TRICHOTOMY DYNAMICS OF THE 1-EQUIVARIANT HARMONIC MAP FLOW
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ABSTRACT. For the l-equivariant harmonic map flow from R? into S2

) sin(2v
{vt=uw+[ O ) € B x (10, 400),

2r2
v(r, to) = vo, r € Ry,

we construct global growing, bounded and decaying solutions with the initial data vo(r) satisfying
v0(0) =7 and vo(r) ~7177 as r — 400, > 1.

These global solutions exhibit the following trichotomy long-time asymptotic behavior

=2
t7z Int if 1<y<2,
llor (-, Ol Lo ((0,00)) ~ 1 if v=2, as t — 4oo0.
Int if v>2,

1. INTRODUCTION AND MAIN RESULTS
We consider the harmonic map flow (HMF) from R? into S2
u = Au+ |Vu|?u  in R? x (0, +00),
u(-,0) = ug in R2.

HMF formally corresponds to the negative L2-gradient flow for the Dirichlet energy

e = [ | 19uf

which is decreasing along smooth solutions. A special class of solutions are given by the k-equivariant ansatz
u(re®,t) = ( cos (k@) sin v, sin(k#) sin v, cos v) ,

and thus HMF gets reduced to a scalar equation for the polar angle

1 k? sin(2v)
V¢ = Upp + —=Vp — —(———,
r 2r2

v(r,0) = vy, reRy.

(7’, t) € R+ X R+

(1.1)

In the energy critical dimension n = 2, the scaling invariance of the Dirichlet energy £[u] gives rise to the
energy concentration and a natural question of singularity formation versus global regularity. Asymptotic profile
decomposition has been studied in seminal works by Struwe [31], Qing [24], Ding-Tian [5], Wang [35], Qing-
Tian [25] and Topping [33]. In a recent work [14], Jendrej and Lawrie proved that the bubble decomposition in
the k-equivariant class can be in fact taken continuously in time. Finite time blow-up for the two-dimensional
HMF has also received much attention since the work by Chang, Ding and Ye [2]. Formal prediction of singularity
with quantized blow-up rates was made by van den Berg, Hulshof and King [34], and this was later rigorously
proved by Raphaél and Schweyer [28,29]. Beyond the equivariant class, multi-bubble blow-up at finite time was
constructed recently by Dévila, del Pino and Wei [3].

HMF is a borderline case of the Landau-Lifshitz-Gilbert equation (LLG)
up = a(Au+ |[Vul?u) +bu AAu, a®> +b* =1, a>0, bR,

which models the evolution of isotropic ferromagnetic spin fields. A series of works by Gustafson, Kang,

Nakanishi and Tsai (in various combinations) [11-13] aimed at investigating the behavior of the solutions to

LLG near k-equivariant harmonic maps. They found, among other things, that there is no finite time singularity
1
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for LLG with £ > 3 and for HMF with k& = 2 near k-equivariant harmonic maps. Intriguingly, in the 2-equivariant
case, they classified the dynamics of scaling parameter u(t) of the map as

2 Vi (s)
log pu(t) ~ = ds, 1.2
ogu(t) ~ = [ 2 as (12)
yielding trichotomy dynamics:asymptotical stability, infinite time blow-up and eternal oscillation, see [13, The-

orem 1.2]. Here, vy (r) is the first entry of the initial degree 2 map. However, the 1-equivariant case is left open,
due to the very slow spatial decay of the harmonic map components. The goal of this paper is to fill this gap.

In this paper, we consider the two-dimensional HMF into S? in the l-equivariant class

Lo sin(2v)
V¢ = Upyp -_—
oy 2r2 7

v(r,to) = vo, reRy,

(r,t) € Ry X (g, +00), (1.3)

where ty > 0 is some large initial time. The aim of the paper is to understand possible long-term behavior of
(1.3), and the main result stated below depends precisely on the power decay rate of the initial data vo.

Theorem 1.1. For tq sufficiently large, there exist initial data vo(r) with vo(0) = m and vo(r) ~ r*=7 as
t — oo for any v > 1 such that the global solutions to (1.3) satisfy the following

T Int if 1<y<2,
lor- (5 )l Lo (j0,00)) ~ § 1 if v=2, as t — +oo.
Int if v>2,

More precisely, the polar angle v takes the form

olrit) ~n (2 ) [ = 2anctan (5 )

with
T (Int)"t, 1<y<2,
u(t) ~ la Y= 2,
(Int)~1, v > 2.

Here n is a cut-off function.

Our study of the long-time behavior is in fact motivated by a notable connection between the critical Fujita
equation in R*

up = Au + u? %n Ri x Ry (1.4)
u(+,0) = uo in R
and the HMF with 1-equivariant symmetry. This connection has already been observed in [3,28,30], and these

two equations share similar structure in certain sense. Roughly speaking, these two equations are both energy

critical, and the HMF with l-equivariant symmetry can be viewed as a four-dimensional heat equation in the

remote region. In [0], Fila and King proposed a diagram and conjectured that the long-time asymptotics of

threshold solutions to (1.4) are determined by the power decay rate of the initial data in a rather precise manner.

More precisely, they conjectured that for

ut:Au+|u\ﬁu, zeRN, t>0, (15)
u(z,0) = uo(z), reRN ’

with initial data |ug| ~ ()7, the |lu(:, t)|| Lo zv)-norm of threshold solution obeys
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N2 cy<2] 4=2 |§>2
N=3 e ti(Int)~1 | t3
N=4| ¢t Int 1 Int
N=5| ¢ (Int)~3 1

In particular, the trichotomy constructed in Theorem 1.1 can be viewed as an analogue of the Fila-King diagram
in R%. Recently, global unbounded solutions for Fujita equation (1.5) in R® and R* have been rigorously
constructed in [4, 37], confirming the existence of upper off-diagonal entries in above diagram (including a
sub-case 1 < 4 < 2 when N = 3). The global decaying solutions in R will be constructed in a forthcoming
work [21].

In the case of the disk with Dirichlet boundary, the infinite-time bubbling of 1-equivariant HMF and Fujita
equation have been studied by Angenent-Hulshof [1] and by Galaktionov-King [9], respectively. Their methods
and techniques include a careful formal matching of asymptotic expansions and the use of sub- and super-
solutions. On the other hand, the global decaying threshold and non-threshold solutions of Fujita equation
have been studied extensively, see [7,8, 10, 15,16,20,22,23 26,32] as well as a comprehensive book by Quittner
and Souplet [27] and the references therein. Finally we should also mention some related interesting work on
threshold dynamics for energy-critical wave equation by Krieger, Nakanishi and Schlag in [17-19].

The method of our construction is different from those used in aforementioned references, and this seems to
be the first gluing construction of decaying solutions. In contrast to the local dynamics (1.2) when k = 2, the
slow spatial decay for the l-equivariant case in fact triggers a subtle non-local dynamics of the dilation. The
heart of the construction is a non-local dynamics, analogous to (1.2), governing the scaling parameter pu(t) in a
unified way:

t—p?(t) ¢ t
/ fils) ds+ uit) ~2C,v4(t), Vv > 1. (1.6)
/2 t — S t
[ |1 [ |
=1 =1y =T
Here, I, is in fact from a non-local correction dealing with the slow spatial decay. Such non-local/global feature
usually appears in lower dimensional problems and was first observed in [3,4]. The second term I comes from

a self-similar correction improving the error in the intermediate region, and the last term Ij. is the contribution
from the initial condition vy whose expression depends only on 7 (cf. (2.4)). The trichotomy in Theorem 1.1
is captured by approximating the non-local problem by a leading ODE, but the solvability of the full non-local
problem is rather involved.

The rest of the paper is devoted to the construction of Theorem 1.1.

Notation: For admissiable functions g(x), h(z,t), denote

x 7/2
(Tw0.g) (2,1, t9) = (4t) % / e EH g(y)dy, (T g) (@t t0) / / 55 h(y, 5)dyds.

We write a S b (a 2 b) if there exists a constant C' > 0 such that a < C’b (a > Cb) where C is independent
of t, to. Set a ~bif b < a < b. The Japanese bracket denotes (x) = /|z|% + 1.

2. APPROXIMATION AND CORRECTIONS

The first approximation is built on the one parameter family of steady states to the scalar equation (1.1)

Q, = ™ — 2arctan (;), u > 0.

Then we have
8p?

4p(p* — 1)
(0% +1)*

Sin(ZQM) - (p2+1)2 9

cos(2Q,,) — 1=
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Define the cut-off function 7 as n(r) = 1 for 0 < r < 1 and n(r) = 0 for r > 2. We take the first approximate

solution of the flow (1.1) to be
r
Ve =1 (\/Z) Q/u M= ,U/(t)v

1 sin(2v)
E = rr Uy — —5 5 -
[v] v + Upp + v 572

and define the error operator as

Let us write

Then we have

Elu] = 5 io0,Qun() + 10" (:)0u -+~ ()0,

t
r 1 , sin(2Q,)  sin(2n(2)Qu)
+(%¢¥+mﬁ>n@w“+m@ %2 92
-1 20— — e+ 2 (s L)y
= D ) ) (57 + o7 ) 7 -
=2
1, 2 2 2 r 1, 2
w1 (@ 2) + 2o (0,0t 5 ) + (5 + 7)) (@ 2)
:=E22

n n(z)singigu) B sin(2g7(:;;)QM)

Denote & := &1 + E22. We add two corrections ®; and P, to transfer the error £;, & of slow spatial decay,
where

1 1
0;®1 = 0pr @1 + ;37«‘131 - 72‘1’1 + &1, (2.2)
1 1
0Py = 0., Py + ;8,,(1)2 — r—2<I)2 + &s. (2.3)
On the other hand, the contribution from the initial data vg is also important. Set
1 1
at\I’* = 37-7-\11* + ;8,\11* — ’]"72\11*7 \I/*(T, O) = 7"<7">7FY
where
re; —y|?
V() = (), () = ()7 [ )y
R4
e; =[1,0,0,0]. For t > 1, by [21], the leading term from the Cauchy data is given by
_ _Ww?2 o
amt)™ [ 5 )7y = 0 (0(C 49, (0)
where ,
=3, v <4 (4m) =2 [ e |2 77dz, v < 4
v, (t) = 2 In(1+1), y=4, C,=q @4nr) *Ls3 v=4 (2.4)
=2, v >4, (4m) " [oaly) 7 dy v >4,
t=1 v <2
t=1{Int), y=2
T, 2<y<4
g,(0) = O({ im(1+1)7", =1
t%, v <6
t~1(Int), v=6
t—! v>6
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The remainder term is bounded by

mpel yl? _w? _
2/ ( —e 4t><y> ”dy‘
R4

1 2 _ .
2/ / UL —(Ouper —y) - ppey ()~ d0dy
R4 Jo 2t

47rt
47rt

1
< ppt” 3 /4/ o~ ) by S ot o (1),
R% JO

Thus we have
Ve = 05 (8)(Cy + 4(£)) + O(ppt ™2, (1)). (2.5)

As the leading term of pu, o is written as

(1-DHy-1 204 F ()Y, 1<y<2
po(t) = < 2C, + (Int) 1, y=2 (2.6)
(Int)=1, v > 2

and we make the ansatz pu(t) ~ uo(t), pu(t) ~ fo(t) throughout this paper. The rigorous derivation about the
dynamics of g is given in section 3.

2.1. Non-local corrections. Set ®; = r¢;, i = 1,2. Then for the purpose of finding the solutions of (2.2) and
(2.3), it suffices to consider

3

at@i = Orr®; + ;8TSD'L + T‘_lgi.

Notice that
—2u~

1 _
r 51 = 7#_2 2 1
Denote ¢ = 1 + 2. By the same argument for deriving [37, Corollary 2.3], ¢; is given by Duhamel’s formula
_ t
pr="Tye (r &) (nt, 50);

the leading term of 9 is given by the self-similar solution and the rest smaller error is solved by Duhamel’s
formula. One making more accurate convolution estimate in the second estimate in p8 [37], ¢ has the exponential
spatial decay for any fixed time ¢. The properties of ¢ are described by the following proposition.

2

Proposition 2.1. Assume py satisfies |p| < 5, || < |”|. We have

@l (In(u=t2))  if r<p
(elull S (™ a1, pyp, + 4 IEIGG1)) o p<r <
tl|r—2e 1o if > ts

2

N | 2
+O(pr e i 4 e T +glule L

where ¢1 > 0 is a small constant and
t

ol = O(t*/m(s—l 3(s) + sli(s)])ds ).

[l + ] = elul| S (OUmlt™) + gl m)) 1 1,
t Al e2))if <
4+ sup (Im( ) |M1 ‘ |l (In(r 1t2> if p<r<t:
nelt/2n ()

t\u|r et if > t2

t
+o( sup ()l + ( sup Iul(t1)|+t2/

2 2
5|1 (s d8>€7017+§/~hﬂ1 61‘”>1 1
t1€[t/2,t] t1€[t/2,t] to/2 | ( )| [ } {r>2t2}

n(z), r &1 =2t (270" (2)+ 272 (2) — 270/ (2)), r'€n=0 (t_?’u‘g’l{ﬁgrg\/;}) .
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where
N —oflallnt s lpa(t)] | | (t)[2
alp ] = O(Jpfnt sup (5= + Tar) )
| T I N L TS N o B O]
+O('“'t155}2,ﬂ( @ o) // (a0t i (Vi + ) ).

More precisely,

tfp,g y
B B (s _ . T
ol = [ =2 ([ 7 E ) 4 O 2 i L)+ 01,y

/2 t—s }

’7‘2 t ’F2
+ O(;Ar*267m 4+ /to/2 S2|/:L(S)|d8 +g[‘u]e*ﬁ)1{r>2t%}7
t—pf s
elp+ ] —plu] = [—21(u1t1 +/ i )ds)
t/2 t—s
- . lpa(t)] | Lo (t) ]\ r ~
+ 0|l + 1l sup + ) D) gl ] |1,
. | |t16[t/2,t] p(t) |Au(t)] )u ]| L oty

2 t/2 2
+O( sup ()l I 4070 (1 sup ()| + / i (s)lds ) + e~ gl ml) 1, -
t1€[t/2,1] t1€[t/2,8] to/2 {r>2t2}

Using the ansatz p(t) ~ po(t), f(t) ~ fo(t), then
t=2(lnt)", 1<y<?2

glul ~ St~ (Int)=%, v =2 ~ |fuo. (2.7)
t71(Int)"%, y>2

73, r < o
2 (Int) " Hin(r1t2)), po<r <tz if 1<y<2
373 (Int)~1r=9, r> 13
el S Q Jtt r<i .
~ ) =2
t2r=6 > tz F
(tlnt)~!, r<tz .
) > 2.
2(Int)~tr=6, >tz A

3. FURTHER ELLIPTIC IMPROVEMENT AND THE LEADING DYNAMICS OF THE u(t)

In order to improve the time decay of the error, we will introduce ®, by solving the linearized elliptic equation.
Let us first denote
v1(r,t) == n(2)Qu + P1 + P2+ W, + 1(42) D,

where 7(4z) is used to restrict the influence of ®. in the self-similar region. Then we compute

Blor) = = 00 (0(42)2) + Oy (1(42)0) + 1.0, (1(42)0.) + 5 (81 + &3 + )

Sn2(0(:)Q, B a4 Ve k(1P | sin20,)
2r2 M2

= — 0y (n(42)®e) + Ory (n(42) Q) + %ar (n(42)®.) — 7](42)%(1)@

T
_n(z)%

(®1 + P2+ V.) + Ee
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where
E.:=—- 77(@% [sin[2(Qu + @1+ Do+ U, +1(42)P.)] — sin(2Q ) — cos(2Q,,)2 (P1 + P2 + W, + 1(42) D)
+ % { —sin[2(n(2)Qy + @1 + P2 + V. +n(42)P.)] + 1(2) sin[2(Q, + Py + P2 + U, +1(42)2. )]

+2(1=n(2) (1 + Pa + Vs |

Roughly speaking, we will choose ®.(p,t) which solves

cos(TZQQM) B, ~ n(z)COS(QQ“) -1

2 (@1 + @2 + V),

1
arr(be + 78’!‘¢6 -
r

namely

4 2 B
%‘Pe ~ ”(%)Hﬁ () (12, 1) + tu (o, 1)) -

The linearly independent kernels Z, Z of the homogeneous part satisfying the Wronskian WI[Z, 2] = p " are
given as follows:

1
0pp®e + ;8,)(1)6 -

o =Pt +4pPIn(p) — 1
Let us write the orthogonality
T O L R T e
= [T s e )+ v, ) .
oVt (pP+1)? ’ e

By (2.5) and Proposition 2.1, we have

B oo ) 8p3 4 = t—pd H(S)
Mt = [ o 2 (e f, i)
+ O + i min{p.Ine)) + gD do

< up. 8p° 1
[ ) s (€ + 00 (0) + Ot 1) o

~ (' /t/;uo ) 1) (1 0= ) + Ot~ m(e5 ™) + Jil) + gl

0, (0(Cy + g5(8)) (24 Ot ™) 7)) + Ot~ o, (1),
Singling out the leading terms, we then have
tf,u,g .
ut=! + / ) e m 200 (1), (3.3)
t/2 t — S

Based on this, we now derive the leading term g of the scaling parameter p. For pg(t) with the form pg(t) =
c1tt7Po(Int) =1 with pg < 1, we have

f1o(t) = c1(1 = po)t P (Int) " [1 — (1 —po) ' (Int)~].
For t; < %, one has

2
rg(®)
1,%

t—pp(t) | y
/ Mo(s)dsz/ #o(tz)dz
¢ t—s a 1-=2

1

=c1(1 —po)t™?° ﬂl (1- z)_lz_pD (ln(tz))_1 [1 -—(1- po)_l(ln(tz))_l] dz

t

— er(1 = po)(2po — D7 + O (Int) " In(Int)),
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where we have used the following estimates in the last step
1 u%t(f)

. (1—2)"'27Po(In(tz)) " 'dz
t 1—@ 1—@
= (Int)™ /Ll (1—2)"e7dz + / (1— 27"z ((In(t2)) ™" = (Int)~!) dz

t1
T

2 2
L5 () k()
1—20 7 1_0f

= (Int)™* / t (1—2)"tdz + (lnt)_l/ (1—2)"" (277 —1)dz
2% 121
IG)
: —Inz
1— z)"1yPo
+/ft1 (1=2)"" (Int+1Inz)Int :

= (Int)™' [ —In(t pd(t)) + In(1 — ttl)> +O((Int)™h)

= (Int)" " | —In(cft* 2P (Int) =) + In(1 — ttl)) +O0((Int)™)

n(c%) —(1—2pp)Int+2In(lnt) 4+ In(1 — tltfl)) + O((In t)fl)

= (Int)~" (-1
O((Int)"!In(Int));

N N

=2po— 1+
and
1- 440
) (1—2)"t27P(In(tz))2dz = O((Int)™")
since
(1 2)~1270 (In(t2))~2d> = o<<1nt>—2)/ (1—2)~dz = O((In 1)),
/2 (1= 2)" 2P (In(t2)) ~2dz ~ / 2P (In(tz))"2dz = P01 / a~™(Ina)"2da = O((Int)"2).

e For 1 < < 2, in order to balance out
et P (Int) "t 4 er(1—po)(2po — 1)t P + O (¢ (Int) ' In(Int)) ~ 2C,v,(2),

we take

2o |2

L a=(0-D" -1 20,

Po = 9

This then implies
pot) = (1= )7 (7= 1720, (),

and

—(uot_l + /t/Q g ’ﬂ‘? ds) + 20, ()(Cy + g4(1) = O (t—%(lnzt)—1 lnlnt) = O (Inlnt|fo)).

e For v = 2, in order to balance out
t—pd - s
pt+ [ b 0,00+ g, 0),
t/2 s

we choose
po =20, + (Int) ™t

Then

_ -1 D fig(s) _ ~1 —2 _ :
pot™ " + — ds) + 20, (t)(Cy + g4(t)) = O (¢ (Int) *Inlnt) = O (Inlnt|sy).
t/2 -

e For v > 2, by the same argument in [37, section 2.3], a good approximation is

po = (Int)™!
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and

—(,uot_l + /:2_“0 fio(s) ds) + 20, (£)(Cy + g4(t)) = O (t 7' (Int) *Inlnt) = O (Inlnt|so)) .

t—s
In conclusion, the non-local problem (3.3) has a good approximation of the form
(1-D)Hy-1 20t 2 ()Y, 1<y<2
po(t) = 4 2C, + (Int)~1, y=2 (3.4)
(Int)~t, v > 2,
where the constant C., is defined in (2.4).
By the same argument in [37, section 2.3], we are able to perform several iterations to find fig satisfying
fig ~ po and jig ~ fio such that
Mljio] = O(t™?).
Combining Proposition 2.1, for u = fig + p1, with |u1] < “0 , ] < |“0| , we have

t—p?
i+ = [ =2+ [ ) 1) 1 02+ i mind ) + ol

{r<2e)
2 t 2 1
+ O(l“"i%im +r7° / s?|1(s)|ds + g[ﬂ]eiﬁ>1{r>2t2 } + 0y (0)(Cy + 94(t)) + O(upt™2v4(1))
to/2 (3.5)

t—ug
_ _ H1(S _ . .
_ {2 put 1+/ £d5)+0(uot 2r2)+|u0|m1n{<p>,lnt})]1{r§2té}

t/2 t—s

r2 . _ .
+ O (por ™25 il 0)L, 4+ Opopt s (6) 40 (nntljo)).

where we have used (2.7).

Since fig is determined, we are now able to describe @, rigorously for the computations of new error later.
ks

Set p = ;- and consider ¢, = . (p,t) solving

1 pt—6p2+1_ -
9pp®Pe + gaﬁq)e T RRELIE T H(p,t)
where (P2
. fopy  —8p e o . nip)Z2(p
H(p, s (Pl pit) + ¥u(fop, t)) + oM .
(7 8) = Bon(" ) 3 1yz (Plol(Fop: 1) + u(fiop, ) + fio Mol P o) 22(0)ds
®, is taken as )
~ L
d.(p,t) :Z(ﬁ)/ H(z,t)Z(z)xdx — Z / H(z,t)Z(x)zdz.
0
By the definition of M|fig], one clearly has
/ H(z,t)Z(z)xdz = 0. (3.6)
By Proposition 2.1, for 1 < v < 2,
= _op, —8p 1 -1 /t_ug fio(s)
H(p,t) = — ) == | — 2 t d
(p7 ) /1’07]( P )(132 + 1)2 { |: (MO + 12 f— s 3)
+Olgar™(gop)? + || min{p. In1}) + gl
_1 _ _ Z(p)p
+ 05 ()(Cy + g4 (1) + Ofiopt ™ 2vy () p + 0Ot ) — ”(p) (P)p
fo Z2(z)xdx

__ fiop, —8p L2 a1 e =1 - =2y 1(P)Z(P)
_uon(%)m(oa (Int)"'In(nt)) + O(t~3 (Int) p))—|—,u00(t )f

Thus

7;\
i

[H| S pon(=55)p(p) =t (Int) ™" In(lnt).

<
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Similarly, for v = 2, we have

5 pop,  —8p -1 —2 1 -2 - -2
H —_— | In(1 1
[H| = |fon( \[)(p 1) (O (t7 () In(lnt)) + O (t~'(Int)~*p)) + AO(t™?)
< 1on(MOP\ 505 3 (In )2 In(In t
pon(—=)p(p) (Int)~" In(Int).
NG
For v > 2, we have
|H| = /,Lon(ﬁ)i (O (t7*(Int)"*In(Int)) + O (t"*(Int)3p)) + Ot )
Vit (p?+1)?
< non(“)ptp) 2 (1) 2 n(in ).
Vi
Using the rough estimates in Proposition 2.1, another upper bound of H is given by
plp) 42, 1<vy<2
Hop N4,
H| < 41 =2
[H| < pon( \/E) 29 ; gl

p(p) 4 t(Int)"L, 4> 2.

Combining the above two upper bounds, H is then bounded by

~ (min{p(p) "4t~ 3, 5(p) 33 (Int) ! In(Int)}, 1<y<?2

|H| S uon(l%p) min {p(p) = 1,ﬁ<ﬁ>*3t*1(lnt)*2ln(lnt)}, =2

min {p(p) =4t~ (Int)~1, p(p) 3¢t~ (Int)"2In(Int)}, ~>2.

Using (3.6), we have
min {t*% p)'In(p+2),t"2(Int)" In Int}, l<y<?2
(0)10p@e| +|Pe| S p0p*(p)~* { min {¢t~(p) " In(p +2),t " (Int) 2 Inlnt}, =2
min {¢t~*(In¢)"*(p) ' In(p + 2),t"'(Int)2Inlnt}, ~>2.
By the same argument in [37, (2.28)], we also have

=nt(p) 'n(p+2), 1<y<2
0:Pe| S pop(p) > {2 Int(p) FIn(p+2),  y=2
t=2(p) "' In(p +2), v > 2.

3.1. New error. We now use the expression of ¢, to compute the new error.

E[v,]
2r 16 8 114
=®.n'(42)—5 —n4 P —n"(42)® —'(4 P ~——n'(42)®
en'( 2) g —n(42) 0% + 1y (42) e+\/¥n( )0, e+r\/zn( z)®e
1 2 2 -1
+ 77(42)87"7’(1)6 + 77(42);87“(1)6 - 77(42)%@6 - 77(2)% (él + (I)Z + \I’*)

(3.7)

(=) 5 g O2(Qu + B+ By 4 W p(42)2,)] — 5n(2Q,) — c05(2Q,)2 (1 + By + V. +7(42)8,)]

+ L [ —sin[2(n(2)Qu + 1 + P2 + U, + n(42) P )| + n(2) sin[2(Qp + 1 + P2 + U, + n(42)P,)]

92
+2(1=n(2) (@1+ @2 + 1) |

8 14,
Z 0 (42)0,®, + ——1 (42)®,
\/in(Z) rﬁn(Z)

COS(;?MO)‘I’E) N 77(42)/352 (_ cos(2Q,)

2 16
= <I>e77’(4z)t—§ —n(42)0;P, + 777"(42)(1)@ +

+n(42)fig (appcp +Lo,0,

cos(2Q,) —

r2

EQCOS(QQMO) ‘I’e)

—n(z) (‘Pl + 0,4+ 0,
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(=) 55 SO2(Qu + B+ By + W p(42)2,)] — 5n(2Q,) — c05(2Q,)2 (1 + @ + Ve +7(42)8,)]

+ % [ —sin2(n(2)Qu + @1 + ©2 + U + 1(42)®)] + 1(2) sin[2(Q, + P1 + o + U, + n(42)D.)]

+2(1—n(2) (&1 + @+ 0,) |

8 , 14,
Z 0 (42)0,®, + = —1n (42)®,
\/in(Z) T\/in(Z)

+ n(42)ig " ln(Z) (/—)Q_Eﬁl)Q (pliol(r,t) + u(r,)) + Mlfio f ”(P)Z(/;)xdx]

cos(2Qz,) o )

2r 16
.1’ (42) i n(42)0;®. + " 0" (42)®, +
2

L8 L cos2Q,) —
! s (ol )+ e

—n(z )212 [Sin[2(Q + @1 + P2 + U, +1(42) @, )] — sin(2Q,) — c05(2Q,.)2 (P1 + 2 + U, + n(42)D.)]

ﬁ2

L1
2r2

+2(1-n(:)) (@1 + 22+ L) |

— SIn2(7(2)Q + By + o + V. +(42)8)] +1(2) sin2(Q, + D1 + Do+ T + (42)0,)

2 16 8 4
_ <I>en’(4z)t—§ — 1(42)0,®. + —n(42) @ + —1/ (42)0, @ L1 i (42)®,
2

v P
__ —8p 8p
+n(42) g 1W (pliol(r,t) + u(r,t)) + n(2)p m (plpl(rt) + Pu(r,t))
+ n(42) g Mo f n(p)Z(p)xdx (4o (_ cos(2Q,,) ;;os(mﬁo) <I>e>
0

—n(z )212 [bm[ (Qu+ P14+ Do+ W, +7(42)P.)] — sin(2Q,) — cos(2Q,,)2 (P + P2 + ¥, + 7(42) D)

+1[
22

+2(1-n(:)) (@1 + @2+ L) .

— SIn2((2) Q. + By + o + V. +(42)@.)] +1(2) sin2(Q, + By + Do+ T, + 7(42)0,)

Since

_ 1 8
Ao 2 i) (plpo](r,t) + u(r 1)) + n(2)p R (lp(r,t) + Pu(r,1))

= (42) =02 " oy g (Pl t) + (1)

1 8 1 8 _
e (m L n fl)2> (plio 1) + .1)

8p
(pP*+1)

+n(z)p 5 (@lu(r,t) — elfo] (r,1))

with p = jig + p1, we can write

.8 85 )
E[vl] = 77(42)8t‘1>e + 77(2) <:u_ (p2 fl)2 — Ho ! ([72 f1)2> (@[MO](T’ t) + 1/)*(7"7 t))

5 (Plul(r, 1) — ¢liio] (r; 1)) + By + Ee

WZ0) 50 (~l200) =20y, )

-1 8p
(p*+1)

+1(42)fig " Mol

+n(z)p
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where 2 16 8 14
By i= ol (42) 7 + 0" (42) %+ o (42)0,0 + o (422
- (1(42) — () g P (Lol (1) + 1 (1, 1))

N ZESE

4. GLUING SYSTEM

(3.9)

Having improved spatial decay by non-local corrections and time decay by solving the linearized elliptic
equation, we are now ready to formulate the gluing system to deal with the remaining errors. We introduce the

correction term
U(r,t) +nr(p)é(pt), p=p'r

where 7 is a smooth cut-off fuention and 0 <7 <1, n(s) =1 for s < 1 and 7(s) = 0 for s > 2; nr(p)

with R depending on time and to be determined later. Recall that
vi(r,t) =n(2)Qu + ®1 + o + ¥, + n(42)P..
Then
Elor +¥(r,t) +nr(p)o(p,1)]

= 8’!‘7‘ (\II + UR(PW(Pa t)) + %8r (\II + ﬁR(PW(Pa t)) - 875 (\II + UR(PW(/JG t))

sin (2v1) —sin (2 (v1 + ¥ + Ngo))
+ 2r2

= 0,0 1" (2 7 (BR) 26+ 2(uR)” (2 7)00® + i 0pp$
L qu
p

+ E[v1]

+ ;&«\If + n’(ﬁ)u‘Q(pR)‘ ¢+ Nrp

pp (pR
R)R( R)<b NrOrd + NrPO,dp " fo

sin (2v1) —sin (2 (vy + ¥ + nr9))
+
2r2
1

QU 40, U+ 00— —
T r

— 0 +1(

+ E'[v1]

2 (pR) 6+ 2uR)™ ol (20,64 of (£) 2 V0D

1Py P\
R’'R uR
_ 06 . pt— 6%
— RO + NRW 20ppd + nrp > — 2%mz¢>+mw
P (p* +1)
8 1)

_ 1 Ly B
(02 + 1) 5 os(2Qu) ¥ — 7 (n(z) — 1)

ZNHR) 2640 (4

+77//(R R

-2

+ (1 =)

p*(p* +1)
+Tz

+1(2)sin (2(Qu + @1+ P2+ Vo +0(42)P + ¥ + 1ro))
—sin (2 (n(2)Qu + @1 + P2+ . + ()0, + ¥ +1ro)) |

n(2)

!
¢+ nrpOpdp " fi

sin (2 (n(z)Qu + @1+ Do + Wy + 77(43)(1)6)) —n(2)sin (2 (Qu + @1+ Do + Uy + 77(43)(1)6))

=n(R~p)

+ —{ sin (2(Qu + @1+ P2+ U, +1(42)P)) — sin(2Q,) — 2c0s(2Q,,) (P1 + P2 + U, + n(42)P,)

2 2
— [sm 2(Qu+ 21+ P2+ T, +n(42)0. + ¥ +nro)) —sin(2Q,)
—2¢08(2Q,) (B + By + U, +1(42)D, + T + ans)} } + E[u],
where we have used

oz [ Q) + By + By + WL 4 (42)2,)
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—sin (2 (7(2)Qu + @1 + P2 + U +n(42)P. + ¥ + 7]R¢))}

- _ % c0s(2Q,) (¥ + nro)

+ % sin (2((2)Qu + @1 4+ P2 + Y, +1(42)P.)) — n(2)sin (2(Q, + P1 + P2 + ¥, + 1(42)D.))
( ) ( (Qu+q)1 +(I)2+\IJ* +77(4Z)‘I)e+\11+77R¢))

= sin (2 (0(2)Qu + @1 + B2 + W, +0(d2) @ + ¥+ 7ro)) |
z)

+ %{ sin (2(Qu + @1+ P2 + U, +1(42)P.)) —sin(2Q,) — 2¢c0s(2Q,) (P1 + P2 + ¥, + 1(42) D)

— [0 (2(Qu + @1 + B2 + Vo +9(42)®, + U +116)) — sin(2Q,)

—2c08(2Q,) (P1 + P2 + U, +n(42)®. + T + nmb)] }

In order to make E [v1 + U(r,t) + nr(p)d(p,t)] = 0, it suffices to solve the following gluing system.
e The outer problem:

oV = 9,V + 18,.\11 — iz\ll +3g (4.1)
T T
where
8
=(1- -2_ 7
G:=(1—-nr)p R
R /
ol (B )20+ (o)™ + 2uB) ol ()00 +of ()2 L
n(z) -1 s pt—6p2 +1
= eos(2Qu) ¥ —u" (n(2) — 1 E RO

b b S QM+ 1+ o W4 (12)00) — () sin (2(Qy + By + o . 4 (12)80))
+n(z)sin (2(Qu + ®1 + P2 + U, +1(42)Pc + U + 1go))

— S0 (2(0(2)Qu + @1 + By + U, +9(42) 0 + U +780)) |
z)

+ 2(—2{ sin (2(Qu + @1+ P2+ ¥, +1(42)P.)) —sin(2Q,) — 2¢c0s(2Q,) (P1 + P2 + ¥, + 1(42) D)

- [Sln( (Qp, + (I)l + ‘1)2 + ‘IJ* + 77(42)(1)6 + ¥+ 77R¢)) - Sin(QQu)

~2008(2Q,) (@1 + D3 + W+ 9(42) @ + ¥ +130) | } + (1= np) B o],

(4.2)
and E [v;] is defined in (3.8).
e The inner problem:
2 Op pt —6p” +1 8 2
w0rp =0,,0 + 7¢+,u,up6¢+7\1'+u Eln], p<2R. 4.3
op P 2 (0 + 1)2 2 (0 + 1)2 (4.3)
For the dealing of inner problem, it will be more convenient to use the (p, 7) variables with
. 7 Int)?, 1<y<2
T(t) = / p2(s)ds + Crtop2(to) ~ { t, v=2 (4.4)

fo t(Int)?, v > 2,

where C; is a large constant.
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5. ORTHOGONAL EQUATION

In this section, we formulate the orthogonal equation for p;. Such orthogonality is required for finding
well-behaved inner solution (see the linear theory given in Appendix B). The orthogonal equation is given by

Ro 8 5 —eo 8 2 _
/0 (Wwﬂ E[vll) 2()pdp+ OBy “)er | oy ¥+ W E ]| =0 (5-1)

where ¢, is given in Proposition B.2.
Notice that

e P P _ _ (20 —a+c)p**? + (c—a)p”

_ _ ,c1 14+0 1
Ky By e m i 0wTm) (v + 1)
since for
c__ Py r .
) =ps—L0 pyi= L =t (1— O =p—(1—0
f(0) = g e P gy fei o ( Yo = — ( )i
we have
o & o1, P§[(2b—a)pj - a]
F0) = cpg 5t + g
0= et Gy e T
e -1 (20 —a+c)p"** + (c—a)p®
= (140 ) RS :
By (3.5) and Proposition 2.1, for Rop < t2, we have
fio 1 8p
; no 1)2 (elu)(r,t) + ¥u(r,t) — Bg m(@[ﬂo](ﬁt)ﬂLw*(ﬁt)) Z(p)pdp

s . 8u'p  8p'p i
— /O [m (elu](r,t) — olpo](r, 1)) + ((;;2 7@ i 1)2> (olio] (r,t) + s (r, t))]z(p)pdp

Ro -1 - - t—pd 1 (s)
:_/0 {(52/~L+1,0)2[_2 1(M1t 1+//2 'l:_isds)
(Iul((ttl))l |lﬁo(fl)>||);;))+g[“°’“1]}

+O(Jm[t™2% + lfio|  sup

ti€[t/2,t]
2p% —2
802 (14 0( 1)) =L O (ot =) + |fio| min{ (p), In t}
(p*+1)
1 p2
+ Olpopt™ 4o, (1)) + O (nn o)) | Sl

Ro t*,ug .
_ / _8& { 2t / md$>
0 (p2+1) tj2 t—s

- - t)| | ()] o
+O( |t 2ugp* + sup |M_1( + = + §lfto,
(|1u’1| HoP |M0‘ trelt/2.1 ( NO(t) |,U0(t)| )p) [NO ﬂl]

20% — 2p
(p® +1)°

+ Olpuopt™ b, (1)) + O (nntljio) | }

+ 80 (L4 O u)) [O(Mﬂf‘zuﬁpz) + |20 min{ (p), In ¢}

2

0
p?+1

= ul{ — (1+O(Ry?)) (ulfl + /t”g L(S)ds)

t/2 t_S

dp

| (th)] . |/l1(t1)|>)

O 7242 In Ry + | su -

t1€[t/2,t]
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. ()| | [ (t)]N2
+ O Int su + =
(|ﬂ0| t1€[t/%,t]< fo(t) lf10(t)] ) )

ol [ s (B0 B

+ i (L4 O™ ) [O (rot™pg In Ro + |10]) + O (Motfévw(t)) +0 (lnlnﬂﬂo\)} }7

|fig ' Mlfio)| S pg 't 2

By (3.7), one has
Ro __ cos(2 — cos(2Qz, Ro _ _ —3.
[ ey (- L= ) () = [0 (a1l 5)) dp = O (ol ).

The contribution from the outer problem is given by

Ro 8 Ro 3
——ApY(A )pd A A
/O TR pb(Ap, 1) Z(p)pdp = / 31/)( pst)dp

Using the proposition in the next subsection, we will be able to solve (o.l) with the estimate |f1| < 9(¢).

5.1. A linear problem for the orthogonal equation. We consider a model problem for the orthogonal
equation:

t—pg(t) |
f1(s) pa(t) : ,
/ , s = ax[p)(t) + az [p1, (] () + as [p, ] (1) (5.2)
t/2 — S t

with u = fig + p1, where a1 represents the new error after adding elliptic correction ®.. For p # —1, we define
the following norm for ay[](¢)

laally = sup (@ 00)™ fas 0] + a0} (53)

[a1]p,a = sup ("~ t)fl |ax[p](t1) — a1 [p](t2)]

- , (5.4)
t1,t2€[t/2,t],11 €B,, t1 —ta|®

for some 0 < ar < 1.

()l ()]
(G o))

alins ] ) = O (|l 2 Ro + o] swp (LG54 L

t1€[t/2,t]

. lpa(t)| | [ (t)]N2
O(iolnt s (L0 + o)) 55)

</<< )

[0 (ot 1n Ro + litol) + O (pot ™, (1)) + O (nIntlio]) |,

t—pg(t) |/ t
|az [pa, fu] (B)] S R ©° <|a1 )] + laz [pa, fu] (1)] +/ ‘lzl(ss)‘ds+ |mt( )|> .
t/2 -

+ oy (L4 O™ )

For some 0 < v < 1, we write
—_ 2 . _— 1—-v . -_— 2 . .
e (s) T u(s) ) iy (s) = ju (b)
ds = ds + ds
t/2 t—s t/2 t—s t—tl—v t—s (56)
i (t) (1= v) Int — 21 o 1)

We leave the partial error

&mu:Ai%@mw>zmww

_l—v t—s
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to the nonorthogonal inner problem and consider

() = [(1 = v)Int - 2In p(t)] ! <—t‘1u1 - /m —

1—

(5.7)
+ ar[p)(t) + a2 [p1, ] (t) + as [pa, f1a] (t)> ; t=to.

Proposition 5.1. For ug given in (3.4). Suppose p # —1, p < =3 if 1 <y <2, andp < =1 if v > 2;
2v < min{y —1,1}; ||a1]lp < Cq, for a constant C,, > 1. Then for Ro,ty sufficiently large, there exists a

unique solution py to (5.7) satisfying

fti f1(s)ds, p>—1

11 (1) < tP|a1]|p, =
a0 S el {_ftoom(s)d& o

Moreover, if [a1]p,o < 00, then

. t _ . t _a t

[Patn) = i)l < o101 4 (arlpa)  for tata € [ 8. (5.8)
It — o] 2

Proof. Notice that

Inlnt
Int

[(1—v)Int —2Inpe(t)] ! = C, (Int)~! (1 + O( )) , Cy, = (min{y-1,1} —v)"",

(1= )t = 2 0(0] b)) < € (140G Pl

From the above estimate, we introduce the norm

liall == sup (Cout?) ™" | (2)] (5.9)
t2t0/4

and f11 will be solved in the space
By, = {m € C*(to/4,00) : [|pmalls < Cpllanllp} (5.10)
for a large constant C,, > 2 to be determined later. Denote
t .
d > -1
)= { o200 0

_ft :ul(s)dsa p<-—1

In order to solve (5.7), it suffices to consider the following fixed point problem about fi;.

t—ti~

. - ot 20 Ui " in(s) s
Slinl(8) = x(8) [(1 = v) nt = 2mpo(0)] " (=7 L] /t/z e (5.11)
to

+a1[ﬁo+I[ﬂ1]](t)+a2[I[ﬂll’/h](t)+G3U[/it1]7/l1](t)) for t2 -,

where x(t) is a smooth cut-off function such that x(t) = 0 for t < 3tg and x(t) = 1 for t > to. For any i € By,
since p # —1, we have

[[iu]| < Cypllpllelp + 1717 7  [fu]] < Cyllmll<lp + 1)1

T gy » 1_¢—v »
S S X

| / B 4ol < ¢, ulull. / ds = Cy | 17 / da
t/2 t—s t/2 t 1/2 1-

— S T

-t p 4
= Cypllpa|«t? <// xl - dx+ylntln2> =C, | «tPrInt (1 +O((nt) ™).
1/2 -

For the terms in as|[u1, f11], we have
120 [£213 10 Ro| S Coy ol o547
for an €; > 0 sufficiently small due to v > 1.

[ 1] (1) n |11 (1))
po(t) lf0(t)]

ol sup( ) Sl

t1€[t/2,t]
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(|I[ﬂﬂ(t1)| n |l11(151)|)2
po(t) [0 (t)]
for an €; > 0 small due to the choice p < —3 when 1 <y <2 and p < —1 when v > 2.

_9 K 1 . 2 . |I[M1](S)| |/”L1(S)|
[ (M) + stio(o) (7 5 ) s

lfto|Int  sup Cyullpalst™t?

t1€[t/2,t]

t
St / o ([l (s)[ + sl (s)]) ds S Oyl ll«t”
to

since p > —2.
S _ _ . _1 .
p ]l (1+O(n™ ) [0 (pot2pgIn Ry + |jso]) + O (Mot 2vw(t)) +0 (hllnt\uol)}
Cyvllpa]|«tP Inlnt.
For as [u1, fi1], we have

t ,uo(t)| t—pd(t)
fu(s )| /
—2ds<C,,
//2 r_ ol |«

P
sds S Oy llp ||+t Int.

Slin)(8)] < x()Cy () (1 " 0<h11f;’5>> L0+ 0(R5) [Cyullmlldp+ 117

+Cy |+t int (14 O0((Int) ™) (5.12)

t
+ Pty + CoCl a2 lnlnt] + C3RT O | ||t lnt} for >,

With above estimates, we then proceed as follows. First, we take vC, , < 1 and choose C,, sufficiently large
such that vC, ,C,, +1 < C,,. Then we take Ry large enough. Finally, we take ¢y sufficiently large. Choosing
the above parameters, we have S[f1](t) € By, .

For the contraction property, most terms can be verified similarly. Let us focus on the continuity of aj[u1](t)
about p1. For any piq, p1p € By, we have

lax[fio + Ilfnal)(t) = axfio + T ]](O] S t7" [lf1a) = T[]l llanllp S Co o
and [(1 —v)Int — 2In po(t)] " provides small quantity when ¢, is large.

\p1a — pavl[«|p + 17 P |aa ||

6. WEIGHTED TOPOLOGIES AND SOLVING THE FULL PROBLEM

Let us first fix the inner solution ¢ to the inner problem, and the next order of scaling parameter p; in the
spaces with the following norms

[6llina:= sup  7(p)* ((p)|Dp(p, t(T)) + |&(p, t(T))]) (6.1)

(p,7)€Dar

for some positive constants a € (0,1), x to be determined later.
For p(t) € C1(2,00), p1(t) — 0 as t — oo, denote

il == sup [9()] " |funl (6.2)
t>t0/4
with the weighted function
() = T Oy (ORI E). (6.3)
Here, in order to restrict the inner problem in the self-similar region, it is reasonable to assume that
poR < V.

Let us write

o l<y<2
R(t) =t¥, where O<w<{ ’ 7

1
2

(6.4)
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Set ¥ = ri(r,t). In order to find a solution ¥ for the outer problem (4.1), it is equivalent to find a fixed
point about ¢ for the following problem:

U(,t) = Ty o [r'G[rd, &, )] (2,1, to).
We define
Wolloue = sup [(wo(r, )" )] (6.5)

r€(0,00),t>to
where
o —2
wo(ryt) =9 (1, +tr721 )
Above fixed point problem will be solved in Appendix A.1. Once we have pointwise estimate, gradient and
Holder estimates can be obtained by scaling argument. In fact, we show in Appendix A.1 that

t1) — t
WIS wolrn),  sup SR g [y i)
tr,tae(t— 220 4 |t — 22|
where 0 < a < 1 and 0 < A(t) < v/t. Later we will choose \(t) = v/%.

Now by using the Holder property of v, we control the remaining term up&,[u1] that we put in the non-
orthogonal part of the inner problem. Similar to the process in [37, Section 4.2], we have

im0y S [0+ 17 (uR) () (6.6)

by taking A(¢) = v/t in (6.5). Then we have

|yl < Ho[ﬂl]ca(%’t) max{ﬂgo‘,t(l*'/)a}

< wolt™ + 117 (o B) 2 (o R) T ma{ i, 11 o
By Proposition B.1 and Proposition B.2, we need
R?In Rysglt + '~ (uoR) 2§ (o)™~ max{3°, t0-")%} < w(t) < 7Ry *(In Ro) ",
ie.,
R'™In Rt**(uoR) ~2 max{pu2®, t*~"} <« 1,
where we have used
poR < Vt.
We then require
{Rla In Ryt < 1, 63)
R1700n Ryg 2ot (=v)a « 1, '
Recall the definition of pg in (3.4). Then we have
—w(l+a)+v—1-va<0
0<w< 2t . ifl<y<2
O<rv< 7771
—w(l+ al) +1-va<0 ’ (6.9)
O<w<y , if v>2,
O<r< %
0<axl
{0<a<£—2 ’ 7> 1

where the last restriction is from the need in the inner problem, see Proposition B.2.

Proof of Theorem 1.1. After the weighted spaces are fixed for (¢, ¢, 1), the fixed point argument can be then
carried out by using the linear theories, where the linear theory for the inner problem is proved in Appendix B,
the solvability of py is showed in Section 5.1 by controlling a non-local remainder in the inner problem, and the
linear theory for the outer problem corresponds essentially to convolutions in R* (cf. [37, Appendix A]). The
inner and outer problems are analyzed in Appendix A, and the contraction mapping theorem can be applied if
one can choose constants satisfying the constraints (6.9), (A.9) and (A.18). For v > 2, this is straightforward,
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and for 1 < vy < 2, one has valid choices in the entire range with the aid of Mathematica. The proof is thus
complete. O

APPENDIX A. ANALYZING THE GLUING SYSTEM

To estimate the errors appearing in the RHS of inner and outer problems, we recall that we measure
e 11 with the norm (6.2).
e the RHS for the inner problem with the || - ||, ;-norm where
o(t) =7 "Ry, 1<(<3,

and Ry > 0 is a large constant.
e the inner solution ¢ with the || - ||; x,o-norm defined in (6.1).
e the outer solution ¢ with the || - ||out-norm defined in (6.5).

We first give some estimates for the terms in E[v;] defined in (3.8). Notice that the support of E, (defined
in (3.9)) in outside the inner region.
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by using (3.7).
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7, 1<y<2

S () lug ()72 {171, =2
(tlnt)=1, ~>2,

1 8p _
‘77(2 ———— (pluf(r,t) — ¢lmo](r, 1))
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42 Ml €O S
aazyg? (- ;QCC’S(QQ““)@e)\ < () 0. ()

For the remaining error F., we have the following
o If 2 < 1, then

1
E.= - ﬁ [sin[2(Qu + @1 + P2 + U, + @, )] —sin(2Q,,) — cos(2Q )2 (P1 + P2 + U, + D))

+ 2—2 [ — Sin[2(Q, + 1 + By + U, + )] + sin[2(Q + By + By + T, + @e)]} (A1)

1
= 55 (SMI2(Qu + ®1 + @y + Ve + )] —sin(2Q,) — 2¢05(2Q,.) (1 + P2 + ¥, + 2.) )
Since
‘<I>1+<I>2+\I/*+<I>e < Qu

by Taylor expansion, we have
sin(2Q,)(®1 + @y + ¥, + ©,)?

S o) e+ )+ p 2 p) P2

1
|Ee| S/ ﬁ

o If 1 <2< 2, then

E,.= —n(z )212 [sin[2(Qu + D1 + P2 + U, + O.)] —sin(2Q,) — c0s(2Q,,)2 (D1 + D2 + U, + )]
+ % —sin2(n(2)Q, + @1 + Py + U, + D,)] + n(2) sin[2(Q,, + By + oy + U, + B,)] (A.2)

+2(1=7(2)) (@1 + @+ W) |.

Since now |Q,| < 1, we have

Bl S 1) sin(20,) (@1 + B0+ 0.+ 0,02+ 172(Q, + Bl sy (A3)
o If 2 > 2 then
B, = % { —Sin[2(®y + By + Uy +1(42)B)] + 2 (1 + By + T, ] (A.4)
and thus
|Be| St @

e We will need to take into account the cancellation in (3.5) for the estimate of ¢[u] + 1. Since

tfug .
ﬂlt_1+/ :ul(s)ds
t/2 t — S

< 9+ i1 Int + [f11]ce max{pd®, td-} (A.5)
< 9Int + 7% (puoR) 29 max{p2®, t1-e}
<Ot 4+t (ugR) 20

we have

elu] + . = [19 It + £ (4o R) 29 + 0ot ~2r*) + ljto| min{ (o), Int}) |1, _, 1.

Tz . B —_ .
+ O(,uorfzefm + |fio|t3r 6)1{ Satd) + O(popt™ 2v,y(t)) + O (Inlnt|sg]) -
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A.1. Estimates for the outer problem. Recall the norm of the outer problem defined in (6.5). We will solve
(4.1) in the space

Bout 1= {f : ”f”out < Co}

for a large costant C,. For any ¢ € Byys, we will estimate the right hand side of the outer problem, G defined
n (4.2).

e By above estimates, we have

=13 ()2 (r)h, 1<y <2

(1 =nr)E[un]] S 1{2y0R§r§2\/f}lu‘g t=2(Int)*(r)~, v=2 + 1{2#01{952\/{},“3 Intd(t) <7'>73||#1H*
t=2Int(r)—1, v > 2
min {pot! =% (r) " Int, 173 (Int) tn(lnt)}, 1<y <2
+ 1{2#0RST§2\/5}19(t),u%(7“)74 min {u0<r> Yint, (Int)=2 1n(lnt)} , y=2
min {po(r) !, (Int)"?In(Int)}, v > 2

min {¢ 773 (r)"2(Int)%, ¢t~ (Int) " 2(In(Int))?}, 1<y <2
+ 1{2uoRSTS8\/f}'ug<r>73 min {t 2ud(ry=2(Int)?,t=2(Int) ~*(In(Int)) 2}, y=2
min {2 8( )T 2,t72(1nt) 4(In(Int))?}, v > 2

Loy mercavipho () [DOPn0? + 272 (uoR)*0(8) 4 3t~ + (jio In1)?

(A.6)
and for r < v/%, we have
=173 (Int)?, 1<y <2
Tyo [r (U= np) B ] ] .t 10) {u% 2, y=2  +9OR .
~2(Int)?, v>2
tzlnt, 1<y<?2 tpd(lnt)?, 1<y <2
+0()pg 'R~ { Int, y=2 +pg RS2 pd(Int)?, gy =2 (A7)
1, v>2 2 g, v >2
+ o Int [ﬁ(t)Q(ln £)2 4 2729 (o R)49(0)% + 12472 + (o lnt)Q} } (1{@%} + tr—zl{m%})
St Cwe(r, t).
For the coupling terms, we have
W) WR) 26+ 0 (D) (oR) ™6+ 20uR) ™ (2)0,0 4/ (£) 2 LIV
R R p R'R iR
(A.8)
_ pt—6p* +1 k, —2p-2-a
—p 2 (n(z) - 1) 72771%(25 ST g *R? 1(, rR<r<2uR)}
p? (p* +1)

whose contribution for 1 is given by

Tyo [r 7 (g *R™> " Viur<r<oury] STae [T (Opg "R Vur<r<auny]

2 2 _ —k -~ o
,Et_ze_ﬁ/ T ”(s)uo(s)Rl “s)ds+T1 (t),uol(t)R ! a()(l{r<2MoR}+<MOR) 2e 16{1{T>2#0R})

¥
< wo(r,t)
provided
{2—;’—&(7—1)—|—w(1—a)>0, l<y<?2 (A.9)
1-k+w(l—a)>0, v >2
(1= nr)u> 2 i )2 V| S Lporsasryior 10 S Lgugrys2<ry o R 2|4 (A.10)
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Then this term contributes to the outer problem with the form
Ty [1iur2ryto R3] S Tuo [Lpu,rjocry B2 2[0]] S R 2wo(r,t).

e Estimate of the nonlinear terms defined by

Ni=—
+n(2)sin (2(Qu + 1 + P2 + U, +n(42)P. + ¥ + nro))
— 50 (2 (7(2)Qu + By + By + Wy + (428, + U+ 75)) |

n(z)

Ziz [sin 2 (n(2)Qu + 1 + P2+ Uy +1(42)®c)) — n(2) sin (2 (Qu + D1 + 2 + Vo +1(42) D))

+ W{ $in (2(Qu + B1 + By + U, + (42)®,)) — sin(2Q,.) — 2cos(2Q,) (B1 + By + U, + n(42)®,)

— {sin 2(Qu+P1+ P2+ T, +1(42)P. + ¥ + nro)) — sin(2Q,)

— 2¢08(2Q,) (B1 + By + U, +17(42) P, + U + npo) ] } - % c08(2Q,.) ¥

1
=53 [Sin (2v1) —sin (2 (v1 + U 4+ nre)) + 2n(z) cos(2Q,,) (Nre) + 2cos(2Qu)\If}
e If 0 < 2 <1, then

V] < %2 sin(2Q,,) (@1 + By + U, + 1(42)®, + U + 7o)’

S peynr 2olo)~? {TQ (lu] + ) +1r79? + 2 + (UR¢)2]

Therein,

— - _ —1— Ho
1{r§\/{}P<P> WP ST () 1o l(t)R ! “(t) (1{T§,u0} + 1{uo<rS2\/f}7) V[[Y]out

—K — —1—a Ho
S TR ORTTW (Lirsy + Lpicrcaviy o) Y10 out:
Then
Tio [ e ymplo) =207 S 1 wo(r, 1) 62,

Ly p(0) 72 (oli] + 1) S 1y ()7 (olul + 000)°
which implies

T2 o 71 oy ()7 (i) + )7

< (T Opg (R O It + 1 (uoR) P (g (ORTT(E) + Olpuot ™) + lio| Int)?

-2 < 4—€
X (1{T§t%} +tr 1{T>t%}> <t w(r, t),

tpd(nt)?, 1<y<?2

7o 110y 2000) 2 (02 + (o)) || S {1723, v =2 St Cwo(rnt).

23, v>2
o If 1 < 2 <2, then

NI < 1{t%§7§2t%}r72p72|\1/| + l{tégrgzt% T72p<p>72 [7"2(90[,“] + Ps + 7/})2 + ‘1’3]

Therein,
-3 -2 —4 2
Tao [ Lihoendy” P ‘Wl} STie [l{t%grgmé}r MOM} STie {1{t%§r§2t§}

for an € > 0 sufficiently small since py < tz.
o If z > 2, then

WIS 1{r22¢{}7"72072|‘1’| IS 1{r22\/2}7"73ﬁ¢%|¢|~
Then

Ty e {1{@2\/2}7"74#&1/1@ STye {1{r22\/5}t767”72|1/1|} St wu(r, t).

(A.11)

(A.12)

L T2l S ()
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From the above estimate, choosing Cj large, then making R,t large enough, we have T, ¢ G € B,,. The
contraction mapping property can be derived very similarly. Thus we can find the solution of the outer problem
in Bout-

A.2. Estimates for the inner problem. In this section, we estimate
8
(P2 +1)*

From the beginning of this section, we have the following estimates in the inner region (p,t) € Dag.

U+ 12 [v1] (A.13)

8

_ S
(02 +1)°

< Vout (£) (o R) ™ 2 (p) P 1y,<omy

(A.14)

a

=p T_R(MOR)_l_b<P>_31{png},

=13 Int(p) 'In(p+2), 1<7y<2
|77<4Z)atq>e| 5 1{,“5%}//’0 2 1nt<ﬁ>71 111(,5 + 2)7 Y= 2
t=2(p) " In(p + 2), v > 2,

e ("@Sfm - u(pipl)) (Plio)(r, )+ . (r.)

t 7, 1l<y<2
S n(2)tug*(p) 72 471, y=2
(tnt)=t, ~v>2.
Recall that g[u, p1] is defined in Proposition 2.1. By

lpa ()] | ()] o 0 9
u(t) @]~ o ol

. , W 9N\ L (9
(1, )| S lfrol It | — + =) +litol { — + =
o ol o fto]
' W0
+t*2/ {3*119(5)/1,(2)(8) —|—s|/1(s)|(7 + )}ds
t

0/2 Ho |,u0|

(A.15)

we have

(A.16)

<.
So one has

-1 8p

n(z)u W

n(42)ig M o

] f03 n(x)Z2(x)xdz

72
min {¢t%(p) "' In(p +2),t "2 (Int) ' In(lnt)}, l<y<2

< () tdpg ()~ S min {t~1(p) "' In(p +2),t ' (Int) 2 In(lnt)}, y=2
min {¢t~*(Int)" (p) "t In(p + 2),t"'(Int)2In(lnt)}, ~>2.

‘n 1) <cos(2QH) — c0s(2Q;,) q)e) ’
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e Since @, has vanishing at the origin, we have

|Ee| S (o) +10a)? + u2p Hp) @2

< (p)7t [192(11175)2 + 1272 (o R) 9% + uSR*U ™ + (o Int 2}
min {¢~7(p) "%(In(p + 2))2, ¢ (Int)~2(In(In¢))?}, l<y<2
+(p) 7S min {t72(p) 2(In(p + 2))2,¢"2(Int) ~*(In(Int))?} v=2
min {t~2(Int)~2(p) " *(In(p + 2))?,¢ 2(hqt) (ln(lnt)) ooy >2
For above terms whose || - ||, ¢-norm to be bounded, we require

g SR <1, 1<y <2

pdv 1t 2R <« 1, v >2

Pl <1, 1<y<?2

Yol < 1, v>2
pot 2ol <1, y>1 (A-17)
p2 Ry~ {192(1n )2 + 1272 (o R) =492 + u§ R4 + (o Int)?| <1, y>1

pdo 1t « 1, l<y<?2

e v>2

Recall that 7(t) is defined in (4.4) and

9 = u§(uoR) " T, vt = TRy,

Then we need

2-2y+k(y-1)+wl—1) <0, l<vy<2
k—24wl—-1)<0, v>2

wl—3—2a)— k<0, V>

wl—T7T—-2a)+2—2arv—k <0, - (A.18)
wl—3—-2a)—k(y—1) <0,

wl—T7—2a)+2—2arv —k(y—1) —2(2—7) <0, l<y<?2

41 —-v)+wl+3)+k(y—1) <0,

for the inner problem.

APPENDIX B. LINEAR THEORY FOR THE INNER PROBLEM

In this section, we develop a linear theory for the inner problem. We consider

0-¢ = Lo+ f10 + f2p0,¢ + h, (p,7) € Dg,
¢(pa TO) = 07 P € [O7R(T0)]7

where

T(t)Z/f p2(s)ds + 7o,

1 pt+1—6p? 8
L:=0,,+-0,- "~ v.=__" _
ot O T A 1) (p? +1)?
Dr={(p,7) : p€[0,R(7)], T € (10,00)},

[h(p, )| S v(r){p) ™",
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and we make the following assumptions
[f1(p, )| + [ fa(p, T + pl8,p f2(p, 7)| < Cpr=?, d >0, C; >0,
R(7), v(1) € CY(19,00), v(1) >0, 1<K R(T)< T3,
(1) = a7 (In7)*?(Inln7)% - - |
R(1) = byt (In7)?2(Inln 1)’ - - . |

V(1) =0(r7 (r)), R'(r) = O0(r~'R()),

25

(B.2)

where ag,bg > 0, a;,b; € R, i = 1,2,.... We shall write v = v(7), R = R(7) for simplicity. Recall that the

linearized operator £ has kernels
4 2
P = pr+4p Inp—1
2(p) = 50—, E(p =L
p*+1 2p(p* +1)
Our aim is to find well-behaved ¢ for RHS h in the weighted space with norm

[Bllo,e = sup o~ (7)(p)*[h(p,7)|
(p;7)EDR

for some 1 < ¢ < 3. We have the following
Proposition B.1. Consider
00 = Lo+ f1o+ f2p0,¢ + h(p,7) in Dg,
o(-,70) =0 in [0, R(70)],
and assume 74> R2In R. If |h|ly0 < +00, then there exists a solution with
|6(p,7)| S R*1n Ro(7)(p) ™[ Allo,e-
If in addition the orthogonality condition

/OR h(p,7)Z(p)pdp =0
holds for all T > 1y, then there exists a solution satisfying
60, T)I S v(T) [l [R5_£ In R(p)~* + 7~ %(r) R (In R)*(p) .
Proof. We first show the linear estimates without orthogonality condition. We look for solution to
{M = L6+ 16+ f2p0,6 + h(p,7) in D,
¢ =0 on 0Dg, ¢(-,70) =0 in [0, R(7)],
where

ODR = {(pv T) Cp= R(T)a TE (7—0700)}'

We use the notation
2R

R
11220, = / Ppdo, Qu(ff)=— [ L(6)épdp,

0
and test above equation with p¢ to get

1 2 B f o 1T, f

50r 61 + Quo0) = [ npdp— [ ot~ 3 [ P00+ [ hopdp
0 0 0 0

5

2

By a coercive estimate in [36, Lemma 9.2]

1
Qr(9,90) 2 m”éi’ﬂiz(m)»

< CfTid”QﬁH%?(BR)+H¢||L2(BR)Hh”L2(BR)~

one has
1

2 2 2 2
Ocl|Bll 728, + m”ﬁme(BR) S REIn R|h72 s,

provided
%> R InR.

(B.3)

(B.7)
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Then Gronwall’s inequality yields
16ll22(Br) S R* W R|[A| 28y S R In Ro(T)||h

To get the pointwise control, we introduce the energy norm

R 2
1o | ((apf>2 n J;) pdp,

and the following embedding holds (cf. [13, page 216])
112 By < 11 (B2)- (B.8)

vl

Integrating both sides of (B.7) implies

T74+1
/ Qr(6,6) < R'(In R)**(1)||h]|2,.

and thus
Qr(¢,9)(7) S R'(In R)**(7)[|hl[3,, (B.9)
for some T € (7,7 + 1). Next we multiply equation (B.6) by pL¢ and integrate by parts

1 - R
—§3TQR(¢7¢) S L1328 + 72D 72 (81 +/0 hLopdp.
Then using Young’s inequality we get
a‘rQR(¢7 (b) 5 02(T)||h”z,z
since 7¢ > R?In R. By above inequality and (B.9), we obtain
Qr(6,9)(r +1)  R'(In R)*0*()|[A]3 -
By the arbitrariness of 7 here and the initial condition ¢(-,79) = 0 as well as the embedding (B.8), we have
1
¢l o8y S 10llx(Br) S [Qr($,9)(T)]Z + 6]l L2(8s) S B2 Ro(7)]|Alfo,e- (B.10)
Now we upgrade above pointwise control to estimate with spatial decay. We write equation (B.6) as
0r6 = (95 + 30,0 — 1:6) +h in Dp,
¢ =0 on aDR7 (725('77—0) =0 in [O7R(TO)L
where
~ S(b

h = W +f1¢+f29(9p¢+h(pv7—)

So we have
16 S p|Ta e (07 1R <rr)| S B2 Ro(7) () [l
where Ty is the heat kernel in R?*, and we have used the fact 7 > R%?In R and the convolution estimates
in [36, Lemma A.2]. The proof of (B.4) is complete.
Next, we handle the case with orthogonality condition. We first consider an elliptic problem
LH = h.
By expressing
H(p,7) = Z(p) /ph(s,T)Z(s)sds—Z(p) /p h(s,7)Z(s)sds

and using orthogonality (B.5), we get ’ ’

[H [lv,e—2 < [[lloe (B.11)

since 1 < ¢ < 3. We now consider
0.®=LP+ H(p,7) in Dag, (B.12)
®=0 on ODsgr, @(,79) =0 in [0,2R(m)]. '
Similar to above process of getting non-orthogonal linear theory, we have

[2(p, 7) S v(r)R*“In R(p) || Hlu,e-2-
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Above pointwise estimate together with a scaling argument yield
|| + (0)[8,® + (9)*10pp®| S v(T)R*~ In R{p) " | Hl|o0-2-
So we have
0 (LDP) = L(LD)+ h
with
1LP| + (p)]9p(LP)| < v(T)R® I R{p) > || H |y 02
We want to find a desired solution ¢ and consider the remainder
¢=¢— LD
which solves
0rp = L+ frd+ fapdypd + [LLD + f200,(LD).
By above non-orthogonal linear theory, we have the following control for ¢
|61 S 7 () RT (In R)*(p) | ],e;
and thus
16 S v () blloe[RP~ 0 R(p) = + 7~ %0(r) BT (n R)*(p) !
as desired. (]

Next we perform another re-gluing procedure to further improve the linear theory with orthogonality. We
have

Proposition B.2. Consider

07 = LO+ f1é + fapdpd + h(p,T) +c(T)n(p)Z(p)  in Dk,
$(p,70) =0 in [0, R(7o)],

where ||h|ye < 0o with 1 < £ < 3. Assume 7 > max{R?, R§}, Ry = c17° for some § > 0 and ¢; > 0, then
for 1o sufficiently large, there exists (¢, c(7)) solving above equation, and (¢,c) = (Tz;[h], c[h]) defines a linear
mapping of h with the estimates

(P)19p| + ¢ < RE™“In Rov(7){p)”

2 -1 2R,
c[h](r)z—(/o n<p>22<p>pdp) (/ h(p,r>2<p>pdp+R0600<v||h|m)

for some €y > 0, and O(v||h|v,) depends linearly on h.

a</tl—2,

Proof. We decompose

¢(pa T) - nRod)i(pv 7_) + ¢o(p, T)a
where ng, = n(RLO). In order to find a solution ¢, it suffices to find (¢, ¢,) such that

{@%—%MHZ%%;%+ﬂ%@]mDm (B.13)
$o=0 on ODg, ¢,=0 in [0, R(70)],

0-0s = Loi + f1os + f2p0pdi + Vo +h+c(t)n(p)Z(p) in Dag,, (B.14)

d)i =0 in B2R(Tg)a -
where

J[¢oa d)z] = f1¢o + f2p6p¢o + (1 - nRo)V¢o + A[Qﬁz] + h(l - URO),
1
Alpi] = 0i(Oppniry + ;‘%URO) +20pMR,0pi + f200,MRy i — OrNRyPi,

and

21?0
() = cio)(7) = C [ WV (oulo.m) + ho ) Z)pdo. €= ~( | nio)Z(p)pao)
We reformulate (B.13) and (B.14) into the following operators
G0y, 7) = TolJ [P0, Bill,  ¢i(y, T) = T2i [Vgo + h + c(T)n(p) Z(p)] , (B-15>
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where 7, is a linear mapping given by the standard parabolic theory, and 7s; is given by Proposition B.1. We
now solve the system (B.15) by the contraction mapping theorem. The leading part of the RHS in (B.14) is

2Ro
= h+Ca(p2() [ )2

Clearly, ||H1llv,e S ||hllv,e. If Hy satisfies the orthogonality condition in Dag,, then Proposition B.1 gives the a
priori estimate
(P)|0p Tas [ HL]| + [ T2i[H1]| < Diwi(p, 7)
provided 7¢ > RS, where D; > 1 is a constant and
vt (RS “InRo(p) ™ +v(r) Ry~ “(In Ro)*(p) )

So we will choose the space for the inner solution as

Bi ={g(p,7) = (P)0pg(p,7)| + |g(p;T)| < 2Dswi(p,7)} .

For any ¢; € B;, we will find a solution ¢, = gbo[ggl-] of (B.13) by the fixed point argument. Let us estimate
J[0, ¢;] term by term

wi(p,7) = v(7)[|h

|A[§i]] S DivRy(y) " | hlu.e
for some €y > 0 and ¢; < £. Also we have
(1= 1)l S vRG W)™ | hllv,e.

Consider (B.13) with the right hand side J[0,;]. Using Cvop(—Ags) " [(p) "Ry ||hllv.e as the barrier
function with a large constant C' and then scaling argument, we have

(OB To[T10, &) (0, )| + | To[I[0, $ill(p, 7)| < wolp, 7) = DoDsv Ry (p)*~* [|h|ue
with a large constant D, > 1. This suggests that we solve ¢, in the following space:
Bo={f(p,7) + (p0pf(p, )|+ |f(p,T)| < 2wo(p,7)} .
For any ¢, € B,, since p < 2R(7), we have
Vol = nro)| S R 2DoDivRy  (p) =" || u,e.
|10 + 20,00 S 7R (1) Do Div Ry “(p) ™" || hllu.c.
Since 77?R?, Ry 2«1, by comparison principle, we have

Tol TG0, $il] € Bo,

and the mapping is a contraction. B
Now we have found a solution ¢, = ¢,[p;] € B,. It follows that

2Ry

Vol + C V(p)boldil(p, 7) Z(p)pdp

n(P)Z(p)|| < DoDiRy“lhlv,e.

v, 4

Thanks to the choice of ¢(7), Hy := V(p)do|ds] + h + ¢[do|d:]](T)n(p) Z(p) satisfies the orthogonality condition
in Dyp,. By Proposition B.1, we get

0

Tailha] € B;
since Ry “ < 1, and similarly it is a contraction mapping. Thus we find a solution
¢i = ¢z[h] S Bi, (B16)

and we obtain a solution (¢,, ¢;) for (B.13) and (B.14) in the chosen spaces.
Since ¢,[h] € B,, one has

2Ry
) = C [ hlp. 2o+ Ry OWAlLr
We also have
1710, ¢4l S Rov{p) ™[I llo,e-
Using comparison principle to (B.13) repeatedly, we have a refined bound
6ol S Rov{p)*~“I|llu,e- (B.17)
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Combining (B.16), (B.17) and then using scaling argument, we conclude

(P)|0p8] + ¢ < Ry~ In Rov(p)~*[|]u,e

with a < £ — 2. O
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