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FINITE-TIME SINGULARITY FORMATION FOR THE HEAT FLOW OF THE

H-SYSTEM

YANNICK SIRE, JUNCHENG WEI, YOUQUAN ZHENG, AND YIFU ZHOU

ABSTRACT. We construct the first example of finite time blow-up solutions for the heat flow of the H-system,
describing the evolution of surfaces with constant mean curvature

ut = Au — 2Ug; AUz, in R2 x R4,

u(-,0) = ug in R?,
where u: R?2 x Ry — R3. The singularity at finite time forms as a scaled least energy H-bubble, denoted as
W, exhibiting type II blow-up speed. One key observation is that the linearized operators around W projected
onto W+ and in the W-direction are in fact decoupled. On W+, the linearization is the linearized harmonic
map heat flow, while in the W-direction, it is the linearized Liouville-type flow. Based on this, we also prove
the non-degeneracy of the H-bubbles with any degree.
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1. INTRODUCTION AND MAIN RESULTS

A classical problem in geometric analysis is the following Plateau problem: for a given curve I' | find a surface
with boundary I', with mean curvature H(z) for a point x on the surface, where H is some (smooth) function.
In the case of the ambient space R3, a parametric surface with prescribed mean curvature, satisfies the following
equation, also known as the H-surface system

Au —2H (u)tz, Ay, =0 on D, (1.1)
where u: D C R? — R3 with D being the unit disk, H is a given scalar, “A” denotes the wedge product, and,
for instance, u,, = a%u. The geometric significance of system (1.1) is that conformal solutions u, i.e. solutions

satisfying additionally,

[Ug, |* = [ty |* = Uz, - Up, =0 on D,
parameterize immersed 2D disk-type surfaces of prescribed mean curvature H. Solutions of (1.1) may arise as
“soap bubbles”, that is, surfaces of least area enclosing a given volume. Concerning the existence and optimal
estimates, the Dirichlet problem of the H-system was studied intensively in many seminal works, such as Heinz

[26], Hildebrandt [28, 29], Gulliver-Spruck [24, 25], Steffen [16, 17] and Wente [56]. Struwe [50] considered the
Plateau problem of the H-system and proved its existence; see also Duzaar-Steffen [22]. For more geometric
motivations and backgrounds, we refer to the comprehensive monographs of Struwe [51, 52], Duzaar-Steffen
[21], Steffen [19], Bethuel-Caldiroli-Guida [2] and their references.

For the Dirichlet problem in a smooth bounded domain © C R?

Au= H(x,u, Vu)uy, Nugz, in £, (1.2)
u() =g on 09 '

with the scalar H being smooth, it was proved by Wente [57] and Chanillo-Malchiodi [13] that there is no
nonzero solution in simply connected domain when g = 0. For H (z,u, Vu) = 2 and ||§||- < 1, a solution with
minimal energy was constructed by Hildebrandt in [29], while in Brezis-Coron [6], Steffen [48], Struwe [51], the
authors considered large energy solutions, and it was proved by Heinz [27] that the condition ||g||p~ < 1 is
sharp. For general H(z,u, Vu), the existence of solutions was proved in a series of works by Caldiroli-Musina
[7, 8,9, 39] via the variational perturbative method introduced by Ambrosetti and Badiale in [1]. Furthermore,
bubbling and multi-bubble solutions have been constructed in Caldiroli-Musina [10] and Chanillo-Malchiodi
[13]. Regularity of weak solutions was studied by Musina [10]. The asymptotic behavior of the solutions for
(1.2) was studied, for instance, in [11, 12, 31, 32, 33, 44] and the references therein.

Riviere proved in the important work [42] that two-dimensional conformally invariant nonlinear elliptic
PDEs, including the prescribed mean curvature equation and harmonic map equation, can be written in terms
of suitable conservation laws. Based on this special compensated-compactness structure, he proved that the
solutions of the prescribed bounded mean curvature equation and the harmonic map equation in any manifolds
are continuous, and that critical points of two-dimensional continuously differentiable conformally invariant
elliptic Lagrangians of the form

1
Elu] = 5/ |Vu|>dzy A dy Jr/ w(w)(Ugy , Ugy )dT1 A dXg (1.3)
R2 R2
are continuous. Here w is a C'! differential two-form on a C?-submanifolds N* of R™, and k and m are arbitrary
integers satisfying 1 < k < m.

For the H-system in R? with constant mean curvature H = 1, finite-energy entire solutions were classified
in the classical paper [5] by Brezis-Coron as

u(z) =11 +C, z=(z,y)=xz+1y
=156 v
where IT : C — S? is the inverse stereographic projection defined by

1 2z
11 = —
@) =1 ng - 1} ’

P, Q are polynomials and C is a constant vector in R3. From this result we know that a typical class of solutions
to
Au — Uz, Ay, =0 in R? (1.4)
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are W) (z) = I1(2™) for m € Z*, where m is the degree of the map. Here we consider the so called non-
degenerate property of the degree m bubble W (™) which concerns the bounded kernel functions of the linearized
equation around W (™) as follows

Ap=2 (ng;m A Gy + o, A W;;">) . (1.5)

The non-degeneracy plays an important role in the construction of H-bubbles; see Caldiroli-Musina [10] for
instance. In the polar coordinates, W (™) can be written as

m

27" cos(m@)

im R

W (z) = W (r,0) = {e CO:(IEJ(w)m)} = %Z(TG) , x=(rcosf,rsinf) € R* meZ,,
m ’I“t m__1
T2m,+1

and
W, = 7 — 2arctan(r™).
The linearized equation (1.5) then becomes

A = % (W}“ﬂ A do + br A W§m>) (1.6)

for ¢ = ¢(r,8). For m = 1, Chanillo and Malchiodi [13] proved the non-degeneracy result; see also [10, 32, 33,
, 44] and the references therein. Chanillo and Malchiodi further conjectured such non-degeneracy holds true
for the degree m bubble (|m| > 2). Our first result confirms this:

Theorem 1.1 (Non-degeneracy of H-bubbles). The solution to (1.4)

2r™ cos(mb)
W (z) = Wi (r,0) = | 223000 | 5 = (rcosd, rsind) € R?, m e ZT
r2m_1

is non-degenerate in the sense that all bounded solutions of the linearized equation (1.6) are linear combinations
of 4m + 5 functions defined as follows,

r2m _q W m) r’™m Cos(ma)W(m) L sin(mG)W(m)
r2m 41 P14 p2m T (1 r2m) ’
,rm—k m ) m ,rm—k ) m .
T (cos(k)ES™ + sin(k0) ES™) S (sin(k6) L™ — cos(k0) ES™) (1.7)
m+l m ) m ,,,erl ) m .
1+ r2m (cost) 1™ = sin(0)5™) T3 om (sin(0)B{™ + cos(10) ES™)
fork=0,1,--- mandl=1,--- ;m. Here
faet cos(mb) — sin(mf)
m m 2m m m
E§ ) = E§ )(’I", 9) = :‘2"%1% Sll’l(m@) s Eg ) = Eé )(’I", 9) = COS(m@)
T 0

Remark 1.1.1. Form < —1, W™ (z) = 11’ (zI™) with

1 2z
m(z) = ——
(Z) 1+ |Z|2 |:1 _ |Z|2:| )

and the same non-degeneracy result holds with m replaced by |m].

Note that the method in [13] for the case m = =1 depends on the spectrum of Agz and the spherical
decomposition on L2(S?). In [39], Musina further studied the role of the spectrum of the Laplace operator on
S? in the H-bubble problem. Here our proof of Theorem 1.1 is based on a decoupling property of the linearized
operator and an ODE argument.

A key observation we make is that the linearized equations on [W(™]+ and in the W(™-direction are
decoupled, see the decompositions in Appendix 3 and Lemma 2.1 (for m = 1). On [W(™]+ the linearized
problem can be solved in a similar manner as the one for harmonic maps, see [14, Corollary 1]. Indeed, the
kernel functions (1.7) in Theorem 1.1 are the same as those for the linearized harmonic map equation except
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for the first three functions parallel to W (™) at each point. Due to the critical growth in the nonlinearity, the
H-system (1.4) shares some similarities with the harmonic map equation with target manifold being S?

Au+ |Vu|?u =0 in R?

In fact, (1.4) is the Euler-Lagrange equation of the energy functional

Eylu] = %~/]R? |Vu|? + %/RQ - (Ug, AUg,) = Eplu] + Ev[ul, (1.8)

that is scaling invariant. Here, Ep[u] is the usual Dirichlet energy that appears in the context of harmonic
maps, and Ey[u] may be referred to as the H-volume functional of the surface parametrized by w.

Non-degeneracy of harmonic maps proved in [14] is a rather important property in the study of singularity
formation for the harmonic map heat flow and the quantitative stability of harmonic maps, see [17, 18] and the
references therein. In a related context, we refer the interested readers to [19, 38, 45] for the non-degeneracy
of half harmonic maps. Inspired by the works [14, 18] on harmonic maps, it might be natural to expect the

non-degeneracy of general bubble u(z) =11 (ggi;) + C and the locally quantitative stability; see also [43].

The previous discussion, though important for our purposes, concerns the stationnary problem. In this
paper, we focus on the geometric flow that describes the evolution of parametric surfaces with constant mean
curvature. It is the associated heat flow of the H-system

{ut =Au—2u;, Aug, in RZxR,,

1.9
u(+,0) = ug in R2, (1.9)

where u(z,t) = u(z1,22,t) : R2 x Ry — R3, and g : R? — R3 is a given smooth map. The system (1.9) is the
negative L2-gradient flow of the energy (1.8), and its stationary equation, namely H-system, is the equation
satisfied by surfaces of mean curvature H = 1 in conformal representation. Global existence and regularity
for weak solutions of the initial-boundary value problem to the heat flow of the H-system were established
by Rey in [41]. Partial regularity of weak solution was studied in the works of Wang [53, 54]. Existence and
uniqueness of short time regular solution were proved by Chen-Levine [15], where they also analyzed the bubbling
phenomenon at the first singular time. In [3, 4], Bogelein-Duzaar-Scheven showed short-time regularity, and the
global existence of weak solution which is regular except from finitely many singular times; see Duzaar-Scheven
[20] for the global existence for a Plateau problem.

We are interested in the formation of singularity at finite time for the heat flow (1.9). Even though it is
known that the heat flow for H—system shares many similarities with harmonic map flows (and there are now
plenty examples of finite time singularities for harmonic map flows, e.g. [17] and references therein), there is no
example of solutions to (1.9) which exhibit singularity formation at finite time, even in the equivariant case. See
[30] for related existence results as well as blow-up and regularity criteria for (1.9) with Dirichlet boundary. The
aim of this paper is to investigate the blow-up mechanism of the system (1.9) and its precise asymptotics, and
we will prove the first instance of finite time blowup for (1.9). Though the elliptic theory for such systems share
many similarities with the one for harmonic maps, the geometric flow exhibits behaviour which are surprising and
make the analysis substantially harder. As alluded before the splitting of the linearization between directions
behaving like the linearization of the harmonic map heat flow around a bubble and the one sharing strong
similarities with a Liouville flow (i.e. an exponential nonlinearity) introduces major adjustments to the general
strategy due to interaction issues. This behaviour at the linear level, though critical, is nevertheless decoupled
which allows to close the argument.

The building block of our construction is the following least energy entire, nontrivial H-bubble (m = 1) given
by
1 2z
W)= ——=
(.17) 1+ ‘$|2 |:|£ZJ|2 -1
where we write W =W, B, = EF) and Fo = Eél) for simplicity. W satisfies

} , xeR? (1.10)

/ IVW|? =8r, W(oo)=(0,0,1)7.
R2
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Note that W (x) can be expressed as the 1-equivariant form

Wi = |

Define «-rotation matrix around z-axis as

' sinw(r) B -
cos w(r) ] , w(r) =m —2arctan(r), x =re
cosy —siny 0
Q= |siny cosy 0
0 0 1

Our main result is stated as follows.

0

(1.11)

(1.12)

Theorem 1.2 (Type II finite-time blow-up). For any point ¢ € R? and sufficiently small T > 0, there exists
ug such that Vyu(z,t) with u(z,t) solving (1.9) blows up at ¢ as t — T. More precisely, there exist k € Ry,

v« € R, and a map u. € HL (R*R3) N L2°(R*R3) such that
z—&(t)
w(x, t) — ue(z) — Q. [W ()\(t)

. 1
n Hy .

(R2;R3) N L= (R% R3) with
T—-1
At) =rh———(1 1 t) = 1
(1) = Mg+ o). €)= a-+o(1),
where o(1) — 0 as t — T. In particular, we have
\Vau(-,t)|?de = |Vu.|*ds + 876, as t — T
in the sense of Radon measures.

Remark 1.2.1.

o The fine asymptotics of u is obtained in the construction:

u(z,t) = QW <IA(§)('5)) + Pper,

)—W(oo)} =0 as t—=>T

where the perturbation ®pe, is small in the sense that |Pper| ST, |VePper| S A2(E) for some €1 >0

and —1 < €3 < 0. More precise asymptotic behavior can be found in Section 8.

o The same construction works for the Cauchy-Dirichlet problem in a smooth bounded domain Q C R2:

U = Au — 2ug, Nug, in QxR

u=(0,0,1)T on 90 x Ry,
u(-,0) = ug in Q
for given smooth map ug with uglaog = (0,0,1)T. It is worth mentioning that with such Dirichlet

boundary, the solutions to (1.9) are in fact different from those discussed in [30], where zero boundary

condition was imposed.

e Motivated by [17] concerning the blow-up for the harmonic map heat flow, it is reasonable to expect
that the finite time singularities might also happen in the gradient flow for the general energy functional

(1.3), and different blow-up mechanism may arise depending on the 2-form w presumably.

e Bubbling solutions taking higher degree profile might be possible by virtue of the non-degeneracy in
Theorem 1.1. Howewver, the construction is more involved due to the presence of more bounded kernel

functions for the linearized operator.

The general framework of the construction is based on the inner-outer gluing method, first developed by
Cortazar-del Pino-Musso [16] and Dévila-del Pino-Wei [17], and it is a versatile approach designed for the

singularity formation for evolution PDEs.

The heat flow of the H-system is intimately related to the harmonic map heat flow

up = Au+ |Vul’u in R* x Ry

due to their similar quadratic nonlinearities, and our construction is primarily inspired by Déavila-del Pino-Wei
[17] concerning the blow-up for the latter geometric flow. Despite similar criticality and structure shared with
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harmonic map heat flow, the blow-up mechanism of (1.9) turns out to be more delicate due to the system in
the W-direction. In fact, as a consequence of Lemma 2.1, the elliptic linearization decouples as the linearized
harmonic map equation on W+ and the linearized Liouville equation in the W-direction. Compared to the case
of the harmonic map heat flow, the treatment required in the W-direction for (1.9) results in several technical
novelties and a somewhat more unstable blow-up beyond the equivariant symmetry class. We shall describe
these in what follows.

We now describe informally our construction. Recall we are interested in constructing solutions without
symmetry assumptions. The major difficulties in the construction arise from the non-radial symmetry and
the non-local/global effects, triggered by the slow spatial decay, in both W-direction and on W+=. Indeed, the
ansatz for the desired blow-up solution with equivariant-type symmetry (1.13) turns out to be relatively simpler
without the introduction of extra modulation parameters ¢; and ¢y corresponding to the parabolic linearized
Liouville equation in the W-direction. Due to the non-radial symmetry, the ansatz has to be modified to further
improve the slowly decaying errors in non-radial modes, yielding an extra non-local system governing the modes
+1 parameters c¢; and ¢y in the W-direction (cf. the ¢j-¢o system in Section 9). Moreover, the ¢i-co system is
in fact coupled with another A-vy system, governing the scaling parameter A and the rotational parameter v on
W+ in a non-local way, and this is a consequence of slowly decaying error in mode 0 on W+. The -y system
was first observed and derived in the context of the harmonic map heat flow [17]. For (1.9), the non-locality of
the c1-co system and its coupling with the A\-y system seem to be a new feature beyond the symmetry class.

Another aspect is the use of the distorted Fourier transform for the spectral analysis of mode 0 in the W-
direction (i.e., the linearized Liouville equation, cf. Appendix B). The corresponding kernel is of order 1 at
space infinity which makes the analysis more subtle, and the techniques for linear theories in all the other
modes seem not to be sufficient to ensure a solution with sufficient decay. Instead, we use the techniques of the
distorted Fourier transform for this specific mode and carry out a spectral analysis for the associated half-line
Schrodinger operator, see Appendix B. The motivation is from a series important works of Krieger-Miao-Schlag-
Tataru [34, 35, 36, 37] in the hyperbolic settings and from a recent one [55] in a dissipative-dispersive setting.
These techniques might be of use in the study of semilinear elliptic and parabolic equations with exponential-
type nonlinearity.

A roadmap to the construction. We elaborate in a bit more detailed fashion below. The first step of our
proof is to find a good approximate solution. Let us begin with a simple motivational ansatz to solution u of
(1.9), taking the co-rotational form similar to (1.11):

w(z,t) = (r,t) [eijosir;“("ﬁ)t)] . (1.13)

Then system (1.9) becomes the following system of 1D evolution equations

¢r | (=sing +2ro.)Y,  sin(2p)

@t:@rr+7+ Tw 2 (1 14)
- 2020, sin —1 + cos(2¢) — 2r2p2 .
wt:wrwq’b——d}w .y (<p2) P,
r r 2r

One can check directly that (7 — 2 arctan(r), 1) is a stationary solution. Then a natural approximation solution
is

wo(r,t) = ™ — 2arctan (T> and o(r,t) = 1.

A(t)
The linearized system of (1.14) around (¢g, o) is given by
(b1)r  r*—6r2A2 + 2\ 6A
((bl)t = ((bl)’m“ + r - 7’2(7"2 + )\2)2 Qsl - T2 + AQ (¢2)7’7
((152)7“ 8>‘2
(¢2)t = ((ZSQ)TT‘ + r + (TQ + )\2)2 ¢2

for perturbations ¢ and ¢2 of ¢y and v, respectively. Note the second equation is the linearization for the 2D
Liouville equation
Au+e“ =0

around the bubble log %.
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Let us emphasize that the ansatz in the motivational example above enjoys the equivariant symmetry, but
beyond such class, the ansatz has to be modified significantly due to the non-radial modes. Inspired by the
simple ansatz (1.13) and the non-degeneracy in Theorem 1.1, we will find a suitable profile that approximates
well the real solution to (1.9) and then further improve it by adding several corrections. First we define the
error of u as

Slu] := —ug + Au — 2uy, AUg,.
We take the approximate solution as

Uxgeres = Qo) [W (W) T er(t) =2 cos 1Y (96_5“)) T ea(t) 2 sin OW (m_f(’f)ﬂ

t) p? +1 A(t)
= Q (W + 1211 +caZi),

where @, is given in (1.12), and the modulation parameters A(t), &(t), v(t), ci(t), ca(t) are to be adjusted.
The most notable difference in the ansatz compared to the radial case is the introduction of the new parameters
c1, c2, which in fact correspond to the modes £1 in the linearized Liouville problem in the @~ W-direction.
Indeed, Z; 1 and Z; 5 are the corresponding kernels given in (2.2).

As we will see in Section 4, the non-radial ansatz Uy ¢ ., generates slowly decaying errors in both W-
direction and on W+, and thus needs to be improved by adding several non-local corrections. We choose the
corrected approximate solution as

Us = Unsgeres +m (00 + 00 4 o) + 0[ 2 + o)),

where the purpose of the cut-off function 7y := n(z —&(¢)) is to avoid potential slow spatial decay in the remote
region, and the five corrections all have their own role. Here the corrections ®(® and ™), in non-local form,
are to improve slow spatial decay in mode 0 on [QWW]J- and in modes %1 in the @, W-direction. The other
three corrections fbéif), <I>§]2) are to improve slow time decay in modes £2 on [Q,YW]J- and in mode 2 in the
QW -direction, respectively. Such bulky ansatz is necessary when designing weighted spaces for the gluing
process, especially in the choice of constants measuring these spaces that the desired solutions reside in (see
(8.29) in Section 8). In other words, without these corrections, weighted spaces for the perturbation cannot be
found in the current set-up. This is one of the most important parts in the construction, and we do not know
if there are simpler ansatzes for the approximate solution.

We next look for a solution with the following form
u=U,+ 2,
so S[u] = 0 yields
0P = AP — 20, U N0y ® — 205, P A 0y Uy — 205, P A Oy, @ + S[ULJ.

To implement the inner-outer gluing procedure, we decompose ® into

®(,1) = 1RQ: [Bw (4,0) + s (5,0) | + W(a, 1),y =

where ®y is in the W-direction, ®y 1 is on W, np := n (15(?)%52)) ,and R(t) = \7A(t) with 3 > 0 to be

chosen later. Then it is sufficient to find a desired solution u to (1.9) if the triple (®Pyw, Py, U) satisfies the
coupled gluing system:

)\2815(1)1/[/ = Ay(I)W — 28y1W A\ 8y2<I>W — Qaqu)w AN 8y2W + RHSin’W in Dsypg, (115)
A26t¢wi = qu)wL - 26y1W /\ 8y2(I)WL - 28y1 QwL N 8y2W + RHSin,WL in DQR, (116)
oW = A, U+ RHS,, in R? x (0,7), (1.17)

i.e., ®y and Py o satisfy inner problem in the W-direction and on W, respectively, and ¥ solves the outer
problem. The detailed form of the right hand sides RHS;, w, RHS;, + and RHSy; with couplings will be
given in Section 5.

To attack the inner-outer gluing system (1.15)-(1.17), a key property derived in Lemma 2.1 is that the
equation (1.16) for @y, 1 is essentially a perturbation of the linearized harmonic map heat flow around the bubble
W, while the equation (1.15) for @y is a perturbation of the linearized Liouville-type flow, i.e., linearization of

up = Au+e* in R xR,
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around the canonical bubble log %, and these two linearized operators are in fact decoupled. This remark-

able structure allows us to develop the linear theories separately in the W-direction and on W+, and the full
nonlinear systems for @y, and Py are weakly coupled provided their weighted spaces are properly designed.
We will give the full linear theory in Section 7, and the gluing system will be solved in Section 8.

As in the ansatz Uy ¢ ¢, ¢, We introduce two modulation parameters ¢; and co that correspond to the slowly
decaying kernels Z; 1, Z7 o (Fourier modes £1) for the linearized Liouville operator. The non-local corrections
®©) and &), taking care of the slowly decaying errors respectively on [Q,YW]J- and in the @, W-direction, in
turn yield two non-local systems that govern the blow-up dynamics of A-y and c¢;-co through the orthogonality
conditions at corresponding modes. For the A\-y system, the influence of ¢1, co turns out to be a perturbation.
However, in the c1-co system, the coupling from A and v in fact serves as one of the leading parts, and these

parameters obey
t—A2(t) 9 t—A2(t) —ivy(t)
/ pl(S)dS—F “ (/ Re[po(s)e ]d5> c= f(t),

7 t—s 3\J_r t—s

(1.18)

p1(t) = —2(A\c),  c(t) = ci(t) +ica(t), po(t) = —2(\ +iXy)e™
for some f(t) — 0 as t — T. Our strategy is to approximate (1.18) by the local dynamics (6.15), where the
second term involving Z can be regarded as the main contribution from the A-y system, and the role of the
initial data can be seen; see Section 6. We also observe from here that, compared to the one for the heat flow of
harmonic map, the blow-up for (1.9) seems to be somewhat more unstable beyond equivariant symmetry class
due to the restrictive assumptions on the initial data. The solvability of the full problem (1.18) is more subtle
due to the double integro-differential operators, and its resolution will be done by linearization in Section 9.

The rest of this paper is organized as follows. In Section 2, notations and necessary formulas for the linearized
operators will be given. In Section 3, we prove Theorem 1.1. This part is of independent interest. In Section
4, we discuss the approximate solution for the desired blow-up and its improvement by introducing a couple of
corrections, where some technical analysis is postponed to Appendix A. In Section 5, we make the final ansatz
and formulate the gluing system. Asymptotics of the modulation parameters will be derived in Section 6. In
Section 7, linear theories for the outer problem and the inner problems in the W-direction and on W+ will be
developed, where the spectral analysis and the pointwise control for the mode 0 in the W-direction via distorted
Fourier transform will be carried out in Appendix B. The full gluing system will be solved in Section 8. In
Section 9, the linear theory for the c¢;-co system will be established.

2. NOTATIONS AND PRELIMINARIES

We first list in this section notations, useful properties and formulas for the linearized operator of the H-
system around the H-bubble. Our building block is W (%) given in (1.10) with y = =8 and

X
B =[] =[]
form a Frenet basis associated to W. Here
w(p) = 7 — 2arctan(p), y = pe'’,
0 2 . 2p p? =1
w, = _p2+17 sinw = —pw, = R cosw = ERwE

e Notations.
e A map f is said to be in the W-direction if there exists a scalar ¢ such that f = ¢W. Similarly, f is
said to be on W (or f € W) if f- W =0.
e The complex form of a map f = fiE; + foFE on W is defined by
(flc = fi+ifs.
o We write
f=0wl[f] + Ow[f] for Ty o[f]:=f—(f - W)W.
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A map f is said to be in mode k on W+ if Il 1 [f] can be written as
My 1 [f] = Re(fo(r)e™) By + Im(fi(r)e™®) By, @ = re®.

The notation (ITy 1 [f])c,; denotes the projection of the complex form of Iy . [f] onto mode j.
For z € R?, ¢t < T and admissiable functions g(x), h(x,t), denote

(Tgs 0 9) (2, 1) = (drt) ! / e g(y)dy,

lz—

R2
(Trz ® h) (z,t) := /0 /]R2 [4m(t —s)] " e_%h(y,s)dyds.

Denote (y) = /1 + |y|? for any y € R.

The symbol “ < ” means “ < C7” for a positive constant C' independent of ¢t and T. Here C' might be
different from line to line.

e Linearized operator.
The linearization around W reads
Ly o] = Ay = 2Wy, Ay, — 20y, AWy, (2.1)

and as a consequence of the non-degeneracy of degree 1 map W proved by Chanillo-Malchiodi [13], all bounded
kernel functions of the operator Ly, must be linear combinations of

Zoa(y) = pw,Er(y),

Zo,2(y) = pwpEa(y),

Z1,1(y) = wplcos OF, (y) + sin 0 Fs(y)],
Z1,2(y) = w,[sin 0 E1 (y) — cos 6 Ea(y)],
Z_11(y) = p*wp[cos 0F (y) — sin 0 E(y)]
Z_12(y) = pPw,[sin 0E1 (y) + cos 05 (y)]
Zy = coswW,

Z1,1 = cosfsinwW,

—_ — — —

)
)

21,9 = sinfsinwW.
For
U:=Q,W,
we also define
Lyl¢p] i = App—2Up, A by — 200, A Us,,.
Here, @ is defined in (1.12). Clearly, one has
Lu[Qyp] = /\72Q7LW[§O]~

We now give several useful formulations of Ly, acting on ¢ in different forms.

Lemma 2.1. If we set
D(y) = d1(p, 0)Er + d2(p, 0) E2 + d3(p, )W
and suppose that Ly [®] = 0, then the scalars ¢1, ¢po and ¢z should satisfy the following equations

1 1 1 8 2(p? — 1)
app¢1 + ;apQSl + pﬁaGOQSl - ?d)l + (1 ¥+ p2)2 ¢1 - pz(pQ ¥ 1)

g 2"~ 1)
T+t )

¢3 =0. (2.5)

dog2 =0, (2.3)

1 1 1
OppP2 + ;5,@2 + p7399¢2 - ?@ + o1 =0, (2.4)

1 1 8
0 + -0 + =0, +
pp(b?» p p(b?) p2 99¢3 (1 n P2)2
Remark 2.1.1.

e We observe from above Lemma that the the components in W -direction and on W are in fact decoupled
under linearization.
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e Notice that the scalar equation (2.5) can be regarded as the linearization of the Liouville equation
Au+e* =0 in R?

around log ﬁ, which is non-degenerate in the sense that the linearization only has following bounded
kernels

p2 -1 Qpeig

See also (2.2).
The next three lemmas concern the expansion of
Ly[®] := —2U,, A ®,, — 2®,, AU,,
in the linearization Ly [®], and these will be useful in analyzing the couplings in the gluing system.

Lemma 2.2. In the polar coordinate system

(I)(‘T) :(b(r70)7 :17:’[”67;07 P = 27
the term Ly [®] can be expressed as
~ 2

Lol = — 2w, (@0 (QuW) @41 + o, (B (Q W)@ By

b, (8, (Q 1) — (B0 (Q, B2))] QW

We consider a C! function ® : R? — C x R, that we express in the form
(I)(x) _ |:<,01($) + i§02(3€)} )
p3(z)
We also denote
P =p1tipe, ©=@1—ip:
and define the operators
div = Oz, 01 + Oz, 2, curl ¢ = Oz, 02 — Oz, 1.

Lemma 2.3. In the polar coordinate system
O(x) = D(r,0) = (p1, 92, 3)", w=re, p=
the term Ly [®] can be decomposed as follows
Ly[®] = Lu[®)o + Lu[@]: + Lu (@]
with

Lu(8ly = S pwldive79)Qy By + curl(e™0)@, Ba] + i div(e™79))Q, W,

Ly[®); = —%wp CoS W [[81.1 3 €080 + Oy, 03 8in 0]Q Eq + [0, p38in 0 — Oy, p3 cOS H]QWEQ:I

- %wp sin w(0y, @3 cos 8 + 0,3 sin 6]Q, W,

Lu[®), = %pwi [[div(e™p) cos(26) — curl(e73) sin(20)]Q- By + [div(e"73) sin(20) + curl(e” ) cos(26)]Q- F |

2 1 X 1 )
+ W [—2p2wp div(e" @) cos(26) + §p2wpcurl(e”@) sin(20) | Q,W.
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Lemma 2.4. For

with ¢ complez-valued, the term EU[CP] can be expressed as

Luf] = Spu [Rele76,(0)Q, B1 + (e 6@ 2

+ ;wp <Re(¢rew) cosw — iRe(Qﬁei’y)) Q’YW'

Assume 1 is real-valued and

0
Uz)=1| 0
()
Then 5 1 9
Ly[¥] = — 3 Wo COSW (1/)TQ7E1 - r'(/)OQyEQ) + XP“’%TMQA/W

The proof of all the lemmas in this section will be postponed to Appendix A.1.

3. PROOF OF THEOREM 1.1: NON-DEGENERACY OF THE DEGREE m BUBBLE

For notational simplicity, we write throughout this section
w =w, E™ =E, E"=E.

Proof of Theorem 1.1. We divide the proof into the following steps.
Step 1. In the polar coordinate system, we write the solution ¢ = ¢(r,0) of (1.6) as

¢<T7 9) = 6(7‘, 9)E1 + 77(7"7 9)E2 + C(Ta 9)W
Then by direct computation, we know the linearized operator
2 2
L[g] = Aé = Zér AWy — =W A go = (L9, L [6], L [9])
can be expressed as follows,
LW1g]

1
= ey MmO [ (L T T O 4 1
re(r<™ +

+ (=2m + 2mr®™ + 2mr*™ — 2mr%™)n,
+ (_1 _ r2m 4 ,),,4m + 713771)569 4 (—T o r1+2m 4 ,),,1+4m + 7Al+6m)£r
+ (_7,2 _ 742—‘,-2m, + T2+4m + T2+6m)£TT _|_ (2T2+m + 4r2+3m + 2T2+5m)<7‘r
_’_(27,,1+m +4T,1+3m 4 2T1+5m)<r + (27’m +47’3m +27"5m)C00]
rPm41)
((mH))B sin(mo) [(2m — 2mrt™)gg + m? (1 = 6r*" 4 14"
+ (_1 _ 2T2m _ T4m)7]99 + (—7“ _ 27,1+2m _ 7"1+4m)77r

+(—7' _ 2r2+2m _ 7"2+4m)77rr)] ,

_l_

—1 = r27n
LP[¢] = ———— cos(mb) [(2m — 2mr*™)&g + m>(1 — 6r2™ 4 pim
9= sy o) [ o +m( n

+ (_1 _ 2T2m _ ,r4m)n09 + (—’I‘ _ 2T1+2m _ Tl+4m)77r

+(7T2 o 2T2+2m o T2+4m)"7rr]

B — (ot 1)3 sin(m#@) [—mQ(—l 4 72— ™ O e L 16m 23T
re(r<m

+ (=2m + 2mr®™ 4 2mrt™ — 2mrS™)ng 4 (=1 — P2 4t 4 6y,
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(T e (2 24am 2k 2eeme
+ (20 + AP35 4 205 Cgg + (20T 4 4TI 4 2t EETY ¢
(207 4 4TI g 22T (]
and
L]
= YR (r%lb " 1)3 [2m2(rm — 673 4 PYE 4 8mAr2 T 4 (—Amr™ + 4mr®™)ng
(=20 — ArPT = 20 gy + (=1 — 1P ™ 15 (g
F(opttm g ldm gl L pd2m o dbm Lemy e
(2T g g2 Imy ey (—p? = p2EEm g p2Am 2Oy ]
Step 2. Using Fourier expansion, we set &(r, ) = a(r) cos(k€) +b(r) sin(k6), n(r, ) = c(r) cos(kO) +d(r) sin(k)
and ((r,0) = e(r) cos(kf) + f(r)sin(kf), k is an integer, and we write
L1(9) = (L[], L (9], LV [8]) 1= (LM[g], LO6], L [g]) — (L[], LP (], LI [g]) - W)W

Then we have 1

L[] = m((1 +72™) sin(m@) Ay + (=1 + r2™) cos(mb) As)
with
Ay = cos(k0)(=2km(r?™ — 1)b(r) + (E*(1 +r2™)% + m>(1 — 6r°™ + r4™))c(r))
— cos(kO)(r(1 + r*™)2( (r) + v (1))
+ sin(k6) (2km(r*™ — Da(r) + (E*(1 + 72™)2 + m2(1 — 6r2™ + r™))d(r))
—sin(k0)(r(1 + r>™)2(d'(r) + rd"(r))),
Ay = cos(kO)((—k*(1 4+ 72™)2 — m2(1 — 6r2™ 4+ 4™ ))a(r) — 2km(r*™ — 1)d(r))
+ cos(kO) (r(1 4 ™) (d/ (r) + ra” (1))
+ sin(k0) (—E*(1 + 72™)2 — m2(1 — 6r°™ + r1™))b(r))
+ sin(k0) (2km(r*™ — 1)(r*™ 4 1)e(r) 4+ (1 4+ r2™)2 (b (r) + rb' (1)),
L(f) [¢] = M(@ +72™) cos(mb) By + (—1 + r*™) sin(mf) By)
with

By = cos(k0)(2km(r*™ — 1)b(r) — (k*(1 +r2™)% + m?(1 — 6r2™ 4+ r4™))c(r))
+cos(k0) (r(1+r2")*(c(r) + rc" (1))
— sin(k0) (2km(r*™ — Va(r) + (K*(1 + r*™)% + m?(1 — 602™ + r¥™))d(r))
+ sin(k6) (r(1 + r>™)*(d' (r) + rd" (1)),

By = cos(k0)(—(k*(1 +r?™)2 + m?(1 — 6r2™ + r4™))a(r) — 2km(r*™ — 1)d(r)
+r(L+7r*)%(d (r) +rd”’(r))
+ sin(k0) (— (k2 (1 +r2™)2 + m?(1 — 6r2™ 4+ r*™))b(r) + 2km(r*™ — 1)c(r)
+ (14220 (r) + b (r)),

2,rm—2 m—2

r .
m COS(k9)01 + m s1n(k9)(]2,

L) =
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with
' = (K21 + 72 + m2(1 — 6r2™ + ™ ))a(r) + (1 + r2™)2km(r*™ — 1)d(r)
—r(1+72™)(d (r) 4 rad” (1)),
= (B*(1 +72™)2 + m2(1 — 6r2™ + 7™ )Nb(r) — (1 + r>™)2km(r*™ — 1)c(r)
+ (14 72 (r) + rb (1)),
In the direction of W, we have

1 2772

(LW, LP[g], L)) - W = 214 rom)2 cos(k6) Dy + Aty

sin(k0) Dy
with
Dy = —(=8m?*r*™ + k(1 4+ r*™)H)e(r) + r(1 4+ r2™)2(e/ (r) + 1" (1)),
Dy = ~(=8mPr®™ 4 K2 (1 + 1 P) (1) + 11+ 127 (1) +10(7).
We also write L, (¢) as
Li(¢)=(L1(¢) E1)E1+ (L1(9) - E2)E>

e Li(6)- B
= ((=E*(r*™ 4+ 1)% = m2(1 — 6r°™ + "™ ))a(r) — 2km(r*™ — 1)d(r)) cos(k0)
+7(1+72™)2(d (r) + ra” (1)) cos (k@)
+ (K2 (™ + 1)2 = m2(1 — 6r2™ 4 r1™))b(r) + 2km(r*™ — 1)c(r)) sin(k6)
+ (14722 (r) + rb”(r)) sin(k6)
and

L.(¢)- E>
= ((—k2(r*™ + 1)2 = m2(1 — 6r2™ 4+ r*™))e(r) 4+ 2km(r*™ — 1)b(r)) cos(k8)
+7(1+72™)2( (r) + (1)) cos(k)
+ (K2 (r*™ +1)% = m2(1 — 6r*™ + r4™))d(r) — 2km(r*™ — 1)a(r)) sin(k6)
+r(1+7r*™)2(d'(r) + rd”(r)) sin(k0).
Therefore, to solve the linearized equation (1.6), we need to solve the following system of ODEs,
K2+ m2(1—6r2m4r4m)

1 —rr 2km(r®™ — 1)
" !/
— — — =0
“ (r) + T’a (T) r2 a(r) T2(1 + ,’,,2m) (r) ’ (3 1)
d// 1d/ k2 + %d 2km(T2m — 1) '
(T) + ; (70) - r2 (T) - 7"2(1 + T2m) a(r) - 07
m2(1—6r2™ 4rim)
1 R+ =y 2km(r?™ — 1)
b (r) + =b'(r) — (rm 1) b(r) + c(r) =0,
(r) + 1/ () G 1)+ 2 ) -
1 k2 + TYL2(1(—6'I"2”L;-7"47YL) 2km(r2m 1) .
r2m,+1 2 —
'(r)+ ;c’(r) - 3 e(r) + 21177 (r) =0,
and
1 2,.2m __ k2 1 2m\2
e(r) + e/ (ry 4 EPTT KAy,
r r2(r2m 4+ 1) (3.3)
1 8m2r2m — k2(1 + r2m)? '
P4 ) e e ) =0
Step 3. We solve the system (3.1)-(3.3) in the following four cases.
Case 1: If k = 0, then the solutions of (3.1)-(3.3) are
o(r) = (c14+¢3) ™ (c2 + cq) 2r™ log(r?™) + r3m — p—m
2 142m 2 1+ r2m ’
d(r) = (c1—c3) 1™ (c2 — cq) 2r™ log(r?™) + r3m — p—m

2 142 2 1+ 72m
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(cs+er) ™

(c6 + cg) 2r™log(r®™) + p3m — p=m

b(r) =

2 14 r2m

m

)

1+4r2m

(cg — cs) 2r™log(r®™) + r3m — p=m

C(’I") _ (C5 - 67) T

2 14r2m
co(r?™ —1)

e(r) =

)

1+ r2m

c1or™((r™ — r=™) log(r®™) — 4r=™)

1+ r2m 1+ r2m ’
e (PP —1) | eppr™((r™ — 7 ™) log(r?™) — 4rm™)
) = 14 r2m 14 r2m
Therefore the bounded kernel functions take the form
o(r,0) = (1 ;CS) 1 —:7"2’" cos(kO)E; + (5 5 cr) e cos(kf) Fsy
2m
7CQY+ T;nl) cos(kO)W.
Case 2: If k = 1, then the solutions of (3.1)-(3.3) are
crgr™1 cuar((—1 — m)r=™ 4 2m2r™ 4 mg3m — 2pm — p3m)
") = 50 oy 2(1+ r2m)
cigr™tl c167 (=1 +m)r=™ 4 2m2r™ — mp3m — 2pm — p3m)
3t ) 2(1+ r2m) :
d(r) = crgr™ L c1ar((=1 — m)r=™ + 2m2p™ + mp3m — 2p™ — p3m)
2(1 + r2m) 2(1 + r2m)
crsr™ Tl c16m (=1 +m)r=™ + 2m2r™ — mp3m — 2™ — p3m)
C 21 4 r2my 2(1 + r2m) ’
b(r) = crpr™ L c1sm((=1 — m)r=™ + 2m?2r™ + mp3™ — 2p™ — p3m)
2(1 + r2m) 2(1 + r2m)
cror™ Tl co0r (=1 +m)r=™ + 2m2r™ — mp3m — 2™ — p3m)
2(1 4 r2m) 2(1 4 r2m) ’
G c1s((=1 — m)r=™ + 2m2r™ + my3™ — 2p™m — p3m)
)= =50 2(1 + r2m)
Cror™ T co0r (=1 + m)r=™ + 2m2r™ — mp3™ — 2™ — p3m)
2(1 4 r2m) 2(1 4 r2m) ’
() = 7oz (L= m)r ™ 4 (1 m)r™)e
g () (=)
Fr) = g (L= m)r™™ 4 (1))
2 (L m)yr™ 4 (1= m)rm)rm
1+ r2m

If m = 1, the bounded kernel functions take the form

¢(r, 0)

B ((2(1?@)

+ C157’2 (0) + C17 n
21 +12) ) % 2(1+ 12)

C1or” )) sin(0)> E

2(1+12
2 2
17 C197 C13 C15T .
i ( S 2(1+12) - 2(1+ r2)> cos(6) + (2(1 +r2) 201+ r2)> Sln(9)> Ey
Ca1 + C22)2r Co3 + C24)2r
(WCOS(Q) N % ‘1n(9)> W
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If m > 1, the bounded kernel functions take the form

¢(T7 0) =

013’/“m_1 0157.m+1 0177"7”_1 Clng+1 )
0 0)) E
((2(1+r2m) Taa e ) SO g g )0 B

017’/"m_1 6197‘"1’+1 013,rm—1 6157“7n+1 )
— 0 — 0) | Es.
+(< 20+ T o ) O gm0 B

Case 3: If k = m, then the solutions of (3.1)-(3.3) are
Coe™ (1™ + 20~ ™ log(r?™) + 4r™)

. C25
or) = 53 oy 2(1 + r2m)
Copr2™ n CogT ™ (—=2r3™ log (r?™) + 4r™ + r—™)
2(1 + r2m) 2(1 + r2m) )
Cos Co6T™ (3™ + 2r =™ log(r?™) + 4r™)
d(r) = 2m + 2m
2(1 + r2m) 2(1 4 r2m)
Copr?™ Cos ™ (=2r3™ log (r2™) + 4r™ + r=™)
2(1 + r2m) 2(1 + r2m) ’
CogT2™ c30r ™ (—=2r3™ log (r2™) + 4r™ ™)
b(T) = 2m 2m
2(1 4 r2m) 2(1 + r2m)
n €31 n c3or™(r3™ 4 2r =™ log(r?™) + 4r™)
2(1 + r2m) 2(1 + r2m) ’
Cogr?™ c30r ™ (=2r3™ log(r2™) + 4r™ + r—™)
C(T) = 2m 2m
2(1 4 r2m) 2(1 + r2m)
a1 c3or™(r3™ + 2r =™ log(r?™) + 4r™)
2(1 + r2m) 2(1 + r2m) ’
c337™ c34(2r™ log(r?™) 4 r3m — ™)
6(7’) = 2m 2m ’
(14 r2m) 147
£r) Casr™ ca6(2r™ log(r?™) + 3m — p=m)
r) = )
(14 r2m) 1+ r2m
Therefore the bounded kernel functions take the form

¢(r,0)

— s o™ N )4 (2 ca in(k0) ) E
—\\ea+2m) T o) ) 2(1+r2m) 21 +r2m) )" !

N Cogr?™ €31 cos(k0) + el i sin(k0) | E
— - 111
2(147r2m)  2(1+4r2m) 2(147r2m)  2(14r2m) 2

Caar™ C 47'm .
+ (ﬂfﬁm) cos(kf) + (13_77,1) sin(k0))W.
Case 4: The solutions of (3.1)-(3.3) in the case k # 0, k # 1 and k # m are
) = e T Pk (R (k= m) (kr®™ /2 + (k 4+ m)r™))
ST ¢ p2my 38 2(1 + r2m)
oA ) (b7 (5= m)e)
392(1 _|_,,,2m) 40 2(1 +7’2m) ’
d(r)=c rmk +ec rk (MR oy (| — ) (k™ /2 + (R +m)r™))
37 2(1 + T2m) 38 2(1 + 7"2m)
P i PR (o m) (k2 4+ (k= m)r™))

2(1 + r2my 40 2(1 + r2m)

15
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2m

<c41(1 + e myzm(2 T

,r,fmfk

T 1ge2m

b(r) o) T Cagr? ™)

P2k (k(k +m) + 2(k2 — m2)r2™ + k(k — m)rim ;
+cq3 (k( ) ( k(k+7r)z) ( ) ) + cqqr? z) )

2m

2 r
<C41(1 + (k+ m)r2m(E + -

G m) 4 20— e k),
€43 Kk +m) Cqq7 ;
_ C45 —m my,.m—k
e(r) = T o ((k=m)r ™+ (k+m)r™)r

C46 —m _ my\,.m+k
+ 1+T2m((/€+m)r + (k—m)r"™)r ,

Jr) = T (e = m)r ™ 4 (ko))

+ T fl:zm ((k+m)r=—™ + (k — m)r™)rm+*,
If £ > m, there are no bounded kernel functions. If £k = 2,--- ,m — 1, the bounded kernel functions take the

form

,r,fmfk

T 1ge2m

)) 4 cagr2tm™)

e(r)

Tm—k rm—i—k
= E
o(r,0) <0372(1 T + 0392(1 n sz)) cos(k0) Fy

T—m—k:

+1—|—r2m

(0427‘2(k+m) + C447”2m) sin(k0) By

T—m—k
T (0427«2(’“"””) - C447‘2m) cos(kf) Es
r m

,rm—k rm+k

— in(k0)Es.
+ <0372(1 e 6392(1 T rgm)) sin(k0) E
From the above computations, we conclude the validity of Theorem 1.1.

4. APPROXIMATION AND IMPROVEMENT

In this section, we find a suitable profile that approximates well the real solution to (1.9) and then further
improve it by adding several corrections. We first define the error of u as

Slu] == —ug + Au — 2ug, A Usg,. (4.1)
Recall (2.2). We take the approximate solution as

Uxg.e1,e0

= Qv [W (x ;(f)(t) ) +e(t) pfi - cos W (”” ;(f)(t) ) +ea(t) pfi -sin O (m ;é;”)] (4.2)
— QW+ 1211 + 2 Z1),

where Q4 in (1.12) can be written as

0 -1 0
Q, == J,=|1 0 0},
0 0 0

and the modulation parameters A(t), £(t), (), c1(t), c2(t) are to be determined.

Remark 4.0.1. By the non-degeneracy of degree 1 H-bubble, there are nine kernels for the associated linearized
operator. In the above ansatz, we only introduce six modulation parameters. The other three correspond to the
infinitesimal generators of rigid motions: rotations around x- and y-azxes, and another translation for the map in
R3, and the kernels are all of order one at space infinity. For technical reasons, we take advantage of reqularity
properties to control these modes in the absence of modulation.
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We have
0,211 = cos bw,(coswW + sinwkE),

0pZ1,1 = —sinwsin W + sin? w cos O Es,
0p 21,2 = sinbw,(coswW + sinwkE), (43)
0p 21,2 = sinw cos OW + sin? wsin 0 Es.
Then the error of the approximation (4.2) is given by
S[U)\77 3 (/’17(/'2]
2

= - 9,(Q,W Z [¢;Qy 21,5 + ¢;0(Qy21,5)]

— 2¢1¢2Q~ 0, Zl 1A 0z, 212 — 2¢1¢2Q~02, 212 N Oy 211

2 2
= — QW ZCJQ’YZI J =G 21 5 = ¢iQy (0,21 ipr + 0o 21,561
j=1 j=1
2/\ C1C2
-
= A_l)'\pprvEl + Ypw,Q Eo
+ )\_léleQv [cosOFE; + sin O Fs] + A_lég’pr,y [sin0FE; — cos O Fs]
2ypsinw
1+ p?

Qy (0,211 N9 212+ 0,212 N0921,1)

(¢1cos8 + éo8in0)Q, W (c1cos0 + cosinf) Q. Es

"3
— (AL tsinw(€; sin — &y cos B)(co cos § — ¢; sin 6)

— A, cosw(€r cos O + € 5in 6 + Ap)(ci cos O + cosin 0)} QW

+ )Flwp sin w(él cos 0 + 52 sin @ + }\p)(cl cos 8 + cg sin 9)} Q- Er

— | A tp~Lsin? w(§1 sin@ — ég cos 0)(c1 cos @ + co sin 9)} Q-+ E>

2)\7261 Co
p
where we have used (4.3). We then arrange terms and write

S[Uxng.e1.e0]
= A_l).\pprvEl +ypw,QE2 + Ryt
::6'5]0}_

Qy (f sin 20w, sin? w cos wE; — cos 20w, sin? wFy + sin 20w, sin® wW) ,

+ (—2)A2c1cw), sinw(sin 260 cos wQy By + cos 20Q Es)

—g(E2)
=

+ %w,}QW [cosOF; + sinOFEs] + %prQ,Y [sin@F; — cos OF5] (4.4)

—e®
=g

+ pw, [cos 0(¢1 + )\_1/'\01) +sinf(ce + A_l)'\CQ) QW

—g(ED
=€

+ 2X72¢;¢o sin 29,0w/2, sin? w@Q,W + Ry,

—e+
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where
Ry+ = Apw,sinw (c1 cosf + casin ) Q- Eo

+ [x\‘lwp sin w(fl cos + &y sinh + )'\p)(cl cos 0 + co sin 9)} Q- Er
— [)\_lp_l sin® w(§1 sin@ — & cos 0)(c1 cos B + co sin 9)} Q- Es
— [Alwp sin w(él cos 0 + ég sin @ -+ )\p) (c1 €086 + cosin 9)} Q+Er
+ [("ypwp sinw — A" p~sin? w(é; sin @ — & cos 0)) (c1 cosf + co sin 9)} Q- Es,
Ry = — [)\_lp_l sinw(él sin @ — & cos 0)(c2 cosf — c1 sinB)

— A, [cos w(€r cos O + € 5in 0) + A\pw,](c1 cos B + co sin 0)] QW.

We observe that, compared to Ry. and Ry, the error terms £ ©) i and & (1) decay slower in space, and &, (£2)

and &7 (£2) decay slower in time (in view of the blow-up dynamics that we search for). So we add several global

O 5D, 2 and €572,

To deal with £°) L and & (£1) , we add two global /non-local corrections to improve the spatial decay at leading
order. We aim to ﬁnd <I>(0) and ®M) solving approximately

80 ~ A 1 £l
0,0 ~ AW 4 gFD

corrections to improve the errors £

Here &) = ®O)[\ 4, €, ¢1, o] and &) = &[N, v, €, ¢1, ¢o] are non-local corrections, depending on the choice
of parameters, to be specified below. To handle &/ (£2) and &y (£2) , we solve the following two linearized problems:

80V, = Ly[dU) ]+ 5P, j =42,

800 = Ly[®)] + &5,
where <I>(Lﬁ = gl (p,t) is on UL, and <I>§J2) = <I>§J2) (p,t) is in the U-direction.
e Approximate form of (),
We notice that
EI(JOE = A_l).\pprA,El + Ypw, Q- Eo
- - s [el(eoﬂ)} for r=|e—&> A

So we assume that

OO (1) = [@0(86,0]

and ¢° is an approximation of
2r : ;
0_ A0 _ 3 N i(0+7)
9075 - AL)O ’1"2 + )\2 (/\ + ZA’Y)@ K .
Let ,
@O, t) = reP0(2(r), 1), 2(r) = V/r2 + A2(b),
for 19(z,t) satisfying the equation

L3¢ polt
wt - Y2z + 0(2)7
z z

where we define ) _
po(t) i = —2(A +iX¥)e". (4.5)
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From the Duhamel’s principle, we know that
t 2=
0(2,¢) = k(o t— s)ds, k(s t) = ——C © 46
Wt = [ po(s)k(et = )ds, k() = 5 (46)
is a weak solution. Notice k; = k,, + %kz. Then we have
~ ~ ~ - RO - RO
0,29 + A, @0 =R+ RY =R", R = { 00] , RY= [ 01}
where

o Po(t oA [
Rg = _7,6101)7(2) + Tewzj/ po(s)(zk: — ZZkzz)(Z(r)vt — s)ds
-r

and
t

Ry = eRe[(Ee™)] / po(s)k(z(r),t — s)ds — %ew ()\)\ - Re(re_ieé(t))) / po(s)zk,(z(r),t — s)ds.

T < =T

t

e Approximate form of &%),
Since
(£1) _ . —14 . . 14
Ey 7 = pw, [cosB(ér + AT Aer) +8inf(éa + A7 Aer) | QW

2r 0
~ — 27)\2 0 for r> /\,
(s cosB(Aey) + sinO(Aea)’
we assume that
0
oW (z,t) = 0
Re(p! (2, 1))
and ¢! solves approximately
2r -
1 _ 1 —16
$r = A(p - r2 + )\26 (AC)/7
where we use the notation
c(t) :=c1(t) + ica(t). (4.7)

We look for _
(. t) = re TP (=), 1), 2(r) = VT F A2,

where 1! (z,t) satisfies the equation

3! t
ph =gt + 22 2
z
and here we define
pi(t) == —2(Ac)’ (4.8)
Similar to (4.6), we see that
t
W= [ poket - s (4.9)
-T
So we add a correction
0
W (z,t) = 0

with
t

ol(r,t) = re_w/ p1(s)k(z(r),t — s)ds.

-T
We next compute the new error produced by ®):

—9,0M + A, =Re(RF+RH =R, Ri=|0|, Ri=]0
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where
Re = —re_iepz—(;) + re_wi\j /_T p1(8)(zk, — 2%k..) (2(r),t — s)ds
and
o t re—i0 . o t
R} = e Re|(ée )] [ (). = s)ds = (M~ Re(re (1)) [ )ke(r). = )i

(£2)

e Equations for ¢, .

To handle Sl(]jiz) in (4.4), we first write it in complex form:

(Q—"fgl(Jif))C = — 2)\720162102 sin w(sin 260 cos w + i cos 20)

= —iA Percow? sinw [e*?(1 — cosw) + e > (1 + cos w)]

(Qng’(fi) ) C + (Qﬂf,’[(;f) ) c’

We try to add two corrections, expressed in (p,t) coordinates

—2

o5 (0,1) = 7V Q B + 650 Q s, (957)e = 607 gl = o _a(p,t)e
) (p,1) = 6 Q Er + 05 Q Esy  (@))c = ¢ + gt = pa(p, 1)e*?,

where the complex-valued ¢_s and ¢y solve

8 1+5°  2(p* = 1) 2 —jio () ;

— — EEDY ﬂ( _53) . j=42. (411
(SRR vl A G Ao P (4-11)
In other words, we solve the linearized problem

0y = Lul@gl] + £, j =2,

(4.10)

1
)‘Qat@j = Opptpj + ;ap(ﬁj +

where @81 = fbgl (p,t) is on UL. A solution to (4.11) with zero initial data will be ensured by a linear theory
developed later in Section 7.2.
e Equation for <I>§J2).
To deal with Elsﬂ) given in (4.4), we need a correction @g)(p, t) in the form
) (p,t) = sin 200 (p, )Qo W (4.12)
with 19 solving
1 4 .
)\28th = app,(/J? + ;8,)’(/}2 — Ewg + mwg + QClchU)?) Sln2 w (413)

since it is exactly mode +2 of linearization in the U-direction (cf. (2.5)). Equation (4.13) with zero Cauchy
data will be solved by the linear theory in Section 7.2.

We now compute the new error S[U,] of the corrected approximation
Usi= Unmenes + 1 (00 + 00 4 0 4+ 00 4 o)
= QW+ 1211+ c2Z12) + mPs,

where the purpose of the cut-off function

(4.14)

m = n(z —&(t))
is to avoid potential slow spatial decay in the remote region. Here 7(s) is a smooth cut-off function with n(s) = 1
for s < 1 and n(s) = 0 for s > 2. We first analyze the leading terms

Ry +Ro +EN +mEY +RO) +m(ESY + RY) +mLu[@® + o]
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in the corrected error S[U,]. By definition, we have

RUJ_ + RU + g[(]ll

= [A‘lwp sin w(§1 cos + Exsinf + /'\p)(cl cos 0 + ¢y sin 9)] Q- Ey

+ {(ﬁpwp sinw — A" tp~tsin? w(£1 sin@ — & cos 9)) (c1cos B + cosin 9)] Q- Es

. . (4.15)
— {Alpl sinw(&; sin@ — & cos B)(ca cos O — ¢ sin 6)
— A, [cos w(€y cos @ + E;sin 0) + Apw,)(c1 cos B + ¢ sin 0)] QW
L& & .
prv [cosOF; + sinOEs] + pr,y [sin@FE; — cosOEs],
whose complex form on W+ is
[€0)
(RUJ_ + RU + SUL)C
= pw,sinw A\ + i) (1 C089+02 sin 0) (4.16)
+ A" w, sin w(éy — i&5)e? (¢1 cos O + ¢y sin 0)
+ A~ wp(€1 — ng)e
Next, by using 4
f(p)ew _ —iy) _ : —iy
= |coswRe(fe™ ") — gsinw|Q,Ey + Im(fe™)Q, E>
9(p,0) (4.17)
+ [sin wRe(fe™ ™) + gcos w} QW
one has
el + R
B (AIX + i)t 0+ RS RY L1 [0,
—pwp[ 0 Tloltlo + pwp AT Csinw
_ [0 2 S po() (ke = 22hn) (2(0), t = )ds)et®] | [T A pup)e] R
- 0 At pPw? 0 (4.18)
= | coswRe[( ((JOL) + f(l)) O] = A2 w?sinw | QyEy + Im|( [(JOL) + f(l)) e~ Q. By
+ [smee[(f(O) + fUL) e+ A AP cosw} QW
where
(0) A2t 2 —13 iy 2 ros [
fol = vy po(s)(zks — 27k..)(2,t — s)ds + A" Ae' pwy — 27)\)\ po(8)zk.(z,t — s)ds,
.‘T' , - - (4.19)
fé,lj = Re[(ge_’e)] / po(s) (k:(z,t —8)+ —k.(2,t— s))ds
T z
Similarly,
e+ R
. . i(0+7) o
= pw, [cos 0(é1 + X"t hep) 4 sin (e + )\_1)\02)} [6 w St w]
p
0 0
+ 0 +1 0 |,
Re [reﬂe A7 Tpl( s)(zk, — 2%k..) (2(r), t — s)ds} Re[R1]
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and from (4.17), it follows that
(6}(}1) + 7@1) QW = —sinw (pzwf) [cos 0(¢1 + A"t Aer) + sinf(éo + )\*IXCZ)D
+ (pwi [cos 0(¢1 + )\_1).\01) +sinf(¢e + /\_1;\02)]> cosw

) )\2 t 7
0 p1(s)(zk. — 2%k..) (2(r), t — s)ds + Ri| cosw
T ]

+ Re |re ]

= — pwi [cos 0(¢1 + A"t her) + sin0(éy + )\_1/.\02)}

- 2 t )
i A p1(s)(zk. — 2%k..) (2(r),t — s)ds + Ry | cosw,
T |

+ Re |re a1/

<5[(,i1) + 7?1) -QyE1 = —cosw (pQwi {cos 0(c1 4+ A" tAer) + sinf(éo + /\*1/'\(:2)}) (4.20)

- (pwi [cos 0(¢1 + A" hey) + sin0(ég + /\_1/.\02)]> sin w

. )\2 t b
—Re ?”67207 / p1(s)(zk, — 2%k..) (2(r), t — s)ds + R | sinw
2 J-r ]

- pzwi [cos 0(¢1 + A" Aer) 4 sinf(éo + )\_1).\02)}

2t 1
—Re 7‘6—"0% / p1(s)(zk, — 2%k..)(2(r), t — s)ds + Ri | sinw,
L T J

(&5 +RY) - QB2 = 0.
Also, from Lemma 2.4, we have
Ly[@© + oW]

2
= %pwz [Re(e‘”(wo + %8#?0))@7191 + iIm(e_iﬂ/T’(/Jo)nyEQ}
+ ;wﬁ (Re(e_i'y(wo + T—;azwo)) cosw — iRe(e_mrwo)) QW

— ;w/’ cos w (Re[em(w1 + gwi)]Qﬂ,El — iIm[ewmbl}QvEg)

2
+ 2 puRele (' + QW (4.21)
2 2
= %wp (Re(e”(@bo + %@@/}0)) cosw — %Re(e*”mbo) + pwae[e*w(dJ1 + 21/12)]) QW
2 2
+ §w,, (pwae(eWO +—0.0")) - coswRele (1 + rzw;n) QEx

+ %wp (pwyIm(e=ry?) + cos wIm[e*wrwl]) Q- Es.

We denote the remaining terms in the error S[U,] by
Ry i= S[U.] = [Rys +Ru + &S +m(EY) + R +m(EGY + R +mLo[@® + V)] — B, (4.22)
where E; is defined in (A.2), and we claim:

Lemma 4.1. The remainder R.. in the corrected error S[U,| projected in each direction QW , Q+E1 and Q- E>
is given by

R, - QW
= — 2171)\7110,,(5.1 cos @ + 52 sin @ + /\p)( 52) + ¢§‘2))
+ o sinw[y + Ao (€ sind — & cos0)] (6 + ¢57?)



H-SYSTEM AND ITS HEAT FLOW

+mAT (€1 cosO + E;sin B + Ap) sin 200,12
—2m AT 7€ sin 6 — &5 cos B) cos 2601,

2
2:1 [ (cos wRe {ew(wo + 5‘27/)0)} — Re[e ™ (y" + %aﬂl)l)] sin w)
+ 27t (sm 20w, + ap )49 ¢( 2)) ]
X (Im [e™iry®] + (060 + 0pS ) + cosw(dP + ¢{7?) + sin 20 sin wwg)
2 2
+ 20 (Im {e_i"’(wo + rzazwo)} + 271 (0,08 + ap¢§2))>
x (coswRe [e™iry”] — Im(re*u!) sinw + (901" + Bp6i ) — cosw(of + 0§ )

2 _
n (Im [e=Miry] + (9985 + Bpobl D) + cosw(¢\?) + ¢{7) + sin 20 sin wz/;2>

X )\ Yw, sinw(cy cos O + co sin )

r

_2m l (cos wRe [6”(1/10 + T;azlbo)] — Rele (" + éazd)l)] sinw>

+ 27t (sin 20wp1pe + 0, 52) + 8/,;25572)) 1 x sin? w(ey cos O + cosinb),

R. QB
= nrcoswly + A p T (Ersind — & cos0)](6F) + o5 )

+ 27]1)\*1;)71(5.1 sinf — & cos 9)[%2) — ( 2)]

+ m)\*l(él cosf + 52 sin @ + )\p)(@ 2 4 0, (_2))

+ 771)\_110,,(51 cos 0 + &5 5in 0 4 Ap) sin 204,

o3 . 2 _

=20 (1 [emrw + 0.0 + 27 0,087 + 0,06 )
X (sin wRe [e”7iry?] + Im(re ') cos w — sinw( éQ) + q{)gﬂ)) + 245 cos 29)
20f (. im0 T 0 —iog 1, T 1

+ - sinwRe [e™*7(¢” 4+ ?5’2@/1 )| + Re[e™ (¢ + —6;#; )] cosw
X (Im [e‘”irwo] + (89@552) + aggbé_z)) + cosw(¢y @ 4 (;5( 2)) + sin 26 sin w1/22>
2 . _ _

+ % (Im [e™iry®] + (3g¢52) + 89(;55 2)) + cos w( 52) + ¢§ 2)) + sin 260 sin w¢2)
X /\*1w,, cosw(cq cos B + co sin 0)

2m | (. iy 0 4 Tog 0 o1 Tl
+ . sinwRe [e™*7 (¢ 4+ Zazw) + Rele (¢ + Zﬁzw )] cos w

+ A7t {sin 200,12 — w,( g2) + QSYQ))} x sin? w(c; cos § + co sin 0)

2
_2n (Im [6”(1/10 + Tﬁzwo)] +2710, (2) +0, (_2))) X sinw(cg cos @ — ¢y sinb),
r z

R* . Q’yEQ

23
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= —nreoswly + A" p 7 (€ sin — & cos 0)]( 52) + ¢§_2))
+2m A 7 (€ sinf — €5 cos 0)] (1_2) - (12)]
+mATH (€ cos O+ Easin 0+ 3p) (9,65 + 0,057
—msinwly + A7 p (€ sin @ — & cos 0)] sin 2640,

2

2t l (sin wRe [e_m(tbo n ’jamo)} +Rele (0" + 0.0 cos “’)

+ A7t {sin 200,12 — w,( 52) + qbg_Q))}

X (cos wRe [e”Viry°] — Im(re 9yt sinw + (39¢(12) + 89(15(1_2)) — cos w( 52) + ¢é_2)))

2

+ 2 (COS wRe [em(?ﬂo + ﬁa T/)O)] - Re[€7i9(¢1 + ﬁa )] sin w)
r z " 2

+a! (sin 20w,1bs + 9,017 + ap¢§*2>) ]

X (sin wRe [e”iry?] + Im(re~ ) cosw — sinw( 52) + (béd)) + 21)9 cos 29)

2 , . _ -
_in (cos wRe [e~iry?] — Im(re” %41 sinw + (69@552) + 89¢)§ 2)) — cosw( g2) + ¢(2 2)))

,

x A\ tw, cosw(cy cos O + o sin 0)

2 . . _
+ % (sin wRe [e”7iry?] 4+ Im(re ") cos w — sinw( (22) + ¢§ 2)) + 24)5 cos 29)

X A_lwp sinw(cy cos  + ¢4 sin )

+ @ (cos wRe [e_m(wo + fazl/io)} — Rele (' + g@zwl)} sin w)

+ A7t (sin 20w,0 + 0, 52) + 8p¢§_2)> ] x sinw(cg cos — ¢; sin B).

The derivation of above Lemma is rather lengthy, and we postpone it in Appendix A.2.

5. FORMULATING THE GLUING SYSTEM

We aim to find a real solution
u = U* + (I);
so Su] = 0 yields
0D = AP — 20, Ui N 0y ® — 205, P A 0y, Uy — 205, P A O, @ + S[UL].

We decompose @ into

<I>(x,t) :nRQ'y |:(I>W (yvt)‘i‘(I)WL (yat)} +\Il(x’t)7 Yy = )

where @y is in the W-direction, ®y,. is on W,

and R(t) = A=?(t) with 8 > 0 to be chosen later.
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Then it is sufficient to find a desired solution u to (1.9) if the triple (Py,, Pyo, ¥) satisfies the gluing
system:

N0, Py = Ay @y — 20, W A9, Py — 20,, P A 0y, W
+ XM [Q o Ly (W] + X1l [Q o (SIUD)] + X2HIY in Dan,
Moy = Ay — 20, W A0y, Py — 20, Pyyr A D, W
+ A2y [Q,JU[\I/]} + 2Ty [Q,V(S[U*])} FHYT i Dag,
OV = A,V + (1 —ng) Lo W] + (1 —nr)S[U.]
+ Q) (@w + ) Aur + 2900k - V(@ @w + Q@) = Qo (@w + By )Ome]  (OD)
= 2(1 = 1), (U = U) A O (70 (@ + Bryrs) + W)
—2(1 — R)ds, (nRQW(QW Fhy) + w) A By, (U. — U)
+(1—ng) [ — RATQ (B + Byt ) + (AT + A My) - V,(Q D + Q@WL)}
—2(1 — np)ds, (nRQW(cbw Y Dy) 4 \1/) A s, (nRQ7(<I>W FDyL) + \1/) in R? x (0,T),

i.e., @y and @y 1 satisfy inner problem in the W-direction and on W+, respectively, and ¥ solves the outer
problem. Here

Dori={(s,1) €RZ xRy 5 |y < 2R(1), te (0,7)},
R, E,, are defined in (6.2), (A.2), and

HY = HW{Q_7 [ — 20, (U, — U) A0y, (nRQ7(<I>W L)+ \1/)

20, (nRQW@W L hy) + \1/) Ay, (U, — U)
— NrATQ (P + Py ) + nr(ATHE+ AT y) -V, (Q, P + Q. Dy 1)

20, (nRQV(be FDy) 4+ \1/) A D, (nRQ7(®W FDy) 4+ xp)] }
(5.2)
W, {Q_7 [ 20, (U, — U) A0, (nRQV@W L hy) + \I!)

20, (nRQW(@W FDyl) + \I') Ay, (U, — U)
- nRﬁJsz(q)W + ®yr) + nR()‘_lé + )‘_1}‘9) : Vy(Q“/(I)W + Q’Y(I)WJ-)

20, (nRQ7(<I>W FDy) 4+ \I/) A Oy, (nRQV(QW FPyl) + \IJ)] }

We will solve equations (5.1); and (5.1)2 with zero initial data and (5.1)3 with non-trivial initial data
U(x,0) = Z* = (2,25,25), x€R%L

Problems (5.1); and (5.1)y are the inner problem which captures the blow-up property, while (5.1)3 describes
the main character with singularities removed. We will solve these problems by developing corresponding linear
theories and the fixed point argument in suitable weighted spaces. We notice that the inner problem (5.1)9
is essentially a perturbation of the linearized harmonic map heat flow around the bubble W, and the inner
problem (5.1); is a perturbation of the parabolic linearized Liouville equation (cf. Lemma 2.1 and Remark
2.1.1).
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6. LEADING DYNAMICS FOR THE PARAMETERS

In this section, we capture the leading dynamics of the parameters A(t), £(¢), y(t), c1(t), ca(t), and these are
in fact determined by orthogonality conditions in corresponding modes that are needed to ensure the existence
of desired solutions with fast space-time decay (in the linear theories in Section 7.2). We will choose AR < 1,
soni(z) =ni(z) =1 and E,, =0 (cf. (A.2)) for |z — &(t)] < 2AR. Our aim is to adjust the parameters such
that the orthogonalities hold

/B (M [ @ Lu 9] + T [ Qo (SILD] +#IY ) - Zij(w)dy =0, =01, j=1,2,
" (6.1)
/B (1w [Q Lo (9]] + T [Q (S| +#Y ) - Zrsw)dy =0, j=1.2

for all t € (0,7T"), where the kernels Z; ; and 2 ; are defined in (2.2). The reason for not requiring orthogo-
nalities with the other three kernel functions Z_; 1, Z_1 2 and Zj is to avoid further complications due to the
introduction of new modulation parameters, and we shall use linear theories without orthogonality conditions
in Section 7.2 together with regularity estimates to control these modes.

The goal of this section is to derive the leading dynamics governing these parameters by approximating (6.1).
To do this, we decompose the remainder R, in S[U,]| as

R =Ry + Rua, (6.2)

where R is defined as
R*,l

2 ) _ 2
= — % sinw(cy cos @ + ¢y sin 0) (x\lwplm [e™iry°] + sinw cos wRe {e” (¥° + TZ@sz)} ) QW

2 . ) ) 2
+ %(cl cos 6 + cosin 6) <)\_1wp cos wlm [e_”irwo} + sin® wRe {e_” (¥° + Z@zwo)} > Q- Er

(6.3)
2771 . . —iy (.10 T2 0
— —sinw(ca cosf — ¢y sinf)Im |e™ 7 (P° + —0,9°) | QE1
r z
2 )
- ﬂ)\_lwp cos 2w(cy cosf + ¢ sin)Re [e_”im/)o] Q- Es
T
2n1 . . L0 L T 0
+ ——sinw cosw(cz cos — ¢y sinf)Re [e™ 7 (" + —0,97) | QEs.
r z
So the error reads
S[U,] = [RUL + Ry +EN +m(ER) +RY) +m(eF + RY) + mLu[0© + <1><1>]} 4Ry + Ry + By,
(6.4)

In what follows, S[U,] in the orthogonality conditions will be approximated by its main terms, and the analysis
of the remainders will be done in Section 8.3.

6.1. A-vy system and translation parameter ¢. We start from the RHS on W+, and this turns out to yield
the dynamics for A and v at mode 0 and for & := (&, &) at mode 1.
e Mode 0 on W+: \-vy system.

The orthogonality condition (6.1); with ¢ =0 and j = 1,2 in the complex form implies

o (2R
~ €
/ / (s [ @ Lu W] + Ty [Q (SIUD | + 1) pPwpdpdd =0, (6.5)
o Jo
which is a complex system for A and . We single out the main terms at mode 0:

<HWL [wazU[ZS(‘I)]} + Iy o {va ((SI(JOL) +R%) + EU[Q)(O)D} )C,O '
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We will deal with the remainder terms, turn out to be faster vanishing in time, when we solve the full problem
via fixed point argument. From Lemma 2.3, one has

(M [ Lotz @)])
= Aflpwi[div(ewa* (q)) + dcurl(e” Z* (q))].
Also, from (4.18), (4.19), (4.21), and (4.6), we obtain

(H [ (5<° + RO + Ly [<1><0>])D

= (cosze )e_”] — A\ pPw smw) —i—zIm[(f(O)) —]

C,0

21 el + 206 + 23 e )

)\71 t )
= coswRe ﬁ / po(s)e™ W (zk,(2,t — 5) — 2%ksa(2,t — S))ds]
p -T
t . .
— coswRe 152 / po(s)e D2k, (2t — s)ds] - A*lpri
peJ-r

+ 2)\*1pw§Re

/tT po(s)e™ ™ <k:(z, t—s)+ ékz(z, t— 3)) ds]

—1 t
(1>i’_p§2 /7Tp0(8)€7i7(t) (Zkz(z7t — 3) - Z2kzz(zvt - S))dsl

+ ¢Im

)
—iIm Ap /t po(s)e D2k, (z,t — s)ds
1+ P2 7 FACS)

¢
+ iZAflpwilm[/ po(s)e O k(z,t — s)ds}
-7

t —iv(t) 1
= —coswRe A_lpwz/ %@K«ds
-T

t —

. t —iv(t) .
+ cos wRe )\pwp/ %(chs — A_l)\pwi
—-T — S

t —iv(t) 2
po(s)e 2p
—— K K¢ )d
~/—T t—s ( +1—|—p2< C) 5

t —iv(t)
Alpwﬁ/TpO(st)iS&K“ds

+ 2)\71pw§Re

+ ilm

. t —iy(t) t —iy(t)
+ 2Im /\pwp/ MCKgds + i2)\1pwl2)1ml/ po(s)ede] ,
T t—s 7 t—s
where )
l—e @ 22 N (1+ p?) 1—e %
k t = eee— = = = . .
()= = = S k=1 (6.6)
Therefore, (6.5) at leading order gives the following system in complex form:
t —i(t) At)2 . | —iy(t) A1)2
[ Rl (XY g [ e (07
T t—s t—s _r t—s t—s (6.7)

-2 {div(e_m(t)Z*(q)) + icurl(e_”(t)Z*(Q))] ;
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where
oo 2 .
(7)) = / <p3w2 {(ZK(C) +4CK<(()$/)2> — cos w(szCg(C)] + cos W)‘)\p3w,2)CK§> dp,
0 ¢=(145?)
To(7) = Swd [2K ’K, MpPw?K d
()= [ (Pl 2RI + CReQ)] + M) - dp
and we have used f0+oo pPwidp = —2. Clearly,
-1+0(r), 7<1, —-14+0(r), 7<1,
r = 1 r = 1
1(7) 0] <> , T>1, 2(7) 0] (> , T>1,
T T
so it follows from (6.7) that
t—\?
/ lt’O(SS) ds = —2 [div Z*(q) + icuﬂz*(q)} + O(po(t)) + o(1), (6.8)
-T —

as t — T. Recall po(t) := —2(\ + iA\y)e?. We then proceed as [17, Section 5, p. 372] to obtain
T—t curl Z*(q)

At) v ———— t) = v = t
O Tog@ —op 70 =7 T g 7
as t — T under the assumption that div Z*(q) < 0. So the leading part of A(¢) is given by
(T = )] log 7|
A (t) = = 1081
W= Tosm - P

where the |log T'| is a normalization factor. As we will see later, the dynamics of Ay system and ¢j-c3 system
are in fact coupled, and this results in an extra restriction:

cos v, div Z*(q) + sin v, curl Z*(q) < 0, (6.9)
roughly speaking, yielding more instability.

Remark 6.0.1. Both restrictions div Z*(q) < 0 and (6.9) can be achieved at the same time by choosing initial
data Z* such that

. curl Z*(q)
divZ*(q) <0, |——F= 1
ivZ*(q) dv Z°(q) <
since once Z* is fized the rotation angle v, is determined automatically by
curl Z*(q)
t = .
any div Z*(q)

In such case, v, < 1 and thus one has (6.9).

e Mode 1 on W+: &.

Similarly, the orthogonality condition (6.1); with ¢ =1 and j = 1,2 in the complex form gives

[ (0 @ Botw] 1 [ (S10D] + 42w utpn =0, 610

From (4.15), (4.16), (4.18), (4.19), (4.20), (4.21), (4.22) and (6.2), the main terms that have contribution in
Bsp in above integration are given by

(s [ @ Zow]] + T [ Qs (ST0 - R ) |

= (s | LolZ @] + T [Qs (S0 = R ) |+ (T [ @ Lol — Z5()]) |

= — 2\ tw, cos we" (8mlz§ (q9) — ic’?ng(q)) + (HWL [Q_,YEU[\II - Zg(q)]} )C X
. . . . ie
+ A w, (6 — i&)e™ + pw, sinw(ATEA + iﬁ)%(el —icy)
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Lo, _ iy [ r’
+ 3¢ (& —i2) po(s) (/‘5 + ;@) (2,t — s)ds
-7

. . t . . 2
+ %ew(fl i) l/_T (po(s)e_”(t) —&—ﬁo(s)emt)) (k + %kz)(z,t — s)ds]

At - A~ o [F
+ Tp%uiewﬁl (t) + ?pzwiew/ p1(8)(zk, — 2%k..) (2, t — s)ds
-7
¢

1 i :
+ 4p w SZQA/ p1(s) 2k, (2,t — s)ds — 2271w, cos we®® / P1(8)k(z,t — s)ds
T -T
2

¢
— X" tw, cos wr—ew/ P1(8)k.(z,t — s)ds
z -T
2 .
+ —(c1cos@ + cosinb) (x\_lwp coswlm [e™iry°] + sin® wRe [e (0 4 Bzwo)} )
r

9 ) 2
— —sinw(ey cosf — ¢ sin6)Im [6”(1/10 + Tazwo)]
T z

2 )
— i;)\_lwp cos 2w(cy cos + cosinf)Re [e‘”im/;o]

+ zg sin w cos w(cg cos§ — ¢ sin §)Re [e 7 (0 + 5 ('Lw )]
T

Then the dynamics given by (6.10) is approximately the followmg ODE:

€ —ifs ~ CR-Q(axlz;,‘(q) —i0:,3() ) + O(lel)
27 2R (6.11)
_ A / Ty [Q JLulv — Ziq )]} ., {Q_WR ] T HY )C (wpe™ pdpd

s

for some constant C, where we have used the fact that fo pwp coswdp = 0. For later purpose (when dealing
with ¢1-¢o system), we will choose initial data such that

8I1Z§(q) = axzzg(q) =0,
and ~
M@y Lol - Zi(@)]| A%, lel S A°0)

for some 0 < © < 1. For the gluing procedure to work, we will eventually choose © to be slightly bigger than
1/3 (cf. the final choice (8.29)). Because of this, also by estimates (8.11) and (8.24) that will be carried out
later, one has

A ‘HWL [Q,ﬁé*] L \ < A3t
Therefore, there exists a solution
&(t) = g+ o((T - 1)°°)

for above ODE, where we recall A(t) ~ |log(TTi_jt)|2'

6.2. c1-co system. Finally, we derive the asymptotic behavior of the translation parameters in the W-direction.
From the linear theory of the inner problem in the W-direction, we need:

27 2R 5
/ Q,WLU[\I/] W+ (Q,A,(S[U*]) + H}f{) . W] sin w cos Opdpdd = 0,
(6.12)

27 2R
/ Q SLu[W] - W+ (Q (S[U*])+H§Y) ~W] sinw sin Opdpdf = 0.
By (4.15), (4.18), (4.20), (4.21), (4.22) and (6.2), we have
Q- (S[U ]*R*)'W
- Q- 7(Rm + Ry + EX + (€0 +RY) + (6 + RY) + Ly [0© + @(U]) W
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+Q 4(R.—R.)-W
= — X !ptsinw(é; sinh — & cosO)(cy cos B — ¢ sin )
+ A Lw,[cos w(€y cos B + € sin B) 4+ Apw,)(c1 cos O 4 ¢ sin O)
+ sin wRe[(fI(JOL) + f[(Jlj e ] + Afl)-\p2wz cos w
— pwi {cos 0(¢1 + /\*1/'\(:1) +sinf(éo + )\71).\C2):|

2 gt
+ Re {rew; / p1(8)(zk, — 2%k..)(2(r), t — s)ds + Ri} cos w
-7

2 ) 2 1 . ) 2
3w, (Re(e—WO + Z0.4) cosw — “Re(e™Try?) + pu,Rele (4" + ’"Zw;ﬂ) ,
2 ; , 2

- sinw(cy cos @ + co sin ) (x\_lwplm [e‘”im/)o] + sinw cos wRe [e_” (¥° + Zﬁzwo)] ) ,

and by Lemma 2.3,
Qf'yi/U[\I/] W Q*WEU[Z* (Q>] -W

= le div(e™Z*(q))) — §wp sin w0y, 23 (¢) cos 0 + 04,25 (q) sin 0]

e
2 L, N . L5 iy 7 i
+ e | T3P W div(e""Z*(q)) cos(260) + 2P wpyeurl(e” Z*(q)) sin(20) | .

So the terms in (Q_~Ly[¥] - W + Q_~(S[U,] — R.)- W) that might contribute in (6.12) are given by
¥ gl g g
— 22" Lw, sin w0, 23 (q) cos @ 4 Oy, 25 (q) sin 0] + Q_, Ly [ — Z*(q)] - W
— At sinw(é; sinf — & cos B) (¢ cos O — ¢ sinb)
+ A w,[cos w(&y cos O + Easin B) 4+ Apw,](c1 cos O 4 o sin 0)
+ sin wRe[(f((Jlj)e_i"’] - pwﬁ {cos 0(¢1 + A" Aer) + sinB(éq + )\_1).\02)}

2t
+ Re [re_w; / p1(8)(zk, — 2%k..)(2(r),t — s)ds + R%} Cos W
-7

2 o1, T
T W pwpRele™" (1" + ?wz)]
2 )
— Zsinw(cy cos 0 + casin )N w,Im [eViry]
T
2 . . —iy (1.0 r’ 0
— —sinw(cy cos + cosinf) sinw coswRe [e™ 7 (P° + —0,¢°)
r z
= — 22" tw, sinw(dy, 25 (q) cos O + Dy, 25 (q) sin 0] + Q- Ly [¥ — Z*(q)] - W
+ A_lwi {élcl cos? 0 + 5202 sin? 6 + élcg sin @ cos 0 + fgcl sin 6 cos 0}

+ A*lwp [sin 20(5102 + 5201) + cos 20(5101 - 5202)} - pw?, [cos 0¢1 + sin O¢s)

+ sinwRe[(ée™)|Re /t po(s)e” 7 ® (k + §k2> (z,t — s)ds]
T

2 gt
+ coswRe {reie)\4 / p1(s)(zk, — 2%k..) (2(r), t — s)ds}
2 J-T

t

() / pr($)k(=(r), £ — s)ds

-T

+ coswRe

—i60

- ()\)\ - Re(re‘ieé(t))) /_tT p1(s)zk.(z(r),t — s)ds]
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¢ 2

+ 2)flpwiRe {ew/ p1(s) (k + r—kz) (2,8t — s)ds}
-T z

+ 2271w, sinw(e; cos O + co sinf)Re

t 2
/ po(s)e W k(2 — s)ds]
-T z

t 2
—iy(t) ~ _
/_Tpo(s)e (k+ . kz)(zﬂf s)ds].

+ 2)\_111)5 sinw(cy cos + ¢o sin §)Re

So orthogonality condition (6.12); implies

+oo —+o0
— 2105, 25 (A / pw, sin 2wdp — méq / pQwi sin wdp
0
27 —+o00
/ / Q_Lyl¥ —Z*(q)] - W) sin w cos Opdpdl

. t . 2
+7T£1/ psin? wRe / po(s)e” W (/c—i—r—kZ)(z,t—s)ds dp
0 -T z

+o0 t
+ E)\_1 / png sinwcosw/ Re[p1](s)(zk, — 2%k..) (2, t — s)dsdp
0 -7
+oo t
+ )\/ p*w, sinwcosw/ Re[p1](s)zk,(z,t — s)dsdp
—+oo
+ 27r)\_1/ pPw Smw/ Re[p1](s (k + —k )(z,t — 8)dsdp
0

+oo
+ 272"y / pw, sin® wRe
0

t 2
/ po(s)e_”(t)r—kz(z, t— s)ds] dp
-T z

+oo
+ 2727ty / pwi sin® wRe
0

¢ ' 2
/ po(s)e” @ (k + —k‘z) (z,t —s)ds|dp
-T z
= O7

and (6.12)2 implies
“+o0

“+o00
— 2700 25 (N1 /0 pw,sin® wdp — wéy /0 pzwi sin wdp

2 +oo _
+ / / (Q,VLU[\II - Z*(q)] - W) sin w sin 8pdpdf
o Jo

/t po(s)e @ (k(z,t —s)+

2

. +oo T
+ 7€ / psin wRe —ky(z,t — s))ds dp
0 z

+oo t
+ E)\_l / pQwi sinwcosw/ Im[p1](s)(zk. — 2%k..)(2(r), t — s)dsdp
0 -T
“+ o0 t
+ )\/ p’w, sinwcosw/ Im[p;](s)zk.(z,t — s)dsdp
-7
“+o0 t 7,.2
+ 2727t / pQwE sinw/ Im[p:](s) (k + —kz) (z,t — s)dsdp
0 -T z

+oo
+ 272" tey / pW, sin® wRe
0 -T

t 2
/ po(s)e_m(t)%k‘z(z, t— s)ds] dp

+o00
+ 27" tey / pwi sin® wRe
0

t . r2
/ po(s)e™® (k + sz)(zﬂt —s)ds|dp
-T z

=0.
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Neglecting the terms that have faster vanishing in time, we arrive at
)\ 27 +oo B
404,25 (q) — 2Xé1 + — / / Q_,YLU[\I/ - 7*(q)] - W) sin w cos Opdpdf
T Jo

+o00o t
R
—/ pngsinwcosw/ %C Keedsdp
0 -T

—+00 ) t R 2
+2/0 p2w§smw/_TiD'f]S(S)(K(C)+ T+ v CKC)dsdp

+oo Y Relpo(s)e”M] 2

.2 0 P
—&—201/0 pw, sin w/_T P T+ 5CK¢dsdp
2

+oo t Re[po(s)e= ) 2
2 2 Re[po(s)e"")] p
+201/0 pw, sin w/_T P (K(C)—i— 1+p2CKC)dsdp

=~ 0,

and

27 “+o0 B
404,25(q) — 2Xé2 + % / / (Q,,YLU[\I! — Z*(q)] - W) sin w sin @pdpdf
o Jo

“+o0 t I
—/ p2w§sinwcosw/ M@chdsdp
0 -T

t—s
+o00o t
I
+2/ png sinw/ W(K(C) )dsdp
0 -T -
Foo t R —iv()] 9
+202/0 pwpsian/T e[polfi)es }1 P 5 CK¢dsdp
e " Re[po(s)e "] P’
2 2 sin? — (K K¢ )dsd
e [T gt [ RBT ( Bg,
~ 0,

where ¢ and K(¢) are defined in (6.6). Therefore, in complex form, the orthogonality condition in the W-

direction reads
t 2
/ P(s)p, (A (t)> ds + 2Xé + T[polc

T t—s t—
27 400 )
~ 4(0,25(q) + 104,25 (q / / Q LLy[¥ — Z*(q)] - W) sin we'® pdpdh
where , '
p1(t) = =2(Ac)’, c(t) = c1(t) +ica(t),
“+o0 ) 4 2
rar) = [ pusine fwosuCRelo) - 2K - TR0
0 ¢=r(14p?)
and N . ) )
* . Re[po(s)e 2
Ly[po] = — 2/ P Sln2w/ Lpot( ) S } T —if)p2 (Kcdsdp
0 -T -
e Re[po(s)e "] 2p?
—2/0 pw? sin u)/ T(K(() + 1+p2CKC)dsdp
t iy (t) 2
[ Bt 00y,
-7 t—s t—s
with N )
> 2
Is(r) = *2/ pwp sin® w {(1 + wp) 1 £ 30K + wpK(C)] dp.
0 te ¢=r(1+4p?)
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It is direct to see that

—140(7) T <1, —;—1—0(7)7 T <1,
Fg(T): 1 F5(T):
o() r> 1, O(1> -

and thus above reduced problem, at main order, can be written in the complex form as

t—X2(t) t—X2(t) —iy(t
/ A p1(s)d8+2 (/ A st> ¢ = —4(8y, 75 (q) + 0, 25(q)) + f(1),

_r t—s 3\ J_r t—s

where
)\ 2 “+o00 5 )
f@) = ——/ / (Q,VLU[\IJ - Z*(q)] - W) sinwe pdpdo.
™ Jo 0
In order for p;(t) to vanish as t — T, we require
02,23(q) = Ox,23(q) = 0.

Then the new balancing condition becomes

/t’\ ® pus) ;o 2 (/t/\ © Re[po(s)ei’Y(t)]dS> c = f(t). (6.13)

t—s 3 t—s

Here, f(t) is essentially the contribution from the outer profile ¥, and we will later see from the weighted space
chosen for ¥ that (T~ )[log |
D < A\ (t M\ (t) = W —tyjlog L]

FOLSR0. A0 = [

for some 0 < © < 1.

We now derive the leading asymptotic behavior of (6.13) by approximating it by an ODE, and the non-local
parts remained will be solved by a linear theory in later section together with the fixed point argument.
Notice, by the leading order of A ~ A,, that

t—X2(t) t—(T—t) t—(T—1) t—A2(t) . ¢
/ 2us) 5 / Pas )ds+p1()10g(t—s) +/ pus) = ull) g
-T t

_T t—s t— s=t—A2(t) —(T—1t) t—s
t—(T—1) t—=A%(t) i (t
_ / PLS) 4 1 o (#) [log(T — 1) —210g)\(t)]+/ pls) =ull) g
_T t—s t—(T—1) t—s
t
pi(s)
~ ——2ds—pq(t)log(T —t
| s = paton(r —1)
= Pl (t)7
and exactly the same argument works for
Z“/(t) e~ ®) .
/ ¥ Relpo(s)e 0], / Relpo(s)e ™0 o Refpo(t)e O] log(T — )
T t—s
= Po(
We then have an approximation for equation (6.1 )
Pu(t) + 7’0( Je = f(1),

and we want to solve for p; () from here. Notice that
—log(T — )P} = [log*(T = t)p1 ()],
. /
—log(T —t)Py = [logQ(T — t)Re[po(t)e*w(t)]} .

Recall that ' 4
p1=—2(Ac)’, po=—2(A+iXy)e”
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Then we get
2 l ! 4 2 i1 2 / l
2[1og (T - t)(Ac) ] +3 [1og (T - t)A} ¢ + 3 log(T — t)Poc’ = log(T — 1) (1). (6.14)
The third term above can in fact be approximated by
Py ~ 2\ — 2Re[div(efw* Z*(q)) + icurl(e="* Z* (q))]
~ — 2Re[div(e_”* Z*(q)) + dcurl(e” "= Z* (q))}
due to (6.8), where . is the rotation angle. Let us now write
Z := —2Re {div(e_m* Z*(q)) +icurl(e” "+ Z* (q))] ,

and thus equation (6.14) reads approximately
r2
2 [1og2 (T - t)(Ac)'] + = log(T — )Zc’ = log(T — 1) '(1)

L/
as % [logQ(T — t)/\} c is relatively smaller in size. Above equation should be understood in the weak sense when

solving rigorously c¢. But for now, we only single out the main part, smooth for ¢ € (0,T), of c. The full
solvability of c is given in Section 9.
Integrating above equation implies

—M%HT—tmmy+%?l)bQT—@d@WSZ—ﬂQMQT—f%ﬁK %@%d

which is again approximately

—21og*(T — t)(\e) — % log(T — t)c(t) = —f(t)log(T / S(s . (6.15)

*S

The equation for Ac is given by

2 o] = (@R (SO 1 )
0 B o)) = - F l( 2log2(T—t)/t T—3d5>'

2log(T —t)

Thanks to (6.9), i.e., Z > 0, one can find a solution ¢ which vanishes as t — T. Indeed,

—n (T oa (T~ T
|AC|: (T—t)%%/ (T_T)_%llglggT\) f(T) _ 21 / f(s) ds dT
t 2log(T' —7) 2log”(T —71) ), T—5s
Lf(0)] zwwt)/T 2 log(T—7)
< ——— 2 (T — )6 TlogT] T — 7)7 6 TlosTT dr
S Togr—p] |7 Y , &=
3|log T|(T—t)|f(t
~ —t t _
TTog(T—0)] ° =0,
and
|C| < )‘?(t)vl Z>07
~ og(T—t
() e 2 =0

because of |f(t)] < A2(t). Throughout the rest of this paper, we consider the most representative case when
Z > 0, so we have
el A2 (). (6.16)

Remark 6.0.2. The case with Z = 0 is in fact more special as the leading dynamics of c1-co system in such
case reduces to the one similar to that of A~y system. The coupling between A\-y system and ci-co system only
appears in the case Z > 0.
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7. LINEAR THEORIES

In this section, we give the linear theories concerning the a priori estimates for the linear problem of outer
problem (5.1)3, and the inner problems in the W-direction (5.1); and on W+ (5.1).

7.1. Linear theory for the outer problem. For ¢ € R? and T > 0 sufficiently small, we consider the problem

Yr= A +g(z,t)  in R*x(0,T),
{1/)(:570) =Z*(x) in R? (7.1)

for smooth initial value Z* with compact support. The RHS g of (7.1) is assumed to be bounded with respect
to some weights that appear in the outer problem (5.1)s. Thus we define the weights

01 := )\?()\*R)_ll{r§3>\*R}7

170’0

QZ = T700 *r2 1{7‘2)\*}%}7 (7.2)
03 ‘= T_an
where r = |z — ¢|, © > 0 and og > 0 is small. For a function g(x,t) we define the L>-weighted norm
3
—1
lgler = sup (143 0i(w)) gl (7.3)
% (0,T) i=1
We define the L*>-weighted norm for 1
1
0.0 =X 2(0 . AL C(0) Vo)l e
||wHﬁ,O, * ( )|logT|/\*(O)R(O) ||1:[}||L (R2x(0,7)) + A, ( )” w”L (R2x(0,77))
1
+ sup A OTY@RT() ——— (2, t) — (2, T
L AT RT ) o ) — 90 T)
+sup  AO()|Vatp(a, 1) - Vari(, T)|

R2x(0,T)

a |V11)[)(l’, t) B Vzl/f(x/, t/)|
(o= P+l t)*7

where © € (0,1), a € (0, 3), and the last supremum is taken in the region

+sup AL () (A (4 R(t))

1
z, 2’ €R?, t, ¢ €(0,T), |z—2|<2X\{)R(), |t—t|< Z(Tft).

Also, we choose the initial data Z*(x) so that

¢1 (qa T) = w2<Q7 T) = 1/13(61’ T) = awlz/}?)(qa T) = 6w2,(/)3(Q7 T) =0. (75>
This can be achieved by the following: choose regular maps 23, with compact support, k = 1,...,5 satisfying

Zi(q) =)

where {e,(f)}zzl forms an orthonormal basis of R®. We choose %}, so that

(Tez e G, [Vu(Taz 0 Ols)(@,7) + (T2 0 2%, [ValTwz 0 2°)s ) (0, 7)
5 (7.6)
+ ) Cu(Tre 0 Z, [Vo(Tr2 0 24)]3)(q, T) = 0.
k=1
The first three and the last two vanishing conditions in (7.5) are needed in the gluing process and in c¢j-co
system (i.e. p1(t)), respectively.
We shall measure the solution ¢ to the problem (7.1) in the norm || ||; e, defined in (7.4). We invoke some
useful estimates proved in [17, Appendix A] as follows.

Proposition 7.1 ([17]). For T > 0 sufficiently small, there is a linear operator that maps a function g :
R2 x (0,T) — R3 with ||g|l«« < 0o into 1 which solves problem (7.1). Moreover, the following estimate holds

[¥llz.0.0 < Cligll

where o € (0, 3).
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7.2. Linear theories for the inner problems. For the inner problem, we consider the model equation for
the inner problem as follows.

0r¢ = LW[QS] +h(y, 1), |y| <2R(t(7)), T € (70, +00), (7.7)
é(y,70) = 0, lyl < 2R(t(70)), .

where
ds

T:T(t):T0+/0 W,

for 1y satisfying ¢(19) = 0, and Ly is the linearized operator defined in (2.1). We write the solution ¢ =
d(p,0,7), y = pe'? of (7.7) as

d)(P, @, T) = ¢1(P7 97 T)El + ¢2(P, 97 T)E2 + ¢0(pa 97 T)W
We will deal with Iy, [¢] = ¢1(p, 0, 7)E1 + ¢d2(p, 0, 7)E2 and Iy [¢] = ¢o(p, 8, 7)W separately, and consider

Or (w1 [¢]) = Lw [y [¢]] + w1 [A](y,7), [yl < 2R(t(7)), T € (70, +00), (7.8)
My [¢](y, 70) = 0, |yl < 2R(t(70)), '
and
0-(Ilw[¢]) = Lw [Iw (] + Iw [h)(y,7), |yl < 2R(t(7)), T € (70, +00), (7.9)
Mw [¢](y, 70) = 0, ly| < 2R(t(70)). .
We will measure the RHS by the norm:
1h]lv,a = sup AL (@) ()" h(y, 1) (7.10)

ly|<2R(t), t€(0,T)

if we use (y,t) variables and by

1R = sup o~ () () Ay, 7)]
‘y‘SQR(t), tE(O,T)

if we use (y,7) variables. Here, v(7) is some Hoélder continuous function decaying in 7 as 7 — oo.

7.2.1. Linear theory for the inner problem on W+. If we use the complex notation W+

(Iw+[9))c = o1 + i,
then the equation on W+ reads as

1 8 2(p?
0. My [ée = Al ol)e = (M B)e + 7z (M o)e +i 50550 e + (s e
with zero initial data. We further expand (ij_ [¢])c and (TTyy o [h])c in Fourier modes
HWJ- C - Z ¢k P, T zk97 HWL C - th pu lke‘
kEZ kEZ

Then the complex-valued scalar d)};VL at mode k satisfies
1+ k2 1 8 1 2k(p2 -1) 1 1
.oV = 8 wh IR wt W W
g ok + 00k RGN (e AT R VA g (7.11)

L
=Ly o ] + th
which is precisely the linearization of harmonic map equation around degree 1 harmonic map dealt with in [17,
Section 7]. So we have:
Proposition 7.2. ([17, Proposition 7.1]) Assume that a € (2,3), v > 0, and ||y [h]|lv.0 < +00. Let us write
Mo [h] = b + 0V 0% 0" with BV = ST w7
k0,41

Then there exists a solution Iy, 1 [p](h) of problem (7.8), which defines a linear operator of Iy, 1 [h], and satisfies
the following estimate for |y| < 2R(t) with t € (0,T):

My [8](y, )] + (1 + |y]) [V I+ [6)(y, 1)
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5—a

o R RO e wey | NORE) e
< (0) mm{ , I R+ 2O, sy

L+ ylP" 141yl 1+ |yl
AL(®) wt wt AL(HRY(t) et
+ [ i 4G
1+ |y|a 2 v,a 14+ |y|2 v,a
v [ R wt  Twt v wt
+ AL(t) min FRER log R ¢ B2y = WY (o + AL (1) log R(t) [BY) [lv.a
AL ()
+7 v,a-
Y,
Here
Z X2y 2/ My [h)(2,t) - Zi j(2)dz, k=0,%+1, j=1,2, (7.12)
fR2 X|Zk]| R2
with Zy, ; defined in (2.2), where
w3(ly if ly] < 2R(t),
x(y.r) = ¢ oDl < 200 (713)
0 if lyl = 2R(2).

Via a re-gluing process, better estimates can be gained at mode 0 with a slight modification on the orthogo-
nality condition. Consider the linear problem at mode 0 on W+:

Nowp = Lwo + hp,t) + Y & Zowe, |yl <2R(t), te(0,T),
j=1,2 (7.14)
¢ LW, ¢=0 on 0Bar x(0,T), ¢(-,0)=0 in Byp).

Proposition 7.3. ([17, Proposition 7.2]) Let o, € (0,1). Under the assumptions of Proposition 7.2, there exists
(9, €o;), linear in h, solving (7.14) such that

RO+ (5—a) (t) 1 }

1 9p8| < AL ()|h]]y,q mi ’
18] + (1+ p)|8,6] < AL(®) A, mm{ T+ P 1ty

and such that

B . Sz - Zo, )
¢oj = Coj[h] = —=—=—==—GI[h], j=1,2
T Jo2 w23 5
for some operator G linear in h with
|G[R]| S AR~ "€ (0, a—2).
More refined versions of above linear theory on W+ are obtained in [55, Section 9] (in a special case of a = 1,

b=0).

7.2.2. Linear theory for inner problem in the W-direction. For the equation (7.9) in the W-direction, the use

of
=D o (e, wlh] =Y h (p,7)e™
kEZ kEZ
gives equation in mode k:

0-0) (p,7) = LY [ 1+ 1Y (p,7), (p,7) € (0,00) X (70,00), (7.15)
or (p.m0) =0, p€(0,00),
where k2
wo_g 1o B8
Ly = 0pp + pap 02 + (14 p2)2’
e Mode 0.

In mode k = 0, we establish a linear theory via the distorted Fourier transform (DFT).
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Proposition 7.4. In (7.15) with k = 0, if ||thH1()Tg < oo with £ > 3

5, then there exists a solution oy that
satisfies the following estimate

o(r)ri=% 478 fé v(s)ds if £<2
2 T
68 (.| S I 171, 4y § (7)(l0g7)? +rtogT [ v(s)ds i £=2
v(r)logT + 771 [2 v(s)ds if £>2
2
v(r)ri" 4 rivs fi v(s)ds if £<2
2 T
+ ||h§'/\|ffl?1{ . %}p—l/2 v(T)Ti (log 7) + 7% (log 7) 2 v(s)ds  if £=2.
y p>T . 2
o(T)Ti + 778 [2 u(s)ds if £>2
2
If, in addition, 2 < £ < g and the orthogonality condition
/OohW( )p2_1d 0 forall 7> (7.16)
T = or all T > T .
o o \p p2+1p P 0
1s satisfied, then the following estimate holds
o [rE )+ 7E [ u(s)ds if p<h
68 (0. DI S I 1172 2

p1/2 (U(T)T%—é T fé U(s)ds) if p> 73
2
We postpone the proof of Proposition 7.4 in Appendix B.2.
e Modes k = +1.

We notice that LY, = l:(‘)/vl, where EkWL is defined in (7.11) (on W), meaning that the linear theory for
modes +1 in the W-direction is exactly the same as the one for mode 0 on W+. So for modes |k| = 1 in the
W -direction, we have

Proposition 7.5. ([17, Lemma 7.1, Lemma 7.3]) For modes k = +1 in (7.15), there exists a solution ¢}’ that
satisfies the following estimate

5—a

R°~*(t) Rz (1)
L+ yl2" 14yl

AL ()R (t)
L+ |yl

ok | S X(D) min{ }IIhZV —h llva + 174 Nl

Here a € (2,3), v >0, and
aw . XxZ11(y)
! fRz X|Z1,1\2

- Z1,2(y)
hKV::M/H hl(z,t) - Z12(2) dz,
1 f]RZ X|Zl,2 2 B2 W[ ]( ) 1;2( )

with x, 21, defined respectively in (7.13) and (2.2).

/ Iy [h](2,t) - Z11(2) dz,
RE

Remark 7.5.1. For the non-orthogonal parts in Proposition 7.2 and Proposition 7.5, one can in fact relax the
assumption on the spatial decay to 0 < a < 3 with estimates modified accordingly; see [17, p. 394, Lemma 7.1].
Later we will use this version.

An analogue of Proposition 7.3 also holds true for modes k = +1. Consider the linear problem in modes +1
in the W-direction:

/\26t¢ =Lwo+ h(p,t) + Z éljZiji, |y| <2R(t), t € (O,T),
§=1,2 (7.17)
¢ LW, ¢=0 on 0Bag x (0,T), ¢(-,0)=0 in Bap).

We have the following refined estimates:

Proposition 7.6. Let 0. € (0,1). Under the assumptions of Proposition 7.5, there exists (¢, ¢15), linear in h,
solving (7.17) such that

o« (5—a)
|¢|+<1+p>|ap¢sA:<t>||h||u7amm{R M _ 1 }

L4 Jyl3 714 |yle2
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and such that [
R R 2 B .
by = eyylh] = —F—2 — G, j=1,2
J J fR2 wgzi‘j
for some operator G linear in h with

G S MR e, o € (0, a—2).

e Higher modes |k| > 2.

Proposition 7.7. For modes |k| > 2 in (7.15), there exists a solution ¢}’ that satisfies
1 v —a
(61 S 7z A0 1P lv.as
where a € (2,3), v > 0.

Proof. We start with k = 2 (the same for k = —2). In such case, £} has a (non sign-changing) kernel function,
denoted by Z,, whose asymptotic behavior is p? both near origin and at infinity. More generally, for |k| > 2,
L}V has kernel functions
p ke’ +k+p° 1) PP+ E—p*+ 1)
p?+1 ’ p?+1 '

We choose barrier function
- w
P2 = 2[|hy |

V,a)\ZQDQ
with o solving
Ly [po] + (p) " = 0.
With Dirichlet boundary ¢2(2R) = 0, above equation admits a unique solution given by

2R dr T
cpgp:ng/ 7/8_“ngsds
0)=20) | g 6770
where a € (2,3). Then one has
|2l < C{p)*77,

and thus
—N0,@2 + LY [@2) + 1y < 20]|h .l AN ipa] = 1287 |wa Y (p)

< 18 a2 ()~ (2vCIAL AL () — 1)
<0
since |/'\*\/\*R2 < 1 (we choose 8 < % in R = )\*_B). Therefore, the pointwise estimate for mode k& = 2 follows.
For the higher modes |k| > 3, similar argument works. Indeed, We choose barrier function
P2 = 2|1 lv.a M
with ¢y solving
LV ler] + (p)~* =0,
where in this case,

Coona
lor| < E<P>2

by variation of parameters. The proof is thus completed. (I

We then combine Proposition 7.4 (returning to (y,t) variables), Proposition 7.5 and Proposition 7.7 and use
a scaling argument together with parabolic regularity estimates to get gradient estimate for (7.9). We thus
conclude the following linear theory for the inner problem in the W-direction.
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Proposition 7.8. Assume that a € (2,2), v > 0, and |Iw[h]||l,a < +oo. Then there exists a solution

Iw [¢](h) of problem (7.9), which defines a linear operator of Wy [h], and satisfies the following estimate for
ly| < 2R(t) with t € (0,T):

T (8] (y, )] + (1 + y]) [V T [8] (v, 1)

< M)

Tyl

R3-%(t) R3*(t) W W N (8 R2(1) -

+ AZ(t) min 7 N A OL QT

k§1< ¥ {1+|y3 L+ 1yl b kv 14yl 17 [lv.a
BN
1+ |y|o—2

1he" = kg llv.a + AL (1) log R(2) g llv.a

+ Hh_hgv_hy_hm

v,a

Remark 7.8.1. In practice, we are going to impose orthogonality conditions on the inner problems for modes
0, 1 on W and modes &1 in the W -direction, and these orthogonalities yield the dynamics of the \-y system,
translation parameter & = (£1,&2) and c1-co system, respectively. Under these orthogonalities, we will solve both
inner solutions @y and Py 1 to (5.1)1 and (5.1)2 in the wighted space:

RO‘>«(5—B.) (t) 1
L fyl* " 1+yle—?

-1

H (|¢(y’t)\+<y>|vy¢(y,t)l) (7.18)

[¢llin,00v,0 == sup {/\:(t) max{

ly|<2R(t), t€(0,T)

for some 0., v € (0,1), a € (2,3).

8. SOLVING THE GLUING SYSTEM

In this section, we solve the full gluing system. We are going to work in the following weighted topologies.
RHS for both inner problems (5.1); and (5.1)2: || - ||o,o-norm defined in (7.10).

e RHS for the outer problem (5.1)3: || - ||««-norm defined in (7.3).
e Inner solutions @y and ®y1: || - |lin,o, v,o-n0rm defined in (7.18).
e Outer solution ¥: || - ||;,@,o-norm defined in (7.4).

The constants measuring above weighted norms will be put into a specific range ensuring the implementation
of the gluing process. We now start to estimate RHS in the gluing system (5.1) and reveal these restrictions on
those constants. We are also going to use the leading asymptotics of the modulation parameters:

(T —t)|log T

PRSP W 7] L Ll
A og(T — )

€1 S AT Jer| A9, el S D,

and recall R = R(t) = A; 7. Our first assumption on the constants is the following:

O<v<l, 2<a<3 0<B8<1/2, 0<O<1/2 (8.1)

8.1. Non-local systems. As discussed in Section 6, translation parameter £ obeys essentially an ODE of first
order, while the dynamics of A\-vy system and cj-co system are governed by integro-differential equations. The
leading non-local operator might be regarded as the Abel’s integral operator in the end-point case, so the
solvability is rather involved.

For the Ay system, we recall (4.5). To introduce the space for the parameter function po(t) = —2(A+i\y)e’,
we recall the non-local operator By appears at mode 0 on W+ is of the approximate form

t—\2 s
Bo[po) =/ fo( ) ds + O(po(1)).

-T — S
For ©® € (0,1), w € R and a continuous function g : [-T,T] — C, we define the norm

l9lle,= = u (T —t)~°|log(T — t)[Z|g(t)], (8.2)
t
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and for a € (0,1), m, @w € R, we define the semi-norm
= l9(t) —g(s)]
8] =
(t—s)2

where the supremum is taken over s <t in [T, 7] such that t — s < (T — ¢).

19)3.m. = sup (T — 1)~ log(T

The following proposition gives an approximate inverse of the non-local operator By with a small remainder
Ro.

Proposition 8.1. ([ Proposition 6.5, Proposition 6.6]) Let ag, $ € (0,3), @ € R. There is b > 0 such that
if © € (0,b) and m < @ — £ then for h( ): [0,T] — C satisfying

Ih( )| >0, 53)
TONog T|"* "~ |A(-) = h(T)|lo,w-1 + [Al g im,=—1 < C1, '

for some C; > 0, o € (0,1), then, for T > 0 sufficiently small there exist two operators P and Ro so that
po = P[h] : [-T,T] — C satisfies

Bolpol(t) = h(t) + Ro[h|(t), t€]0,T]

with
(Atag)o
log | log T'| (T —t)ymt—=
< lea ©
[Rol)(0)] < (77 +TO = = IhC) = h(Dllo.m o + Mg st ) 1oy
Moreover,
P[h] = po,x + P1[h] 4+ Pa2[h],
with
k|log T
= _MEeTl <
Pl = fioger —pe =T
where k = k[h]. Moreover, the following bounds hold:
- log T~ (log(| log 1))
_ 1 < | log
logT 1o,
P 0] < O T aPbloe < C (T30 4 [ - MDloms) . (54)
—g log |logT
OPal]3. < € (g 1575 4 7B B ) - () st )

The dealing of ¢;-co system is similar as the one of A\-y system as their leading non-local operator turn out
to be the same. Indeed, from Section 9, we have:

Proposition 8.2. For |f(t)| < A\O(t), when T > 0 is sufficiently small, there exist two operators Pe and Re
such that p1 = Pe[f] : [-T,T] — C satisfies the nonlocal equation

/t )y, (f_“;) ds +20é + Talpole = f(t) + Re[fI(t), t€[0,T)

_Tt—s

with
A()®(T — )™

[log(T" —t)[?
d AT -ty
°R .
R R
The function Pc[f] can be decomposed as Pelf] = p1,0+p1,1- Here po1 and p11 satisfy the following properties

(A (1))°
Pro(t)] < Cllfll*,e,om,

(. ()°[lo T*!
[log(T — O+

[Relf1l < Cllfll+0.0

and

Ip1,1(®)] < Cllfll«e.0
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(A (1))°
[log(T = )2(T' - t)

P11 ()] < Cllfll+,0,0

and

(A (1))®
[log(T = t)[*(T" = 1)*

1) < Clifll«.0.0

Here k € (0,1), a; €(0,1/3) and

[ flleo0:= sup [\;®(t)f(t)].
te[0,7]

8.2. The inner-outer gluing system. Because of the refined linear theories for inner problems (Proposition
7.3, Proposition 7.6), Ay system (Proposition 8.1) and c¢;-co system (Proposition 8.2), we need to further
decompose inner problems (5.1)1-(5.1)y into three pieces. We search for

o P+ @ = O+ Dy
with
No®Y, = Ay O, — 20, W A D, 05y — 20, Oy A Oy, W
+ XMy [ Qo Lul®](g1)] + AT (@ (SIU.]) — RT] + #IY

+RC[\I’] —+ Z éljzl,ng in DQR,
7j=1,2

NODy, L = Ay®y, — 20y, W A Oy, @5yt — 20, @50 A Oy, W
+ XMy [Q o LulW](a )] + Nl [Q 4 (S[U.]) = RT| +#lY (8.5)

+R0[\I’} +>\2HW¢ |:Q,»Y.Z/§]1)[\Ij]:| + Z éono,jwﬁ + Z CljZijz in DQR,
j=1,2 j=1,2

29,07 = A, @7 — 20, W A9, ®" —20,, 8" A0,
+22[Q (LulW]Oy +&.6) — Lo[¥)(a,0) | = My [Q- L[]
+ Re[¥] + Ro[¥] + A>RT  in Dyp,

where
2
prM

272
/ prLl
]RZ

2
U)pZLQ

)
272
/prLQ
]RZ
2,2

+ ARo [/ iy o [Q—WEU[\II]((L t)} “Zyo | ——
R2 / w272
R2 p<0,2

with the operators R and R. given in Proposition 8.1 and Proposition 8.2, respectively; for j = 1,2,

R.[0] = \Re / Ay [Q Eu[¥](a,0)] - 214

+ MRe UR? iATyy {Q—’*{ZU[\I/vat)} “Z1

Ro[¥] := AR, l /R Ay {Q_VEU[‘I’]((L t)] 20,1

C1j =y

NIy [Q 4 Lul)(q,0)] + AT [Q_+ (S[U.) = RY| + HIY + Re[¥]

50]' = 60j

Xl [Q o LulW](a.1)] + ATy [Q(SIU.]) = RT| + 1l + Ro[¥]
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are given in Proposition 7.6 and Proposition 7.3, respectively; the term Il . {Q,Vflg) [\II]} denotes the part of
mode 1 in the projection of Q_, (iU[\II]()\y +&t) — f/U[\I/](q,t)) onto W+,

/RZ (AQHWL [Q,WEU[\I'](% t)} 2 {Q,V(S[U*]) - RT} + HYXL) 7
C1j = / wizij ’
2

2 _ _
Rf = =21 ((89¢(2) + (“)gq’)g 2)) + cosw(gy @ 4 (bg 2)) + sin 260 sin wwg)
r

(8.8)
and

X A~ wpsmw ¢1co80 + cosin )W

_2m [ sin 20w,vo + @,qﬁl +0, (_2)> 1 x sin? w(cy cos @ + cosinO)W.
5)

We will solve (8.5); and (8.5)2 with orthogonality conditions imposed at corresponding modes

¢1; =0, ¢ =0, c1;=0,

and solve (8.5)3 (consisting of components both on W+ and in the W-direction) without orthogonality.
e In the inner problems (supported in Bsg) with orthogonality condition imposed, by (A.7), one has
2y [Q - (ST0]) — RY] |

S M|Q- Ryl + )\Q‘HW [Q_W(R*) _ Rt} ’

+ 22

My | Q- (m(E) +RY) +m (€5 +RY) + mLof@® + o] ) | ’
< M) 2 1 \I0(5) =3 4 2, ()2 + AOFH 1 A2, [(p) !

e (RN Rl (PR PRl

+ A ()T )\?+1<P>3] 1,y

S NO() 72 4 A (p) 2 4 ABOHT 02 4 \2OH (<p>” + <p>‘”) ,
and
W2y (@ (S[U.)) - R

S 02|Q Ry + €L+ 22y [@- (RL)] |

+ A2

My [Q o (m(E)) + RO +m(EFY + RY) +mLu@® + o)) ‘
SAL(P) T2+ Alp) T2+ AT

R (e E

+ AP ()2 + )\2@@)_3_6] o<y

SN ()2 A(p) T2+ AIOTL 1 A2 4 NZOFL(p) =0 4 ABO(p)~1 0,
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We thus need following restrictions on the parameters after simplification by (8.1)
30-—v—pF(a—-2)>0, 1-v—pa—2)>0,

8.9
20+1—-v—pa—-40)>0, 5@ —v—-Fa—1-09)>0 (89)
so that above terms have finite || - ||, o-norm. Next, we estimate by Lemma 2.3
N2y (@ LulWl(a,8)] |, [N [@- Lul®](a. )] | S Aefy) 2
So we need
1—v—p>a—2)>0. (8.10)
Recall (5.2) and (4.14). We estimate
] [
< [V (10 (@w + @) + ¥)||Vy (01 Z1a + 204 212 + m®.)
| nrXPLQy (B + Diys) +nrOE + M) - Ty (@D + QB )
+ [0y, (17Q1 (@wr + iys) + ¥) 10y, (1RQs (Bwr + Biys) + )|
(8.11)
5 |:>‘:RU*(5_(L) <y>_4 (HqDW”in,a*,V,a + ||¢)WL ||in,o*,1/,a> + )\*@(O)A*(t)||\ll||ﬁ7@7a:|
x (M) + A2 ()72 + 220 (y) )
AP £ X RT O 4) 7 ([ o + 1o i)
2v P20, (5—a) -8 2 20 2 2
+ X2 RO )5 (@ o + 1wt inoa )+ A2 OO ¥1E 0 0
and thus need
O —po(b—a)>0, v—280.(5—a)>0, (8.12)
where parts of the restrictions are in (8.9) already.
From Proposition 8.1 and Proposition 8.2, we have
m Ateg)e _
Ro[¥]| S (O (1)) +7 5 (g) 513
Re[¥]] < (A(t) T (p) 2

with sufficient decay in space-time.

e In (8.5)3 without orthogonality imposed on the RHS, we notice that the term
X[Q—y (Lol +&,6) = Lul¥)(g,t)) | = NI | Q- L{P [w]]

has no mode 1 on W+. In order for it to be small such that ®f, solved from non-orthogonal versions of
Proposition 7.4, Proposition 7.8 (in the W-direction), Proposition 7.2 (on W) and Remark 7.5.1, stays within
the space with the || - |lin,s. v,a-topology, we need

1+0+af-28>v—0805—-a), 0<a<l. (8.14)

Indeed, we have
X[Qs (Lol + €1 = Lul@l(a.1)) | = AT [Q L [w]] ] SAW) TR .0
where we have used Lemma 2.3 and

Vo ¥(z,t) = Val(q,1)] S 2 — gl “AZ(\R)~

The necessity of restriction (8.14) is clear for all the modes except for the mode 0 in the W-direction. For the
mode 0 in the W-direction, we can estimate

X[Qs (Lol + € 1) = Lul®l(a.1)) | = AT |Q-, L (9] ]
S AW TIAZR P ke, S AT TRV 0,0

~
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thanks to the support of the inner problem. Here ¢ > 3/2 and is close to 3/2, and « € (0,1) and is close to 1.
So we need
1+0 -3¢ —-2)>v—0.805—a),

which is true if (8.14) holds.

For the other part AR, by definitions (4.10) and (4.12), we first observe that it is in modes +1, 3 (in the
W-direction), and also

PRI S A2 (y) 2.
Then from Proposition 7.5 and Proposition 7.7, we require
30 -28>v—0.06(5—a) (8.15)

so that ||<I>T||in,(,*_,y7a < +o0.

For R.[¥] and Ro[¥], since they are respectively in mode +1 of the W-direction and in mode 0 on W+,
we apply the non-orthogonal part of Proposition 7.2 and Proposition 7.5. By (8.13), we need the restrictions
(8.21) and (8.23) and so that ®' survives in the desired topology.

e We now consider the outer problem

oV =AU +G in R? x (0,7),

5
8.16
U(z,0) = Z*(z) + > Cp Zi() in R?, (8.16)
k=1

where G = G[Pw, Py, U, po, p1,&, Z*] is the RHS in the outer problem (5.1)3, and % will be chosen such that
we have desired vanishing (7.5). The outer problem can be formulated as a fixed-point problem

5
Tout[¥] = Tz 0 G + 2 0 (Z* + Z‘Kk.@fk> ,
k=1

For the RHS G given in (5.1)3, by (A.7) and (A.8), we have
(1= nr)S[U.]|

{RUL + Ry +EH +m(EY +RY) +m(EF +RY +mLu[@© + <I>(1)]} ‘

S (T—ngr)
+ (1 =nRr)|R| + |Ey, |

S (AT X2 ()21 ngy + (A ) AT ()T ) L rgesy

|1 A0 02 ()7 () 200 ) 4 A
+A77 ) T+ Ai@‘2<p>‘3_51 Lo rgrsy + 1
In order for above terms to have finite || - ||««-norm, following restrictions should be imposed on parameters
00>0, 30-1>0, 20-1+4+63>0. (8.17)
Also
A« ()

(1= ) Lul¥]] 5 25
for some € > 0 provided oy > 0. For the remaining terms, we estimate
‘Q’Y((I)W + Oy )Aunr + 2Vang - VI(Q»Y(I)W + Q’YCI)W;) — QFY(CI)W + Oy )0ing|

S 2R 4 AR T = 7] (0w e v + 1@ finoea ) Lon. -

1sary ST 002

(1= 1) | = 103004 (B + @) + (A€ + A1) - 9y (@4 0w + QB )|

S ()\:_132_0’ + )\i®+u—2R1—a) (HCI)W”in,o*,u,a + ||q)Wi ||in,cr*,u,a) 1{1“2)\*1%}7
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and by (4.14), one has

(1 —nr)| — 20, (U, — U) A 0y, (nRQ7(<I>W L By) + xp)

_ 2811 (nRQw((I)W + (I)WJ_) + \I/) A\ 8952 (U* — U)‘

S (1 —=ngr)|Ve (WRQ7(¢W + Oyo) + ‘I’) ‘ ‘Vx (1QyZ11 + c2QyZ12 + m®,)

5 |:A:1R1a1{r~)\*R} (H(I)WHin,o*,V,a + H(I)Wi Hin,a*,u,a> + A*@(O)l{r>)\*R}”q/”ﬁ,®,a:|

x (142271 )72 4 A2071(y) 7L,

Also, we have

(1—1r) ‘-2@61 (nRQV@W FPy) + q/) A0y, (nRQW(CDW FPy) 4+ q;) ]

2
S (1= nR)‘Vz (nRQ7(<I>W + ®yr) + xp)‘

<222 (0w o+ [P0 i) Lgiers + X220 0.
To bound above terms in the || - ||.«-topology, we need
v—24a>0—-14p8, v—1—-0(2—-a)>0—-1+5,
304+v—-2-pB(1-a)>0 -1+, v—-1-p(1-a)>0-1+4, (8.18)

V+O—2+48(14+a)>0—1+5, 2w—-2-B(2-2a)>0—1+4.

For the Cauchy integrals I'g2 o (Z* + 22:1 © fk), we claim

5
[g2 0 (Z* + Z%kfk>

k=1

<1

since ||Z* + 22:1 6r Z%)l~ < 1. Indeed, % is chosen such that the vanishing (7.6) holds, so the Cauchy

integrals have the same control as the space-time convolutions estimated above. In fact, one has better estimate
S 1G] S A€ HO0)R1(0)|log T|~* that can be derived similar to [17, Proposition A.1].

8.3. Orthogonal equations. We first employ Proposition 8.1 and Proposition 8.2 to derive restrictions on
constants, measuring weighted topologies, that ensure the implementation of the gluing process, and then
analyze the remainder terms neglected in Section 6.
e For the orthogonal equation of py:
Coj =0,
we apply Proposition 8.1 with
h[\IJ] = [8331\111 + 0z, Yo + i (E)Tl Uy — (9302\1/1)] (q, t).

The vanishing and Hélder properties (8.3) are exactly the ones inherited from the weighted topology (7.4) for
the outer problem, namely

|R[)(t) — RI¥)(T)] S AD(2),
t

|h[¥](#) = R[¥](s)] o\ [ \@-a-p) T-
i — s/ S A (?) for |t —s| < ¥

So it is then natural to choose in the [-]a ,; —1-seminorm
m=0—a(l-p).

Then in the last line of (8.4), b —m — § > 0. In order for both [|R[¥](:) = h[¥Y|(T)|le -1, [h[\I/H%)m}w,l to be
finite, we need
w—1-20<0, w—1-2m<0.
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Also the assumption m < © — § in Proposition 8.1 implies

B<1/2,
which is in the desired self-similar regime as we require before. Recall the estimate of Ro[h[T]]. We require
m+(1+ao)% >0,
namely,
0<ap<1/2, 28—1+4ay>0,
so that the vanishing order of Ro[h[¥]] as t — T is faster than the leading part h[¥] itself.
Under the paramter assumption above, the equation for py will be solve by Proposition 8.1 and the solution
po satisfies the estimate in (8.4). We can then find a solution £ to the orthogonal equation
Clj =0
with the estimate )
€] S A¥e! (8.19)
provided
2v —20,8(5—a)—30 > 0.
We then conclude that with above choices of m, ag, 3, @, the remainder gains smallness
[RolR[¥]](1)] S AT (8.20)
compare to the leading part h[¥] itself, where
(d+ag)a
2
We put the remainder Ry[h[P]], i.e., Ro[¥] defined in (8.6), in the non-orthogonal inner problem, where the

extra smallness measured above by o7 is crucial to control the non-orthogonal part. Indeed, from the version
of linear theory without orthogonality condition imposed at mode 0 on W+ in Proposition 7.2, we need

(1+ ap)a
2

In summary, the restrictions on the constants needed when dealing with the reduced problem are given by

O0<op<m+ O.

1+0—a(l-p)+ —28>v—0.6(5—a). (8.21)

1 1
0<6<§, O<a0<§, 286—-14ay>0, 2v—20.68(5—-a)—30>0,

(1+ o)
2

e By the same reasoning as in A-vy system, ci-co system will not be completely solved. Instead, the term R,
defined in (8.6) that produces the remainder R.[f] will be put in the piece of inner problem with no orthogonality
condition imposed. Recall the non-orthogonal linear theory Proposition 7.5 for modes +1 in the W-direction.
Therefore, from its vanishing bound, one requires

140+a1 —28>v—0.0(5-—a).

A more convenient way to achieve above restriction is to assume

a; >« (0;0 - % + B) (8.23)

since it will be satisfied provided (8.22) and (8.23) hold.

(8.22)

1+0—-—a(l-p0)+ —28>v—0.605—a).

We now analyze those terms that we neglect when deriving the leading dynamics of the modulation param-
eters. We recall (6.4) and consider the remainders for the mode 0 on W+:

My [ Qs Ly W] + Ty [ Qs (STULD)] + 24
v+ [ Q@ LulZ5 ()] = M [ Qs (72 +R%) + L [2])].
In Dyr, one has

(M- [Q (S|~ s [Q (652 + R%) + Ly [2])])

C,0
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(o (e 45

A

)2 A ) 1 ) O ()5 g ()0 ) a2
+A7THp) T2+ AT (0T,
where we have used (4.20), (6.2) and (A.7). Also, it follows from (7.4) that
Q— Lol - Z5(@)]| 207",
and Hivr[fi is estimated in (8.11).

We next consider the remainders in mode 1 on W+. To estimate IIyy . {Q_,ﬂ%*} + ’HKYL, we recall (6.2).

Similar to (A.7), one can verify that

R Q] (140207 (710 (o)) #2202 (17204 (o))

+ )‘3972<P>72725 + )‘362<P>45] l{pgA;1}7
(8.24)

R, L4 O} 02 ()5 o ()20 ) A2 )

ﬁ* : Q'yEQ’ /S

+ *39_2<P>_3_5] Lipsarty-

The estimates for remainders in modes £1 in the W-direction Iy [Q_.Yﬁ*] +HW are similar (cf. (8.11) and

(8.24)). Recall that the outer problem will be solved within the weighted space (7.4) with the vanishings (7.5).
Thanks to this, in the reduced problem for ¢; and ¢y, we have

)\ 27 “+o0 ~ .
—/ / (Q,WLU[\II((], t)] - W) sin we' pdpdf
m™Jo Jo

2 2m +oo )
— / / w, sin® w [(“)xl Us(g,t)cosb + 0., ¥3(q,t)sin 9} e’%dpd@’
T Jo Jo

2 2 +oo .
= / / w, sin® w [(8301\113(% t) — 0z, ¥s(q, T)) cosf + (812 Us(q,t) — 0uy Us(q, T)) sin 9} e pdpdf
T Jo Jo

A2 ()1P]5,0,a:

where we have used Lemma 2.3. This term appears as part of f(¢) in Proposition 8.2.

From the estimates above, we see that, under the final choice of constants (8.29), the remainders in the
orthogonal equations ¢p; = ¢1; = ¢1; = 0 are indeed of smaller order than the main order taken into account
when deriving the leading dynamics in Section 6.

A

8.4. Solving the full system: Proof of Theorem 1.2. We now formulate the full gluing system (8.5) &
(8.16) together with the orthogonal equations

Coj =c15=2C1;, =0 (8.25)
as a fixed-point problem. Here the definitions for ¢é1;, €yj, ¢1; are given in (8.7) and (8.8).

We will solve the outer problem (8.16) in the space
X\Il = {\Il = (\1/17 \Ij27 \113) : H\I/Hﬁ,@,a < —|—OO, \P](qu) = 811\113((]71—‘) = a:m\:[/?)(q’T) = 07 j = 17273} (826)
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and the inner problems (8.5)1-(8.5)3 for ®},, %, and @ all in the space
Xag, = { @iy, Vy @y € L¥(D2) : @iy lino. 0 < +00
Xy | 1= { wis Vy®y € L¥(Dar) : ([P 1 [line.va < +oo}, (8.27)
Xt = {qﬂ, V, 0" € L®(Daor) ¢ |9 [0 va < +oo}.

We consider the modulation problem (8.25). For éy; = 0, Proposition 8.1 gives an approximate inverse P of
the operator By, so that for given h(t) satisfying (8.3), po := P [h] satisfies
By [po] =h+Ro [h] in [0, T]
for a small remainder Ry[h]. Moreover, estimates (8.4) for pg 1 := P1[h] + P2[h] in Proposition 8.1 lead us to
define the space
Xy = {poa € C(-T, T5C)) A CH(=TT5C)) & poa(T) =0, [polleis—sy < +o0}

for some o € (0,1), where we represent py by the pair (k,po,1) in the form py = po  + po,1, and the || - ||« 3-0,-
seminorm is defined by )
[ flle3-00 == sup _[log(T —6)[>~7| f(t)].
t

)

For ¢1; = 0, we define the space for £(t) as

Xe = {¢€ CH(0,T:R?) : {T) =0, [¢llx, < +oof
where

)

1€l xe = 1€l Lo (0,1) +osw ALTH(BIE)]

for some oy € (0,30 —1).

Similarly, for ¢;; = 0, Proposition 8.2 concerns the solvability of ci-co system, i.e., p1 = —2 [)\(cl + icz)]/, up
to a small remainder Rc[f](¢). The control of the resolution p; = Pe[f] = p1,0 + p1,1 for the modified non-local
problem motivates us to solve p; in the space

Xp, = {p1 € C(-T,T5C)) N CH[-T, T:C)) = pi(T) =0, [Ipilles < +oo},
where the norm above is defined in (8.2).
We define X := X¢ X Xoy, ¥ X‘I’;L X Xgt X Cx Xpy x Xe x Xp, and take a closed subset B C X for which
(U, ®3, @50, of k, Do,1, &, p1) € B satisfies
H\IjHﬁ,@,a + ||©%||in,ax,v,a + ”(I)?/VJ- ”in,d*,u,a + H‘IﬂHin,a*,u,a <1,
|k — kol < |log T|™Y, ko = div Z*(q) + icurlZ*(q),
10,111,300 < Collog T|'~7 (log(|log T)))?,  [|€]lx, + IIp1lle,es <1

for a sufficiently large constant Cy. Then we define an operator § which returns the solution from ‘B to X
F:BCX =X

v 30) = (Fu0), Fag, (©), Fas,, (0), For (0), Fal0)s Ty (0), Fe(0), T (0)).

Here the operator §y corresponds to the outer problem (8.16) with linear theory given by Proposition 7.1. The
operators Fe; Sq’;vﬂ o+ handle respectively three pieces of inner problems (8.5)1, (8.5)2, (8.5)3, and their
linear theories are given in Proposition 7.8 and Proposition 7.2. The operators §y, §p,, deal with the A-y
system from ¢o; = 0 whose linear theory is in Proposition 8.1. The operator §¢ concerns ci; = 0 yielding a
first order ODE for £. The operator §,, is related to the ci-ca system from ¢;; = 0 with linear theory given by
Proposition 8.2.

The property that § : 8 — B follows from those estimates in Section 8.2 and Section 8.3 under all the
restrictions (8.1), (8.9), (8.10), (8.12), (8.14), (8.15), (8.17), (8.18), (8.22) and (8.23) for the constants. These
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can be simplified as
O<r<l 2<a<3 1/3<0<f<1/2
1—-v—8a—-2)>0, 0<o.<1,
©—f0.(5—a)>0, v—200.(5—a)>0,
30-26>v—0.8(b—a), v—2+a8>0-1+4, (8.28)
1
O<a<l, a=1/2, 0<a; <1/3, oz1>o¢<0;0—2+,3),
(1+040)04

140 —a(l-p5)+ 5

—28>v—0.0(5—a),

where we take § = % ~1,ap = 147% ~ 1/2. With the aid of Mathematica, the system (8.28) admits a valid
choice of constants:
37 5 209 —120v 3 o_ 11
60" % B 0tk Py 9=
v -3 4v 99 297 1 (8.29)
15-30 -7 “15-3a" “T 100 2500 "3

The compactness of the operator § can be proved by suitable variants of (8.29). Indeed, one can vary slightly
the constants such that all the restrictions 8.28 still hold, and get (8.29) with the weighted norms measured by
the new constants with the closed ball B remains the same. For instance, for fixed ©’, o’ close to O, «, one
can show that if v € 9B, then /

[§w (v)[lt,0,0r < COT*
for some constants C, € > 0. Moreover, one can show that for o/ > a and ® — © > 2(a’ — a), one has a
compact embedding in the sense that if a sequence {¥y} is bounded in the || - ||4,0/,o/-norm, then there exists a
subsequence that converges in the | - ||y 0 o-norm. The compactness thus follows directly from Arzela—Ascoli’s
theorem by a standard diagonal argument. The compactness of the rest operators can be proved in a similar
manner. Therefore, the Schauder fixed-point theorem implies the existence of a desired solution. The proof of
Theorem 1.2 is complete.

9. NON-LOCAL c¢1-¢co SYSTEM

In this section, we solve the equation for ¢; and ¢y defined in Section 6

/t MF?) ()\Q(t)> ds + 2X¢ + Ty[po)c = f(¢). (9.1)

_rt—3s t—s

Recall from Section 6 that p; = —2(Ac)’, po = —2(A + iMy)e?, c(t) := ¢1(t) + ica(t) and f(t) is a smooth
function satisfying the condition |f(t)| < A9 (t). For simplicity, we will use the notations in this following: ¢(©),
cM and pyo(t) = (—2)\c(0))/7 p11(t) = (—2)\c(1))/.

9.1. The construction of a solution. According to the computations in Section 6, (9.1) can be approximated
by the following equation

2
Pi(t) + gpo(t)c = f(¢) in [0, T),
so we need to construct an operator P, which assigns p; = P.[f] to a function f in a suitable class such that
2 .
Pr(t) + 3Po(t)e = f(t) + Re[f](2) in [0,T), (9-2)

so that Rc[f](t) is a suitable small remainder term. The first approximation is the following function

T T
©) _ (7 _ )2 log(T—1) \—Zlog(T—7) flr) 1 / f(s)
Ac (T —t)s /t (T —71)"% (2 oa(T —7) 2 log2 T/ T- Sds dr,

which is a solution of the equation

P(t) = /_ tT pTIL_(SS)ds — pro(t) log(T —t) — §ZC<0> — ), pro(t) = (—22cO)Y
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€]
and it is an approximation to the equation (9.2). Observe that we have |Ac(?)| < % and |(Ac(®)’| <
©
% since f(t) satisfies the condition |f(¢)| < A9 (¢).

We look for p; with the form p; = p1 o + p1,1, where pyo(t) = (—2)\c(0))' and p; satisfies the following
equation

I[pl,O] +I[p1,1] + B[p1,0 +p1,1] — ;Z (C(O) + c(l)) = f(t) + Rc[f](t) for t € [07T}

Here we define Z[p] = j;ﬁ(t) p(s) ) ds, the term B[pl o + p1,1] are small terms defined as follows,
B B [p1] +32[p1]0+83[p1]c—2)\c
t 2
3 p1(s) A2(t)
B = 1) ds — r J
1[p1] t—s < >+ ) S /t,\g(t)t_s S(t—s s,

_ t=23(1) R, 7 (t) A2(t 9 ¢ R —in(t) 20
Bolp1] :/ % <F5 (t_() N 3> d8+/ e[po(S_)e I ( _( )) 0o
T 5 § t—X2(t) t—s t—s

- 2 (120 Refpy(s)e~11®)] 2
== —PRE  is+ 2z
Bs[p1] 3/_T ra— ds+ 3

The idea is to decompose Z[p1,1] into Z[p1 1] = Sa, [P1,1]+Ra, [P1,1], then replace the operator Z[p; 1] by Sa, [p1.1]
and try to solve the corresponding equation. If o; > 0 is small, then we can find p;; such that
Tlpyol + Sau pra] + Blpro + 1] = 22 (@ + M) = 7(¢) for t € [0,7].
This means that we have
Blpio+pia) - %z (e +¢™M) = F(t) + Raylpra] for t € [0,7].

We will prove that
|Rau[p11]] < C(T — )T for t € [0, 7).
Now we decompose ~ ~
Sanl9] = Lolg] + La[g]
where 3
Lo[g](t) = (1 — aa)|log(T" — t)]g(t)
and L [g] contains all other terms, we have

t t—(T—t) e t
- 9(s) 9(s) / g(s)
Lig=[ 2L T2 s — EAGE
1lg] LT T - Sds " /t(Tt) t— Sds t—(r—t) I — Sds

t—(T—t) 1 1
[ a0 (12 - gy ) b+ Gloglog(T — ) - 2o log T))a(o).
—-T — S T—s
Now we look for a function g solving the following problem
1Z IR
5041[9] - gxg = f(t) m [_T7 T]

We solve a modified version of this equation. Let 1 be a smooth cut-off function such that
1
n(s) =1for s >0, n(s) =0 for s < ~7

We will find a function g such that
t 17Z ~

Lolg) +n(p)Ealg] = 559 = F@) in [T T]. (93)

Lemma 9.1. When a1 € (0, %) and T > 0 are sufficiently small, there is a linear operator Ty such that
g=T [f] satisfies (9.3) and the following estimate holds

*,0,k -

Here the norms are defined by

Ihlleor = sup  (A(t)”[log(T — t)|*|A(t)].
te[—T,T]
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Here k € (0,1).
Let us start with the construction of the linear operator 77. We will find an inverse for Lo, namely given a
function f, find g such that Lo[g] — %%g = f. Set g = (—2)\c)’, differentiating this equation we get
1 27 ' 1 F(t
Oy ¢ O
(T —t)|log(T —t)| 3(1—aq) |log(T —t)| 1—ay|log(T —t)]

This equation can be rewritten as

—2(Ac)’ =2

27 1 -
—2(|log(T — t)|(Xc)")’ ! = '(t).
(108(T ~Dl(0e)) + g7’ = 7= (0
Integrating this equation gives us
2Z r 1
2|log(T — t)|(A\c) + ——— '(s)ds = — t
(T = )]0 + g [ € (s)ds = =0
which is equivalent to
Z 1 ~
Ae) — ————|log(T — t)| " tc(t) = =———|log(T —t)|7  £(t). .
(V) = gy 18T — B elt) = 5 |loa(T )] " F(0) (9.4

Rewrite it as

log (T —t) log(T —t)

__z ! ___z _losg 1 o=
[(Tft) 6(=a1) [logT] ()\C)] = (T —t)” 80 -aD Tie&Tl 72(1 a1)|log(T—t)| 1f(t).

We finally get

Z log(T—t) T _ z log(T—7) 1 17
e = (Tft) 6(1—oq) [logT| / (TfT) 6(1—ay) [logT] 7|10g(T*T)| f(’l')d7'~ (9'5)
t 2(1 — Oz1)

We denote the the operator which assigns f(t) to (—2Ac)’ by the formulas (9.5) and (9.4) as Tp.

Lemma 9.2. Set oy € (0,3), k € (0,1) and (—2Xc) := To(f) given by (9.5). Then the following estimate
holds

HTO[f]”*,@,k-s-l <
for a constant C > 0 which is independent of k and T.
Proof. We recall that

2 ~
1__a1Hf”&@k

1Flon = sup  (A(t)"®|log(T — )|*|f(1)].

te[-T,T]
Then from the formula (9.5), we have the following estimate

log(T—t) log(T—7)

T
__z  _loa(T—1t) __z 1 ~
|)\C|:(T—t)6(1 0‘1) [log T / (T—T) 6(1—ap) [logT] 2(17|10g(T—7') _1f(7')d7'
t

1 ()‘*(t))ellfn** 0,k __z  log(T—1) /T log(T—7)
] [ — ¢t)6(—a1) TlogT] [ — 1) 60— 041) [Tog TT 1
5 —ar) [log(T - ppa - 1 , @T=n

3(A()°| 10gT|( —t)
= 2Z|log( |k+2 Hf”**@k

Using equation (9.4), we know that
2 Il
(1= ap)[log(T — )11 T2

[(=2Xe)'| <

Proof of Lemma 9.1: We construct g as a solution of the fixed point problem

9= [ =13l

where Ty is the operator defined in (9.5) and 7 is the cut-off function. By Lemma 9.2, we have

170 o Ealal| I < 1

L £.0.k-
I Lafg]llon
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Let us estimate the different terms in I~11, which are defined by

Li[g] = Zilj[g]

e - b og(s) - IO g(s) - ! g(s)
L g:/ ds, L g:/ ds, L g:/ ——ds
wolg) rT—s uld] t—(T—1) t—s 1219] t—(r—t) I —s
) t—(T—1) 1 1 )
Dulil = [ 06) (2 — 7 ) dsn Dulsl = (tlog(|og(T — 1)) — 2log(| g T)a(e).

Then we have the following estimates. First,

t e e
7 (A(s)) (A(1))
L < gl ds < ||gl|« ——
Bl < oot | o g < ol et s
and e
t— (T —t)t+e )
3 (A(s))
|Li1[g]] < llgll«,e,% 1/ ds
i AT (t — )| log(T — s)|F+1
1+aq
( ())@ /t (T—t) 1
<\gll«ertr17—m "5y ds
|| || -‘rl“ g(T t)lk)-‘rl t—(T—t) t—s
a1 (A (1))
< lgllv ppg A
< ol T O
therefore .
[ L10[9][l 0.6 < m”gn*,@,k-&-l: [L11[9][l.0.6 < collgll«0.5+1-
Second,

O
T = 9)]Tog(T — 5) [+

t
Laalgl]l < [lgllvrs1 /

(A (1))°

< ||g||*,@,k+1‘

n (

(A ( ))@ ' !
<ot o =57 gy T3
)

log 2
p[FHT 8

g(T — 1)+

which implies that

- log2
L1291« |||9||*,®,k+1~
For L5 we have
N =T (A(s))® 1 1
L < |lgll« - - d
[L1s[g]] < ll9l+,0,k+1 /_T [log(T — s)[F+1 <t—s T—s) 5
O (u(s)®
< Clgll Tt - d
< Clgll ,@,k+1( )/_T (T—s)2|log(T—S)|k+1 §

(A (1))°
< C”gH*’@’kHW

and this gives
= C
L . < ————|lgll«.e .
IEsslollleox < rromylollenn

Finally, we have

o log(|log(T' — t)]) + log(|log T')))

[ <
| L1algl < llglls 0 k+1(Au (1)) log(T — £)[F+1

and this gives us the estimate

Clog(|log T')

L conr <
|| 14[9]” 0,k = |10gT|

HQH*,@,kJrL
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Combine all the estimates above we get

t. = 2 1 log | log T'|
Toln(=)L . < — N .
Tl Ealalll o < 1o (04 oy + oo ) gl ki
If 0 < a1 < 3 is fixed and T > 0 is sufficiently small, then we get
lgllv.0.k41 < Cll fll0k
O
Let 5
E(t) = Zlp1ol(t) + gZC(O) - f@®) (9.6)
and we consider the fixed point problem
P11 = Alp11] (9.7)

where

Alp1a] = Ti[-n(=)E — Blp1,o + p1.1]]-

t
T
Then we have

Proposition 9.3. When « € (0, ) and k € (0,1), there is a function p1 1 satisfying (9.7) satisfying ||p11ll«p+1 <
Collog T|F=1. Here Cy is a suﬂiczently large but fixed constant.

We divide the proof into the following lemmas.
Lemma 9.4. For the term E(t) defined in (9.6), we have
(A« (1)° T
1B < :

©O0T N
[log(T" — 1)
Proof. By definition (9.6) we have

E(t):/tm(t) p1o(s )d n ZC(O) £(0).

<t

IN

T. (9.8)

T t—s 3
Let t € [-L,T] and we write
t—(T—t)/5 t— A, ()2
P10(s) / P1,0(s) ©) _
E(t :/ ELO ds + Prols) gy 2. £t
0 -T t—s t—(T—t)/s t—8 3 )
t t
:/ Pl,o(s)ds_/ pro(s) oo
T T—s t—(T—t)/5 T—s
t*(T*t)/5 1 1 t*)\*(t)2 plo(s) 2
- d D ds + S 2O — f(t).
ef, e (g e [T B Sae - g
Then we estimate as follows,
t t )\* €] 1
J S T *
t—(r—ty5 LT —s t—(r—1)5 og(T' = s)| T — s
Ae()® 1 (A«(1))°
Sfle0 0T
log(T —t)| T —t Ji_(r—1)/5 llog(T" — 1)

and

t—(T—t)/5 1 1 t—(T—t)/5 ()\ (S>)® Tt
— ds| < ||, - d
‘/—T o) (725 = 5 ) | S o | log (@ — )|t~ 91T~ )

t—(T—t)/5 €] _
< f 100 / A(s)” Tt
~ Wlweo J- llog(T — 5)] (T — )?

(A (1)°

< P S N
~ Hf”*,@,() |10g(T — t)| .



H-SYSTEM AND ITS HEAT FLOW

For the fourth term in £ we have

t—Au(t)? t—X. ()2 1 =X ()2 £ —
/ pro(s) :p1,o(t)/ dsf/ pro(t) = pro(s) ;.
t t t

—(r-t)/5 t—s —(r-t)st =S —(T-)/5 t—s

t=A.(t)? 1) —
= prolt) Qog(T — )/5— 2og0. () — [ 2l mpalely,
t—(T—1)/5 t—s
Furthermore,
t—A. (t)2 ©
p1,0(t) — p1,0(s) . (A(1))
oY P dsl < su ST —t) < * _—
/ I < sw_ ol ~0) < ooy

Since py o satisfies the equation ij p;;“_(s)ds — p1,o(t)log(T —t) — 2Zc®) — f(t) = 0, we have

S

e
E(t) < C|fll+e.0 (M) '

This is the desired estimate (9.8).

Lemma 9.5. We have the estimate

t— (X (1))? e 2(1—a)+©
/ Qo) DR
L G llogT —9) [log(T — )
fora>1andb>0. For p € (0,1), l € R, we have
t—(A.(1)? (T — )~ (T — t)*
ds < C .
/—T (t—s)?[log(T' =)' = (A(2))?|1og(T — 1)|!
Proof. Let us write
t= (A (8))? (Au(s))®
/—T (t —s)*[log(T" — s)[°
T es)® TOOF us)°
= - ds —|—/ 2
/—T (t — s)*[log(T — s)[° t—r—ty (t—35)*log(T —s)[’

Then, for ¢ € [0, T], we estimate,

t—(T—t) (Ae(5))® t—(T—t) 1
Lo otwrr<L,  ToeTmr
1 (/\*(t))@ ()\*(t))2(17a)+@
=T e log@ — e = ST — e log@ P = < [loa(T— O
e OOF e
/t_(T_t) (t— 9| log(T — )P "
A(0)® 0" 1 (A (£)°
S Tog@ 0P Jorey =90 = OO @2 los@ — P

The case for ¢t € [T, 0] is similar. Indeed, we have

/ TOOT_ (u()°

—_— s .
o G—e g =) | S Tog@—0F Jp  T=9" =" Tlog(T—DP
Similarly, we have
t=(A(1))? —S)H T — )k
/ (2T °) pds < C (2 ) I
T (t —5)?|log(T — s)| (Ax(t))?|log(T — )]

Lemma 9.6. Let M = C|logT|*=1, k € (0,1), then for ||p1.1
IBp1.0 + p1.a]()lls.0k < CIIf|

%,0.k+1 < M, we have

log 7|1,

*,0,0

(/\*(t))@ /t(,\*(t)) 1 p <C(>\*(t))@+2(1fa)

55
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Proof. Observe that with the choice of M, if ||p1,1]|+,0 k+1 < M, then we have

Co

PL1
= [log T[*

P10
since T' > 0 is sufficiently small. Let us recall that

B[pl] =B [p1] + Bg[pl]c + Bs [pi]e — 2X¢,
pd =- [ R (ra () #0) e [ B (P22

~ t—/\f(t) —iy(t) 2 + —iv(t) 5
Ba[p] :/ Refpo(s)e™ ] <I‘5 <)‘(t)> + 2> d3+/ Re[po(s)e ]F5 <)\ (ﬂ) ds,
-7 t=s t—s 3 t—X2(t) t—s t—s

~ 9 [t=AI() Re[po(s)e~7®)] 2
-z 2elpots)e s 4 27,
Bslm] = =3 /,T t—s St

From the definition, we have
120¢ll w0 < ClF 0.0l log T1 .
For the other terms, we write

Bialpro+p1al(t) = /;Az(t) %(SS) (F3 (?2_(’2) - 1) ds,
=0 (715) <)
B tmle = [ 200 (30 a

. ¢ o) )
Bs p[p1,0 + p1,1](2) :/t - Re[po( Je” Is (/\ (t )) ds.

BQ,a[pl,O +p1a](t) = /

T t — S
and

t—s t—s

From Lemma 9.5 and the asymptotic estimates for I's, I'5, we have the following estimates,

B t—(X.(t))?
|B1.alp1,o +p11](t)] < C(A(2)* / wds

T (t _ s)1+a
2o [T (A())°
< O fll+,0,0(A(t)) [T (t—5) 7| log(T — )]
e
< Clflloorna s,
~ £ (0 (1)? .
|Ba.a[pro + pral(t)e(t)| < C(A()* /4* (tgoi)z‘wdsc(t)
(O (1))? 1
2040 S
«0.0(A(t)) /_T (&= ) log(T — )"
~A0)°
" log (T~ D
and 1 ‘ (A (t))G
‘Bl,b[pl,o —I—pl,l](t)‘ < CW /t_p\*(t))2 I(pl,O +p1,1)(3) > *,G,Omv
- I fll+00 [° (A ()®
IBQ,b[pLO +p1,1](t)C(t)| S C ()\*( ))g /t_()\*(t))z |p0(3)| dS(/\*(t))@ S C||f||*,®,ow,
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| Bs[p1,0 + p1,1](t)e(t)|

o N t—A2%(t) s) — ¢
< Clfl 00 0)°Iiu] + Cll a0 () | [ =Pl
t—(T—t) -S
(A (1)®
< " —_—
= Ol oo —np
Combine all the above estimates, we obtain
1Blpro + p1il()llwex < Cllfllve00llog T .

Lemma 9.7. Let M = C|log T|*~1, then for ||p1ill«ox < M, i=1,2, we have the following estimate,
|Bp1,o + p1,1](-) = Blp1,o + p1.2]() 0k < lo?g’T|p1’1 — p12)l+,0,k+1-
Proof. Let us use the notations in Lemma 9.6. The estimate for 2A¢ is from definition directly. For the other
terms, we write
D1 = By alpio +p11](t) — Bralpro +p12)(t), Dag = Boa[pi](c!® + D) (1) — Boo[p1](c® + ) ()
D1 = Biy[pro +p1,1)(t) — Biglpro +p12)(t), Doy = Bay[pi](c® + V) (t) — Byy[pi](c® + 1) (1),

]
Dy = Bs[p1](c@ + ") (t) — Bs[p1] (e + ) (2).
Let us consider the term

t_( *(t))z _ s 2
DBy o + pul(t) = / A py(s) p1,2(>(rg(|<po+pl><t>| >+1> i

d¢ 7 t—s t—s
with p1 () = (p1,1(t) + (1 — {)p1,2(t). Using the decaying estimates for I's and Lemma 9.5, we have

‘/t—(x*(t))2 p11(s) — pra(s) (Fs (l(PO +pl)(t)|2> + 1) ds

_T t—s t—s

< C/t('\*(t))2 [p1,1(8) — p1,2(s)] (|(p0 +pc)(t)2>ads
-T

t—s t—s

< Cle 1— D1 2”* ) k—‘rl()\*(t))QU /t(A*(t)) ()\*(S))@
< ; 211%,0, T (t — s)1+o|log(T — s)|F+1

20 >\* 3 ©
< Cllp11 = p12llvek+1(A(?)) (A*(t))2£| lo(g)(f)r Y

(A (1)
= C — * .
le,l p172|| ,0,k+1 | IOg(T — t)|k+1

ds

Therefore we have

1 d _
D) = | [ e Bralpro + 10
) /t—()\*(t))Q p11(s) — p1.a(s) (F( <|(p0 +p1)(t)2> - 1) n
“\J T t—s 3 t—s

<C — * —_— .
= ||p1,1 p1,2|| ,e,k+1|1 (T t)|k+1

Similarly, we estimate Dy ; as follows.

dilcél’b[pl’o +p1cl(t) = / P1.1(8) ~ Pr.2(s) I's <|(p0 +p1)(t>2> ds.

t— (A (1))? t—s t—s
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For this term we have L
d -
IDua(t)] = / 9By alpro + prel(®)
o d¢

/:(A . p1,1(s) *p1,2(5)F3 <|(Po +p1)(t)|2> ds

<
- t—s t—s

C t
< T oy P28~ 1ol
(A:(1)®

< Cllp1a = p12llv0,k+1 [og(T — )1

Now we estimate D ,. We have

|Ds.a| = |Ba.alp1] (e + ¢ )(t) — By a[p1](c!® + c2)(1)]

t=(A(1)?
/ po(s) ds(c(l’l) _ c(1’2))(t)

<co.0| | s

t—(Aa(8))?

< C(t)* ! ’/_T @’f’i)‘?wds/t (p1,1(8) — p1,2(s))ds

/t—()\*(t)) pO(s) s /T ()\*(8))@ s
7 (t—s)ttoJ, |log(T —s)[k+?

_ 2
/t -0 logT| /T ()
o =) lea(T = )P, Tloa(T — )71

2011108 TI(A() 727 (A())®
[log(T = t)|*  [log(T —t)|*+!

< Clpig — prallsopr1(A(£)7 !

< Cllp11 — pra2llseke1 (M) !

< C|lp1,1 — p12ll+,0,k4+1(A(2)) (T —1)

(A (1))®
< Cllpi,1 — p12llv0,k+1 Tog(T — f)[F+1°

For D3, we have
D2y = [Bap[p1] (@ + cBD)(8) = Bay[pi] (e + ) (1)

t
/ po(s)]ds(c) — 1) (t)
t—(Xx(1))?

<COL() 72

< C(A(1) 72

¢ T
/t - \P0(5)|ds/t (p1.1(s) — pra(s))ds

Z(A(t
t T ©
(As(s))
pols ds/ ds
/t()x*(t))2| o)l ¢ [log(T — s)[F+1

[log T|(A(8))* [T (Mu(9)°
o0 ), T
ollog TI((1)>  (A(1)®
< Cllprr = przllsok+1 (A1) 2 |log(T — t)|2 |log(T — t)|++!

(A (£))0+1
< Clpry — pralls L A A—
< Cllpiy — prz2llser41 Toa(T — 1)1

< Cllp1y — pr2lls0r+1(A(t) 2

< Cllp1a — pr2llsort1(A(t) 2

(T —1)

For D3, we have
D3| = | Bs[pa] (¢! + ¢"V) (t) = Bs[pi](c® + ) (1))

(m Pl et ) () — 1))

<C
—(T—1) t—s




H-SYSTEM AND ITS HEAT FLOW 59

logT T
o |, (1109 o
logT|_ 7 Gl

< _

< Cllp1y — pr2llv0,k+1 Mog(T — O J, |log(T—s)|k+1ds
logT|  ((t)°

< - * Tt

= Clpv = prallo oy o= Thog(r — s Y
(1)

< CHle - p1,2||*,@,k+1 W-

Combine all the above estimates, we obtain

_ _ c
|Blp1,o +p11](:) = Blp1,o + pi2l()llv06 < —= P11 — P12llv,0,k+1-
|log T
O

Proof of Proposition 9.3: Now we prove Proposition 9.3 based on the above estimates and the fixed point
arguments. Indeed, we choose k € (0,1). Then from Lemma 9.1 we have

1]l o1 < € (1B ok + 1Blr0 +pralll o)
and R
1o < CrllogT|*!
I1Bp1.o+ pralllsex < Cllog T|*".
Therefore we have
A1 ]l +0k1 < C-CrllogT|* ! 4 Cllog T|*~' < Co[log T|*~*

for fixing Cy large. Hence the operator maps B (0) into itself for M = Cy|log T|*~!. Moreover, we have

- - C
I A[p1,1] — Alp12)ll«.0.6+1 < C||Bpi,o+p1,1] — Blpio +pi2lll«or < |1 7 lp1.1 — p12ll+0 k+1-

Then we obtain a fixed point of problem (9.7) by the contraction mapping theorem. O
9.2. Estimates of the derivatives.

Lemma 9.8. We have the following estimates for pi 1,

A ()
t)]

Ae(t))®

[log(T' = t)]2(T = t)*

Proof. To prove (9.9), let us recall that p; ; satisfies the following equation

Eolpaa] + 1) Ealpui] + 1) B+ Blpro + pral(®) - e = 0 in [-T,7],

f (9.9)

P11 < Cllfll«.0.0 T—0)

(
| log (T —
(

11 ()] < Clfll«0.0

Differentiate this equation with respect to t, we have

(1= aa)llog(T _t)‘p11+(1_041)7{)11 +77(;’)6ZI~/1[P1,1]+71’771< >L1[P11}+77<t)th

1, (t d - d (22 o)\
+T77 (T)EertB[pLo +p1a](t) — dt( c =0.

Rewrite the above equation as

IV Ealpua] + Ulpra)(t) = ht)

u—ammgT—mmJ+mT

where h is a function satisfying

Ih(t)] <

(A (1)
" log(T = t)[(T — 1)
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and U is the operator defined by

= ) 0 (S [ e (20

Observe that One of the terms in h is n(%)%E, from the proof of Lemma 9.4, we have

) og(T —O)|(T — 1)
Let us recall the proof of Lemma 9.1, we estimate the term iilo[pl 1] as follows
d - d (" pro(s) p1o(t) (A()®
) — & [ ¥ . :
’dt wlprol dt/_T T—s = |7=¢| =S Wleonoem—niT—p
Next we compute 2 L1 [py,1],
d - d =t P1 1(t — ’I“)
iy prav—rn
i ulp11] = It /T i - dr
_ /T Copalt-r) pat— (T 1)
(T—t)1+o1 T T—1t
pia(t = (T —t)'+*)
+(1+a) T 1
s pralt — (T —1)) pLa(t = (T =)' *+*)
= L11[p11] T a— +(1+a1) T .
The last two terms can be estimated as follows
pl,l(t_ (T ))‘ CHf” |10gT|k 1( (t))e CHfH 0.0 ( ( ))9
T—t =9 log(T = t)[1(T —t) = |log(T = t)|(T =)’
pra(t — (T —t)'+e0) [log T|* 1 (A (1))° (M (1))®
1 : < % 6 < £.6
(1+a1) T 1 < C|fll ’O’O|1og(T—t)\k+1(T—t) <1l ’O’O\log(T DT =
Similarly, the term %fxlg[le] can be estimated as
d ~ d T_tpl 1(t—7”)
L >
g Ll = dt/ T—t5r
_/T fhatt-r)  palt - (T 1)
o T—t+r 2(T —t)
Tt
p1a(t—r)
* /0 T =t
= prat— (T —1)) /t P1,1(8)
=1L i S N A N
12[p1l 271 ey T =52
e (t—(T-1) log 7120 (0)° (0 (£)°
pra(t— (T —t logT t A (t
) < . % ,
2T 1) ‘ Wlh-eonogar—prera 5 = W-oo g —piT—
t k—1 e 1S
p1,1(s) [ log "~ (A« (2)) (A«(1))
77 < < .
[ qro T2 | < Moot sir—y < Mg =

The term %.Z/lg [p11] can be estimated as

d /T+t pl,l(t — T)(T — t) dr

dt Tt r(T—t+r)

_ /T” prat—r)(T'—1) n piat—(T—1t)  pialt—(T+)(T -1
Tt r(T—t+r) 2(T —t) 2T(T + t)

T+t B T+t B B
7/ prat—r) +/ prat—r) T -1
e (T —t+7) r—y (T —t+1)?

—L
p 13[]91 ﬂ

X
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pat—(T—1t)  pra(=T)(T 1)

= Lya[pra] +

2T — 1) 2T(T + t)
T pias) I L (s)(T - 1)
[T <rwaf@“+/; ()T 52"
and
Pt — (T — 1)) [log T~ (. (1))° (A (£)°
= | < W leofgr—apr = < Weogm—am—n"
P (TN — 8| [pia(=T) [log T (A, (1))° (A (£))°
A ‘sc M,‘sowm@ﬂbgT_mH%T_wsoum@ﬂbgT_m@_w,

== 1og TIF1 (A (s5))®

< C||f||*,®,O/T (T _ s)2| log(T — s)|k+1 ds

log T 01(1)° (.07
floa( — (1 — 1) = 0 i — 1y

I log TIF1(Au(s))®(T — ¢
| <Clfleoo [ L o et

t—(T—t) le(S)
‘/T =@

< Cllfll«e0

/t_(T_t) p11(s)(T — t)
oy (t —s)(T - s)?

| log T1* 1 (A (1)°
[Tog(T — O)FF1(T — 1)

(A (1)
|

<C|fl+e.0 |log(T — t)|(T' —t)

< Clfll+e.0

The term %fjm[pl,l] can be estimated as
d ~ d
—Lialp1a] = 7 ((41log(|log(T" —t)|) — 2log(|log T'|))p1,1(t))

dt
—_— 4
= Lua[p11] + (T = 0)[log(T — t)‘pl,l

and
4

‘ » [log T'*~* (A (t))®
(T —t)llog( -

t) (A (1))°
[log(T' = t)[**(T - t)

[log(T" = )[*(T — 1)’

< C|fll+e.0

< C|fll+e.0

For the term T77 (%) Ly [p1,1], we have
e [log T+ (1, (1)° _ [log T\, (1)°
— <
77 (7) Do < Ut B 5 < Uiz
A (1))®
< Cllfllo0—rnr )

[log(T = )|(T' = 1)
since |log(T — t)| ~ |logT| in the interval ¢ € [—Z, 0] where / (%) is not zero. Now we consider the term
%B[pm + p1,1](t). Observe that one of these terms are

d [T pi(s) (L (X(0)
= r 1
dt | t—8(3<t—s>+>d8’

£ G R () )
L B () o [0 o (2) 2
)
)

LD 1 (1)) P 3

and from Lemma 9.5, it holds that

/t+Tp1(t_r) (rg (/\Q(t))> AN
w7 ' '

we have

<

|
AL e
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2 o
RG] <t—s) ds

< CIAON (D) /

v (t=8)2 \N()
< CAXO"FIN @O f] 0.0 /;Aim = 1)2_0 |1(();z;9)_)(2)|
< 0A<t>1-2“|xu>f||*,e,o% < Cllfll-0.05 1og($i(g|)<®T —t)’
M“éé?”)cg(i;3)+1)nxﬂ&@ﬂ
<Ol oy g < OV oo e ey
The other terms in h as well as the proof of (9.10) can be estimated similarly, we omit the details here. O]

9.3. Estimate of the remainder R, [p11].

Lemma 9.9. Let p11 be the solution constructed in Proposition 9.3, then we have
A () (T — )™
[log(T" — )|

[Ra, [p11]] < Cllfll«.0.0

Furthermore, it holds that
A ()°(T — )t
[ log(T" —1)[?

Proof. From the definition Ry, [p1,1] = Z[p1,1] — Sa, [p1,1] and the estimates in Lemma 9.8, we have

d
FLA

<C|f

*,0,0

= (0)? o
|Ro¢ [pl 1” < |p171( ) p171(8)|d8
1 ) t_
t—(T—t)1+e1 S
< sup P11 (r)|(T — 1)+

re(t—(T—t)1 o1 t— (A (t))2)

(A (0)O(T = )
< Clf o015 —pp

On the other hand, we have

d d [0 p1.1(t) —p1.1(s)
- o —_— ;d
dtR i[pr] dt/t y

_(T_t)1+cy1 t—s

_ )it
d [T () —pialt—7)

= —— dr
dt (A (1))? r
(T,t)1+061 . e . _ 2y .
_ _/ Pra(t) —pralt T)dr_2(1+a1)p1,1(t (A (1)) )/\*(t)
(A (1)) r A«()
t— (T —t)ltoo
(14 a P (T =07)

From the estimates in Lemma 9.8, we obtain
d M) (T -ty
| log(T" = t)[?

@ < s
g Bealprall < Cllflle.0

O

Combine the results in Proposition 9.3, Lemma 9.8 and Lemma 9.9, define Rc[f](t) := Ra, [p1.1](¢), then we
obtain the conclusion of Proposition 8.2.
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APPENDIX A. PROOF OF TECHNICAL LEMMAS
Several technical lemmas will be proved in this section.

A.1l. Decomposition of the linearization.

Proof of Lemma 2.1. We compute

A(psW) = [ hp®3 + 3;»(253 + 599¢3 (w + sn; w) ¢3]

w sin w cos w sin wo,
T D PR

Al Er) = — Kwpp + % + Smwpgm) 61 + Qw,)apgm} 1%

) ¢1] Ei+ 2(2081;}#]52,

cos2 w

1 1
+ |:8pp¢1 + ;8,;(;51 + pﬁ@@@(}ﬁ — (wg +

and

2 sin wo 2 cos wo,

AlboEs) = — d bb211r g eszEl
P P
op)
OppP2 + 5p¢2 + 390¢2 -z E,.
So we get
Ag¢
1 1 sin? w w sin w cos w 2 sin wd
= |:app¢3 + *8p¢3 + 7800¢3 - ( + p ) @3 — (wpp + 7/) + /72) 1 — 2wpap(bl - /_72%:| w
w sin w cos w 1 cosZw 2 cos wo,
+ [(wﬂp +— - ) b3+ 2wp0,¢3 + Dppd1 + 8p¢1 + — Opo1 — (“’2 + ) ¢1 — 5 9¢2} E;
P p? P p? P
sin wo, cos wa
{ bp®2 + 3p¢2+ 509¢2—@+2 20¢3+2 20¢1]Ez~
P P p
Also, one has
sin 6
¢m=0wﬁﬁ %y%W+@&+@@>
sin 0 sin @ sin w
= |cos00,¢3 — Opp3 — cos Ow,p1 + ———do | W
p
+ [cos 00,41 — %85@1 + cos Bw,P3 + smﬁ;osw@] £y
sin 0 sin 6 sin w sin 6 cos w
hw@@%@ g, - TR ¢4&

cos 0

%2@w@+ my%w+m&+@&)

cos cos 0 sinw
39¢3 —sinQw, ¢ — ¢2:|

= {sin 00,03 +

cos . cos 6 cosw
Op1 + sin Ow, 3 — p(b2:| F

+ |:Sin 98qu1 +

. cos 0 cos 0 sin w cos 6 cosw
+ l:Sm Qap(bz + Ogpo + ) o3 + P ¢1:| FEs




64

and thus

0 0
Uy, A ¢y, = cosbw, |:SiIl 00,02 + o 89¢2 (DS:()MU¢1] w

sin @ sin w {

sin 98p¢)1 + 60¢71

sin @ sin w {sin 00,65 + cos 9

cos 9

—cosbw, {sin 00,03 +

b0 AU, = cos@sinw[ sin 0 sin 6 cos w
Y1 = I

cos 00,01 — —89@

—sinbw, {cos 00,02 — sin 0 39¢2 — sin 9508 v qﬁl}

cos 00,¢3 —

cos @ sinw { sin 6

sin 6

+ sin fw,, {cos 00,03 —

Therefore, linearization

Ayd = 2Uy, N by, —2¢y, AUy, =0

implies

1 1 sin? w w
|:app¢3 + ;ap(bd + p72800¢3 - (w + p ) ¢3 (wpp + 71) +

+ [(wpp + % — Sln’u'JO;OSU)) o3 + 2wp8p¢3 + 8pp¢1 + 8,,(;51 -‘r 899¢1 ( +

1 1 2 sin wdy Ps cos wag o1 ]

+ {({%pd& + ;aprQ + ?5‘99% 2 +2 2 +2 e
w w, COS W sinw w, Sinw
=2 {pae% + £ o1 + 2—L——

p¢1

¢3} w

sinw sinw
+4_

w,ysinw | |
0,3 + p w,ﬂbl} Ey+2 [—p’)@a% + £ p b2

and the proof is complete by collecting terms in the same direction.

Proof of Lemma 2.2. First, we notice the fact
1 1

1
Ur = pr(P)Q'yElv ;an = *pr(P)QvEZ

By direct computation, we have

1 1/1
;U’r‘ A @9 = ; (/\wp(p)QvEH) AN @0

= ()@ By A D)

1

= () (B0 QW)@ B + (By - (Q4F2))@, W
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cos cos f cosw
— 2| W

89<;53 —sinfw, ¢ —

89q53 —sinw,¢1 —

; Opp3 — cos w, 1 +

8.9(b3 — cosQw, 1 +

sin w cos w

Es

E27

cos 6 sinw

U)p sinw

sin 6 sin w

U)p s w

" | £
p

) ¢1 - 2wpap¢1 -

psW

¢2] E,

p3W
¢2] Ey

i,
p

2 sin wdy po }
— | W
p
cos? w 2 cos wo,
i ) b1 — . 9¢2} B,
P p
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and

1 1
;fl),« ANUg =P, A <)\wp(p)Q,yE2)

— (~5un)) @1 (@)

_ <_iwp(p)) (=B, (Q V) Qy Fr + (B, - (QF1)Q, W]

Therefore, we have

~ 2

Ly[®] = — wp(p) [(=Po - (QyW))Qy 2 + (®5 - (Qy E2)) @y W]

+ 300 (-0 (@) QB + (@, - (@4 1), W]

2

= = Sw(p) (B (@) Q4 B1 + 5w, (0) (@ (Q4TV))Q

by () (- (@) — (R - (@4 2))] QW

Proof of Lemma 2.3. Clearly,
1
&, = cos00,, P +sinh0,, P, ;@9 = —sinfd,, ® + cos 00, P.
We have (¢ - Q,E;) = (Q_,® - E;) and write ¢ = Q_,® = (¢1, ¢2, ¢3)7 so that
P — {%’1 + i@z] _ {€i7(¢1 + i¢2)} . (A1)
©3 ?3

Then, one has

1

O W = 2 sinw|[00, 61 + Oy 62] + 005(20)[0i, G1. = Or, 6] + 5in(20) [0, 61 + Do, 2]
+ cos w[0y, p3 cos O + Oy, d3 sin 0]

%qs(, W= %sinw [[3952@{71 — Oy o] + c08(20)[0, b3 + Dy, b1] + $In(20)[D, o — azlm]

+ coswW[—0y, P38in 0 + Oy, P3 cos 0]
and

or - By = %COSU’ [[5x1¢1 + On, §2] + €05(20) [0, o1 — O, P2] + sin(26) [0z, 01 + 3@1¢2]]
— sin w[0y, ¢3 €08 @ + Oy, 3 sin 0]

%@9 - By = [—sin 09y, ¢1 + 08 00,,¢1](— sin ) + [— sin 60,, 2 + cos 00, p2](cos 0)

1
= [0y, }1510% 0 + Oy, o cos® 0] — B sin(20) [0y, ¢1 + Ou, 2]

= 0100 P, LY L Gin(20)[00, 01 + 02,00
= 100,01+ Dusa] — 5 S(20)[Drsr + Or, 2] — 5 CON20)[0, 61 — Dy
O %(ﬁe By = %COSW[[@Q% + Oz, P2] + €08(20)[02, ¢1 — O, P2] + sin(20)[0r, P1 + 3z1¢2}]

— SIn w0y, ¢3 cos O + Oy, 3 sin 0]

- %[amqsl + Ouy o] + %sin(%)[ﬁxzqﬁl By o] + %cos(ze)[azlggl — 0y, 60].

Combining above terms with above Lemma and (A.1), we obtain the desired decomposition. O

+ Ox, P2
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A.2. Analysis of the new error.
Proof of Lemma 4.1. We have
S[U.]
= Rys 4+ Ro +m(ELL — 0,90 + A0®) 41, (65 - 9,00 + AdW) 4 £l
+ (1= m) (&8 + &5V + €5 + €5 + (Any - am)®. + 2V, - iy

o [P0 ) + 620,(Q n) + 26, (670, B — 0 >Q7E1> + 0,025

— i [8 0@ ) + 05D 0(Q1 Ba) = 204610 Q Ba — 05 QB + 0,007
— 11 [sin 20920, (Q+ W) + 2 cos 20120: QW + sin 200,12 p QW]

+ Ly [@© 4 oM — 26301 (c1QyZ11 4+ 2Q1Z12) N Opy (M Py) — 204, (M Py) A Ogy (1Q1 211 + c2Q1 21 2)

— 205,02, (QyW) A =205, M Pu A Oy (Qy W) — 205, (m @) A O, (1 D)
= Rys +Ru +m(EY + RO) +m(EFY +RY + £
+(1—m) (5 + e 1B 4 e ) + (A = Oym)®s + 2V, - Vi

— A w, (€1 cos 8+ Exsind + Ap) (61 + 67PN Q W
+mrsinwly + A7 p7 (& sin 6 — & cos 0)]( 22) + ¢2 2))Q7

— mA w, (€1 cos 0+ Exsind + Ap) (017 + 01 7P)Q, W

+ 771)\71(5.1 cos B + €5 sin 0 + )\p) sin 200,92Q, W

— 2 A (€1 sin 0 — €5 cos ) cos 2000,Q, W

+ 1 coswly + A"t p 7 (€ sin ) — 52 cos 0)] (s (2 d)( 2))Q,YE1
+2mA ™ p 7 (€ sin 0 — & cos0)[6F) — o ”]QVEl

+ AT (€ cos O+ Exsind + Ap) (9,6 + 9,0 7)Q E

+m A_lwp(él cos 0 + €5 sin 0 + Ap) sin 291/)2Q7E1

— 1y coswliy + A" p 7 (€ sinf — & cos 9)}( )+ ¢ )QVE2
+2mA (€ sind — & cosO)[0f 7 — 6P]Q, By

+mA T (€ cosO + Eysin ) + )'\p)(aquéz) + 8p¢572))Q7E2
—m sinw(y + A_lp_l(fl sin § — &, cos 0)] sin 2012Q~ E>

+mLy[@© + M) — *3 (m®s) A Op(mPx)

2
— 2[0r(e10: 210 + €20 212) A Do (@) + 0, (@) A Bp(€1Q1 Z11 + €205 Z12)|
— 205,02, (QyW) APy — 20, 1 Py A O, (Q W),

where we have used
pr=—A""(€cosf+ &sind + Ap),
0, = A1 p (& sinf — &5 cosh),
0 (Q W) = -2t (51 cos + &y sinf + Ap)pr7E1 + 4+t _1(51 sin@ — &, cos )] sinwQ. Es,
9:(QyE1) = A1 (€1 cos 0 + Ex5in 0 + A\p)w, QW + [7 + A1 p~ (€1 sin 0 — & cos 0)] cos wQ-, Ea,
0 (QE>) = [7 + AL (€ sin b — £ cos 0)](cos wQ~ By + sinwQ., W).
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We collect some extra terms produced by the cut-off 77 and define
By = (1—mn) (5 +EFD 5P 4 S,Sﬂ)) + (Any = )@y + 2V, - Vi

2,0,
— 205,10, (QW) A By — 20, Dy A Dy, (Qy W) — y

287”771

[OJN 89@*

P, N 0g(c1Qy 21,1 + c2Q4 21 2).

To further expand the error, we use (4.17) and first compute

5,80 — [eia(lﬁo + fazz/ﬁ)] 9,9 — {”6%0}
T 0 9 0 ?

0

0
0 . 9pdV) = 0 ,
Rele (4" + Z9.9")] Im(re= 4t

d, (q)( ) +q)( )—|—<I>(2))

=7t [ p¢12)Q~/E1 + 8p¢(2)Q'vE2 - wp‘b?)@ww]
+ At [ap¢1_2 QwEl + ap 5_2)Q7E2 - wp¢§_2)Q7W}
+ A sin 29(8P¢QQVW + wp"/}2QvE1)7

9,0 =

9p(@7) + 00 + o)
= — ¢2 sinwQ,W + (89@5%2) — cos w¢§2))Q7E1 + (89¢§2) + cos w¢§2))Q7E2
— 5 sinwQ, W + (990 — coswel QB + (0905 + coswel?)Q. By
+ 12(2 cos 20Q, W + sin 20 sin wQ~ E»).
We then have

0, P, = { ey b azwo)} +

0
O ]
Re[e™ (¢! + Z8,41)]
+a7 {8P¢(12)QwE1 + 0,05 QB — wpéf’f)QwW]
+ AT [8P¢§72)Q7E1 + ap(bgi?)QvE? - wpdjgiz)QWW}
+ A" sin 20(0p1h2Qy W + wpih2Qy Er)
= coswRe [e”(w + fazwo)] Q- E1 +Im {e Y0 + 6z¢0)} Q- Es
+ sin wRe {e”(wo + 7,2821/10)} QW
4 Rele (! + ~ azz/; )] cos wQ, W — Rele= (1) + 321/; )] sinwQ-~ By
+ A [ P¢§2)QWE1 + ap% )Q7E2 - wp¢1 )Q'Y }

A7 [apgbg_Q)Q’yEl + 8p¢g_2)QvE2 - wf’d)g_Q)Q”W}
+ A 5in 20(8,12Q W + w b Q- Er)

= (Sin wRe [6”(7,/10 + f@zd)o)] + Re[e™? (! + é@zwl)] cos w) QW

+ At {sin 200,12 — w, (93 ) ¢( 2))} QW
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2 2

+ (cos wRe [e_m(wo + razwo)} — Re[e (¢ + Laqul)] sin w) Q- Er
z z

+ A7t (sin 20w,1pe + 0, §2) +0, (172)) Q. E

) 2
+ <Im {e”(d)o + ’“Zazwo)} FAH9,08 + 0, é‘”)) Q- B,

. 0
9B, — {27‘60‘91&0} . .
Im(re~#qt)

— d)éQ) sinw@, W + (89(;5?) — cos wqng))Q,YEl + (89(;552) + cos ng)(lQ))Q,YEg
— é_Q) sinw@,W + (89(;55_2) — cos w¢(2_2))Q,YE1 + (ag¢§‘2) + cos w¢g_2))Q7E2
+ 12(2 cos 20Q, W + sin 26 sin wQ E»)

= coswRe [e*i%'m/zo} QyE1 +1Im [e*i”’irwo] Q~E> + sinwRe [e*”irwo] QW
+ Im(re”"%9") cos wQ, W — Im(re~"4!) sinwQ- E;
— ¢gz) sinw@,W + (89¢§2) — cos w¢g2))Q7E1 + (Beqbg) + cos w¢§2))Q7EQ
— 5_2) sinw@,W + (89(;55_2) — cos wqﬁg_Q))QvEl + (89¢g_2) + cos w¢>§_2))Q7E2
+ 12(2 cos 20Q, W + sin 20 sin wQ E>)

= (sin wRe [e*”irwo] + Im(re~ 1) cos w — sinw( gz) + ¢§_2)) + 24)5 cos 29) QW
+ (cos wRe [e™Viry°] — Im(re= %) sinw + (8@@1752) + 3g¢§_2)) — cos w( 52) + qﬁé_m)) Q- Er
+ (Im [e_”irwo} + (89(/)9 + 89¢é72)) + cos w((bf) + qb;(fQ)) + sin 20 sin U}’(/}Q) Q+Eo.

So we obtain
0, D, N\ 0p®,

2 2
= l (cos wRe [e‘”(wo + TZ(‘?ZQ/JO)] — Rele (¢! + %621/)1)] sin w)
+A7! (sin 200,15 + 9,0 + a,ﬂ;g*?)) 1
X (Im [e‘”irwo} + (8g¢§2) + 89¢g_2)) + cos w(¢§2) + ¢>§‘2>) + sin 26 sin ww2> QW

- ,
- <Im e*zv(wugazwo) +A740, g2>+ap¢g2>))

X (cos wRe [e*”irwo] — Im(re "y sinw + (89¢§2) + 39(15(1_2)) — o8 w(cf)g) + qﬁé_g))) QW

+ (Im (0 + éazwo)- + 271,05 + 0, g%)

X (SiI-l wRe [e""iry?] —l—-Im(Te_wwl) cosw — sin w( §2) + ¢>§’2)) + 21)9 cos 20) Q- Er
— (sin wRe [e‘”(wo + f@zlbo)] + Ree (4" + §6Z1/J1)] cos w)

x (Im [eDiry®] + (0985> + D9 ?) + cos w(d® + ¢~ + sin 20 sin wwg) QO B

+ (sin wRe [e‘”(wo + Tjazzbo)] + Rele (! + éazwl)] cos w)

+ A7t {sin 200,19 — w,( (12) + ¢(1_2))} ]
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X cos wRe [ Wirwo] — Im(re~ 1) sinw + (89¢§2) + 8@¢§72)) — oS w(¢é2) + ¢572))) Q- Es

[ cosze e (wo—&— 821110)} Rele _’0(w1+ 821[1 )]Sinw>

+ A7t (sin 20w, + 0,0y @4 3p¢1 ) ]

X (sin wRe [e*”impo] + Im(re~®pt) cos w — sin w( éQ) + gbé_Q)) + 29)5 cos 20) Q~Eo,

and
Or(c1Q+ 21,1 + 2Q+21,2) N OgPu + 0r P A Og(€c1Q+ 21,1 + c2Q+21,2)
= (Im [e=iry®] + (89(}5;2) + 89¢§_2)) + cos w( 52) + ¢§_2)) + sin 260 sin w1/;2>
x A\ tw, sinw(cy cos O + c25in 0)Q, W
— (Im [e=iry®] + (090 + 0p0s ) + cosw(dP + ¢{7?) + sin 20 sin w¢2)
X A_lwp cosw(cy cosf + cosin6)Q Ey
+ (cos wRe [e‘”imﬁo] — Im(re‘iewl) sinw + (agnggQ) + 89¢§_2)) — cos w(ngQ) + qﬁg_Z)))
X )Flwp cosw(cy cosf + c2sin0)Q Es
- (sin wRe [e‘”irwo] + Im(re”*41) cosw — sin w(¢52) + ¢572)) + 215 cos 29)
X )Flwp sinw(cy cos @ + c28in0)Q Es
_ 2 _ 2
+ (cos wRe |:6_W(1/)0 + Zﬁzwo)} — Re[e (¢ + ?szl)] sin w)
+ A" (sm 20w, 9 + ap 2y 8,) ) ] x sin w(e; cos B 4 ¢ sin QW
- (siane [e‘”(wo + azwo)] + Re[e ™ (! + 7 azw )] cosw)
z
+ A7t {Sin 200,19 — wy( @ 4 (;5(_2))} x sin? w(cy cos B + ¢ sin 0)Q. E
P2 p\?1 1 1 2 yH1
+ <Im {e (0 + 321/10)} 10, (2) +0, (_2))) x sinw(cg cos @ — ¢q sin6)Q By
- [ (COS wRe {e‘“(zﬁo + 321/10)} — Re[e™ ¥ (! + —0,4")] sin w)
z z
+ A7t (sin 20w, + 0,0y S d)( 2)) ] x sinw(cg cos B — ¢1 sin6)Q Eo
since

6r(6121,1 + 622172) = )flwp(cl cos + co sin 9)(COS wW + sin wEl),

Op(c1Z11 + c2Z12) =sinw(ca cos @ — ¢y sin )W + sin? w(cy cos @ + cosinb) By
Collecting all the identities above, we conclude the desired results.
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O

To estimate terms appearing in the remainder R., we give now several estimates for the corrections 1", ¢!,
(;Sgk), j=1,2, k = £2, and 19, where their definitions can be found in (4.6), (4.9), (4.10), (4.11), (4.12) and

(4.13).
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By the definition of k(z,t) in (4.6), we have

t
: p;(s)] 1 ,
IS /_T t]_ S (Lie<ry +¢ M sy L:ZQ(t_s)flds, j=0,1,

where 14 denotes the characteristic function of the set A. For instance, we estimate

t
|7,/J1\ < 272/ [p1(s)]|ds < zfz(t + T)T@| 10gT|71*2@ for 22 >1t,
T

where we have used
xe (T 1)]log T

[log(T' —s)” " [log(T —t)]*~

t—z2 t
S
s [P e [ s,
T - t

722

‘Pl‘ ~

For z2 < t, we have

and if t < L,
_1- t+T
'] < T®|log T|~~2° <log (Z2)>

If 22 < t, Z2<T—tandt>%,onehas

t—(T—t) t—z2 t
Wt < / de/ Mds—&-z_z/ Ip1(s)|ds
t t—22

-7 T—S —(T—t) t—s

A

t—(T—t) (T _ 5)671 T — ¢t
log T d t)|1 A2 (t)|log(T —t)|*
g TP° [ e s + (0] log g+ AS() o8(T — )

©
< -
~ |log T|'+©

Ifz2<t,22>T—tandt> %7 we estimate

7° o [t (T —5)°|logT|®
RS ire T 7 2/ ( S 1+2|®d
[ log Tl t—z2 |log(T — s)|
T° (T —t+ 2%)°

< .
~ log T|'+® © |log(T' —t + 22)[+2€
Above estimates then give
[t < 12y + 272t +T)T°|log T|717261{z22t}7

and similarly,

[0 + 20001 S Lzecny + 272 (¢ + T)TO | log T 291 225y, (A.3)
0 is estimated in the same way. One directly checks that
0]+ 200:9°] S Vzeany + 272t + T)log T| ™ 12254y (A4)

Terms qbék), j=1,2, k= £2 and v, are estimated via the linear theory in both W-direction and on W+ in
mode +2, namely Proposition 7.2 and Proposition 7.7 with £ = +2.
In the scalar equation (4.11), the right hand sides for modes j = 2 and j = —2 satisfy

‘)\2 (Q,Wé'{(ﬁ))c‘ = ‘ - iclcgwi sin we??(1 — cos w)‘ < A2(t)p(p) 8,
’)\2 (Q_vé'l(]_f))c‘ = ‘ - iclcgw?, sinwe ™2 (1 4 cos w)‘ <N29(1)p*(p) 8,

where we have used (6.16). Then Proposition 7.2 implies
2l S AZO()(p) 7,
lo—2| S AP (1)(p)

for some § € (0, 1) and close to 1. In fact, a more careful inspection on the proof of Proposition 7.2 enables one
to obtain faster spatial decay for corrections in higher modes as well as vanishing properties near the origin.

(A.5)
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For instance, ¢ can be taken close to 3 for mode 2 and close to 1 for mode —2. Similarly, in (4.13), since the
RHS
[2¢1capw) sin® w] S A29(2)p*(p) %,
one has
[a] S AZO(t)(p) (A.6)
by Proposition 7.7, where §; can be taken close to 2.
One then uses the bounds (A.3), (A.4), (A.5) and (A.6) and directly checks that

[Re- Q] 14027 (1770 )0 ) 4202 ()20 ()
+ XO2p) 7B L \S T )8 O |1,
(A7)
R QuBr|, [Re- Q| S 1422971 (p) 0 4 \1O-2 <<p>‘3‘2“ + <p>‘2“‘“‘1) +ALO2 ()
O—1/.y-2 302/ \—3-§
+ AT )T+ (p) ‘| l{pg,\;lp
where the expression of the remainder R, is given in Lemma 4.1, and we have used
el SAD, S A
For the remaining terms F,, (defined in (A.2)) supported outside of the inner region, we have
|En | S1 (A.8)

v (A.3), (A.4), (A.5), (A.6), and (4.4).

APPENDIX B. SPECTRAL ANALYSIS OF THE LINEARIZED LIOUVILLE EQUATION

B.1. Generalized eigenfunctions and density of spectral measure. We consider the operator

1 8
Lo := 0 -0, —_—
0 rr"’r r+(1+r2)27
which has kernels
r?—1 (r? —1)1ogr—2
1= 55—, Ka=
r2 41 r2 41

The operator Lo corresponds to the linearization at mode 0 of the Liouville equation. Let u(p) = r—'/2uv(r).
Then
Lo(u) = r~ Y2 Ly,

with 8
v
Lov := Opy —+ ——.
oV v+42+(1+r2)2
The new operator Ly has kernel
r/2(r2 = 1)

@h(r) = ,

r2+4+1
and the other one is given by

of(r) = —<I>°<>/( (1)

1/2
= — 7‘2 1 <logr

+)

for which
wi(eg, @g] = 1.
Here for any C, ©3(1) = 0, and we take C' = 0.
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Lemma B.1. ([37, Lemma 4.2], [23]) The spectrum of Ly equals
spec(—Lo) = {€a} U [0, 00),

where the only negative eigenvalue & is negative and simple, and its corresponding eigenfunction ¢q has expo-
nential decay.

Remark B.1.1. The operator Lo has a resonance at zero since Lo[®)] =0 and ©) ¢ L*(dr).
We now consider the fundamental system of solutions ¢(r, z) and 6(r, z) to
—Loy = zy
for all z € C so that
WIO(-, 2), ¢(-, 2)] = 1.

Notice that these functions are entire in z, ¢(r,0) = c®(r) for some normalization constant c. Let ¢ (r, z) be a
Weyl-Titchmarsh solution. The generalized Weyl-Titchmarsh m function is defined as

for some constant C' # 0. Then

W[9(7Z)71/)(7z)]
m(z) = .
¥ = Wt 2.6 2)
A spectral measure of L is obtained as
1 Aa+8
p((A1,A2]) = = lim lim Im m(\ + ie)dA.

T 6—0F e=0T J) 45

For the detailed definitions and properties, see [23].

Proposition B.2. The m function is

dp =S¢, + p(§)de,  p(&) =7~ 'Tm m(¢ +i07).
The distorted Fourier transform (DFT) defined as

Fif=f,
b
flen = [ eatnsr F© = jim [ otrosan &0

is a unitary operator from L?(RT) to LZ({gd} URT, p), and its inverse is given by
« . H N
L g0 = feeutn) + lim [ ot f©ne)as

Next, we want to give the asymptotic expansion of distorted basis ®°(r, £) satisfying —Lo®%(r, &) = £€@°(r, €).
Proposition B.3. For any £ € C, ®°(r, &) admits the asymptotic expansion

0(r, &) = @Y (r) +r'/? Z )70 (r

which converges absolutely for any fized v, & and converges uniformly if r2¢ remains bounded with a fized r.
Here for j > 1, <I>? (u) are smooth functions in u > 0 satisfying

u—1

(u) = 12u(u + 1)2

(3u — 27%) (1 + u) + 6(1 4+ u) log(1 + u)[2 4 log(1 + u) — 2log u]

(u+3)log(u+1) —3u
u(u+1) ’

1
12(1 + u)Polylog ( 2
+ (+U)0yog<,1+u>

PY(u)| < C, =2
for a large constant C' > 0.
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Proof. We look for
o 2
0 _,1/2 j _rr—1
*(r, ) =r"/ ;(ffwj(r), folr) = 5
with
Lo(r'2f) =r'f;0, fo1=0.
Then above ansatz yields the recurrence relation

K= | T2 [89(r)08(s) — O8(r)BY(s)] 52 f—1 (s)ds

_ /T (r2—1)s [2— (s? — l)logs] [(7‘2 - 1)10gr—2] s(s2—1)
0

r2 41 5241 * 241 s2+1
B /7' 25(r? — 52) + s(s2 — 1)(r? — 1) log(r/s)
—Jo (r2+1)(s2+1)

, u =12 and define

fi(v) = f;(s).

fi-1(s)ds

fjfl(S)dS

Now we change variable v = s2

In particular,
~ u—1
folu) = u+1

S M A=) + (0= 1)(u—1)log(u/v) &
fi(w) _/o Mut DL D) fi—1(v)dv.

Then we get

We first consider fi ()
< (" Au—2)(z—1)— (z = 1)%(u — 1) log(z/u)
filu) = /0 4(u+1)(z +1)2 dz

1 Ylu=2)(=-1)  u-—1 “ (2 —1)%log(z/u) "
il ! e e

G+12 7 4w+l
where we have

= AE=D s 3) log(u 1) — 3u
| = 3ot + 1) =

and " 2]
[ =Dt
0 (z+1)2
1
= e 3u(l 4 u) — 27%(1 4 u) — 15ulogu — 3u? logu + 12(1 4 u) log(1 4 u)
+6(1 + u)log?(1 4+ u) + 3[u(5 + u) — 4(1 + u) log(1 + u)](log u)
1
12(1 Polyl P—
+12(1 +w) olyog(2,1+u)
with
™

1 1
1 5 + (logu — 1)u — Z(2logu +1)u? + 1—8(610gu + 7)u® + O(u* logu) for u < 1,
POlyIOg (2, M) ~ l
u

and for u < 1

1 1 1
+4u2+9u3+0<u4> for U>>1,

—1 1 2 1 ) 1 ) )
1Polylog <2’1—|—u> = —€+§(3+T( —3logu)u+ﬁ(—21—47r + 30logu)u

(10 4 372 — 30log u)u® + O(u®* log u).

Nel i

_|_

73
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So we obtain
P (u+3)log(u+1) — 3u

fi(u) = w1
-1
+ 12(1;7“)2 (3u — 272)(1 + ) + 6(1 + u) log(1 + u)[2 + log(1 + u) — 2log u]
+12(1 + u)Polylog ( 2, ——
and
2 2 3
—%—F%—%—FO(&) for u<1,
fl(u) ~ 2 2 2 2 2
1 — 121 21 1 2 1
g_Sogu ogu+21+m +60g u+39+7r+0 og”u for us> 1.
4 6 6u u?
Next we estimate fj(u) inductively. We consider
: “Alu—v) + (v =1)(u—1)log(u/v) »
() = i—1(v)d
fw = | e e fia()dv

and bound the kernel function as

4(u—v) + (v =1)(u—1)log(u/v)
4d(u+1)(v+1)

for some constant C' > 0 since v < u. Then from (B.1) we have

|fi(u)] < Cu,

< Cllog(u/v) +1]

and thus u
IMWSCAU%WM+MMMM

< C/Ouv[log(u/v) + 1]dv

< Cu?.
By induction, clearly one has
|[fi(w)| < Cu.
In the original variable, we have szq)(;(?g) = fi(r) = f;(r?) = f;(u), and thus
B9 < C

as desired.
Next we estimate the Weyl-Titchmarsh function W{ (r,£) with
—Lo¥g (r,€) = £V (r,6), €>0,

namely

g (r, & 8 (r,¢

6TT\IJ(J)r (T7 5) + 04(7‘7; ) + g\IISr (T7 f) = _M'

We write

Ul (r,&) = g(re’?).
Then one has 1 3

9”(7"51/2) + M!J(Tflm) + g(rfl/z) = *Wg(rfl/z)a
and 1 3
g"(q) + 47129(Q) +9(q) = —mg(q)

for

q:= r§1/2.

(B.1)
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Homogeneous solutions can be written in terms of special functions. Here we follow the argument in [34,
Proposition 5.6] and [36, Section 4]. We now consider the case r¢1/2 > 1.
Lemma B.4. A Weyl-Titchmarsh function is of the form
UE(r,§) = €A o (rg 2 ) for 162 21

where o admits the asymptotic series approximation about q with a fixed r,

r) e~ Yo a I (), i) =
§=0

N 2r2
1 (r) = ~3 +i (7424_1 + 2rarctanr — r7r>
with
sup |(7"ar)k1/)J+| < dj,
>0
and

|(r0r)* (0 Zq j¢+ NI < €a,p,50q ot

Proof. From the form of W7 (r,¢), we only need to consider

8
(8’r7‘ + 2261/28 =+ 472 + (1+7”‘2)2> 0'(7"51/2,7") =0.

We look for a formal power series that solves above equation
org!/?r Zf 2 fi(r

which implies the following recurrence relation

. 1
Qzarfj (T) = (_arr - @ -

A solution is given by

8

<1+>) =), 521, folr)=1.

50 = 505100+ 5 [ (g~ s ) (o)

1fi(r)] < cior™t, |(r0)* fi] < cipr™t, k€N,

Then we get

and by induction
|(ro. ) fil < cppr™, j>1, r>0.
Now write ‘
b (r) =17 f(r),

and it follows from the control of f; that

sup | (rd,) " f| < djx
r>0

for some constant dj,. Write ¢ = rEY/2. Then
¢ (r) = €2 fi().
Define

Tap(qsT Z:q_“/J+ —n(qd;)),
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where 6; — 07 sufficiently fast to ensure the convergence of the summation. Indeed, one has

Tap(Q,7 Zq gt (r)

=| > a7 (M —n(gd) = > a7t (r)n(qd;)
j=jo+1 7=0

< ejoq_jo_l.
In the last step, we have used the following estimates. For j > jo + 2,
lg7 0 (1) (1 = n(g6)))| < 771 gs;>13d50 < ¢ 7071277 i Gidjo <277
For 0 < j < jo,

lg T n(gd;)] = lg 70 o T n(qa;)| < g0 (265 )0 d e < g0 103% (265 1) djo.
0

Similarly, we have

(r0r)® (qa (oap(q,r Zq J¢+ ‘ < ea,ﬁ,quijoil
This implies that ,,(r¢/2,7) is a good approxnnatlon at infinity, namely the error

1
e(reé?r) = (37~r +2ie'/29, + — 5 + 8> Tap

4r (14 1r2)2
= (0, + 2020, 4+ 5 Zq T ( )+§:q_jw-+(r)
T r 47,.2 (1+T2 = J

is small. Indeed, for the first term, we estimate

1 8 .

—J + < »—2_—Jo

<8M+4 e ) § q 77 ( STt
and

Jo
206120, | 0ap — Y a7 (r) || S €2 g0 = 72,

For the second term, we have

1
1/2 —JhT
<8+22£ O+ 5+ 1+T )§q¢
1
— i¢1/2 ir2
<8rr+225 3r+4r 1+T2 ) E Ef5(r

Jo Jo—1
= (aw + ﬁ + 822> STeTiRpry 420 | Y €720, £ (r)

(1 + r ) j:O j:O
1 8 .
= =2 )g—do/2¢
<8w+ i (1+r2)2>£ fio (1),

S0
1 _ . L .
(3”4—2151/23 —|—4 5+ {a T2 > E q j1/1"' )| S g0 2pmi0=2 = =200,

Therefore, the error has the following bound
|6(7‘£1/277")| S Cjo’r_2q_j0 for all j() 2 0.
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We then look for perturbation o1 = —o + g4, solved by
1 8
+1/2 _ 1/2
(arr + 24§ /29, + 2 + (1"'7"2)2> oy =e(r§ / i),
which can be formulated, by writing (vy,vs) = (0, r0,0), as a system of first order

vy =1 Loy

O = (‘41r - (15:«2)2) v (17 = 20 2)vg - re(re! 2, ) (2
We then estimate
Oy (Jo1|* + [v2])
= 2Re(010,v1) 4+ 2Re(020,v2)
1 8r

= 2r 'Re(v1v2) + 2Re {@2(( mrae m)m + (r7t = 206 )u + 7'6(7451/277"))}

1 167
=92 71R il — | — -
r~'Re(t1v2) <2r + (FEE

> = O ol + rlolle(re!/2,r)))

for some C' > 0. So we have

) Re(tav1) + 2 *[va|* + 2rRe(vae(re'/2, 1))

Orlo] = —C (ol + rle(re'/2, 1)),
and
o0
lv| < Cr_c/ sle(s€Y/?, s)|ds.
I

Recalling the estimate

le] < r2g 0 = T—Q—jof—jo/z,
we get

| < pdog—iol?,

For the estimate of higher order derivatives (rd,)*(£9¢)"v, one needs to differentiate (B.2) and repeat above
process. The argument is a verbatim repetition of the proof in [34]. U

By the asymptotic expansion of ¥, we have W (¥, \1'78') = —2i. Concerning the density of spectral measure,
we have the following

Proposition B.5. We have
@0(7,’ g) = 0'0(5)\1]3_ (Tv g) + ao(f)\ll(—;— (Tv f)v (B3)

where

The spectral measure pg has density estimate
dpo
dg

Proof. We follow the argument in [34, Proposition 5.7].

() ~ lao (&) 7> ~ 1.

a(§) = SW (B, ) = £(8°(r, 0, ¥ (r,€) — U (1, €)0,2°(r, ).

We evaluate the Wronskian in the region where both the \110+ (r, &) and ®°(r, &) asymptotics are useful, i.e., where
r2¢ ~ 1. Recall that for r2¢ ~ 1, one has

r1/2(r2 = 1)
°(r, &) ~ T2il +r1200(r?),
and
1w 2
_1+Z+O(u) for 0 <u <1,

@] (u) ~

1 log? ]
f—Ogu—é—O og Y for u>1.
4 2u U
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For all £ > 0, it follows from Lemma B.4 that

Ul <€ 10T (r e S €1
For r ~ £71/2 we have

@°(r )l S 10,20(r )l S €V,
and thus

lao(§) S 1.

Therefore, we have

%’?@ ~ Jao(€) 2 2 1.

In order to get the lower bound of |ag(£)|, by (B.3), we have
[20(r, &)
lao(§)] = ~
2|0 (r,€)]
For 0 < € < 1, we take r = M¢~'/2 with a sufficiently large M. Then above estimates imply
|2%(r, &) 2 €711,
For £ > 1, we similarly take r = m&~1/2 for a sufficiently small m. Then
9°(r, &) Z €Y1,
Collecting above estimates, we conclude the estimate of density
dpo
2y ~ 1
as desired. 0

B.2. Duhamel’s representation by DFT. Now we formulate the Duhamel’s formula for the linearization at
mode 0

1
a‘r¢ = app(l5 + ;aqu + VO¢ + ha

where
8

i+
and h has fast decay in space-time. If we take ¢ = p~1/2A, we get

Vo=

A
0, A=A"+ v + VoA + hp'/? = LoA + hp'/2.

Consider the Cauchy problem

A= LoA+ hp'/?
19) LoA+ hpt/=, (B.4)
A(-,tg) = 0.
For
‘CO(I)O = _E(I)O(pa 5)7
the generalized eigenfunction satisfies the following pointwise upper bound
1/2 2
P pE <1,
%(p,6)| < B.5
(5, €)] {51/47 o (B.5)
and its associated spectral measure has density estimate
dpo
— (&) ~ 1. B.6
2 (5.6)

Taking distorted Fourier transform on both sides of (B.4), we obtain

9, A(E,7) = —€A(,7) + /0 ho'28%(p, €)dp,

A(-,19) = 0.
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Therefore, one has

b(p,7) = p~ V2 A(p, / / / (79511200, )8 (&, ) 2, ) 2L

i (&)dédzds.

Now assume the RHS & is smooth enough with the pointwise space-time control
_ T 3
Ih(p. )| S o) () IR, £> 3,

where v(7) is a regular function decay in 7. Then
o1 S I [ as [ uls)ene 200, Pt [T 00w, )0 2o a,
T0 0

Before estimating |¢|, we first invoke a lemma that will frequently used below. The following lemma is proved
in [55, Lemma A.3].

Lemma B.6 ([55]). Assume constants a, b satisfy either a > —1 ora=—1 and b < —1. For0 <xg <z < ;,
we have

a+1 -1 b ; > -1
L ( Ofxll) - Zf a fOT’ 0 S A g x;l
o (—logmxy)?T — (—logxzg)b™ if a=-1,b< -1
-z 7@ -
/ e (—logx)’dx < (log A)? 0 if a>-—1 1 -
a or 7 <A<z
o At (log AP+t — (—logzo)®*!  if a=—-1,b< —1 4 ==
(log A" o— 242 for A> g’
(B.7)
The linear theory for the mode 0 is stated as follows, and its proof is in a similar spirit as [55, Proposition

9.8].

Proof of Proposition 7.4. We first estimate the Duhamel’s representation without imposing orthogonality on
the RHS h(p,7) and compute

oo g1/ o0
|F(&)] := / 0 (x, &)/ (x) "ldx| < / a(z) e + ¢4 / 2% (z) " dx
0 0 £-1/2
g4 for £€>1,
5l 1< 2
log¢, ¢=2 for £<1
1, {>2

Now we consider the integration in &:

g brs) 17250 dpo ‘: S L T
et ore Qe = ([ [ ) mnen

e For Py, if p > 1, then we have

r p ifr-s<p if £<2
. el i <2 (r=8) i 7-s>p ,
|P1|§/p ) Jioge it £—2 de< {10 (08 Erosse oy
0 ) $ 0> 9 (tr—s)"Hlog(r—s))y if T—s>p
p? if T—s<p .
(r—s)7t if T—s>p =2
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If p <1, then one has

P - / 60917290 (5, ) 0 () (¢) e

dg
P d
= (/ / )6“7 S)p’1/2¢°(07£)dig(£)F(€)d§
= P11+ Pro,
where we estimate
1 if r—s<1
1 5%_1 £ 0<2 (T—S)_g ifT—S>:.|.
1P| S / e Lloge it e=2 dae<{ ifr-s<l
0 1 i 09 (t—s) Hlog(r—s)) if T—s>1
1 if T—s<1
(r—s)"t if T—5>1
and \
o2 ~3 if 7—5<p?
| Poo| S / e ST /1ge < ( s)” i if PP<7—5<1.
' (r—s)"te 2 if T—s>1
Hence one obtains for p <1
p_% if 7—s5<p?
(r—s)"1 if PP<r—s<1 for £ <2
(T—s)’% if T—s>1
,0_% if T—s<p
FEIBS (T—S)_% if PP<7—5<1 for £=2.
(1 —s) Ylog(r—s)) if T—s>1
p2 if 7—5<p?
(r—s)"3 if p<r—s<1 for £>2
(r—s)"t if 1—s>1
e For Py, if p <1, we estimate
1P| S p /2 / e =93 ge < {p_i/Q(T_S)_% o, Tossp
o2 p V(1 —s)"2e 2? if 7—s5>p?

If p > 1, then we have

Y Y. dpo
e R O SOLCT

1 oo d
- —&(r—s) ,—1/ @po
= ([ ) o R

= Po1 + Pag,

for £ <2

for £ =2

for £ > 2
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81

where ,
L [ )
Pal $p72 [ €9 dioge it £=2 de
r 1 if ¢>2
1 if T—s5<1
{(75)4115 if 1<7—5<p? for £ <2
(T—s)%_%e_;;; if 7—s5>p?
1 if T—s<1
< pi2 {(Ts)iﬂog(Ts)) if 1l<7—s5<p? for £=2
(1 — 5)" 3 (log(r — s)>6_% if 7—s>p?
1 if T—s<1
{(Ts)i if 1<7—5<p? for £>2
(T—s)_%e_;;; it 7—s>p?
and )
Pal g2 [ e“”%%dfspl”{(“s):f L reest
1 (tr—s) 2e = if 7—s>1
Therefore, we obtain for p > 1 that
(r—s)"2 if 7—s<1
{(TS)‘llg if 1<7—5<p? for £<2
(T—s)ifée_;; if 7—5>p?
(Tfs)*% if T—s<1
|Py| < p71/2 {(Ts)iﬂog(Ts)) if 1<7—s5<p* for £=2.
(r—s)"f(log(r —s))e #* if 7—s>p?
(r—s)"2 if 7—s<1
(r—s)"1 if 1<7—5<p? for £>2
(7'—5)_36_;;2 if 7—s>p?
Collecting above estimates, we conclude that
o for p <1,
pV2(r =) if T—s5<p?
(r—s)"4 if p<7-5<1 for ¢ <2
(T—S)_g if 7T—s>1
p V2 (r—s)" 2 if 7—s5<p?
|PL+ P < (778)7% if p2<7—-5<1 for £=2,
(r—s)"tlog(r—s)) if T—s>1
pV2(r—s)"2 if T—s5<p?
(r—s)71 if pP<17-5<1 for £>2
(r—s)71t if T—s>1
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o for p > 1,

p Y2 (r —5)"2 if 7—s<1
p2(r—s)iTz  if 1<r1—s<p? for £ <2
(r—s)"2 if 7—s5>p?
p Y2 (r —5)"2 if 7T—s<1

|PL+ Py S p 2 —s) G (log(r —s))  if 1<T—s<p? for £=2.
(1 — s) Hlog(T — 5)) if 7—s>p?
p 1 2(r—s)"2  if T—s<1
p VP (r—s)"F if 1<T—s<p? for £>2
(r—s)7t if 7—s5>p?

e For p <1, one has

We now estimate the convolution in time.
7,8) + Py(p, 7, 8)|ds
2

0 (L)oo

Sote) [ oot >/ (r—s)"Hds

;(,_lv(s)(T—s)_gds if £<2
+ fi_l v(s)(T — s)"Hlog(T — s))ds if £=2
271 v(s)(T — s)"tds if £>2
o(r)T'"E 778 [ o(s)ds if £<2
< o(r) + { v(r)log T + 7 og 7 [F u(s)ds it (=2
v(r)logT + 771 fé v(s)d; if £>2

e For 1 < p < (%)%, we estimate

8,7 £ </+/+/> o(5)|Pi(p.7. ) + Pa(p, 7. )]s
T— T—p =

. L [(r—s)iz if 0<2
< U(T)Pil/Q/ (r— 5)7%d3 + U(T)Pil/Q/ (r—s)"3(log(Tr —s)) if £=2 ds
T T (r—s)"i if £>2
e :
—p (tr—s)"2 if £<2
—|—/ v(s) § (1 —s) " Hlog(r —s)) if £=2 ds
2 (r—s)7t if £>2
P2t it r<a [T R [5 u(s)ds
S pV2u(r) +o(r) { (logp) if =2+ v(T)f (log2)z7tdz + 7~ 110g7ffO ds
1 if £>2 v(T) 1Og( Y477 1170 s)ds
U(T)Tk% +r3 fé v(s)ds if <2
< qv(r)((log p) + ffz< ogz)z tdz) +T*110g7'fé v(s)ds if £=2.
v(7){log(572)) +T‘1fm v(s)ds if £>2
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e For (%)1/2 < p < 712 we estimate

6, £ ([iJﬁK::+/;ﬂ£>v@wPﬂMTﬁ)+FﬂmTﬁ)%

- 1 (r—s)i~2 if £<2
S p_l/ZU(T)/ (r—s) 2ds + p_l/Q/ v(s){ (r—s)"1(log(r —s)) if £=2 ds
T T=p? (r—s)-% if 0> 2
r—p? (775)’5 if £<2
—|—/ v(s) ] (1 —s) Ylog(r —s)) if £=2 ds
710
2 (r—s)7t if £>2
Ti73 if £<2 : TH3 if (<2
SpV20(r) 4+ pV20(r) { rilogT)  if £=2 + pfl/z/ v(s)ds{ 7 (logr) if £=2
T it 0>2 T 74 it £>2
—p T3 if <2
—|—/ v(s)dsq 77 logT) if £=2
70
2 T if ¢>2
7873 if £<2 : TiT3 if £<2
< p20(1) Ti<10g7'> if £=2 +p71/2/ v(s)ds T_%<10g7> if £=2
70
T4 if ¢>2 2 T4 if £>2
i ty(r) + 78 fé v(s)ds if £<2
~ < {logm)v() + 77 H{log T) fé v(s)ds if £=2.
v(r)+ 771 fé v(s)ds it ¢>2
2
e For p > 71/2, we estimate
T T—1
wmms</ +/0)m%a@m@+&mmﬁw
T—1 0
’ 1_¢ .
1 (r—s)i if £<2

5,0—1/%(7)/ (T—s)—%ds+p—1/2/ v(s){ (r—s)"1(log(r —s)) if £=2 ds
T—1 =2 3

2 (r—3s)" if £>2
U(T)T%*§ 4 ri-s fé v(s)ds if £<2
< p_1/2v(7') +p_1/2 {U(T)T‘ll<10g7'> +T’%2(log7'> fé v(s)ds if £ =2
o(r)ri 474 f; v(s)ds if £>2
o(r)ri=s 4718 @ v(s)ds if £<2
< p V28 y(r)Ti(logT) + 73 (log 7) fé v(s)ds if £=2.
U(T)Ti 4 fé v(s)ds if £>2

Collecting above estimates, we obtain the a priori estimates without orthogonality. Estimates with orthogonality
can be derived in a similar manner, where the orthogonality condition

00 2
pe—1
/0 h(p,T)szrlpdp:O V71 € (10, +00)

is used when estimating

/00 O (z, &)z ?h(x, s)dx

0

) 1/2 2_1
| (00 - 15T )« nia e
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We refer the interested readers to [55, Proposition 9.8]. g
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