof. We compute

"o T N 4
—0 b AP = — (W - W) (@A) (V- 2
1

= (0" + (u=N) D) + (a—u+2<§2>/> v

I " o/
+ (u'Jr (\Ifi) + \171 (uﬂ)) v,

For later applications, we write this equation as

—®" 44D — AP = (—U" + (u— )T

U —uly + A0\
(2.7) +< L “1+11)\p.
vy
The theorem follows directly from this identity. ]

Let ¢,, = AX“ and ¥, (z) = %e“z, where p = 1. Note that v, has the Wronskian

representation:
. w (91, ceey 927171, 6“2)

Un =y (01, e 02n—1)
An application of the repeated Dauboux transformation tells us that(See [17])
(2.8) U +2(InA)" Yy = 1P
Moreover, the Darboux transformation between 1, and ,41 is given by
W n»y n
(2.9) s = 2]

As we mentioned before, our main idea is to transform the kernel of DF' at
(A, By) to (Ao, By) . To do this, we need the following identities. The first one is the
equation (2.9), which connects ¢; to v;41, hence connect B; to Bjii. The second
one is the recursive identity (2.5) between A; and A :

(210) A;-/Aj_;,_l — 2A;A;+1 + AjA;I+1 - O

This equation can also be written in terms of ¢; as
¢ +2(InA;)" ¢;=0.

Note that this is an equation has the form appeared in Theorem 2.9. The third one
is the relation between A; and Bj :

(2.11) AYBj —2A3B] + A; B} + 2 (A} B; — A;B}) = 0.

This equation implies (2.8). In certain sense, the linearization of equation (2.11)
corresponds to the kernel of DF. As we will see later on, the linearized version of
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MULTI-VORTEX TRAVELING WAVES 11

these three identities together with (2.7) will enable us to transform the kernel of DF
at the j-th step to j — 1-th step.

To proceed, we would like to analyze the linearized equations of (2.9), (2.10) and
(2.11) . First of all, linearizing the equation (2.11) at (A;, B;), we obtain the following
equation(;,n; are the infinitesimal variations of A;, B;):

&/ Bj = 26,B; + & B} +2u (§;B; — & B))
+ Ay — 2400, + Agnll + 20 (Am; — Agn))
(2.12) =0.

Next we need to connect (&;41,7;+1) to (§;,7;). Linearizing the equation (2.10)
at (A;, Aj+1), we obtain
(2.13) §lAj1 — 2640 + AT+ A0 — 2406 + Ayl = 0.

J

It will be more convenient to introduce a new function

(2.14) fi = (j)

The equation (2.13) then becomes

Az a2\
fi+ IDAQJ fi+fiza+(In jlg Ji+1=0.
J

Jj+1

Given function f;41, “formally” we can solve this equation and get a solution

A2, (7 A2 A2\
fj(z):_ Jj+ / J (ff+1+<1n” fiv1 | ds
& )y a \ e

A2, (7 A2
(2.15) = fj41 — 222 / L fl,1ds.
J Az ). A3

The last equality follows from integrating by parts for the second term. Here a, ¢ are
two numbers and we intentionally haven’t specified the integration paths, because the
integrands may have singularities, depending on the form of the function fj41.

Linearizing the equation (2.9) yields the equation(with o; being the infinitesimal
variation of ¢;):

&1 _@-)’_

gje1 = —0j (Ing;) +0f — (A-H A,
J J

Inserting (2.14) into this equation, we get

o —0j (Ing;) = (fiz1 — i) 5 + 0j41-

For given functions f;, fj+1,0;, we can solve this equation and get a solution

(2.16) oj(z) = ¢j/ (5 (fix1 — fj) + 0j41) &5 'ds.
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Note that the infinitesimal variation o; should be related to £; and 7;. Indeed,
linearizing the relation 1; = %e“z, we get
J

- B &5 nj

(2.17) oje ' = A2 + A,

With all these preparations, we are now ready to prove the following

PROPOSITION 2.11. For any n, the elements of the kernel of the map DF |, are
given by linear combinations of wj,j =1,...,n, defined in (2.6).

Proof. Suppose we have an element of the kernel of the map DF|, ), with the
form

(T15 e Ta(nt1) /25 01 -y On(nt1)/2) -
Consider the generating functions [ (z — a; — p7;) and [ (2 — b; — pd;) , where p is
J J

a small parameter. Differentiating these two functions with respect to p at p = 0, we
get two polynomials &,, 7, with degree less than n (n + 1) /2, satisfying

fZBn - 2€l B, n Tt an” + 2 (f;an - an;z)
+ Annn — 2A’ Wi+ Aniy + 20 (AL, — Anigy,)
(2.18) =0.

!/
Consider the function f,, = (f‘" ) . It is a rational function with possible poles

at the roots of A,,. Using (2.15), for each j < n — 1, we can define functions

+1
(2.19) fi=Ffiv1— J / Agj fiiads.
Here c is to be determined later on. With this definition, we see that f; has possible
poles at the roots of Aj, A 1,..., A,. In particular,

1\2 = f!
(2.20) fO:f1—2<Z+2> /C (S-l-iléfds

We remark that as a complex valued function with poles, at this stage, f; may be
multiple-valued.

On the other hand, we can define o,, through
né.n

—pz _ I
one A2 —|— An

and then define ¢;, j < n—1, in terms of relat1on (2.16). Finally, we define n;,j < n—1,
using (2.17) . We recall that P = Al =z + 3 and ¢y = e"*. Hence

(2.21) o0 = (z + ;) /CZ s—|1— I (" (fr — fo) +o1)ds.

Since equation (2.12) holds for &,,n,(see equation (2.18)), then by linearizing
the identity (2.7) (with ¥y being ¢;, ¥ being 1);), we find that (2.12) also holds for
j <n — 1. Therefore, using Ag = By = 1, we get

(2.22) 0 2080 + 15 — 2unp = 0.
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That is, (£ 4+ 10) +2u (€9 — 7o) is locally a constant, say C. By (2.17) , 59 = ope ** +
&o. It follows that

(2.23) (d0e™* +26)) — 2p (d9e™*) = C.
Recall that fy = &). Thus by (2.21),
(2.24)
1 1
fo+ fi+o1e " + (1 — 3 (z+ 2)) e—f“/ T (@ (= fo) o) ds = C.
c 2

Our next aim is to show that f; has no singularity except the root of Aj, that is,

N|—=

Assume to the contrary that dy # —% is a singularity of f;. Let ¢ be a number
close to dy. Note that dy has to be a root of some Aj. Integrating by parts in (2.19)
yields

2

Az = oAz ) A2
(2.25) fi=—=fi+i+2 Xgl/ (AQJ ) Jiids + 1=
] C

Jj+1 J

for some constant c;y.

We first consider the case that A; has no repeated roots for any j < n. Actually
numerical computation tells us that this holds if n = 34.

Since &,, f, are polynomials with degree less than n (n — 1) /2, by (2.19), we can
assume that the main order(non-analytic part) of f; around the singularity dy has
the form

Bi (2 —do) ™" + B2 (2 — do) 7> + B3 (2 — do)* In (2 — do) ,

where at least one of the constants 3; is nonzero.

Let us first consider the case that (o is nonzero and dy is not a root of A,.

By (2.20), around dy, at the main order, fo has the form —fs (z — do) > . From
(2.16) , we deduce that

- AQ z Al Ble“S

Since oy has no (z —do) > term and fo ~ —fS5 (z — dg)*, we infer from (2.26) that
the main order term of o is 2=128,¢% (2 — dg) ™" . Inserting this into (2.24) and

2do+1
applying (2.25), we find that the (z — do)” " order terms in (2.24) satisfy
(2.27)
4 S1, 2dp—1 o 1-3(do+3 -
/BQ(Z_dO) 1+07252(Z—d0) 1—M252(2—d0) ! = 0.

do + 3 2dp + 1 do+ %

This equation has no solution and we thus get a contradiction. Hence Sy = 0. Sim-
ilarly, we have 57 = B3 = 0. Thus we know that f; has no singularity other other
1

-1
Now we choose the base point ¢ to be —co. We would like to show that fy = 0.
Using the recursive relation and the fact that f; has no singularities other than —%,

we deduce that f; is actually single valued and f; = alz-‘,-% + ag—t Recall that
2

eyl

o1 = 1 / 671 (W (fo — f1) — o) ds.
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Putting this into (2.24), we find that a; = 0. This implies that fo = 0 and o¢ = 0.
Once this is proved, we can show that &,,n, actually come from the differentiation
with respect to the parameters ¢t and k;,j = 2,...,n.

Next we consider the general case that A; has repeated roots for some j < n.(We
conjecture that this case does no happen).

Let d # —% be a repeated root of some A;, j < n, with highest multiplicity r.
We still would like to show that dy # d. Assume to the contrary that dy = d. Then
around dp, by (2.19), the main order terms of the function f; has the form

Br(z—do) "+ B2 (2 —do) 2+ .. (2 — do) ™2 + Barsr (2 — do)*In (2 — do) .

Then same arguments above tell us that all the 8; are zero, which is a contradiction.
Hence the only pole of f; is —% and the claim of the proposition follows. 0

Let K = (—%, —%, ) . We also need the following uniqueness result about the
symmetric configuration.

LEMMA 2.12. Suppose K is an n—1 dimensional vector and 'K - K‘ +t+% <0
for some small § > 0, with K % K. Then

o, (—z - t,f() £ (—1)rth2 g (z - t,f() .
Proof. We prove this statement using induction argument. This is true for n = 1.
Assume it is true for n = j, we shall prove that it is also true for n = j + 1.
Suppose to the contrary that
6j+1 (72’ - t,f{) = (71)(j+1)(j+2)/2 éj+1 (Z - t,f() .
We know that
) (z—t,f() 0; (z—t,f() —-20), (z—t,f() Cf (z—t,f()
+ 041 (z - t,f() CH (z — t,f{) =0.
Replacing z by —z, we get
~;-'+1 (z - t,k) 0, (—z - t,k) - 2(:);-Jrl (z - t,f() Cf (—z - t,f()
(228)  +0,. (z —4, K) o (—z 4, K) —0.
On the other hand,
Sy (z—t,f() 0, (z—t,f() — 20/, <z—t,f(> o (zft,f()
+0j (z — t,f() cH (z — t,f() =0.
This together with (2.28) imply that
@j (—Z — t,f() = (_1)j(j+1)/2 éj (Z — t,K) .

1
-3,

follows that the last component of K is also f%. This is a contradiction. 0

Hence by assumption ¢t = and the first j — 1 components of K is —%. It then
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Now we can prove Proposition 2.9. By Proposition 2.11, elements of the kernel of
the map DF|(, ;) is given by linear combination of wj, j = 1,...,n. But on the other
hand, for p = 1, we know from Lemma 2.12 that ¢t = ,%ij = f%,j =1,...,n—1,1is
the only set of parameters for which ©,, and ©,, give arise to symmetric configuration.
Hence the configuration determined by A, and B,, is nondegenerated. We remark that
by the same method, it is also possible to show that the balancing configuration given
by other Adler-Moser polynomials are also nondegenerated.

3. Preliminaries on the Ginzburg-Landau equation. In this section, we
recall some results on the Ginzburg-Landau equation. Most of the materials in this
section can be found in the book [43](possibly with different notations though).

Stationary solutions of the GP equation (1.1) solve the following Ginzburg-Landau
equation

(3.1) —A<I>:<I>(1— \<I>|2) in R?,

where @ is a complex valued function. We have mentioned in the first section that
equation (3.1) has degree +d vortice of the form S () e, It is also known that as
r — +00,

d2
o

On the other hand, as » — 0, there is a constant kK = kg > 0 such that

(3.2) Sa(r)=1 +0(r ).

(3.3) Sq(r) = &r (1 - g +0 (r4)> .

See [22] for detailed proof of these facts.

In the case of d = +1, the solution will be denoted by vy, and S; will simply be
written as S. The linearized operator of the Ginzburg-Landau equation around v,
will be denoted by L :

(3.4) n— An+ (1 - |v+l2) n —2v4 Re (nvy).
It turns out to be more convenient to study the operator
Ln:=e "L (ewn) .

If we write the complex function 7 as w1 +iws with wy, wy being real valued functions,
then explicitly

Ln=e A (") + (1 - 5%)n— 25w,

1 2
— 2
= A'LUl + (1 - 35 ) w1 — ﬁﬂ)l — ﬁ@QU)Q

1 2
+1 (A’LUQ + (1 - 52) W2 — —5 W2 + 289101) .
T r

Invariance of the equation (3.1) under rotation and translation gives us three linearly
independent elements of the kernel of the operator L, called Jacobi fields. Rotational
invariance yields the solution

(3.5) 0 = je Py, =i,

This manuscript is for review purposes only.
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while the translational invariance along = and y directions leads to the solutions

S
Ot = S cosf — =sind,
r

o 1= 9 sinf+ S cos 6.
r

Note that these elements of the kernel are bounded but decay slowly at infinity,
hence not in L? (R?). As a consequence, the analysis of the mapping property of £
is quite delicate. An important fact is that vy is nondegenerated in the sense that
all the bounded solutions of £n = 0 are given by linear combinations of ®° and
d+, &~ ([43], Theorem 3.2). Similar results hold for the degree —1 vortex v_. It is also
worth mentioning that the nondegeneracy of those higher degree vortice '¥S, (1),
|d| > 1, is still an open problem. Actually this is the main reason that we only deal
with the degree +1 vortice in this paper. One can indeed construct solutions of GP
equation by gluing higher degree vortices under the additional assumption that they
are nondegenerated in suitable sense.

The analysis of the asymptotic behavior of the elements of the kernel of £ near 0
and oo is crucial in understanding the mapping properties of the linearized operator
L. In doing this, the main strategy is to decompose the elements of the kernel into
different Fourier modes. Let us now briefly describe the results in the sequel. Lemma,
3.1, Lemma 3.2 and Lemma 3.3 below can be found in Section 3.3 of [43].

We start the discussion with the lowest Fourier mode, which is the simplest case
and plays an important role in analyzing the mapping property of the linearized
operator.

LEMMA 3.1. Suppose a is a complex valued solution of the equation La = 0,
depending only on .
(I) As v — 0, either |a| blows up at least like r=1, or a can be written as a linear
combination of two linearly independent solutions wy 1, wo 2, with

woq (r)=r (1 +0 (7"2)) ,
w2 (r) = ir (1 + 0 (7"2)) .

(II) Asr — +00, if a is an imaginary valued function, then a = ¢1+colnr+0 (T’Q) ;
if a is real valued, then it either blows up or decays exponentially.

Proof. We sketch the proof for completeness.
If La = 0 and the complex function a depends only on r, then a will satisfy

1 1
3.6 '+ -d — a=S%— (1-25%a.
3.0) Ly 2 (1-25?)
Note that this equation is not complex linear and its solution space is a 4-dimensional
real vector space. The Jacobi field ®° defined by (3.5) is a purely imaginary solution

of (3.6). Writing a = a; + azi, where a; are real valued functions, we get from (3.6)
two decoupled equations:

This manuscript is for review purposes only.
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Observe that due to (3.2), as r — 400,
1-38%2—r 2= —2+O(r_2),
1—52—7’7220(7"74).
The results of this lemma then follow from a perturbation argument. ]

For each integer n > 1, we consider element of the kernel of £ the form a (r) ™ +
b(r) e The complex valued functions a, b will satisfy the following coupled ODE
system in (0, 4+00) :

"oyl (n+1) 27 _ 2
(3.8) {a+ = 5°b (1 2S)a

b+ L — “171 = 8% — (1-25%)b
By analyzing this coupled ODE system, one gets the precise asymptotic behavior of

its solutions. The next lemma deals with the n = 1 case.

LEMMA 3.2. Suppose w = a (r) e +b(r) e~ solves Lw = 0.
(I) As r — 0, either |w| blows up at least like —Inr, or w can be written as a linear
combination of four linearly independent solutions wi ;i = 1,...,4, satisfying: As
r— 0,

wi = r? (1 + 0 (r2)) e +0 (7’6) e
wy o = ir (1 + 0 (7"2)) e +0 r6) e
w3 = (1 —I—O( )) e ¥ —|—O( 4) e'?,
wig=1(14+0 (%)) e +0 (r")e”.

(II) As r — +o0, either |w| is unbounded(blows up exponentially or like r), or |w|
decays to zero(exponentially or like r—1).

For the n > 2 case, we have the following
LEMMA 3.3. Suppose w = a (r)e™® +b(r) e solves Lw = 0.
(I) As v — 0, either |w| blows up at least like T1=™, or w can be written as a linear
combination of four linearly independent solutions wi ;i = 1,...,4, satisfying: As
r—0,
wn,l — Tn+1 (1 + 9] (7”‘2)) ezn@ + O( n+5) efme,
Wno = irn+l (1 4 O (,],,2)) ind + O( n+5) efine7
Wn3 = ,r,n—l (1 +0 (712)) e—zn@ + O( n+3) 61'7197
Wng = irn—l (1 + 19) (7“2>) —inf + 10) (Tn+3) eme.

(II) As r — o0, either |w| is unbounded(blows up exponentially or like ™), or |w|
decays to zero(exponentially or like r—™).

By Lemma 3.3, for n > 3, if Lw = 0 and w is bounded near 0, then decays
at least like % as r — 0, hence decaying faster than the vortex solution itself. For
n < 2, solutions of Lw = 0 bounded near 0 behaves like O (r) or O (1). Note that
Dy, P11, P_; have this property. Let ¥y = kw2,

K
Vi = kwy s+ FULL V_| = Kwi 4 — w12,

8
Uy =w23, ¥ 2 =1wsg4.
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Then they behave like O (r) or O (1) near 0, but blow up as r — +oo.
From the above lemmas, we know that for r large, the imaginary part of the
linearized operator essentially behaves like A, while the real part looks like A — 2.

4. Construction of multi-vortex solutions.

4.1. Approximate solutions and estimate of the error. We would like to
construct traveling wave solutions by gluing together n (n + 1) /2 pairs of degree +1
vortice. Let us simply choose n = 2, the proof of the general case is almost the same,
but notations will be more involved.

For k =1,2,3, Let pg,qr € C. We have in mind that p; are close to roots of the
Adler-Moser polynomial As. We define the translated vortice

up = vy (2 =7 pr) s uzsr = v- (2 — e ) -

We then define the approximate solution

6
u = H Uj.
j=1

Note that as r — +o00, u — 1. Hence the degree of u is 0. Let us denote the function
z — u(z) by 4. The next lemma states that the real part of u is even both in the z
and y variables, while the imaginary part is even in x and odd in y.

LEMMA 4.1. The approximate solution u has the following symmetry:
w(z)=u(2), u(z")=u(z).
Proof. Observe that the standard vortex v, = S (r) e? satisfies
v4 (2) = 04 (2) 04 (27) = (04 (2))"

The opposite(degree —1) vortex v_ has similar properties. Hence using the fact that
the set {p1, p2, ps} is invariant with respect to the reflection across the z axis, we get

3
u(z) = H (o4 (Z—e"pr)v_ (2—e'qn))
k=1
3
=[] (or z—e'mr)v- (z—e'@)) =u(2).
k=1
Moreover, since v_ = v, we have
3
u(z*) = H (vs (25— 'pp) oo (25 — e 'qr))

M
I

|
e

(s (2= =7'a)) (- (2 = =7'p0)")

=~
Il
—

Il
.

(04 (2= 'qp) (0= (2 — e 'pi))) = u(z).

£l
I
-

This finishes the proof. 0
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We use E (u) to denote the error of the approximate solution:
E (u) == €idyu+ Au+u (1 — |u|2) .
We have
Au= A (uy...uq)

:Z AukHuj -‘rz (VukVu]) H u |,
k

J#k k#j I#k,j

where Vuy, - Vu; := 0,ur0uj + 0yur0yu;. On the other hand, writing |uk|2 —1=ps,

we obtain ]
= 1=T[C+m) 1= o+ Qu,
k k k=2

where Qx = >, ;. «..<i (piy -+ pi) - Using the fact that uy solves the Ginzburg-
Landau equation, we get

E(u)=¢ei Z Oy, H u;j
k j#k
6

(4.1) + Z (Vuy - Vuy) H u —uZQk.

k,jk#j I#k,j k=2

We have in mind that the main order terms are dyuy [[ u; and (Vug - Vuy) [] w.
J#k I#k,j
Throughout the paper (r;,6;) will denote the polar coordinate with respect to
the point s_lpj. Note that

- 10

i e i zie'
0, () = =*5-.0, () = =5

Moreover, 0,7 = x/r, Oyr = y/r. Hence we have, for k < 3,

0y

1Y€ T )
Ozup = — Yk s—S (1) + “kgr (1) €%,
L TE
iz et .
Byuk = k2 S (Tk) + %S/ (Tk) etk
Tk Tk

Now we study the projection of the error of the approximate solution on the
kernel of the linearized operator at the approximate solutions. Lyapunov-Schmidt
reduction arguments require that these projections are “small”, in suitable sense(See
Proposition 4.5 below).

In the region where |z — sflpk| < C’kvje’l, with Cy ; =

0] (7""3) , we get

72|pkl_pj|, using S’ (r) =

Vuy - V’u]‘ = 8zuk8:,3uj + 8yuk8yuj

et x;ietli
= 8xuk *yj 3 + 8yUk; J72 + 0 (63) .
T Ty
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667 Note that Im (@,uk(@wuk)) = i—f It follows that for k,j < 3,

668 Re/ e (Vug - Vuy) ((%uk) dxdy
\z—a—lpk|§0k’ja—1
6 [
669 = —Re / Im ( O,ur(0zu +0 (£2
(pk _pj> |z—pr|<Ck, et ( Y k( k)> ( )
!
670 Re( : >/ ﬁJrO(sz)
Pk — Py lz—e=1py|<Ck et Tk

671 = —7mRe <

> +0 (%).

673 In general, for ¢t > 0, we also have

Pk — Dy

674 Re/ e (Vuy - Vuy) (8Iuk) dzdy
|[z—e~1py|<A

>+O@%.

675 (4.2) = —75% (t)Re (pk Y
J

677 Now we compute

678 Re/ e (Vuy, - Vuy) (9yur)dedy
|z75*1pk\§Ck,j5*1

679 =7 Im < > +0 (%).

680 Pk — DPj

681 Next, if [, j # k, we estimate that for ’z — 5_1pk| < minjzg Cy et

682 (V- Vuy) (Opup) ~ e y—ée’el y—;e“gf + —Qle’el =2 et (—ykz + 5 )

7] T ; Ty T Tk

_ 2

68 =0().

685  Finally, we compute

686 Re/ iedyur(Oyuy) = O (£2),
|z—e=1p|<Cy, et

687 Re/ iedyur(Opur) = e+ O (%) .

688 |z—e = pi|<Ck,je~"

639 Note that if the integrating region is replaced by the ball radius ¢ centered at £~ 'py,
690 then we get a corresponding estimate like (4.2) with 7 replaced by 752 (t).

691 We can do similar estimates as above for £ < 3 and j > 4, with a possible
692 different sign before the main order term. Combining all these estimates, we find that
693  the projected equation at the main order is (2.1) with u = 1.(See also system (4.26)).

694 4.2. Solving the nonlinear problem and proof of Theorem 1.1. In this
695 subsection, we would like to construct solutions of the GP equation stated in Theorem
696 1.1, near the family of approximate solutions u analyzed in Section 4.1. To this aim,
697  we shall use the finite dimensional Lyapunov-Schmidt reduction method to reduce the

This manuscript is for review purposes only.



-~ =~ =~ =~ =3I
NN NN

726

MULTI-VORTEX TRAVELING WAVES 21

original problem to the nondegeneracy of the roots of the Adler-Moser polynomials.
This nondegeneracy result has already been proved in Section 2, see Proposition 2.9.

Applying finite or infinite dimensional Lyapunov-Schmidt reduction to construct
solutions of nonlinear elliptic PDEs is by now more or less standard. There exists
vast literature on this subject. It is well known that one of the steps in the Lyapunov-
Schmidt reduction is to establish the solvability of the projected linear problem, in
suitable functional spaces. In our case, this will be accomplished in Proposition 4.5.

For each £ > 0 sufficiently small, we look for a traveling wave solution U of the
GP equation:

(4.3) —isayU:AU+U(1— |U\2).

Let u be the approximate solution. Then around each vortex point(it is a root of
the associated Adler-Moser polynomial), u is close to the standard degree one vortex
solution of the Ginzburg-Landau equation, described in Section 3. Recall that by
E (u) we mean the error of u, which has the form

E (u) = €idyu + Au+u (1 - |u|2> .

If u is written as w + v, where w, v are its real and imaginary parts, then we know
from Lemma 4.1 that u has the following symmetry:

w(z,y) = w(=z,y) = w(z, —y);v(z,y) = v(=,y) = —v(r, —y).

The following lemma states that F(u) has the same symmetry as u.

LEMMA 4.2. The real part of E (u) is even in both x and y variables. The imag-
inary part of E (u) is even in x and odd in y.

Proof. This follows from the symmetry of the approximate solution u and the
fact that E(u) consists of terms which are suitable derivatives of u. Note that taking
second order derivatives of u in x or y does not change this symmetry. On the other
hand, the term ei0,u is obtained by taking the y derivative and multiplying by 4.
This operation also preserves the symmetry stated in this lemma. ]

Let x be a smooth cutoff function such that x (s) =1 for s <1 and ¥ (s) =0 for
5 > 2. Let x be the cutoff function localized near the vortice defined by:

3 3
X =Yk (e ml) + 3R (- ).

Following [18], we seek a true solution of the form
(4.4 U= (ut un) x + (1 - ) ue,

where 1 = 11 + 12t is complex valued function close to 0 in suitable norm which will
be introduced below. We also assume that 7 has the same symmetry as u. We see
that near the vortice, U is obtained from u by an additive perturbation; while away
from the vortice, U is of the form ue”. The reason of choosing the perturbation 7
in the form (4.4) is explained in Section 3 of [18]. Roughly speaking, away from the
vortex points, this specific form simplifies the higher order error terms when solving
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the nonlinear problem, compared to the usual additive perturbation. In view of (4.4),
we can write U = we + ¢, where
e:=xu(l+n—e").

Note that € is localized near the vortex points and of the order o(n), for n small.
Let us set A := (x + (1 — x) e”)u. Then U can also be written as U = uny + A.
We have
U (1 - |U|2) = (unx + A) (1 ~ Jue? +e|2) .

By this formula, computing €i0,U + AU using (4.4), we find that the GP equation
becomes

(4.5) —AL(n) =1 +n)xE (u) + (1 —x)e"E (u) + No (n),
where E (u) represents the error of the approximate solution, and
(4.6) Ly = i68y77+A77+2u71Vu-V77—2\u|2 7,
while Ny is o(n), and explicitly given by
No (n) := (1= x) ue” [Vn[* +ie (u (1+n =€) ,x
+2V(u(l+n—e) - Vx+u(l+n—e’)Ax
—2uul® g x — (A + uny) {|u|2 (e —1—2m) + le|* + 2 Re (ue”e) | .
Note that in the region away from the vortex points, the real part of the operator L

is modeled on An; — 21 — €0yn2, while the imaginary part is like Ang + €0yn;1.
Dividing equation (4.5) by A, we obtain

—L(n)
— LB () — Jul? (2 — 1 —2my) + |Vf?
+ieA™ (u(14+n—e")dyx + 247V (u(1+n—e") - Vx
+ A w1 +n—eM Ay — A ux | Vn)® = |e]* — 2 Re (uee)
+ A tunx [u‘lE(u) —2ul*my — |uf? (¥ —1—2m) — le|* — 2Re (ue"é)} .
Let us write this equation as
L(n) = —u"'E(u) + N (n).

This nonlinear equation, equivalent to the original GP equation, is the one we even-
tually want to solve. Observe that in N (1), except |u|® (e*m —1—2m) — IVn)?,
other terms are all localized near the vortex points. As we will see later, the terms
ul? (€2 —1—27;) and |Vn|® are well suited to the functional setting below.

Now let us introduce the functional framework which we will work with. It is
adapted to the mapping property of the linearized operator L. Note that one of our
purpose is to solve a linear equation of the form IL(n) = h, where h is a given function
with suitable smooth and decaying properties away from the vortex points.

Recall that r;,7 = 1, - -, 6, represent the distance to the j-th vortex point. Let
w be a weight function defined by

-1

w(e) = (a4

j=1
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This function measures the minimal distance from the point z to those vortex points.
We use B, (z) to denote the ball of radius a centered at z. Let 7,0 € (0,1) be small
positive numbers. For complex valued function 1 = 1y + 12i, we define the following
weighted C?7 norm.

1],
= ||u77||02,7(w<3) + ||w1+”771”L00(w>2) + Hw2+"(|V771| + |V2771|)||Loo(w>2)

<|V771 (z1) = Vi (22)| + | VP11 (21) — VP (22)‘>

—2—0—v ‘Zl

+ sup sup 5
ze{w>2} 21,22€B,, /3(2) w(z) — 29
o 140 24072
F 1w 2]l oo w2y + [Jw v772HLoo(w>2) + [lw* v 772HLoo(w>2)
(z) o V2 (21) — Vi (Zz)|)

|21 — 2z|”

+ sup sup (w
(2)

z€{w>2} z1,22€ B3
(w (oprot [V () = Vona <z2>|> .
(2)

+ sup sup

~
z€{w>2} 21,22€ By, /3 |21 - 22\

Although this definition of norm seems to be complicated, its meaning is rather clear:
The real part of 7 decays like w='~7 and its first and second derivatives decay like
w™277, Moreover, the imaginary part of n only decays as w~, but its first and
second derivative decay as w77 and w277 respectively. As a consequence, real
and imaginary parts of the function 1 behave in different ways away from the vortex
points. It is worth mentioning that the Holder norms are taken into account in the
definition because eventually we shall use the Schauder estimates. We remark that it
is also possible to work in suitable weighted L? spaces and then use the LP estimates,
as is done in [20] for the Allen-Cahn equation.

On the other hand, for complex valued function h = h; + ihe, we define the
following weighted Holder norm

12l =l o gues) + 1[0 7P| e (s
H [TV sy 10T (50
+ sup sup (w (z)zwﬂ [V (21) = v:Ll (Zz)l)
z€{w>2} 21,22€ By, /3(2) |Zl - 22|

2o |ha (21) — ho (22)|) .

+ sup sup (w (z
() |21 — 2o

z2€{w>2} 21,22€ By, /3
This definition tells us that the real and imaginary parts of h have different decay
rates. Moreover, intuitively we require h; to gain one more power of decay at infinity
after taking one derivative. The choice of this norm is partly decided by the decay
and smooth properties of E(u).

As was already mentioned at the beginning of this subsection, to carry out the
Lyapunov-Schmidt reduction procedure, we need the projected linear theory for the
linearized operator L. We now know that the imaginary part of I behaves like the
Laplacian operator at infinity. To deal with it, we need the following result(Lemma
4.2 in [32]):

LEMMA 4.3. Let o € (0,1). Suppose 1 is a real valued function satisfying

An="h(z),n(z)=-n(z),nl <C,
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where o
h ()] € —=75-
(1+z])
Then we have
VO pa——
S
It is well known that without any assumption on h, the solution n may grow at
a logarithmic rate at infinity. This result tells us that if & is odd in the y variable,

then 7 will not have the log part, due to cancellation. For completeness, we give the
detailed proof of this fact in the sequel.

Proof of Lemma 4.53. Let Z = X +4Y. By Poisson’s formula, we have

n(z) = 217r/y>01n<j_§> h(Z)dXdY.

Using the decay assumption of h, we find that n(z) — 0, as z — +o0.
Let us construct suitable supersolution in the upper half plane. Define

g (2) =Py,
where r = |z| and 8, « are chosen such that
b+a=—-00<o<a<l.
We compute
Ag =Py ((52 + 2Ba) r 2 +ala—1) yfz)

< —CrPy> (r_2 + y_Q)

< —CrfTlyet < —orfrer? = _ope 2
Hence by maximum principle,

o
1+

The proof is then completed. O

In(z)| < Cg(z) <

We also need the following
LEMMA 4.4. Let o € (0,1). Suppose n is a real valued function satisfying

An—2n=h,[n <C,

where o
h(z)| < —————.
MO
Then we have o
N < ———s—-
I (2)] TR

The proof of this lemma is easier than that of Lemma 4.3. Indeed, one can directly
construct a supersolution of the form 1/r2% for the operator —A + 2, in the region
{z 1 |2| > a}, where a is a fixed large constant. We omit the details.

With all these preparations, now we are ready to prove the following a priori
estimate for solutions of the equation L(n) = h.

This manuscript is for review purposes only.



847

848

o
i
©

Q0
en)

[o'e]

o
ot Ot Ot Ot Ot
o)

[ RS IS, B
o N O Ut o= W

oo
(SN}

860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884

885
886

MULTI-VORTEX TRAVELING WAVES 25

PROPOSITION 4.5. Let € > 0 be small. Suppose |||, < oo, ||h]],, < oo and

Ln = h,
Re ( f|,_ o1y @105u) =0, fork=1,..,3,
Re flzfe*lpk|<1ﬂ773yu =0, fork=1,...,3,

un and un have the same symmetry as E (u) stated in Lemma /.2.

Then |In|l, < Ce™ [Ine[ |||

Proof. The mapping properties of I are closely related to that of the operator
L, which is the linearized operator of the standard degree one vortex solution v
of the Ginzburg-Landau equation analyzed in Section 3(See (3.4)). We would like
to point out that one of the difficulties in the proof of this proposition is that L
has three bounded linearly independent elements of the kernel, corresponding respec-
tively to translation in the x variable(d,vy ), translation in the y variable(9yv4 ), and
rotation(dpvy ). But here a priori we only assume in the statement of this proposition
that un is orthogonal to two of them(9,u and Jdyu) in a certain sense. This is quite
different from the situation(only one pair of vortice, located on the x axis) considered
in [32], where by symmetry the functions are automatically orthogonal to the kernels
corresponding to y translation and rotation.

It is also worth mentioning that comparing with the Ginzburg-Landau equation,
we have the term ei0yn in the linearized operator L. However, in our context, due
to the fact that e is small, essentially we can deal with it as a “perturbation term”.
To take care of this additional term, we need to analyze the decay rate of the real
and imaginary parts of the involved functions a little bit more precisely than the
Ginzburg-Landau case. This issue is already reflected in the definition of the norms
-], and -],

The proof given below is actually a straightforward modification of the proof of
Lemma 4.1 in [18]. The ideas of the proof are almost the same. As we mentioned
above, the norms defined here are slightly different with the one appeared in [18], in
particular regarding the decay rate of the first derivatives of the imaginary part of
n and real part of h. This is the reason why we have a negative power of € in the
bound, instead of |Ine| in [18]. Interested readers can compare the proof of Lemma
4.1 in [18] and the one presented here to see these minor differences.

Recall that the vortex points of our approximate solution u are located at e~ !p;,
e71q;,7 =1,2,3. Let us choose a large constant do such that all the points p;, g, j =
1,2, 3, are contained inside the ball of radius dy/2 centered at the origin of the complex
plane. We will split the proof into several steps.

Step 1. Estimates in the exterior domain =, assuming a priori the required bound
of m in the interior region.

To emphasize the main idea of how to take care of the term €idyn, let us assume
for the moment that we have already established the desired weighted estimate of 7
and its derivatives in terms of 7 |Ine] ||h|[,,, in the interior region {z : [2| < doe ™1} .
This assumption will be justified later on.

Let us now estimate n and its derivatives in the exterior domain

> Where C is a constant independent of € and h.

*ok )

Ei={z: 2] >doe7"}.

In view of the decay rates in the definition of the norms, the main task is to estimate
the weighted norm of V7;. The estimate of 7 itself will be relatively easier.
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26 Y. LIU, J. WEI
In E, by (4.6), the equation Ly = h takes the form
iedyn + An+2u~'Vu - Vi — 2 \u|2 m = h.

Splitting into real and imaginary parts, we can write this equation as

an [ Amamkem = b4 2Relw Tu. V) 2~ D

—Ang —edym = —ha +2Im(u"'Vu - Vn), n2(2) = —n2(2).

In =, the terms in the right hand side containing n are small in suitable sense. Indeed,
due to the asymptotic behavior S — 1 = O(r~2), we have

(1l = 1) m| < Cr 2y
Moreover, using the formula

0y fO
Vg =0,fo,9+ 2%

r

we obtain,

|Re (u™"Vu - V)| < Cr" Vg + Cr2 |V,

Im (u™'Vu - Vn)| < Cr=t V| + Cr=? |V
Consider any point zy € Z. To estimate 1o around zp, we denote |zg| by R and
define the rescaled function g (z) := 2 (Rz). Then by the second equation of (4.7), g

satisfies
Ag(z) = —eR*0ym + R*hy — 2R*Im (u™'Vu - V),

where the right hand side is evaluated at the point Rz. Applying Lemma 4.3 and the
Schauder estimates to the rescaled function g, using the assumed bound of 7 in the
interior domain, we find that
H9H02,7(1<|Z|<2) < CeR? ||V771(R')HCO,'Y(2/3<‘Z‘<3)
+ CeR?|||2]*T7 Vi

’ Hl,oo
( ) (2/3<]z|)
+ CR %77 |Ine| ||A|,, -

Rescaling back, we find that in particular,

le* V22| o =

< Ce Hw2+"V771

)

oo 2y

()2 |V (21) — Vi (22)|)

+ Cesup sup <w 5
() |21 — 22

Z€E 21,22€By, 3
(4.8) + Ce™7 |Inel ||h],, -
We also have corresponding estimate for the weighted Holder norm of V25,. Note

that in the right hand side, we have the small constant ¢ before the norm of ;.
Similar estimates hold for V.
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To get the desired weighted estimate of 9,71, instead of working directly with the
first equation of (4.7), we shall differentiate it with respect to y. This yields

-A (33;771) +20ym
(4.9) — 025 — Dyha + 20, (Re (u™'Vu - Vi) — 29, ((|u|2 - 1) m) .

Note that by the definition of the norm ||-||,, , dyhi decays one more power faster
than h;. Applying the standard estimate for the operator —A + 2(Lemma 4.4), we
find that

l* 7 0ym || o ) < Ce |07V 2

(4.10) +Ce HwH'”VngH

o)
0. (2) + Ce™7 el ||Al,, -
Given any pair of points z1, z2, we define the difference quotient of ¢ as
d(z+21)— (2 + 22)

|21 — 22"

Q(9) (2) :=
Then from equation (4.9) , we find that Q (9,n:1) satisfies

—A(Q(9ym)) +2Q (9ym)
= —eQ (92n2) — Q (9yh1) +2Q (0y (Re (u™'Vu - Vn)))

20 (o {(u 1))

Same argument as (4.10) applied to the function G yields the weighted Holder norm
of Jyn1. Similar estimate can be derived for d,71, by taking the x-derivative in the
equation (4.7).

From (4.8), (4.10), and the corresponding weighted Holder estimates, we deduce

2oy 19ym (21) — 9ym (22)|>

w7 0,m HLOO(E) +sup  sup (w (2 ol

2€E 21,22€ By, /3(2)

< Ce7 el Al -

With this desired decay estimate of 9,7 at hand, we can use the second equation of
(4.7) and the mapping property of the Laplacian operator to get the estimates of 7y
and its derivatives, and then use the first equation of (4.7) to get the estimates of 7,
and its derivatives.

Step 2. FEstimates in the interior region.

Let us estimate 7 in the interior region

T.:={z:|z| <doc'}.

We will choose d; > 0 such that the balls centered at points p;,q;,j = 1,2,3, with
radius dj are disjoint to each other. Denote the union of these balls by Q2. We then
define €. to be the union of the balls of radius die~! centered at vortex points
e 'pj,e7tq;,7 =1,2,3. Note that Q. C T..

To prove the bound of 7, we assume to the contrary that there were sequence
er — 0, sequences h(®) nF) | with n(¥) satisfying the orthogonality condition, Ln®*) =
h¥) and as k tends to infinity,

— 0,

*kk

(4.11) Hn(k)H =7, |1n5k\Hh(k)
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28 Y. LIU, J. WEI

We will also write e as e for simplicity. According to the definition of our norms,
this implies
E - k
|27 ]

<
LOQ(FE\QE) LOO(FS\QE) o

Moreover, we have

L

7]
Lo (Te\Qe)
Substep A. The L*>(R?) norm of un'® is uniformly bounded with respect to k.
Before starting the proof, we point out that the main task is to estimate 72. The
reason is that the near the vortex points, the operator L(-) resembles £(S-), where
L is the conjugate operator of L defined in Section 3. Due to rotational symmetry
of the Ginzburg-Landau equation, the constant i is a bounded kernel of the operator
L(S-). One can also check directly that L(i) = 0. As we will see later on, the presence
of this purely imaginary kernel implies that the L> norm of n near the vortex points
is essentially determined by the L* norm of n at the boundary of ..
Let p be a real valued smooth cutoff function satisfying

1,s< 3,
pe)={ 535

Lo (Te\Qe)

0,s > 1.

Consider the function

i*) (z) =0 (2)p (ds (2 - 51p1)) :

1

This function is localized in the dg—l neighborhood of the vortex point e~ 'p;. We shall
fix a large constant Ry independent of ;. For notational simplicity, we will drop the
superscript k if there is no confusion. In form of real and imaginary parts, we have
N =11+ 172

Claim 1: We have the following(the decay here is not optimal) estimate of n
away from the vortex points:

||772||L°°(r1>2R0) + ||7”1V772||Lco(7~1>2R0)

+ Hr%+gﬁ1”L°€(r1>2Ro) + |‘r}+”Vﬁ1|}Lw(m>2Ro)

(4.12) <cC <||7~7HL°C(T1<2R0) + 1) :

The proof of this claim is same as the proof of Lemma 4.1 in [18](although nota-
tions here are different). We repeat their arguments for completeness.

Let us estimate 77;. First of all, in the region r;1 > Ry, using the fact that
OyTia < Ce“’rfl_”, we obtain from the first equation of (4.7) that

- N 1 - 1
1

Here O(1/ry) is bounded by C/r1, and o(1) represents a term tending to 0 as k goes
to infinity. The right hand side of (4.13) is then bounded by Br;'™7, where

B = r{ V2|l poo vy > ry) T 0 (1) -
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Since S converges to 1 at infinity, it is easy to check that the function r{ 1= is a

supersolution of the operator —A + 252 in this region. Using maximum principle and
elliptic estimates, we infer from equation (4.13) that

(4.14) 93] + 17| < € (B + it ey ) 7175 71> 2o,

On the other hand, in the region 11 > 2Ry, using the fact that dy; < Ca_"er_",
we know that the imaginary part 7, satisfies an equation of the form

1 1
1 1

Using the estimate (4.14) of 71, we find that the right hand side of the equation
(4.15) is bounded by CB'r; 277 + Ce?, where B’ := 1710l oo (ry=Ro) + 0 (1), and C'is
a universal constant. Consider the function

M(z):=CoB' (1 =7r{%) + Co (dF — r¥c?) + 1721l oo (ry =20

If Cy is a fixed large constant, then
—A (M —12) 2 0.

Moreover,
’172 S M, if T = 2R0 or ry = dl/E.

Hence by the maximum principle, 7o < M. That is,

12l e 20) < CB (1= 717) + C (d] = 17€%) + |l Lo (7, 210
(4.16) < C+ 19l poe (ry <2R0) -

Given R > 0, to obtain the decay estimate of V#j, near any point of the form ¢~ 1p; +
Rzy, where |z9| = 1, we use the scaling argument again and define the rescaled
function n* = 7 (5_1]91 +R(z+ zo)) . Elliptic estimates for the equation satisfied
by n* together with (4.16) yield

(4.17) 171Vl e ) < € (1 17l 0 1, <2m0))

Inserting this estimate back to (4.14), we finally deduce

(4.18) \Vin| + || < Crit7 (1 + IIﬁIILm(T1<2RD)) -

Claim 1 then follows.

To proceed, we need to pay special attention to the projection of 77 onto the lowest
Fourier mode(the constant mode, with respect to the angle). In the (11, 61) coordinate,
we still use vy to denote the standard degree one vortex solution S(r;)e?t of the
Ginzburg-Landau equation, and L will be the linearized Ginzburg-Landau operator
around vy. The linear operator L is its conjugate operator, as is defined in Section
3. In the lowest Fourier mode, £ has a bounded kernel of the form .S, which tends to
the constant ¢ as r1 goes to infinity. This kernel arises from rotation. We define the
projection onto the constant mode as:

5(r)

277,

B(r1):= /_ (e 'p1+2).
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We also write § into its real and imaginary form: S = (1 + B2i. We recall that £
is decoupled in this Fourier mode. Let us use L; to denote the operator obtained
from L — ied,n, replacing u by S(r1)e?*. Note that in Q., u is close to S(r1)e'?,
up to an error of the order O(g?). The operator L; and £ are equivalent under the
transformation ¢ — Sg : If g = 0, then £ (Sg) = 0. Hence using the assumption
that ||]|, = e~ and ||k||,, < o(1)[Ine]™", where o (1) means a term tending to 0 as
e — 0, we infer from the explicit form of the operator L(see (3.7)) that in the region

1< <diet,

1 1 _
(4.19) - 75; — 5B+ (1-35%) 1 =o(1)|Ine| ' ry ',
1 1

1 1 1 oy
(4.20) §’+E6§ — 26+ (1-5%) B2 =0(1)|lne| 7277,
1

Note that due to the asymptotic behavior of S, the left hand side of the equation
(4.20) essentially behaves like 55 + % B4 for r1 large. Since S is the unique bounded
solution of (4.20), variation of parameter formula(See Lemma 3.1 for the asymptotic
behavior of the homogeneous equation) together with the fact that Sy is bounded by
a constant at the point r; = d?l tell us that indeed |52] < C. Similarly, from (4.19),
we deduce that |51] < C.

We remark that the estimate of 8 can also be obtained directly(and actually will
be easier, especially if we are going to deal with higher order vortex solutions) from
the explicit form of the operator L, without using £. The reason that we choose the
arguments above is to fit the linear theory cited in Section 3.

Claim 2: Huﬁ(k)HLw(deo) 1s uniformly bounded with respect to k

Let us assume to the contrary that, up to a subsequence,

~(k
|“77( )HLoo(r1<2Ro) -
+00. Then we define the renormalized function

® — [lu® || o)
&= Hun HLoo(r1<2R0) we
Using (4.12) and elliptic estimates, we see that this sequence of functions will converge
to a bounded solution & of the equation L (§) = 0. By the nondegeneracy of degree one
vortex vy, we have { = ciivy + 20, v4 + c30yv4. The fact that 8 is bounded implies
¢1 = 0. The orthogonality of £*) with 0,u and Oyu tells that co = c3 = 0. Hence
¢ = 0. This contradicts with the fact that ||| =, <op,) = 1. Claim 2 is thereby
proved.

We observe that similar estimates as above are also valid near other vortex points
eflpj, sflqj, j = 1,2,3. Hence we have proved that ||u17(k) ||LN(R2) is uniformly
bounded with respect to k.

Substep B. Hun(k) HLOO(]RZ\QE) tends to zero as k goes to infinity.

We assume to the contrary that up to a subsequence, |lun*) HLOO(W\QE) >C1 >0,
for a universal constant Cy. With the estimates (4.18) of Vn; at hand, we find that

the rescaled function ngk) (5‘12) will converge to a bounded solution of the problem

Ag = 07 in RQ\ {plap2ap3aQ17q2aq3}7 g is odd in Y.

By the removable singularity theorem of harmonic functions, g is smooth and has to
be zero. This contradict with the fact that for k large,

(’“)H > (0, /2
Hwb Loo(R2\Q.) 1/2:
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Therefore, we conclude that

(4.21) HunWH 0, ask — 0.
L (®\Q.)

Substep C. ||u17(k)HLOO(QE) tends to zero as k goes to infinity.

The proof of Claim 2 tells us that the L>° bound of 7 is determined by the value
of ny at 9. In view of the estimate (4.21), we can repeat the arguments in Claim 2
to infer that actually

422 H (k) H
( ) “n L (’l"l <2R(})

It then follows from Claim 1 that Hun(’“) ||LDQ(Q ) tends to zero as k goes to infinity.

Once we obtain (4.22) for the L™ norm, we can estimate V27, V7 and their
weighted Holder norms using inequalities like (4.8) and (4.10), and deduce that
e’ Hn(k) H* — 0. But this will contradict with the assumption (4.11). This contradic-
tion finally tells us that actually ||n||, < Ce~?|Ine|||h]],, , for some universal constant
C'. The proof is then completed. 0

Now we would like to turn to estimate the error of the approximate solution in
the exterior region Z, which is far away from the vortex points. Let r be the distance
of z to the origin. We have the following

LEMMA 4.6. In =, we have

(4.23) |E (u)] < Cr—2.
Moreover,
(4.24) ’Im (e_iéE (u))‘ < Cer 3,

Proof. Recall that u = Huj = H (S (r;j)e®) . For r > doe ™', we have
J J

|6y (9]‘ — 0j+3)| < 05717“72, j=1,23.
Hence |0yu| < Ce 1r~2. Next,

[Vug - Vu,| = |0pur0zu; + 0yurOyujl
< [Opur] |0xu;] + [Oyur] |0y u;|
<Cr 2
Finally, since pr < Cr—2, we have @ < Cr~—*. Combining these estimates, we get

(4.23).
Now we prove (4.24) . For each k, using the fact that S’ (r) = O (r~2) , we have

Im e_iéieayuk H uj | =0 (r?).
itk
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Moreover, for k # j, with k, j < 3, we know that u; and u; are vortex of degree one.
Then we compute

Im [ e~ (Vuy - Vuy) H U

I1#£k,j
= 5 (rk) 0,05 (1) Oprj + S (r1) OpriS (r;) 020;
+ S (’I“k) 8y9k5’ (Tj) ay’l“j + 5 (Tk) akaS (Tj) 8y9j
=0 (7"*4) .

For general k # j < 6, we may have different signs before 0y, 6; in the above identity.
Hence we have the same estimates. This proves (4.24) . |

Now we are ready to prove our main theorem in this paper. Since technically the
method is quite similar to that of [32], we only sketch the main steps.
Recall that we need to solve

(4.25) L(n)=-u'E(u)+N(@).

Lemma 4.6 tells us that Im (e’iéE(u)> = O (er®) for r > die'. We can also

estimate F (u) in terms of r;, if » < die~!. Now if we choose o > 0 and v > 0 to be
sufficiently small. Then the error E (u) can be estimated in terms of € as

I1E (w)]l,., < Ce'7,

[

where [ is a positive constant satisfying 1 — 8 > 20. Applying Proposition 4.5 and
using contradiction argument, we see that the equation (4.25) can be solved modulo
the projection onto the kernels 9, u, 9yu localized near the vortices(Keep in mind that
dzvy4 and dyv_ decay like 7~1 and is not in L?). More precisely, let p, > 0 be cutoff
functions supported in the region where |z —e~!py| < Ao, where Ay > 0 is a fixed
constant. We can find cg, dg, n such that

Ln=—u'E(u)+ N (n)+ Z (ckefiéaxu + dkefiéayu) Pk
k

Moreover, |||, < Ce'=#~27. Projecting both sides on ,u, d,u and using the estimate
of 1, we find that if we want all the constants cy,d; to be zero, then pg, qx should
satisfy the system

Yoo e =1+ 0 (), fora=1,...3,

Pa—Pj Pa—Qqj5

j#a J
(4.26) > - iq. —Zq ip. =0 (&%, fora=1,..,3,
jAa T

for some small 6 > 0. Using the nondegeneracy(Proposition 2.9) of the roots of
the Adler-Moser polynomial and the Lipschitz dependence of the O (55) term on
{pr}, {qx}, we can solve this system using contraction mapping principle again and get
a solution (p1, p2, Ps, q1, 2, g3) , close to the roots a, b, of the Adler-Moser polynomials.
This gives us the desired traveling wave solutions of the GP equation.
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