CHAPTER 4

Weak Solutions, Part 11

4.1. Guide

This chapter covers the well-known theory of De Giorgi-Nash-Moser. We
present both the approach of De Giorgi and of Moser so students can make com-
parisons and can see that the ideas involved are essentially the same. The classical -
paper [12] is certainly very nice material for further reading. One may also wish to
compare the results in [12] and [7].

4.2. Local Boundedness

In the following three sections we will discuss the De Giorgi-Nash-Moser the-
ory for linear elliptic equations. In this section we will prove the local boundedness
of solutions. In the next section we will prove Holder continuity. Then in Section
4.4 we will discuss the Harnack inequality. For all results in these three sections
there is no regularity assumption of coefficients.

The main theorem of this section is the following boundedness result.

THEOREM 4.1. Suppose a;; € L™(By) and ¢ € LY(B)) for some q > n/2
satisfy the following assumptions

a;j ()& > ME]* foranyx € By, £ € R" and |ay|pe + ||clle < A

Jor some positive constants ) and A. Suppose that u € H'(B,) is a subsolution in
the following sense

() /aijDiuchp +cup < / fo forany ¢ € HOI(BI) and ¢ > 0in B .

B B
If f € L9(By), then u™ € L. (B1). Moreover, there holds for any 6 € (0, 1) and
any p > 0
supu™ < C ————— |t || Lr(s,) + Hf”Lfi(Bl)}
By - ld =

where C = C(n, A, A, p, q) is a positive constant.

In the following we use two approaches to prove this theorem, the one by De
Giorgi and the other by Moser.

PROOF. We first prove for 6 = 1/2 and p = 2.

METHOD 1. Approach by De Giorgi.
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if £ is sufficiently large. Obviously it is true for £ = 0. Suppose it is true for £ — 1.
We write

1+e¢ e
l4¢ @ (ko, ¥o) ko, r0)®  @(ko, ro)
[o(ke—1,re-)] 7 < {ﬁ“} Toypte=lre e

Then we obtain
Cy'*™® ko+F +k e 20079 ko, ro)

: N - [p(ko, ro)]° - ' -
1—1 klte VES yf
Choose y first such that ¢ = 2% Note y > 1 . Next, we need

CVI-HS (p(ko,ro) € ‘ kO+F+k <1
-7 k k -

ke, ry) <

Therefore we choose
k= Cylko+ F + @ (ko, ro)}
for C, large. Let £ — +o00 in (4.4). We conclude

(ko +k,7) =0.

Hence we have

supu” < (Cy + Diko + F + @(ko, ro)} .
Bis

Recall kg = Cllu™| 25,y and @ (ko, o) < lu™ || L2(p,). This finishes the proof.
Next we give the second proof of Theorem 4.1.

METHOD 2. Approach by Moser.

First we explain the idea. By choosing the test function appropriately, we will
estimate the L”! norm of u in a smaller ball by the 72 norm of u for p1 > prina
larger ball, that is,

||M||LP1(B,) = CHMHLPz(B )
for p; > p, and r1 < rp. This is a reversed Holder inequality. As a sacrifice C
behaves hke ——. By iteration and careful choice of {r;} and {p;}, we will obtain
the result.
Forsome k > Oand m > 0, set it = ut + k and

_ U fu <m
Uy = .
k+m ifu>m.
Then we have Dit,, = 0in {u < 0} and {u > m} and ii,, < ii. Set the test function
¢ = (i — k°*') € Hy(B))

for some B8 > 0 and some nonnegative function n € Cé(Bl). Direct calculation
yields
Dy = Bn u’8 'Dii i + n u/3 Dii +2nDn(if i — kP

r

= n?if (BDii,, + Dit) + 2nDn(il i — kP+1y
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We should emphasize that later on we will begin the iteration with B = 0. Note
¢ = 0and Dy = 0in {u < 0}. Hence if we substitute such @ in the equatlon we
integrate in the set {u > 0}. Note also that u™ < 7 and @b — k%! < 727 for
k > 0. First we have by Holder inequality

/aijDiuDj¢ Z/ClijDiﬁ(ﬁDjﬁm + D;iyn*i?
+2/aUD aDin(la — kP+Hy
> xﬁ/nzaﬁwaml%x/n u? |Di)? — /IDiZHDnIﬁ,‘iﬁn

A
zwfn 7 | Dity 2 + 2/77 umlDulz————/IDnlz B2

Hence we obtain by noting i > k

IB/T’ um|Dum| /77 um|Du‘2
{/IDnlzufz /(lcmzuﬁu + 1 fInana }
{/[sz ’Suz—l-/conzufl 2},

where ¢y is defined as

A
H+7

Choose k = || fl ¢ if f is not identically zero. Otherwise choose arbitrary k£ > 0
and eventually let k — 0-+. By assumption we have

leollLs < A+ 1.
_5 -
Set w = i, i. Note

|IDw|* < (1 + B){Bi?

m

|Dit,,|* + a2 | Dal*} .
Therefore we have

/|Dw|2n2 < c{<1+ﬁ>/w2|Dn|2+<1+ﬁ>fcow2n2},
or

/ID(wn)I2 < C{(I + ﬂ)/wlenl: + (1 + 8) /Cgu'zuz} :

Holder inequality implies

[b.& “n- <([ q\ {[(nm\qz—‘?\ A<(J\*l»{/4nw\f—i\ ‘
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By interpolation inequality and Sobolev inequality with 2* = nz—_”—z > q_2_q_1_ > 2 if
q > n/2, we have

Inwll 20 < ellnwli 2 + Cr, @e™ 57 Inwll 2
La—
< el D)2 + C(n, @)s~ =7 [qw]| 12

for any small ¢ > 0. Therefore we obtain

fID(wn)|2§ c{<1+5>fw2|Dn12+<1+ﬁ>f%/wznz}

and in particular

[ID(wn)I2 < C1+ B /(IDnl2 + nHw?,

where « in a positive number depending only on » and g. Sobolev inequality then

implies
(/Mwl“)X < C(1+ﬁ)“f(|DnI2+n2)w2

where x = —%5 > 1 forn > 2 and x > 2 for n = 2. Choose the cut-off function
as follows. For any 0 < r < R < 1 set n € C;(Bg) with the property

2
n=1inB, and ]Dn]fR

Then we obtain

2\ (1+/3)"f ,
fwx §C~——~—~——(R_~r>2 we .
B, Br

Rezcalling the definition of w, we have

!

X
oy - A+8) [ _,_
2 2-8
/u X”;’ix SC(}Q——r)Z uu, .
B, Br

Set y = 8+ 2 > 2. Then we obtain

1

X
_ b
vX - 4
far) scq=g |
B, Br

provided the integral in the right-hand side is bounded. By letting m — 400 we

conclude that
1
- (y —D*\7  _
Wil Lvx(p,y < (Cm Weell L By
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provided ||&ll 1, < 400, where C = C(n, g, A, A) is a positive constant inde-
pendent of y The above estimate suggests that we iterate, beginning with y =2,

as 2, 2y, 2)( ,.... Nowsetfori =0, 1, 2, .
; d __1 1
)/i—2)( an r,—§+§l+—l
Byyi=xyviciandr,_y —r, =1/2"!, wehave fori = 1,2,...,

lidllLv s,y < C(n,q, Ay M) el ri-v s, _ )

provided ||12|[Ly,~_1(3r__1) < +00. Hence by iteration we obtain

i SR |
Nl g,y = C7 % il 2ggyy

in particular
2%

/iﬂX‘ <C /ﬁ2

31/2 Bl
Letting i — +o00 we get

7 7 +
supi < Cliall2py or supu™ < C{llu™||r2p, + k.
Bl/2 BI/Z

Recall the definition of k. This finishes the proof for p = 2.

REMARK 4.2. If the subsolution « is bounded, we may simply take the test
function

¢ =n°@ ' — kP e H(B))
for some B > 0 and some nonnegative function n € Cé(Bl)

Next we discuss the general p case of Theorem 4.1. This is based on a dilation
argument.

Take any R < 1. Define
u(y) = u(Ry) forye B,.

It is easy to see that i satisfies the following equation

/glijDilej(P + Cip < /f(p for any ¢ € HOI(Bl) and ¢ > 0in B;
By B
where

a(y) =a(Ry), &) = R*(Ry) and f(y)= R>f(Ry)
for any y € Bj. Direct calculation shows
laij ooy + 1€ Lacnyy = laijlnongy + szg”C”Lq(li‘ze) < A.

We may apply what we _]USt proved to i in B; and rewrite the result in terms of u.
Hence we obtain for p > 2

sup ut < C ! = ||M+||/P(Rn\ -+ thsll f”/arnn\l
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where C = C(n, X, A, p, q) 1s a positive constant.
The estimate in By can be obtained by applying the above result to Ba_-or(y)
for any y € Bgg. Take R = 1. This is Theorem 4.1 for any 0 € (0, 1) and p > 2.
Now we prove the statement for p € (0, 2). We showed that for any 6 € (0, 1)
and 0 < R < 1 there holds

a_n
||M+HL°°(BQR) <C HU+I|L2(BR) + R4 “f”L(/(BR)}

{m — 0)R]?

- + 9 q .
<C { EEYIE Nu™ 28 + 11 fllL (31)}

For p € (0, 2) we have
[ @ < Wi, Jany
Bgr

Br

and hence by Holder inequality

i, ;"””£ ] - - .
==y o PRSI ( ,“‘ yd,r) [ fllacap ¢
»‘,v,,‘ ¥, - -;

I "
[l —5)R]: ( /""""" 1 fllLocss

-

Bz
Set f(1) = Hu 1=, 5, forr € (0, 1]. Then for any0<r < R <1
I C o
fr) = SRy + ———ju- ezesy + Cll fllLacs,) -
7
- (R—r)?
We apply the following lemma to getforany0 <r < R < |
fry s ———u" s, + Cll flleecsy -
(R—r):
Let R — 1—. We obtain forany 6 < 1
. C
N Hi~ip: < ———5 N ll1os,) + Cllifllzacay -
(I —-6)7
L]

We need the following simple lemma:
LEMMA 4.3. Let f(¢t) > 0 be bounded in [0, T1] with o > 0. Suppose for

To <t <5 <1 wehave

FO) <6f(s)+—2 1 B
(s —p)©

for some 0 € [0, 1). Then for any vy <t < s < 1, there holds

() <cla, 9) {Zs_—Aﬁg+B}'
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PROOF. Fix 19 <t < s < 1. For some 0 < v < 1 we consider the sequence

{t;} defined by tooboe O_ﬂc)&(d
‘,\"'( L

=

to=t and tiy =6+ —-1)T'(s—1).
Note t, = 5. By iteration

k—1

K A - i —ia
f@O=f@) =0 f)+ | g 5a6 -0+ B Ze .
Choose T < 1 such that8t~% < 1, thatis, 8 < t* < 1. As k — oo we have

f(r)_<_c(a,9){ (s—z)‘“+B}.

(I —1)
O

In the rest of this section we use Moser’s iteration to prove a high integrability
result, which is closely related to Theorem 4.1. For the next result we require
n>3.

THEOREM 4.4. Suppose a;; € L®(By) and ¢ € L™?(B;) satisfy the following
assumption:

MEPP < ai; (x)EE < AE]* foranyx € By, £ € R"

for some positive constants A and A. Suppose that u € H'(By) is a subsolution in
the following sense:

/a,JDchp—{—cu(psff(p foranygpeHol(Bl)andcp?_OinBl"
By B

100

If f € Li(B,) for some q € [-=
Moreover, there holds

+ 11
n+2, 2) then u™ € Ll()c(Bl) for F = =

””+”Lq*(31/2) = C{||M+HL2(B1) + ||f|qu(Bl)}

"
where C = C(n, A, A, q, €(K)) is a positive constant with %/'AD
N~
e(K) = / Ik
{lc]>K}

PROOF. Form > 0, set iz = u™t and
_ u ifu<m
U,, = )
" m ifu>m.

Then set the test function
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for some B8 > 0 and some nonnegative function n € C (B)). By similar calcula-
tions as in the proof of Theorem 4.1 we conclude

([ nzxa;,ixw); < C(1+/9){/|Dnl uﬂu2+/|c|n2uﬂ [|f|n2ﬁfiﬁ}

where x = -5 > 1. Holder inequality implies for any K > 0
/Icln uf}u2 <K / nzufluz / Iclnzﬁﬁﬁz
{lc]<K) {lel>K}
2
n n—2
<1</ 2P i? + / 13k (/(nzagﬁz)n%z)
{le|> K}

1
<1</ 2P 2+e(1<)(/nzxaffﬁ72><>x.

Note e(K) — Oas K — +oo since ¢ € L™2(B;). Hence for bounded B we obrain
by choosing large K = K(8)

(/ nZXL:ffazx)Y <C+p) {/(an12+n >ufiu2+/|fm2aﬁﬁ}-

Observe g
~ 7 14t 264 ﬁ

L < i TR = ) T

b
Therefore by Holder inequality again we have forn < 1 @ (EP U:‘-\)

/hﬂﬁ%ﬁi(/wﬂﬁ (/< “ﬂﬁ)+”mwpm“#$%;

B e,
(/szu" ﬁx) + C(e, ﬂ)</|f1q> : Un B
provided ‘%—»
g B+x
which is equivalent to
' q(n —2)
p+2< ——F—.
n—2q

Hence B is required to be bounded, depending only on » and q. Then we obtain

(f X ifx 2X>Y <C {/(IDnlz+n Yiah i + nfuﬁ“}.

By setting y = B 4 2, we have by definition of g*
gn—-2) _q"
&> == X
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We conclude, as before, for any such y in(4.5)andany0O <r < R <1

_ 1 _
(4.6) NillLxr s,y < C{ ——— ey s + ”fHLq(Bl)}
(R—r)7
provided [|it{| v 5y < +00. Again this suggests the iteration 2, 2, 232, ...

For given g € [ni”z, 5), there exists a positive integer k such that

-1 o qn —12) -

2
X n—2q

2x~.
Hence for such k we get by finitely many iterations of (4.6)

||ﬁ|Iszk(33/4) < C{HQHLZ(BI) + ”f“L’I(Bl)}

in particular

L X (B

ull o : < C{W”LRB‘) + ”f”L‘i(Bl)} :
3/4

While with y = £ in (4.6) we obtain

il Loy < CilliEll o
H HLZI (31/2) —_ {H I‘LHT(B3/4)

+ ”f“Lq(Bl)} -
This finishes the proof. O

4.3. Holder Continuity
We first discuss homogeneous equations with no lower-order terms. Consider
Lu= ——D[(CliJ'(.X)DjM) n B,(0) C R"

where aq;; € L°°(B)) satisfies

MEP < a; (x)&:& < AlE]* forallx € Bi(0) and £ € R”
for some positive constants A and A.

DEFINITION 4.5. The function u € HléC(Bl) is called a subsolution (superso-
lution) of the equation
Lu=20
if
/aij DiuD;p < 0(= 0)
By
for all ¢ € H, (B;) and ¢ > 0.

LEMMA 4.6. Let ® CO’I(R) be convex. Then

loc
(1) if u is a subsolution and &' > O, then v = P(u) is also a subsolution
provided v € H!_(B)).
(i1) ifu is a supersolution and &' < 0, then v = ®(u) is a subsolution provided

rrl s



