ARBITRARY MANY BOUNDARY PEAK SOLUTIONS FOR AN
ELLIPTIC NEUMANN PROBLEM WITH CRITICAL GROWTH
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ABSTRACT. We consider the following problem

ou
— = Q
o 0 on 012,

where 1 > 0 is a large parameter, Q is a bounded domain in RN, N > 3 and 2* =
2N/(N — 2). Let H(P) be the mean curvature function of the boundary. Assuming that
H(P) has a local minimum point with positive minimum, then for any integer k, the above
problem has a k—boundary peaks solution. As a consequence, we show that if €2 is strictly
convez, then the above problem has arbitrarily many solutions, provided that u is large.

—Au + pu =u2*_1, u > 0in Q,

Résumé: On considere le probleme suivant:

g_: = 0 sur 09,

ol s > 0 est un grand parameétre,  est un domaine borné de RV, N > 3 et 2* =
2N/(N — 2). Soit H(P) la courbure moyenne, supposons que H admet un minimum
local & valeur strictement positive, alors pour tout & € N, le probleme de Neumann ci-
dessus a une solution avec k pics sur le bord. Par conséquent, on montre que si ) est
strictement convexe, le probleme a un nombre arbitraire de solutions, & condition que p
soit suffisamment grand.

—Au+ pu = uw? !, u >0 dans Q,

Keywords: Critical Exponent; Boundary Peaks; Singularly Perturbed Neumann Prob-
lem; Gradient Flows

1. INTRODUCTION
In this paper, we study the following nonlinear elliptic Neumann problem:

(P,) —Au+pu =ui, u>0, in €,
OH du =y, on 09,

where ¢ = 222, 11 > 0, Q is a smooth and bounded domain in RY, N > 3 and n is the
outward unit normal of 0f) at y.

Equation (P, ,) arises in many branches of the applied sciences. For example, it can be
viewed as a steady-state equation for the shadow system of the Gierer-Meinhardt system

in biological pattern formation ([13], [24]), or of parabolic equations in chemotaxis, e.g.
Keller-Segel model ([22]).

When g is subcritical, i.e. ¢ < %, Lin, Ni and Takagi [22] proved that the only solution,
for small p, is the constant one, whereas nonconstant solutions appear for large y, which
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blow up, as u goes to infinity, at one or several points. The least energy solution blows
up at a boundary point which maximizes the mean curvature of the boundary [26][27].
(From now on, we denote the mean curvature function by H(P), P € 02.) Higher energy
solutions exist which blow up at one or several points, located on the boundary [5][10]
[9] [12][20][21][38], or in the interior of the domain [6][11][16][18], or some of them on the
boundary and others in the interior [19]. (A review up to 2004 can be found in [24].) In
particular, we mention the following result which proves the existence of arbitrarily many
boundary spikes.

Theorem A ([20]). Suppose that 1 < q < Y22 and that Qo € 9 is a local minimum point
of the mean curvature function H(P). Then given any positive integer k, there exists a
e > 0 such that for p > py, problem (Py ) has a solution u, with k spikes Q%,j =1,....k
such that Q% € 9Q,Q; — Qo and |Q} — Q%] > Cﬁlog,u. As a corollary, for any fired

k > 1, there exists p > py, such that (P,,) has a k boundary-peaked solution

In the critical case, i.e. ¢ = %, there also have been many works on (7, ). For large
i, nonconstant solutions exist [1][34]. As in the subcritical case, the least energy solution
blows up, as p goes to infinity, at a point which maximizes the mean curvature of the
boundary [4][25]. Considering higher energy solutions, Adimurthi, Mancini and Yadava
(3], showed that for N > 6, single boundary peak exists at a nondegenerate critical point
of the mean curvature function with positive values. Rey generalized this result to the case
N =3 [29].

However, in contrast to the subcritical case, the results on solutions with multiple peaks
in the critical case have been very limited. For the very special case when the domain has
certain symmetries, Wang in [35]-[37] restricted his consideration to the symmetric Sobolev
space and showed that there exists a solution with multiple peaks (of related symmetry)
for the critical case. On the other hand, Grossi [15] showed that for a strictly convex
domain €1, the existence of a solution which has approximately twice as much energy as
a least energy solution and therefore it might possess two peaks on the boundary. Using
variational methods, Ghoussoub and Gui [14] constructed & (separated) boundary peaks
at k (separated) local mazimum points of H(P), provided N > 5 and H > 0. Adimurthi,
Mancini and Yadava [3] and Rey [30] constructed multiple peak solutions at multiple
nondegenerate critical points of H(P) for N > 6 (and for N = 3 at [29]). In all the above
papers, it is assumed that H > 0. This has been proved to be necessary by Gui and Lin
[17], and Rey [30].

Our aim, in this paper, is to prove a version of Theorem A, in the critical exponent case,
for all dimensions. Namely, we consider the following problem

_ _ 21 :
{ Au+pu=u*"", u>0 in{ (1.1)

g—z =0, on 02,

where u > 0 is a large parameter, € is a bounded domain in RV, N > 3 and 2* = 2N/(N —
2). Our main result can be stated as follows: assuming that H(P) has a local minimum
point with positive minimum, then for any integer k, problem (1.1) has a k—boundary peaks
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solution. As a consequence, we prove that if Q) is strictly convex, then (1.1) has arbitrarily
many solutions.
To make it more precise, we define the energy functional corresponding to (1.1) to be

1 1 -
I(u) = —/(\Vu|2 + pu®) dy — —/ lu|* dy, ue H(Q).
2 Jo 2* Ja
For any z € RY, XA > 0, we denote

CoN—2)/2

Ui,:\(y) = (1 + 5\2|y _ f|2)(N_2)/2’

where ¢g = [N(NV — 2)]V=2/* Then U, ; satisfies —AU, 5 = Ugt—\*l. In this paper, we will
use the following notation: U = Uy ;. ’

To find a solution for (1.1) with sharp peaks, the first step is to construct an approximate
solution. The first obvious choice for the approximate solution is U; 5. It turns out that
this choice works if N > 5. In the lower dimension N = 3,4, the function U; 5 does not
concentrate fast enough, so the error term is not small to yield a solution. See Remark 2.2.
For this reason, we need to modify U; 5 in the case N = 3,4. We define the approximate

solution as follows.
Let

(1.2)

Vix=Uzx, HNZ>5.
If N = 3, we use the approximate solution as in [29]

C
Veay) = Uza(y) — Wo—ﬂ

For the case N = 4, let V, 5 be the solution of

(1—eviv=2l) if N =3.

—Au+ pu = U;::-\_l, inR*, wu(y) — 0,as |y| — +oo. (1.3)
For any u,v € H'(2), we define

(i, v) = /(Vu Yo+ puw)dy,  ull = (u, ).
Q
The main result of this paper is the following:

Theorem 1.1. Suppose that there is a set S C 0, such that 0 < minges H(z) <
mingeps H(x). Then, for any integer k > 1, there is an uy > 0, depending on k, such
that for any p > ug, (1.1) has a solution of the form

k
u= z :un,jaAu,j + Wi,k
=1

satisfying that as p — +00,
(i) z,; €S, zuj; — x; with H(z;) = mingeg H(x), Ay j = +00, j=1,---,k;
() AuidslBui — Tugl? = +00, i # J;
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(iif) [lwasll = o(1).
If zy € 0N is a strict local minimum point of H (z) with H(xy) > 0, then by Theorem 1.1,

(1.1) has a solution with its boundary peaks clustering near z,. A direct consequence of
Theorem 1.1 is the following.

Corollary 1.2. Suppose that there is a connected component I' of 02 such that H(xz) > 0
for all x € I'. Then, for any integer k > 1, there is an g > 0, depending on k, such that
for any p > pyg, (1.1) has a solution of the form

u= § :un,ja)‘u,j + Wik

satisfying that as A — +00,
(i) zu; €T, x4 — x; with H(x;) = minger H(x), Ay; — 400, j=1,---,k;
(11) )‘M,i/\u,j Ty — xu,j|2 — 400, 7 75 _],

(iii) [Jwrkll = o(1).

If Q is strictly convex, then mingcsq H(z) > 0. So, by Corollary 1.2, (1.1) has multiple
boundary peak solutions. More generally, Corollary 1.2 holds if Q@ = D \ U™, D;, where D
is a strictly convex domain, and D; CC D, 1= 1,---,m. Corollary 1.2 generalizes Grossi’s
result [15].

Theorem 1.1 has been proved by Lin, Wang and Wei [23] under more restrictive assump-
tions: N > 7 and H(P) has a nondegenerate local minimum. Here we cover all N > 3 and
all possible degenerate minimums.

Before we close this section, let us outline the proof of Theorem 1.1.

We first reduce the proof of Theorem 1.1 to a finite dimensional problem. To achieve
this goal, for any integer £ > 0, x = (21, -~ ,x,) € OV X --- x 0, A = (Ay,---, \) €
RY x ---x R, we define

OV A, OV xs
I = (o, BNy =,
O\; Otjn
hzla aN_la .721, ak}:

where ¢; 5, forms a base of the tangent space of 902 at x; € 9€2. We define a set M, which
consists of points (x, ) such that z; lies in T and M\Aj|z; — z;]* — +o0 for i # j. (See
(2.1) in Section 2, (3.3) and (3.4) in Section 3.) We then prove that there exists a C' map
wxx from M, to H'(Q2), such that wy € Fy , and

Ex)= {w s we HY(Q), <w,

for some constants A; and Bjp, Where

k

Ju(x, A, )—I(szj,xj +w>.

i=1
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To show that Z§:1 Va; u; TWx,x is actually a solution of (1.1), we need to find a (x,, A,) €
M, such that the corresponding constants A; and B;;, are all equal to zero. It is well
known that if (x,, A,) € M, is a critical point of the function

K(Xa )‘) = JN(X: )‘7 wx,)\)a (Xa A) € Mu,

then the corresponding constants A; and By, are all equal to zero. This procedure has
been used in many problems. For subcritical case, see [10], [18], [20], [19]. For the critical
exponent case, see for example [8], [28] and [31]-[33].

The new technical ingredient of this paper is the use of gradient flows to find critical
points of reduced energy functional which are of saddle point type. The main problem
is that the locations of the spikes (which are very close) and the scaling parameters are
intrinsically combined. This seems to be the first paper in constructing clustered bub-
bles for the critical exponent problems without nondegeneracy condition and dimension
restriction. Other critical problems which involve finding a saddle point for the reduced
problems can be found in [39] and [40]. In particular, we mention that in [40], clustered
bubbles for a slightly subcritical problem in an exterior domain were constructed when
N > 4, and it was also pointed out that the same techniques could be used to study (1.1)
in the case N > 5. But in [40], the existence of a critical point for the reduced finite
dimensional problem is proved by comparing the homology of different level sets, so some
extra assumption on an isolated local critical point of H(z) is needed. In this paper, we
use the min-max procedure to find a critical point of the reduced energy functional, so we
are able to get rid of the unnecessary assumption in [40].

The behaviors of the solutions are different between the higher dimensional case and
the lower dimensional case. So we need to treat them differently. We will prove the main
result for the case N > 5 and the case N = 3,4 in Section 2 and Section 3 respectively. We
put the calculations of the energy for the approximate solutions in the appendices. As we
will see, it is quite straight forward in the calculations of the energy for the approximate
solutions in the case N > 5, while it is very technical in the case N = 3, 4.

Acknowledgment. The first author is supported by an Earmarked Grant from RGC of
Hong Kong. The second author is partially supported by ARC. We thank the referee for
several useful suggestions.

2. PROOF OF THE MAIN RESULT, THE CASE N > 5

First, we will reduce the problem of finding a k-peak solution to a finite dimension
problem. We define the set M , as follows.
Let BH B
_ m 7!
N = _———m o T3P
where H,,, = mingcs H(z) > 0, B and Bj; are the positive constants in Proposition A.3.
Then f(t) has a unique critical point
- 2B
Ny = 2k
BH,,
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which is also a minimum point of f(X).
Let 7 > 0 be a small constant. Define

1
W; RN E

VM = {X = (xl,...,xk) : |.Z‘Z - .Tj| >
xz; € S,with H(z;)) < Hp, +p™", i=1,--- ,k},
and

M, = {(X, AN:ix€eV, Ne[Q—p MDA, M+p N], i=1,---,k} (2.1)

For (x,\) € M, and N > 3, we define (as introduced in [7])

1
A(N=2)/2 (N-2)/2
i J

ey = (2.2)

s — | N2

Proposition 2.1. There is an py, > 0, such that for each p > uy, there exists a C*-map
wx s M, — HY(Q), such that wx € Ex, and

0, (x, A, wy.p) an N em e o OU,,
3 — 79\G BZ (2 Z’ 2'3
R =y ale 53 nl &

for some constants A; and By,. Moreover, we have

k
fonall €Y b+ O3 ()7 + ),
j=1 J J

i#]

where o > 0 is a fired small constant.

Proof. The proof is similar to that of [29]. We expand J,(x, A\,w) at w = 0 as follows:

Ju(x, A, w) = J,(x,A,0) + <lu,w> + %(Quw,w> + R, (w),

where [, € Fx  satisfying

k k
w>:/QZVU%AJ.VwﬁL/L/QZij,,\jw
j=1 j=1

k

_/(Z Uzj,)\j)Z*_l(H, Yw € Ex,)\;
Q

j=1

(2.4)

and @, is a bounded linear map from Fy ) to Ey ,, satisfying
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(Quw,n) :/QVan+,u/an
(2.5)

k
— 1)/(2 Um].,Aj)2 _an, w, n € Ex»,
i

and R, (w) collects all the other terms, satisfying
j . min(2*,3)—j .
R (w) = O(|lw||™=*)7),  j=0,1,2

Thus, to find a critical point for J,(x, A\, w) in Ex , is equivalent to solving
(2.6)

Iy + Quw + R, (w) = 0.

Similar to Proposition 3.1 of [7] (see also [29]), we have
1Quwll = dflwll,  Vw e Exx.

So @, is invertible in F, , and there is a constant C > 0, such that ||Q;}|| < C. It
follows from the implicit function theory that there is a wx € Fx ), such that (2.6) holds.

Moreover,
[woull < CllLull-

To finish the proof of this proposition, it remains to estimate ||/,||. We have

<lu,w> M/ZUIJ”\JW"_Z/ aUmJ,)\J
k

j=1
::ll + lz + l5.

To estimate l3, we use

k
‘ (Z ij,Aj)Qtl Z Uf*il
j=1

<O U N2 6

J#i

and

k » k

7/3 /3
o)™ = U | < O U Uzh, N =5

J=1 J=1 J#t
Then, by Lemma 1.2 and Estimate 3 of [7], it is easy to check that there is a small o > 0
such that

5| < czgz”nwu.

i#£]
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On the other hand, we have

U, . ANy g2
‘/ Mw‘ < C/ J , ly x]gv|/2|w|
oo On oo (1+Xsly — x4/?)

2 2
<CAN-? /2(/ ( Ajly — = )2(N1)/N>N/2(N1)||w” (2.7)
oo (L4 Afly — z;[?)N/2

< lwll-
J

Finally, take o € (0,1) small, such that
(2* = 2)N
2(2 + (2* — 2)o)
Let ¢ = 2(1 — o) +2*0 > 2. Since N > 5, we can choose o > 0 small, such that ¢ < N/2.

Then
e

_ (q—l)_|_N -
<ow; T T el el

> 1.

—1)\1-1/
< ,u(/ U;lj/’(gj )) \wl,g
Q
N(g— 1)_|_N 2

fe < Cpltto2y ]

oy e T

<Ou2A .

So, we have proved

[tA ||<CZsU+”+CZ< 2+" 1_).

i#j A

Remark 2.2. The estimates for ||/,|| in the case N =3 and N =4 are

k
Il <cS et L oS VR
Il <C) el ;ﬁ]

i#£]
and
k
. Ve ln A
Ll<cS e oS YA
12, 28 ; y

respectively. They are not small enough so that they are negligible in the energy expansion.
This is one of the main reasons that we need to modify the approximate solutions for the
cases N =3 and N = 4.
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Let

K(X, A) = J/.L(X, )‘a wx,)\)a (Xa )‘) € Mua

where wy  is the map obtained in Proposition 2.1. Then, we obtain from Proposition 2.1
that

K(x,2) =Ju(%, A, 0) + O([llullllwsall + llwxall®)
140 b ,LL 140 1 (2'8)
:JN(X,/\,O)-FO(ZEU +Z((ﬁ) +F)>
i] =1 i

We need the following expansions of the derivatives of K (x, A).

Lemma 2.3. Assume (x,\) € M. Then

OK(x,))  01,(651,0)  n 1 N 7,1
e B0 Lofs S (B ) o

J =1 i#m

Intuitively, the estimates in Lemma 2.3 can be obtained by differentiating (2.8) with
respect to A;. We will postpone the proof of Lemma 2.3 to the end of this section. Now
we are ready to prove Theorem 1.1 in the case N > 5.

Define

CQZkA+77,

and

< 1
ciy=kA+Ef(N) — 5\—;[37/2.
n
where 7 > 0 and 7 > 0 are small constants. For any ¢, let K¢ = {(x, ) : K(x,\) < c}.
Consider the following flow:

&0 — v, K (x(t), (1)), t > 0;
G0 = ~VAEx(D.M1), >0 (2.10)
(x(0), A(0)) = (x0, Ao) € K.

Then

Proposition 2.4. Suppose that N > 5. Then (x(t), A(t)) will not leave M,, before it
reaches K~

Before we prove Proposition 2.4, we prove the following lemma.

Lemma 2.5. For any x € 0V, we have (x,\) € K.
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Proof. Since )\, is the unique minimum point of f(\), we have

FO0) = F(3,) + %O(M‘QT), Ve (1= L), (1+ L)), (2.11)

Note that for (x,\) € M, &; < Cu~1*7). By (2.8) and Proposition A.3, we have

k
< Hm - H(IJ) 1
K(x,\) :kA+kf(/\u)+BZ)\—j —B4Zsij+0(m). (2.12)
j=1 i#£]
Suppose that there exists i # j, such that |z; — z;| = p= T+ V=2 Then g;; ~ #
As a result,

/

- c 1
K(x,2) < BA+ K Ou) — o+ o(ﬁ) < e

Thus, (x,\) € K-,
Suppose that H(z;) = H,, + pu~" for some i = 1,--- , k. Using (2.12), we obtain

< Hm_H(xl) 1
K(x,\) <kA+kf(\,)+ B \i +O(u )

/

- c 1
KA+ RF(R) = o + O(MHQT) < i

1+7

Thus, (x,A) € K».
U

Proof of Proposition 2.4. Suppose that there is a ¢y > 0, such that (x(ty), A(to)) € OM,,.
We will prove that either (x(to), A(to)) € K#, or w > 0 at (x(t9), A(ty)), where n is
the outward unit normal of OM,, at (x(t), A(to))-

If x(ty) € OV, then it follows from Lemma 2.5 that

(x(t), A(tg)) € K~

If \j(t)) = (1 + Lp~")), for some j, then at (x(ty), A(to)), by Proposition A.4 and
Lemma 2.3,
0K (x, )
on

- 1
= f")LAL T + O(MHT) >0,
provided L > 0 is large.
If \j(to) = (1 — Ly~ ") for some j, then at (x(ty), A(to)),

0K (x,\)
on

. 1
= ") (=LA + O(M2+T) > 0.
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Proof of Theorem 1.1. We will prove that K(x, A) has a critical point in K¢ \ K¢,
Define

f}u = {)\ N E(1 - L,u—T);\“, (1+ LN’_T);\N]’ i=1,--- ,k}.

Then M, =V, x f}u-
Let A be the set of maps h(x, A) from M, to M, satisfying

hi(x,0) =x, if (x,)) €9V, x V,,

where h(x, ) = (h1(x, A), ha(x, A)), hi(x,A) € V,, ha(x, A) € V,.
Define

c, = inf sup K(h(x,N)).
. heA (x, \)eM, (hx, A))

We will show that ¢, is a critical value of K(x,\). To prove this claim, we need to prove
(1) c1u < cp < c2;
(i1) SuP(nyeav, xv, K (B(x,A)) < cru, VhE A

To prove (ii), let € A. Then, for any (x,A) € 9V, X Vi, we have h(x, \) = (x, \) for
some A € V,. By Lemma 2.5, we obtain

K(X, 5\) < C1,u-

Now, we prove (i). It is easy to see ¢, < co. For any h € A, take i = Ay i =1, , k.
Then h(x) := hy(x,\) is a map from V, to V,, satisfying

h(x) =x, Vx€aV,.

Therefore, for any z € V,,, there is a x € V,, such that h(x) = z. Let A = hy(x, ) € V.
We have

sup K (h(x,1)) > K(z,A).
(x,A\)eEM,,

So, we see that we only need to choose z € V,, such that for all A € l}u,

- 1
K(z,\) > kA+kf(\) — e
Let o € S be such that H(x¢) = Hy,. Choose z,; € B,-2-(20), j =1,--- , k, satisfying
\2ui—2u4| = ™7,V i # j, where ¢ > 0 is a small constant. For this z, = (2,1, , Zuk),
we have
1 C

N—2 < M(N—2)(1—2T)

N-2)/2
i |2 — 2,5
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and
| H (213) — Hin| = O(|25 — mo[*) = O(u™).
So, from (2.12), we obtain

_ - 1
K(z,, \) = kA+kf(\,) + O(NHM) >kA+kf(N,) — =
In the rest of this section, we prove Lemma 2.3.
Proof of Lemma 2.3. Using Proposition 2.1, we find
0K (x,A)  0J,(x, A\, wy,») N <8Ju(x, A, Wx,2) 8wx,>\>
01,3, N wen) o~ O0Unn Owxay e sm o OUs n, Owxr
Y +;AJ’< I W ZZ Bin( =5 T
8, (%, \, w A s 10
u IR4Y x)\ l‘“)\l ml,)\z
= A Wx - B; y WxA)-
O\, < N2 wx) ; 3 Ot “x)

Thus, to estimate % we need to estimate % Aj and By

First, we estimate W. It is easy to check that

0, (%, A, wxn)  0Ju(x,A,0) 1
I (WD Dy

Jj=1

_0Jy x)\O +i/\ll0<zg1+a Z( /\2)1+"+/\%2)).

=1 i#Em i=1 g

O (It

Next, we estimate A; and Bjy,.
Similar to (2.15), we have

0, (%, A, wxn) 0y (w, 1,0

Otin - Ot
k
S S0(Sek () 4 )

From Proposition 2.1, (2.15) and (2.16), we know that A; and By, satisfy

ZA O (Il llllwxall + lewall)

(2.13)

(2.14)

(2.15)

(2.16)



BOUNDARY PEAK SOLUTIONS 13

aU;c], Aj aUzi, P v, Tj,Aj an“
Z< Y +Z { otjn ) Bin

j=1 h=1 (2.17)
aJ 6U$“
<8w > O(,u)
b OU,, A OU,, A, P 0U,. s UL .
DTG A+ 30 S (e e By
2, 52 e e (2.18)
-737,7)\1 .
<8w’ Otim ) =0,

Noting that

aUmj Aj aUl'i;)\i

oy on T @ o),
6Uzj,)\j OUy; 2 _ 1 1
o on oGt )

and
<8Umj7>\j 8U$i7>\i>
6tjh ’ 8tim
where ¢* and ¢** are some positive constants, we can solve (2.17) and (2.18) to obtain

= 5”51”,7)\22 (C** + 0(].)),

1
A;=0(1), Bj,= O(E). (2.19)
Combining (2.14), (2.15) and (2.19), we obtain the result.
U

3. PROOF OF THE MAIN RESULT, THE CASES N = 3,4

Using the estimates in Appendix B and Appendix C, we can prove Theorem 1.1 for
N = 3,4, by following the same procedure as in Section 2. Here, we just point out the
differences and give the details in dealing with them.

If N =3, we let
- BH,, A Bs\/Ii
A)=-—""(ln— v
fs(N) I (n\/ﬁ+v)+ 3
B3I

Then f3(A) has a critical point Az, ~ \/fie B#m . Moreover,

f"Psp) = <57 (3.1)
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and
O0a,) = O(s). 123 (32)
3,/J - 5\%_{_1 b [t . .
v
Define
Vs, = {XZ |2 — xj|eVPe=mil > TG £ g,
i € S,with H(z;) < Hp+pu", i=1,---,k }
and

M, = {(x, Nix€Vs,, ME[(1=Lp Asp, L+ Lp Azl i=1,---,k}  (3.3)
If N =4, we let

- BH,, Bsuln\

A)=——= —
| - 25 25
Then fi(\) has a critical point Ay, ~ BE“TIZ“.
Define
V _{ . |xz_xj|2 > 1(1nﬂ)7 i 4
T R (YAl — ) © Ay g 7
Inl r
xiES,WithH(m,)gHm+(Illnﬂ) . i=1, ,k,},
n pu

where K (t) = tK,(t), and K, () is a Bessel function. That is, K, satisfies

K +tK -+ 1)K, =0, t>0.
Let
My, = {(x, A) X € Vyy,
Inln Inln g+ . (3-4)
&G[Q—L( u))Mwu+L(mu))M4J:1w.¢}

In

Proposition 3.1. Let N = 3 or 4. There is an ur > 0, such that for each p > py, there
exists a C'-map wx - My — Hl(Q), such that wx € Exx, and
k N-1

0J,,(x, )\ < 3Vx Vi ns
w5 A 35 S @9
i=1 h=1
for some constants A; and Bjy,. Moreover, we have

k
fall < €33 +CZ(\<_? i ﬁ) ifN =3;
j=1 M 5

i#]
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k

l

1 1

||u)x,,\|| < CZS’LJ Z)\— ZfN—4
i#] i=1

Proof. It N =3, [, € Ex  satisfies

8V$
ll“w> Z/ ]’ +,U,Z/ TiAj T 1/2070)(*)

|y_x]|

+Z/ Vi )w (3.6)

_/Q((ZV%,\] Z V3w Ve € By
7j=1

By (C.51) and (C.52) in [29], we have

8sz, 4/3 3/4_ 1
( | | ) - ()\;/2/,61/4)’

and

5/6 1
/| 5, 1/2 = . |6/5> :O(ﬁ)'

By (3.12), (3.13) and (3.14) of [29],

/Q(Umsj)\j - ij’)‘i)w - O(/Q(U;Lj,AjWEMA + 02,0 °) lw] = (f)||w||

where we denote
Qomj,)\j = Ul‘j,)\j - ij,)\j' (37)
So, we obtain

1y )
il <C32e5™ +CZ( 1/4A1/2) itV = 3.
i#]
If N =4,1, € Ex, satisfies

k Vi 5. k
(b w) = Z/an WW + Z/Q(Ugj7>\j - ij,)\j)w
j=1 i=
k

—/( ZV;J, i )w, Vw € Ex .
Q j=1

J=1

(3.8)
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Similar to (2.7), we can deduce

OV A, Inp
— Y =0 w
/BQ . Swll

Moreover,

| @ =20)e
= Uz . = V2, w+/ U2\ = V2w
/BAI/2<zj)( ” ) n\BA_1/2<wj)( ” )

J J

:O (/ (Uwzj,)\jgomj;)\j + 902‘]',)\]‘) |(4)| +/ U-’gj,)\j‘w|>
B}\_l/z(zj) Q\B)\—I/Q(wj)

J J

—o(([ @Bt ) ([ uh) el
B '_1/2(1‘]') Q\B)"—I/Z(wj)
J J

In);  In*) 1 1
=0(52 + 25 4 Yl = 0(S ) ol

. 3/2 3/2
Aj Aj A Aj
So,
k
ll<Cy el + Z/\—“ it N = 4.

i#] j=1

So, Proposition 3.1 can be proved in the same way as in Proposition 2.1. O
Let

K(x,A) = Ju(x, A\, wxn),  (x,A) € Myn,

where wy » is the map obtained in Proposition 3.1. Then, we obtain from Proposition 3.1
that

K(x, ) =J,(x, \, 0) +0(Z sl+a)

7y
i 3.9
O(Zgzl(%"‘ﬁ%)), it N =3; (3.9)
O(Z§:1 hl;;”>, if N =4.

We also have the following expansions of the derivatives of K (x, \).
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OK(x,A) _0Ju(x,A,0) 1 (ZEHU)

D V)Y 5 O\2
; (3.10)
+ — O(Zj:1(,<j2,+u1/2>\ )), ifN=3
Vlofsi, ) -
=10 )
Define
Cy = kA + n,
3 1
Clu,3 = kA -+ k‘fg()\uﬁ) — m’
e
and

1 ,Inln ,u)37/2

Cl:# 4 = kA + kf4(/\4,ﬂ) /\4,“ ( In 1

where 7 > 0 and 7 > 0 are small constants.
Lemma 3.2. For any x € 0Vy,,, we have (x,\) € K»N.

Proof. We only prove the case N = 3. The case N = 4 can be proved in a similar way.
Using f'(A3,,) =0, (3.1) and (3.2), we obtain

< 1
fs(Aj) = f3(As) + O<W> (3.11)
Note that for (x,)\) € Ms ,, e VF~Tilg,, < - By (3.9), (3.11) and Proposition B.3,

we have

K(x,\) =kA + kfs(As,) +BZ
(3.12)

o 1
—B4Z€ Vil J|8ij+0(u27/_\3 )
i#£] e

From (3.12), we can prove that if |z; — z;|ev*~%il = y7 for some i # j, or H(x;) =
H,, + p~" for some i = 1,--- |k, then (x,\) € K~.
]

Proposition 3.3. The flow (x(t), A(t)) will not leave My, before it reaches KN,

Proof. We only prove the case N = 3. The case N = 4 can be proved in a similar way.
If \j(to) = A3,u(1+ Lpu~") for some j, then

0K(x,\) BH,

on )\3

Ly 0( )>0,

uAd,
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provided L > 0 is large.
If \j(to) = As,u(1 — Ly~ 7) for some j, then

OK(x,\) _ _BHm _ LMTHO( ! )>0.

on A3, urA3
Ul

Proof of Theorem 1.1 . Suppose that N = 3. Let o € S be such that H(z) = H,,.
Choose z,; € B,-13(x¢), j = 1,--- ,k, satisfying [z,; — 2, > du~3, Y i # j, where
¢ > 0 is a small constant. For thls z, = (Zu1,- -, Zuk), We have

—VB|Zu,i 2,5 C 1

1/5 1/2 <3 6_“1/6“1/3 :O( 27\ )’
AN s = 2ug| T As 12T A3

and

So,
H(2u5) = Hum (A p?? p/
’ In—L+v)=0 n) =0
= 0 22+ 5) = 05 —vi) = 0"
As a result, by (3.12),
1 < 1
K(z,,)) = kA+kf(As,) + 0( o ) > kA+kf(\) — pE (3.13)
The case N =4 can be treated in a smnlar way. O

APPENDIX A. ENERGY EXPANSION, THE CASE N > 5

In this section, we will expand (U, ;) and its derivatives. Recall that H(y) is the
mean curvature of 02 at y € 0f2. Direct calculations show

U? = U? — 7]/ — 2 dy+0(=
L= [0 e Lo G @ O

]
= U"-—2L+0(5
/. 50,

) OU, . .,
/ |VU$J’)‘J|2 /Ui?], /BQ 67]7, JUEJ")‘J'

_ 2*_BZH( ]) i
_/RNU 5T OGa)

J

and
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1 1 B
2 2 _ 3
/QUZMJ F U +O(F)_F+O(F)’
J J
where B;, 1 = 1,2, 3, is some positive constant. So we have

Proposition A.1. Suppose that N > 5. We have the following estimate:

uBs  BH(z;) 1
I(Uy; ) = A+ A?:-x -2 J +O(A—§),
where A = % fRN U?, B and Bs are positive constants.
Next, we calculate
k

I(Z ijﬂ)‘J)

7=1

. U,
Z ) T /U AUz +Z/ — BN
7j=1 1>] 1> (Al)
) Z/ 182:,_11 TjHAj

i#]
k " k
9% ((ZUIJ")‘J') _Z 2*)\ _2*ZU2* 11 sz)‘J>
2" j=1 ] i#j
Then,
1 «
3 /Q U2 Uy p; = Bagij + O(e};),
and
k - k ) )
/ ((Z Umy")‘j) o Z U$2">\' -2 Z Ui’ ;ilej’Aj> (Z 61+U)’
2 j=1 = iz

where £;; is defined at (2.2), By = 1 [(xU* ™' >0,and 0 > 0 is a ﬁxed small constant.
So, (A.1) can be rewritten as

k k
I ZU“”J Aj ZI Tj A _B4Z<€ij
"~ = 7 (A.2)
2 / NS / O U + O(Z 51”).
1>] i>j i#j

Now, we estimate the two interaction terms in (A.2).
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Lemma A.2. For any small 1 # j,

/ UziniUszjn; = O(aij\:r,- — xj|2‘ln |z — xj||),
Q

and

OUg
/39 an U;C], O(aij|x,-—xj||ln\xi—xj||).

Proof. We have

C 1
/QUzi,)\iija)\j < )\Z(N—Q)/2)\§_N—2)/2 0 |y _ xi\N‘QIy _ xj‘N_Q dy

= ¢ (/ +/ ) - d
)\Z(N—2)/2)\§N—2)/2 Bgm—mﬂ(mi) 31| xj) |y_$Z‘N 2|y .|N—2 Yy
" C / 1

/\Z(-N*Q)/Q/\E-N*Q)/2 Q\(Bl‘ Ly @UBY . () ly — @ N2y — 5|V 2

1 1
ol il i)
’ B%Wi ) |y_l‘i|N_2 B%m_mj\(mj) ‘y _‘Tj‘N_z
1

_,,j‘(xl
+ Ceyjlz; — ac|2/
v Q\(B%‘mi_wjl(zi)UB%‘mi_wjl(xj)) Yy — i[NPy — 24| N/

SCEij‘iEi — 33j|2 + OSZ‘]‘|$Z‘ - SE]"Q

dy

dy

In |$, — SE]H

=0 (es]z; — z;]*|In |z; — z;|]).

g,
[ T, <o [ Uy -t
)\(N 222 )

2 )\(N72 2
<C 1 z|y_$i| j
T Joa (L4 Ay — N2 (1 + N3y — ay[?) (V=272

Similarly,

s — — _ — ay
/\Z(N 2)/2/\§N 22 [oq |y — iV 2|y — a|N-2

=0 (gij|z; — ;| [In |z; — z;]]).

Combining Proposition A.1, (A.2) and Lemma A.2, we obtain

Proposition A.3. Suppose that N > 5, \; ~ 2234 and |2; — z;| > p=T for some large

BHp,
T > 0. We have the following estimates:
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k
13- Uy kA+z“B3—ZB“J B Y e
j=1 J=1 i#j
(Zgl+‘7 1+0)

i#]
where o > 0 s a fired small constant.

Proof. Tt follows from Lemma A.2 that

k
B BH (x;
S O
j=1 j=1 1>]
+ O(Z(,um - xj\2|ln |z; — ZL']'HSZ']' + |z; — xj||ln |z; — xjHeij + 8}}”’)).
1#]
So, to prove this proposition, we only need to show

plz; — xj|2‘ln |z; — .’L'jHEij = O<u1+o— + EZIJ“L”), (A.3)
and
‘SEZ' —.Tj||hl|$i —SCngij = O(IU,H'U +5Z1;—0>. (A4)

If |$Z - $J| S ,LL_2/3, then

— 1 g
| —$j|2‘ln‘$z' - %H gij < Cp 13 Inpe; = O(MHU +511]'+ )

If |l‘z — $j| > ,LL_2/3, then

C In p
p Ny — [N

plai — @*|In [z — 25| € <
L Inp 0(;).
= p(N-4)/3 pite

So, we have proved (A.3). We can prove (A.4) in a similar way.
Ul

Before we close this section, we give the following expansions for the derivatives of
k
I(ijl UIj,Aj)'

Proposition A.4. Suppose that N > 5, \; 2355 and |z; — z;| > p=T for some large
T > 0. We have the following estimates:
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2uB BH i
a)\,I(Zwa\j) == /;\33 + sl (Z‘EW 1+a)
tog=t E i#j
and

9 k
) I(Z ij,Aj) (Z €ij T )
Lin %
Jj=1 i#]
where o > 0 is a fired small constant.

Proof. Using

Uy, » 1
137\ — U ) S

‘ a/\z 7 Ti A

and
ani,/\i
‘7 iV Ao
Tin
we can prove this proposition in a similar way as in Proposition A.3.
U
APPENDIX B. ENERGY EXPANSION, THE CASE N =3
Since N = 3, we have ¢y = 3'/4. Let

ij AT Uzw — P

where
Co _ s
P\ () = 1/27(1 — eV xj‘)'
ly — ;]
Then, V,; »; satisfies
Co
_Asz,A]’ + u‘/ij,)\j == U A + /'I’(UZE], - 1/2|y Sy |> (B-l)
j

In this section, we will expand I(V;; ;) and its derivatives. By (C.3), (C.1) and (C.2)
in [29],

37r2 127\/u 3wH(z;) ©
/ (5 - NN +0(33)),

3n? 3wy wH(zj), A 1
VVz, M2 =3[ = — — 72 (In —L (@)
/(;| Ljs ]| \/_( 8 )‘j )‘j (n\//—jl+ﬂ)+ ( ))’
where (3 is a constant, and
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T mH(z)) 1
/ Tj A \/—)\ 4,u)\j +O()\ju3/2)>'
So we have

Proposition B.1. Suppose that N = 3. We have the following estimate:

Bs\/in  BH(z;) Aj 1 1
IV )=A+ — 2 (In“L+7)+0(——+ ),
where A > 0, v, B3 > 0 and B > 0 are constants.
Next, we calculate
k
I(Z ‘/zijj)
j=1
. av,
mwAz
=310 + X [ T Ve
j=1 1>7
Z Usips — 1 2 )VI-J\-
i>7 / / |y ‘ "
- _Z/ i\ SE],A +Z/ mza z)‘/mﬁxj
i#] Z#J
1 k
251
5 [ (V) Z =6 VIV ).
2° =1 1#]
Since
Vi = Unjny = Py
T o —
N e il+0 . Y €Q\ B,y (7))
)\;/2 ly — ;] 5/2\:& ;[ e

it is easy to check

/((Zk:%ﬂ Z zj,,\]_GZ Ti A xj, )

i#]
_0 / Z|sz Al 1V ) <Z€Ha)

and for 7 # j,

23
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.
US Vi, . = Us V. 4+0(7” )
/Q TiAi L TjaA; /B ) Ti,Ai ¥ LA )\12|-Ti_37j|2

Lloj—aj| (T (B.3)

6‘..
=2B,c; ;e VFITTo 4 0(7” );
o A lwi — 4]

where B; > 0 is a constant.
On the other hand,

‘/ )\z w] Aj

< C‘/ )\lgpwz,)\l Tj,Aj

€

<| / rn V| +0 (=)

B%lw -zl l‘i ;C“ o A )‘2|xZ - $]|2

6..

ol [ e )

1/2|:U, — 4] os—a; (i) AT )‘§|$Z — ;[ (B.4)
o[ oL ey )
— i

By © 12 Ajlzi = a5

So, (A.1) can be rewritten as

k k

I(Z ijﬂ’\j) = ZI(Vw], ) B, Ze_“"zi_mﬂgij
o ' i
Vai c
+Z/ Ai sz,)\] +Z/L/( T A 1/270)‘/;%)\]_ (B5)
i > 70 ly — wil

+ €0 (Z\FJFZ /\2‘%_36 2 +6;fj))

Now, we estimate the two interaction terms in (B.5).

ByyE
Lemma B.2. Suppose that \; ~ \/pe Bim and \z; — x| > p™T for some T > 0 large. For

any i # j,
/Q(mez ﬁ)%jw = O()%z + )\;4),

and
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a‘/;vi,)\i 1 —1/4 — i—T; 140
/89 on wa”\j:O()\_?—{_'u femvie $]|Eij+€ij )

Proof. For y € Q\ By-2|z;—a;|(;), We have

(T+2)

Ay =il 2 N ¥ — i = dp T = oo,
as {1 — +00. 5o,
Co
/(Uz“’\" 1/27>VIMJ'
9 ly — i
C,U,6 1
< 5/2 3 / ‘ —37-‘ dy
|-Tz - -T]| )\ 9\3”72\$i_xj|($i) Y j

c 1 e Vi|zi—z;]| / 1 d
+ ( + Y
1/2|$ $j|3)\?/2 AN g — %] By opsy e, (@) ly — ;|

i A

6+3T T—4 .|~ VHlzi—z;]
1 1 |z; — xj|e 1 1
=0(55) +of d )=0(5++>):
w) to(5e e e W

Similar to Lemma A.2,

anZ; A
‘ / VIJ ’)‘]
[219)

<c / Vil =lVap,

(

)\?|~’Uz' — zj|?
1 .

ZO(p + M_1/4€_‘/mm1 zJ‘EZ’j + E,};—J) .

1

Combining Proposition B.1, (B.2) and Lemma B.2, we obtain

BivE
Proposition B.3. Suppose that N = 3, \; ~ \/ﬁeBlan: and |z; — zj| > p' for some
T > 0 large. We have the following estimates:

k
I(Y Vi) =kA+ Z Bg\/_ Z BH (In % +9) = Bay e Vi tiley

J=1 i#]

1 G |
-O(S 6+ e fz
j=1

i#j

where & > 0 s a fired small constant.
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Proof. 1t follows from Lemma B.2 that

k k
(0 Veyn) =k 30 250 = S 0 S ) = By TP
j=1 j=1 j=1 J i#]
k
1 1
+0 g7 + e VHEi—Tilg, ) 4
(;( N 1 ) ;Aj\/ﬁ>

To prove this proposition, we only need to show

Y

o ]‘ — o i —Tj o
et = O()\HU t e~(HolAm—a| gl )
J

for some small > 0. In fact, if |z; — z;| > A; %, where @ > 0 is a small constant, then

gt ¢ < ¢
- — -~ 1+a
(] )\5_1 a)(1+0) )\j+a
If [v; — ;] < A79, then
(1+0)v/plzi—x;] (L+a)v/mA; ™
(I O)He 2y cLto _ u% <f
J )\?|$Z - l‘j|a - )\ﬂl‘z - $j|a
Cu” c 1 1+5

For the expansions of the derivatives of 1 (Z?Zl Vi ,)\j), we have

BiyE
Proposition B.4. Suppose that N =3, \; ~ eBin and \z; — 4| > p=T for some T >0
large. We have the following estimates:

j=1
— 1 .
vt mEtTy)
1 1
+—0 PR A R—
)‘j (; J )\J\/,l_j,)

and



BOUNDARY PEAK SOLUTIONS 27

9 I(Ek:V = 3O(Y emvHasile, lnAJ’)
8$z’h = "”j’)‘j )‘j )

i#]
ApPENDIX C. ENERGY EXPANSION, THE CASE N =4

We first recall that if N =4, V,, ), is the solution of

—Av+ pv = U3 ;o in R*.
It is easy to see that 0 < V. x, < Uy, x5 Vz,,a, 18 @ function of r = [y — z;| and waj’)\j < 0.
By using the blow-up argument we can deduce

C); C'/\2
Viia < ! , |V C.1
O (e w e R LRV S gy o rpmpeny 5 (C-1)
Let
Pajr; = Ungpg = Vg
Then, ¢, »; satisfies
=A@y z; T+ WPz = WU - (C.2)
Denote
- _ )\j /\—1
p(z) = ;%J‘J\j( i “ +xj)'
Then,
—Ap+pA?p=U, inR. (C.3)
Writing (C.3) as
—(7'3@,)/ 4 ,U/)\j_QT?’@ — T'SU,
we then see
lp'| < ¢ o< Cln(l+r)
— 147 - '
As a result,
Cu Cu
I < ——— z (1 + Ny - C.4
|g0mj,)‘j| — 1+)\j|y_xj|’ |(‘0 ]7)‘J| )\ n( + |y $]|) ( )

The next lemma shows that V. ), concentrates faster than U,; ;. Before we can state
this lemma, we need to introduce some notation. Let F(y) be the solution of

—AE 4+ uE =6, inR:
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Then, we have

Bw) = — Yk, (Valy),

T o Jy|
where K (y) is the Bessel function. That is, K;(t) satisfies

K" +tK' — (*+ 1)K =0, t>0.

Note that K;(t) ~ t"2e™ as t — +00, and K (t) ~tL + O(1) as t — 0.
Denote

R(t) = 1, (1).

2T
Then, E(y) be be written as
1 -
E(y) = WK(\//_H?JD-
Lemma C.1. If |y — z;| > )\;1, then
v A(y):Bf((\/ﬁly—le)JrO( VE 1 )
R Ajly — 42 My =2 pAfly — 2508/

where B = [,, U, and 0 > 0 is any small constant.

Proof. We have

Vi, () = / U3, (2)E (|2 — y]) d=.
R4

Firstly,

/ U2, (2)B 2 — o) dz
IRLI\B%W_%.N”"J')

<L/ E(|z —yl|) dz
R4

Ay —

¢ / +oo tK (\/ut) dt

A3y — g
C’ /+°° _ 1
= tK(t)dt =0 ————.
e Gk ] )
Secondly,
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[ @B

B1iy—a;l (z5)

:/ Ui’j,,\j (2)%([((\/5@ — ;) + O(Vulz — mj|)) dz
By ly—; (@) [y — 2|
_RGH =) [ g o Yy

Ajly — 22 g Aily — ;)2

So, the result follows.

Now we expand

L [ 1 [ OV, Lo,

MV) =5 [ U Vo + 5 [ S5, = [ Vi,
1 4 1 3 1 (9ij7)\],

:Z/QU;UJ',/\J'+§/S;ij,,\j¢wj,)\j+§/aﬂ o ij,)\j

2 2 4
+ O(/{; Uzj,)\jgpzj,)\j + /(; gpl‘j,Aj) *

Lemma C.2. There is By > 0, such that
/ a‘/zj:)‘j V. BlH(‘xJ) 1
a0

on EiA T X + O(A;-HT)’

where o > 0 1s a small constant.

Proof. 1t follows from (C.1) that

/ a%j7/\jv'>\' :/ 8V$j’/\jv'>v+/ avx—j’/\leA-
s On 7Y 0908 1 (s;) on Y 0NE () on A
J J
OV a;
:/ 8;1 ]V;Ej,)\j +O(/ ijvAj|V$Ij,Aij_mj‘)
3903/\71/2(.’5]‘) 8Q\B/\l—1/2($j)
i i
OV a, 1
:/ CCJa)\ ‘/ij)‘j + O(/ 274)
00NB _ijp(w) O OB, _s2(e;) Aj1Y — 23]
J J

OV, 1
= — 2 Ven + 0 ~).
/3903>\'_1/2(wj) on JN ()\JH- )
J

On the other hand, by (C.1) and (C.4),
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8‘/;‘j,Aj !
(sz,/\j :O H/z’)\Hy_xj‘(pxj,)\]
on I
8QOB)\'_1/2(zj) aQnB}\'—l/Q(zj)

J J

:O(/a #111)\3'):0(%)’

2|0 _ .2
QnB}\_l/Q (15]) Aj ‘y x]‘
J

&pm,,)\.
/ a] J‘/:Ej,)\j :O(/ ‘gpgcj,/\j||y_xj|vl'ja)\j)
6903}\?1/2(@7’) n 8QOB>\‘,1/2($‘7')

J J

ply — ) Aj 1
o ) =005
8903}\'_1/2(58]') 1+)\J‘y—$J|)\§|y—xJ|2 ()\;‘F )

J

and
8@:8.,/\.
/ g0 =O( [ [y slly = 5k,
9QNB _1/3(;) n 9QNB, _1/2(x;)
J J
1
=0(/ In);) = 0(555)-
BQﬁB/\‘,l/z(zj) )\j
J
Moreover,
aUx.’)\. B{H(x; 1
/ a] Jij,/\j - 1)\( .7) +O( 1+U),
9ONB, _1/5(z;) n J >‘j
j
for some small o > 0. So the result follows. O

For the rest of this section, we always assume that A; ~ %.

Proposition C.3. Suppose that N = 4. We have the follouning estimate:

I(Ve

Y

— 4 - LAt .
)= A+ =5 5 +0(A§ ninp), (C.6)

where Bs and B are some positive constants.

Proof. Tt follows from (C.5) and Lemma C.2 that

1 4 1 3 BIH('I)

1
2 2 4
+ O(/Q Uzj,)\j(lozj,)\j +/Qg0wj,)\j + A;-I—O')'

It is easy to check that there is a constant B, > 0, such that

(C.7)
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1 4 . . BQH(.’L']) i
4/QU%,\J_ = 4 - 4 0(5,). (C.8)

J

It follows from (C.4) that

[2aii =o(“5 [02,) =o("4) )

J

and

4

In* p
4 4 4
= = . ]_
/{;SD:cj,)\j O(/B ( ')Qasvjv)\j +/Q\BA1/2(zj) Ug”MJ’) O( 22 ) (C.10)
J

J

But

(C.11)

:_/'[’/Qija)\jVIj,)\j - _/ (_ ;;, Jgowfﬂ\j + x;fL : ijv\j)'

C
0< @un(y) <Upin, < ————
— QD ]y/\](y) — ];)‘] —_ )\]|y_$3|2

C

! < UI < - -
|§0;cj,/\j(y)| = | T | — )\]|y_xj|3

W)+ Vg, 0, @)

33\

Using the above two relations, similar to the proof of Lemma C.2, we can obtain

1 8VIj,)\j 8(ij,Aj 1
2 /39(_7%0%)‘1 + on Vwﬁ)\j) = O()\JHG). (C.12)

On the other hand,
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/ Uz Vajn = / Uz Vaj o + / Us; i Vaj
Q QB _1/2(z)) Q\B)\fl/Z(zj)
J

J

= N +/ Uz A Pz 2 +/ Usz: i Vi s
/KVZOB/\Tl/g(zj) Lj,Aj Qanfl/z(ﬂ?j) 7074 R Q\B/\l—l/z(xj) RV R (013)
J j ;

. 233 In )\j
A

1

+ O()\2+a) +/ UZ;')\J' P\ +/ Usz\j V%Aj’
J QOBA71/2($j) Q\B>\fl/2(fﬂj)
J J

for some B3 > 0.
It follows from (C.4) that

pin A\,
/QnB ( -)ij,/\jgoxj’/\j :O< Aj ] /QmB ( .)ij’)‘j)
1%;/2 ’ T (C.14)
pln
=0( 33 2).
j

From Lemma C.1, we find

/ Usj 3 Vg g
Q\B>\'—1/2 (%’)
J

% o
:O(/ Uzj,Aj( Ly — 7;) + Vi + L ))
Q\B)\71/2($j)

Ajly — x4 Nly —z;2 pily — x4/

J
tOK(ypt) Vel C.15
:0/ + YT 4 dt (C.15)
([ Ly
VEE R4 In \; 1
:0(/ g)dt+\/ﬁ3 2+ 2)
1. A Viln A 1
:O(Pl s )\2.)'
J 'U' J M]

So, (C.13), (C.14) and (C.15) yield
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M/ Uz; Vi o
Q

:2B3,uln)\j +O(,u In )\

/\_ ,uflnA 1)

7
I+ Cn
Aj

A2 A3 /\3 )\2-
J j
_2B3,Ll,hl /\j
_T + O()\2 lnln,u)

Baplnp
if Aj ~ T

Comblmng (C.11), (C.12) and (C.16), we obtain

1 Bspiln A
5 /Q US:C;j,/\j Qo.rj,)\j = A2 + O()\Q Inln ,LL)
J

So, the result follows from (C.7), (C.8), (C.9), (C.10) and (C.17).

Proposition C.4. We have the following estimates:

k k
I(Z sz,Aj) = Z %u; — By Z K( Vil — )€
j=1 j=1 7]
k N
(Z 77 2 (K (Wl = 250)e)' )
t i£j
where By s a positive constant.
Proof. We have
k
I(Z Vwm)\j)
j=1
: Vi
:ZI(VIMJ Z/ L Vaj Z/ Ugi;)\i‘/mjﬂAj
j=1 1<j o0 i#£j
Z/ TN DA m],,\]) + O (Z €1+U> )
1#] 1#£]

Similar to (B.4), we have

33

(C.16)

(C.17)

(C.18)

(C.19)
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2
/ Uzq; X Pz U-’Ej A
Q

1 3
_ 2 2]
_O<)\—\x-—x-|2 Usipstomns + /\2~|x<—x-\2)
il =il Joy @ i —

1 win Eij
of )
)\]|$z - .Tj|2 )\Z B%lwi*w]‘l/\i(o) o )\3|$Z - .7)]'|2
pwln? \; 1
J /\12 )\?‘,’Ez — 33j|2

On the other hand, using (C.1), we can deduce

a‘/;m i
Aﬂanv%yzo@wrﬂMmm—%W
1

+ ).
140 1+o0
)‘j+ )‘i+

=0(e;; +

By Lemma C.1, we find

3
/ Uwi,/\i ij)‘j
Q

:/ U;,i,X(BK(\/ﬁly—ijJrO( VH 1 ))

+
Ajly — z; 2 Ny — 252 pAlly — ;)6

%|m1’_mj|(:”)

1
=2B.K (\/p|zi — z|)eij + O(@ + —)Eija

Aj Al — )t
where B, is a positive constant.
Finally, we have

- _ 1+0o 1 1
g%‘;— = O((K(\//_L‘.’Ez — .Tj|)5ij) + W + )\1-1—0).
¥ 7

In fact, if |z; — z;| > Lu’ then

1 140 1 1
8” ()\z)\jlxz — .73]'|2) A}—'—U )\ZH—U

If |z; — x| < ﬁ, then K(\/p|z; — z;|) > ¢ > 0. So

o 7 1+o
E};— = O((K(\//_j,|$z — xj‘)gij) + )
Combining (C.19), (C.20), (C.21), (C.22) and (C.23), we obtain the estimate.

(C.20)

(C.21)

(C.22)

(C.23)
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Proposition C.5. We have the following estimates:

0 2Byuln\; . BH(x;
a—)\ll(z V;J-,,\j) =-— 3/;311 + )\ga: )
"~ Z Z (C.24)
+70(X K (Al - l)es +Z ’““1““)
1<j
and

0 < Eq
aTh](Z Vas ) (ZK VT — 4])ei +Z;), (C.25)

! Jj=1 1<j j=1 J

Remark C.6. We can use the solution V;, . of the following linear problem
—Av+/w—U2 2y inRY, v(4+00) =0

as the approximate solution for all the cases N > 3. It is easy to see that U, ), is the first
order approximation of V;, »,. For N > 5, the function Uy, , concentrates fast enough so
we can use it as an approximate solution instead. In the case N = 3, it is easy to see that

_070(1 — e~ VAly-il)
NE
j ly —
is the second order approximation of V;, »;. So we can use Uy, », — W (1 — e_\/ﬁ\y—zj\)
. Y—;

as a better approximation for V;, 5, in the case N = 3. In the case N = 4, it seems it is
not easy to find the second order approximation for V;; ;. So, in this section, we need to
calculate the energy of V. . directly.
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