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ABSTRACT. We consider the following k-coupled nonlinear Schrédinger sys-

tems:
k
- Au]- + )\]"U,j = ,uju? + Z Bi,jufuj in RN,
i=1,i#]
u; >0 in RV, uj(z) =0 asl|z|—=+oo, j=1,2,---,k,

where N < 3, k > 3, A\j,u; > 0 are constants and 3;; = B;; # 0 are
parameters. There have been intensive studies for the above systems when
k = 2 or the systems are purely attractive (3; ; > 0,Vi # j) or purely repulsive
(Bi,; < 0,Vi # j); however very few results are available for k& > 3 when the
systems admit mixed couplings and the components are organized into
groups, i.e., there exist (i1, j1) and (42, j2) such that 8;, ;, > 0and B, 5, < 0.
In this paper we give the first systematic and an (almost) complete study
on the existence of ground states when the systems admit mixed couplings
and the components are organized into groups. We first divide these systems
into repulsive-mixed and total-mixed cases. In the first case we prove
nonexistence of ground states. In the second case we give a necessary condition
for the existence of ground states and also provide estimates for Morse index.
The key idea is the block decomposition of the systems (optimal block
decompositions, eventual block decompositions), and the measure of
total interaction forces between different blocks. Finally the assumptions on
the existence of ground states are shown to be optimal in some special cases.

Keywords: nonlinear Schrédinger system; ground state; mixed coupling; vari-
ational method; Morse index.
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1. INTRODUCTION

We consider the following k-coupled nonlinear Schrodinger systems:

k
— A'Ltj + )\ju]' = /,L]u? + Z &Ju?uj in RN,
i=1,i#j (1.1)

u.7>0 iDRN, Uj($)—>0 as |‘T|_>+OO7 j:172a"'7k7

where N =1,2,3, k > 3, \j, u; > 0 are constants and 8; ; = f;,; # 0 are coupling
parameters. (To simplify the notations, in the following, we assume §;,; = pu;.)
This paper is concerned with the existence of ground states in the general case
k> 3.

It is well known that solutions of (1.1) are related to the solitary waves of the
Gross-Pitaevskii equations, which have applications in many physical models, such
1
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as in nonlinear optics and in Bose-Einstein condensates for multi-species conden-
sates (cf. [16,36]). Physically, in (1.1), p; and f; ; are the intraspecies and inter-
species scattering lengths respectively, while A; arise from the chemical potentials.
The sign of the scattering length 3; ; determines whether the interactions of states
i) and j) are repulsive (3; ; < 0) or attractive (3; ; > 0).

In the past fifteen years, the two-coupled case of (1.1) (i.e. k = 2) has been
studied extensively in the literature. An important feature of the two-coupled
case is that it only has one coupling, i.e., 12 = B21. Thus, the two-coupled
case of (1.1) is either purely repulsive (512 = 82,1 < 0) or purely attractive
(B1,2 = P21 > 0). By using variational methods, Lyapunov-Schmidt reduction
methods or bifurcation methods, various theorems, about the existence, multiplicity
and qualitative properties of nontrivial solutions of the two-coupled elliptic systems
similar to (1.1), have been established in the literature under various assumptions.
Since it seems almost impossible for us to provide a complete list of references, we
refer the readers only to [1,2,4-7,11-13,15,16,18,19,21-24,28,29,32,33,35,37,39,50—

,55-57] and the references therein. Roughly speaking, in the two-coupled elliptic
systems, the two components tend to segregate with each other in the repulsive
case, which leads to phase separations and multi-existence of solutions, while the
two components tend to synchronize with each other in the attractive case, which
leads to uniqueness of the positive solution. For k > 3, the purely repulsive case
and the purely attractive case of (1.1), i.e., the couplings 3; ; have the same sign
for all i # j, have also been studied, see, for example, [3,17,30,31,44-16,48,49,54]
and the references therein.

However, a significant new feature of (1.1) for k > 3 is the presence of mixed
couplings, i.e., there exist (i1, j1) and (42, j2) such that 8;, ;, > 0and 8, j, < 0. As
far as we know, (1.1) for k > 3 with mixed couplings is less studied in the literature,
and the only references are [8—10, 14,20, 26, 34,38,40-43,47]. The primary goal of
this paper is to give an (almost) complete study about the existence of ground
states in the case of mixed couplings. In what follows, for the sake of clarity, let
us first introduce some necessary notations and definitions.

Let H; be the Hilbert space H'(RY) with the inner product
(u,v)x; = VuVv + \juvde.
RN

Its corresponding norm is given by

1
[ully; = (uw,w)5, -

Let the energy functional of (1.1) be given by
1 1 1 <
) = D Ml — sl s > Bl (12)
=1 =1 i j=1i<j
where U = (u1, ug,--- ,ug) and || - ||z» is the usual norm in LP(RN). Then, &()
is of class C? in H := H?:l H;.

Definition 1.1. ¥ is called a positive critical point of E() if E'(V) = T inH!
with v; > 0 for all j, where H™1 is the dual space of H.
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For N < 3, the standard elliptic regularity theory yields that positive critical
points of £(W) are equivalent to classical solutions of (1.1). We define the Nehari
manifold of £() as follows:

N={T e |G = (G(W),Ga(W), (W) = 0}, (1.3)

k ~ k
where G; (W) = |JuglI3, = llujl|Fe =372 5 Big i |72 and H = TT5_, (#;\{0}).
Clearly, N contains all positive critical points of £ (7) Let

Cn = iﬁfff(ﬁ). (1.4)
Then, Cpr is well defined and nonnegative.

Definition 1.2. ¥ is called a ground state of (1.1), zf7 s a positive critical point
of E() with E(V) = Cyr.

We now continue our discussions on (1.1) for & > 3 with mixed couplings. Most of
the literature (cf. [3—10,14,34,38,40,42,43]) is devoted to “restricted” ground states
of (1.1) for k > 3 with mixed couplings, by either assuming that u; are all radially
symmetric or considering (1.1) in a bounded domain . The only paper, which is
devoted to ground states of (1.1), is [26], where the existence and nonexistence of
ground states of (1.1) with mixed couplings were partially studied for k = 3. Thus,
the existence of ground states of (1.1), for & > 3 with mixed couplings, remains
largely open. In this paper we give the first result on the existence and nonexistence
of ground states of (1.1) for £ > 3 with mixed couplings, which can be summarized
as follows (see Theorem 3.1 below):

(1) Under some technical conditions, (which can be shown to be optimal in
some special cases), (1.1) for k¥ > 3 has a ground state in the cases of the
total-mixed couplings (the definition can be seen below);

(2) (1.1) for k > 3 has no ground states in the cases of the repulsive-mixed
couplings (the definition can also be seen below).

2. BLOCK DECOMPOSITIONS AND STATEMENTS OF MAIN RESULTS WHEN
k=3,4

Before we present the results in the general case k > 3, we first explain key ideas,
concepts and main results when & = 3 or 4. We first consider the case k = 3:
— Auy + Mug = i + Bipujus + Brsuiug  in RY,
— Aug + Aoug = ,ugug + Bl,gu%UQ + 52,3u§u2 in RN, 2.1)
— Aug + Azus = paul + B suius + P sujus  in RY, .

uw; >0 in RN, wi(x) =0 asl|z| = 4oo, i=1,2,3.

We start by recalling known results about (2.1) in the literature. As pointed out
in [20], there are actually only four cases of the couplings:

(a) The purely attractive case: 812 >0, 81,3 > 0 and B3 > 0;
(b) The purely repulsive case: $12 <0, f13 <0 and 323 < 0;
(¢) The mixed case (1): 12 >0, f1,3 <0 and B3 <0;
(d) The mixed case (2): 812 >0, 81,3 >0 and S35 < 0.
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The first two cases (a) and (b) are reminiscent of the k = 2 case, which can be
dealt with similarly. In the mixed case (¢), (2.1) can be seen as a coupled system
between an attractively two-coupled system about (uj,us) and a single equation
about ug. Since ;3 < 0 and B3 < 0, the interaction between the two-coupled
system and the single equation is “repulsive”. We re-name this mixed case as
the repulsive-mixed case. Similar to the repulsive case of k = 2 (cf. [26, 27]),
ground states of (2.1) do not exist in this case (under some technical conditions).
(However, if u; are all radially symmetric or one considers (2.1) in a bounded
domain €2, then “restricted” ground states of (2.1) exist for some ranges of 3; ;

(Cf- [ Ty By T,y DO, U, ey ]))

The most difficult (and interesting) case is the mixed case (d). If we still regard
(2.1) as an attractively two-coupled system coupled with a single equation, then the
situation is much more complicated than that in the repulsive-mixed case (c), since
the coupling between them can be both repulsive (82 3 < 0) and attractive (1,2 > 0,
B1,3 > 0). We re-name this mixed case as the total-mixed case. In bounded
domains with the Dirichlet boundary condition, the existence of “restricted” ground
states of (2.1), in the total-mixed case (d), has been studied in [38,40] for some
ranges of 3; ;. However, it has been proved in [20], by using Lyapunov-Schmidt
reduction methods, that (2.1) has a non-radially symmetric solution in the total-
mixed case (d) for |5; ;| all sufficiently small and |52 3| >> |B1,2], |61,3]. Moreover,
the energy value of this non-radially symmetric solution is strictly less than that of
the uniquely radially symmetric solution of (2.1) for |3; ;| all sufficiently small. This
result suggests that ground states of (2.1), if they exist, are non-radially symmetric
in the total-mixed case (d), at least for |3, ;| all sufficiently small and |32 3| >>
|51,2], |81,3]- By our above discussions, in the total-mixed case (d), the major task, in
studying the existence of ground states of (2.1), is to measure the total interaction
between the attractively two-coupled system and the single equation, near the least
energy value Car. It turns out in this case the total interaction can mainly be
controlled by the linear term ;.

The following theorem gives an almost complete characterization of the existence
and nonexistence of ground states of (2.1).

Theorem 2.1. Let N =1,2,3.

(1) In the purely attractive case (a), there exist 0 < By < B\Q such that
(1) (2.1) has a ground state with Morse index 3 for 0 < [i.2, 51,3, 82,3 <

ﬁO;
(1) (2.1) has a ground state with Morse index 2 for fi12 > Bo, 0 <
B3, B2,3 < Bo-

(#4i) (2.1) has a ground state with Morse index 1 for B; ; > Bo and |Bi,; —
Bial << 1 with all i,5,1 =1,2,3, i # j, i # 1 and j # 1, provided that
INi = Aj| << 1 foralli,j=1,2,3 withi# j.

(2) In the purely repulsive case (b) or in the repulsive-mized case (¢) with 81,2 <
Bo where By > 0 is a small constant, Cnr can not be attained, provided that
the coefficient matriz © = [f3; ;| is positively definite. That is, (2.1) has no
ground states.

(3) In the total-mized case (d), if A1 < min{Ao, A3}, then there exist 0 < By <
’6\0 such that
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(i) (2.1) has a ground state with Morse index 3 for 0 < 12 < o, 0 <
B1,3 < Po and P23 <0; R
(#3) (2.1) has a ground state with Morse index 2 for B1.2 > Po, 0 < P13 <
BO and 52,3 < 0. R R
In the total-mized case (d), let 1o = 0B12, P13 = 6'B13 and Baz =
—(5832,3, where § > 0 is a parameter and t7s,3i’j are absolutely positive
constants. If Ay > min{Aa, A3} and 0 < s < min{l,t}, then for ¢ suffi-
ciently small, Cnr can not be attained. That is, (2.1) has no ground states.

Remark 2.1. (a) (4) of Theorem 2.1 shows that ground states in Corollary 1

(b)

of [26] do not exist.
As we pointed out above, the major difficulty in proving the eristence part
of Theorem 2.1 is to measure the interaction terms

Bursllurusl|7z + Boslluzus||Fo  and  Bigllurus||is + Basllusus|7e (2.2)

by non-radially symmetric vector-functions. By using ground states of the
system of (u1,us) and the single equation of ug (or the pair of (u1,us) and
ug) as test functions we find that the above interaction terms behave like:

H = sup (Cﬂl 3R17N+’Y€72 min{vA1,vA3} R
R>>1 ’
+C/62 SRl—N—‘r’yle—Q min{\/E,\/E}R)

and
& = sup (C//ﬁl 2Rl—N+'y”e—2 min{vA1,vA2} R
R>>1 '
+C/52 3R17N+'y'672 min{\/E,\/E}R)7

where v,v',y" are positive constants depending only on N and the re-
lation of A;, and C,C',C" are positive constants (depending on ground
states of the small system (uy,ug) or (ui,usz)). Moreover, roughly speak-
ing, if min{$, &} > 0 then the interaction between the system of (uy,us)
and the single equation of ug (and the pair of (u1,us) and ug) is “attrac-
tive” and consequently ground states exist; while if min{$), &} < 0 then
the interaction between the system of (u1,u2) and the single equation of
us (or the pair of (u1,us) and ug) is “repulsive” and consequently ground
states do not exist. Based on this observation, if we further assume that
0 < —f23 << min{B 2, H1,3} in the case Ay = min{As, A3}, then ground
states of (2.1) still exists. Thus, Theorem 2.1 gives an almost complete
result about the existence and nonexistence of ground states of (2.1).

The existence of ground states of (2.1) with Morse index 3 for the purely at-
tractive case and the nonezistence of ground states of (2.1) for the repulsive-
mized case is actually proved in [/0, Corollary 1.3 and Theorem 1.6], re-
spectively. We list them in Theorem 2.1 for the sake of completeness. The
existence of ground states of (2.1) with Morse index 1 for the purely at-
tractive case is proved in [31, Theorem 2.1]. Here, we provide a slightly
different proof of this result.

(7it) of Theorem 2.1 can be seen as a complement of the results in [17],
which asserted that if some of the B;; are too far apart from the others,
then all ground states are mecessarily semi-trivial. On the other hand, if
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A1 < min{Ag, A3} then A3 ~ Ao is necessary for the existence of ground
states of (2.1) for p; j = B with B > 0 large enough.

(e) As we pointed out above, Theorem 2.1 gives an almost completed study on
the existence and nonezistence of ground states of (2.1). The left cases
of the couplings, see, for example B12 < By and (13,823 > Bo; are very
interesting and remains open.

As we stated above, in proving Theorem 2.1, our major idea is to regard the
three-coupled system (2.1) as an attractively two-coupled system coupled with a
single equation, and to precisely measure the interaction between them. To extend
the above idea to the general k-coupled system (1.1) for k& > 4, we need to further
decompose the k-coupled system (1.1), which is based on the following concepts
of optimal block decomposition and eventual block decomposition. These
definitions for the general k-component cases are tedious and lengthy, which we
would like to state at the next section and only introduce the key steps here: first
we group all attractive components 4; together into blocks of sub-matrices so that
inside each block the interactions between components are all attractive. The de-
composition is called optimal if the number of blocks needed is the least, and the
number of the blocks is called the degree of this optimal block decomposition
and is denoted by d. In the second step we need to group different ”attractive”
blocks together to form larger blocks. To see if two blocks are attractive or repul-
sive, we need to define quantities, named interaction forces, which measure the
interaction between different blocks in an optimal block decomposition. Roughly
speaking, if the quantity is positive then the interaction between of corresponding
blocks is “attractive”, while if this quantity is non-positive then the interaction
between of these two blocks is “repulsive”. We now group all possible “attractive”
blocks together into bigger blocks of sub-matrices so that inside each bigger block
the forces between blocks are all “attractive”. We repeat the second step over and
over again until we can not group them in this way anymore. Then the remaining
matrix, consisting of “largest” attractive blocks, is called an eventual block de-
composition, and the number of the “largest” blocks is called the degree of an
eventual block decomposition and is denoted by m. More precise definitions can
be found at the next section. Let us test these ideas with the first nontrivial case
k=4

— Auy + Muy = gl + B gudug + B gudug + Brauiu;  in RY,
— Aug + Aty = pou + By aufus + Bosudus + B aujus  in RY,
— Aug + \gusz = ugug + 51,3U§U3 + ﬂ2,3u§U3 + ﬂ3,4u§U3 in RY, (2.3)

3 2 2 2 -
— Auy + Mug = pauy + Brauius + Boausus + B3 aquzugs  in R,

u; >0 inRY, wu(z) -0 as|z] = +oo, i=1,2,34.
We assume that the coefficients satisfy

(H) Bi2>0,813>0,614<0,823<0,824>0,034 <0. (2.4)
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Clearly, an optimal block decomposition in this case can be given by

p1 P2 P13 B1,4
(51,2 M2> <52,3> (ﬁu)
(Br3 B23) 13 B3.4
(Bra Ba2a) B3, [4

with degree d = 3. To obtain eventual block decomposition, we need to first define
the interaction forces. To do this, we rewrite A as follows:

Bi1 Bia2 DBigs

)

Ay =|Bi2 Bza Bas|. (2.6)

)

Bi3 By3 DBsg3

)

A = (2.5)

Here B, ; are given in (2.5). For example By o2 = s, B33 = p4. Since ground states
in By exist for some ranges of 3,2 and the ground state in By and B33 also
exist, and they all have exponentially decaying at infinity, we may define quantities

0 1,2 1-N —2min{v/X,vAs} R
51)2 = sup ( 017361,33 +’Yl,3€ min{v/\ 3}
R>>1

LIy s R (o)

0 1,3 1-N —2min{v vV IR
Fo= sup  ( CLIf RN a2 mintVALVAY
R>>1

1,3 — — in{vAa,V/
+C274/8274R1 N+,Y2’46 2m1n{ Ao /\4}R)

and
§s = sup (CFfsaR Ve 2tV A AU,
R>>1

where ; ; are positive constants depending only on N and the relation of A;, and
C’z ’; are positive constants depending only on the ground states in the corresponding
blocks. Since the ground states in blocks with the same least critical value is
compact, Cf ’; is uniformly bounded from below and above. These quantities 32 j» s
£ and &, are used to measure the interaction between the blocks B; ; and B; ; from
the viewpoint of the concentration-compactness principle. Roughly speaking, the
sign of Saj determines whether the blocks B; ; and B; ; are “attractive” (S?J > 0)
or “repulsive” (S?,j < 0). Note that 3873 = 0. If both 3(1),2 <0 and 5(1)73 < 0, then
the blocks in A; can not be further grouped into “bigger” blocks so that inside
each bigger block the interaction forces between blocks are all “attractive”. Thus,
A, is also an eventual block decomposition with degree m = 3. If either §9, > 0

or 39’3 > 0, then roughly speaking, by Theorem 2.1 there exists a ground state in
the “bigger” block:
Bi1 B
0171 = < ) .
Bias Bap

Here, without loss of generality, we assume §9, > 0 (the other case §7; > 0 is
similar). Thus, we may further group A; as follows:

(31,1 Bl,2> (Bl,3>
A, = Bio Bao Bs 3

(Bis Bags) Bss
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A Cip Cip 98
2 <Cl,2 02,2> (28)
and define the interaction force between C; 1 and Cs 2 by 3%72 = 3(1),3 + 3873, which
as Sg o is used to measure the interaction between the blocks C; ; and Cs 2, and
roughly speaking, the sign of 8’%72 determines whether the blocks C; ; and Cy 5 are
“attractive” (§1o > 0) or “repulsive” (Fi, < 0). If 1, < 0 then the blocks in A,
can not be further grouped into “bigger” blocks so that inside each bigger block

the interaction forces between blocks are all “attractive”. Thus, A, is an eventual
block decomposition with degree m = 2. If Siz > 0 then we may further group A,

as a whole element
AN)
ST\ [Cle Caal)

Since Ag only has one block, we can not further group it into a “bigger” block.
Therefore, A3 is an eventual block decomposition with degree m = 1. There are
another optimal block decomposition with the blocks (ui,us), us and ug. One
can use the same method to obtain its eventual block decompositions and count
their degrees. Since the defined interaction forces almost determine whether the
corresponding blocks are “attractive” or “repulsive”, roughly speaking, the degrees
of eventual block decompositions determine the number of groups of the components
u; that “stay together”. Therefore, ground states of (2.3) are expected to exist if
the degrees of all eventual block decompositions equal to 1. Now, our results for
(2.3) in the case (H) can be stated as follows.

We rewrite Ay by

Theorem 2.2. Let N =1,2,3. Then in the case (H) at (2.4),

(1) if M = Ay < min{dz, Aa} and 0 < —fa3,—Pr4, =P34 << Pr2,024,013
then there exist By > By > 0 such that
() if B1,2,B1.3, 02,4 < Po then (2.3) has a ground state with Morse index
47
(43) if P13, P24 < Bo and P12 > Bo then (2.3) has a ground state with
Morse index 3. R R R
(2) Assume fy 2 = 6"2B19, fi3 = 5t1’3ﬁ/\1,3, P23 = —5t2’352,3%ﬁ1,4 = =046 4,
P24 = 624854 and B34 = —06%4P54, where t;; and B;; are all abso-
lutely positive constants and 6 > 0 is a small parameter. If min{Az, \y} <
min{)\l, /\2} and max{t273,t174,t374} < tLQ < min{tl,g,t274}, then (23) has
no ground states for § > 0 sufficiently small.

Remark 2.2. As in Theorem 2.1, the assumptions \y = Ao < min{Asz, \s} and
0 < —Ba3,—P1,4, =P34 << Bi1,2,P2,.4,01,3 are used to grantee all eventual block
decompositions have the degree m = 1, and it can be slightly generalized as that in
(b) of Remark 2.1.

For other cases of the couplings of the four-coupled system (2.3) or for the
general k-coupled system (1.1), the strategy is the same. However, to state our
results for the general k-coupled system (1.1), we need to rigorously define optimal
block decompositions and eventual block decompositions.
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3. BLOCK DECOMPOSITIONS AND STATEMENTS OF MAIN RESULTS IN THE
GENERAL CASE

Let us first define optimal block decompositions. Let d =1,2,--- Jk, 0 = ag <
a < <ag_1<ag=kand

Kt,s,ad = (at—laat]N X (as—laash\% (31)

where ag = (ag,a1, - ,aq), t,s =1,2,--- ,d and (a¢—1, a¢]y = (az—1, a;]NN. Then,

Aad = I:[/Bivj](i7j)elct,s,ad:|t)S:]_72)... .d

is called a d-decomposition of the coefficient matrix © = [3; ;]. Moreover, Aa,
is called repulsive if the couplings 3; ; are all negative, A, is called attractive if
the couplings 3; ; are all positive and A,, is called mixed if the couplings 3; ; are
mixed. In Aa,, Ors = [Bijl(ij)ek, ., is called the (t,s) block of Aa,. Moreover,
if {(4,7) € Ks,s,a4.% # j} # 0, then all couplings §; ; with i # j in the (s,s) block
O, are called the sy, inner-couplings, while the couplings f; ; in all (s,t) blocks
O,,+ with s # t are called the inter-couplings.

Let i = (i1,42, - ,ik) be a permutation of (1,2,--- ,k). Then, correspondingly
Oi = [Bi;,ilj1=1,2, k
is a permutation of © = [3;;]. For the sake of clarity, we denote the corre-

sponding d-decomposition of ©; by A,, ;. For the mixed couplings, there exist
i=(i1,42, - ,ik), a permutation of (1,2,--- k), and d = 2,3--- ,k — 1 such that
O; has a mixed d-decomposition A,, ; with all inner-couplings being positive. Let
A,, i be a mixed d-decomposition of ©; such that all inner-couplings are positive.
A,, ;i is called an optimally mixed block decomposition of © to the permu-
tation i, if for any n < d and any n-decomposition of ©;, there exists at least one
negative inner-coupling. By our definitions, an optimally mixed block decomposi-
tion of O to the permutation i, say Aa, i, is the one that, the number of the (s, s)
blocks of A, ; is the smallest in all decompositions of ©;, whose inner-couplings
are all positive. Clearly, for a given permutation i, any optimally mixed block
decomposition of ©; to this fixed permutation has the same number of the (s, s)
blocks, which is called the degree of optimally mixed block decompositions of © to
the permutation i and is denoted by d;. Let

A; = {Aa, i | all inner-couplings of A, ; are positive and d = d;}.

Then, A,, ; is an optimally mixed block decomposition of © to the permutation i
if and only if A,,; € ;. Let

0 = min{d; | i is a permutation of (1,2,--- ,k)}
and
S = {j|jis a permutation of (1,2,--- ,k) and d; = 0}.

Then, & # (. Aadj ;j is called an optimally mixed block decomposition of ©
if j € 6. By our definitions, an optimally mixed block decomposition of O, say
A, j; is the one that, the number of the (s, s) blocks of Ay, j is the smallest in all

decompositions of ©; for all permutations i, whose inner-couplings are all positive.
Let

2= {Aadi i

A, 4pi 15 an optimally mixed block decomposition to i and d; = 0}.
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Then, Aadi,i is an optimally mixed block decomposition of © if and only if A, api €
2. Clearly, the number of (s, s) blocks in every optimally mixed block decompo-
sition is the same, and this number is called the degree of optimally mixed block
decompositions of © and is denoted by d. Without loss of generality, in what fol-
lows, we always assume that A,, o € 2, where o = (1,2,--- , k). For the sake of
simplicity, we re-denote A,, o and do by Ay and d, respectively.

Since all inner-couplings of an optimally mixed block decomposition, say A4, are

positive, for the inter-couplings {f; ;}, either

(1) there exists an (s,s) block ©,, such that ; ; are negative for all ¢ €

(as—lv as]N andj ¢ (as—laas]N or

(2) Bi,; are still mixed for all (4,5) € Ksta, and all 1 < s <t < d.
In the case (1), Ay is called repulsive-mixed while in the case (2), A4 is called total-
mixed. If there exists an optimally mixed block decomposition that is repulsive-
mixed then the mixed couplings {3, ;} are called repulsive-mixed while if all
optimally mixed block decompositions are total-mixed then the mixed couplings
{B: ;} are called total-mixed.

From the definitions above, for purely attractive couplings, its optimal block
decomposition has the degree d = 1, while for the purely repulsive couplings the
degree of its optimal block decomposition is k. Clearly, the optimal block decompo-
sitions of the coefficient matrix © for the purely attractive couplings and the purely
repulsive couplings, respectively, are unique up to all permutations of (1,2,--- , k).
In what follows, for the sake of simplicity, the optimally mixed block decomposi-
tions of mixed couplings are also called their optimal block decompositions. Thus
by the definition of optimal block decompositions, the couplings {3; ;} can be clas-
sified into four classes: the purely attractive case, the purely repulsive case, the
repulsive-mixed case and the total-mixed case.

Let us next define eventual block decompositions. We rewrite the optimally
block decomposition Ay as

Ad = [Gt,s}t,szl,l--- d

and define the interaction forces between O, ; and ©;; as

Soe= swp o} ( S OBV e B
Re>>1,. . "Ry
s (z,j)EKs,t,ad;sgét Ai=Aj
B o) e,
NiAN s:
where « = 1 for N =1 and a = % for N = 2,3, and C’fj are only dependent on
the ground states in the (s, s) block and the (¢,t) block. Let

Agp = [@%,s}t,szl,l---,dl

be such a decomposition: ©; ; are consisted by ©; ; such that all interaction forces
37 between ©;; and O ; in ©;  are positive. Without loss of generality, we denote

O;, by

1 7
al

O = [0ili.j)ex

t,s,a
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Where

Ko, = (ai_1, a4l % (a5, a5

S oal (gl gl 1 1 1 (gl 1 _ 1
with a, = (ag,ay, -+ ,al), (a;_y,afln = (a;_1,a;] "N and 0 = a5 < aj <--- <

aly_y < aly = d. We then define the interaction forces between O} , and O}, as

s,8

= > F (3.2)

(i,9)eK, s.al 187t
ss.aly

We repeat the second step over and over again until we can not further group blocks
in this way any more. Without loss of generality, we assume that the second step can

be repeated 7 times. Moreover, for the sake of simplicity, we re-denote the optimal
block decomposition by Agg. Then we will obtain a sequence of decompositions

Ab =05 Jis=1,2,. as
with
[ s—17 .
et,s = [@i,j ](ZJ)GK:t,s,aZS-

and 1 <¢ <7,

Ktoms, = (a5_y, a5l x (a3_y. asly

with aj. = (ag,ai, - ,a3), (a;_j,aily = (a;_1,a;]NNand 0 =qj < aj <--- <
aS_y <ag =d 7 and asequence 1 < d7 <d" P <o <db <d¥=d Al is
called an eventual block decomposition of Ago, and the number of (s, s) blocks
OF s is called the degree of A7, and is denoted by m. To obtain all eventual block
decompositions of Agm for the ¢, decomposition A%, 0 < ¢ < 7 — 1, we should
write down all next decompositions A;ﬂl in the above way under the action of
permutations. Clearly, for other optimal block decompositions, we can obtain their
eventual block decompositions in the same way. By our definitions, the degrees
of eventual block decompositions of the purely repulsive case and the repulsive-
mixed cases are always strictly large than 1, while the degrees of eventual block
decompositions of the purely attractive case always equal to 1.

In the (s,s) block Oss = [/BLJ'](Z',j)G’CS.s,ad of Ay, either {(i,j) € Kssaq:t #
J}t#0or {(i,j) € Ks,s,a4,% # j} = 0. Without loss of generality, we assume that
{(1,§) € Kssay,i #jt # 0 for s =1,2,--+ ;59 and {(4,7) € Kssa,,0 # j} = 0 for
s=s89+1,--+,d with an sg € {0,1,2,--- ,d}. For every d < v < k, there exists a
unique 0 < s* < sg such that ag» < k— < ag+y1. Now, our results for the general
k-coupled system (1.1) can be stated as follows.

Theorem 3.1. Let N =1,2,3 and k > 3. Suppose that the degree of optimal block
decompositions of the coefficient matriz © is d. Then,
(1) if all eventual block decompositions satisfy m = 1 then for every d < v < k,
there exist B;O > Py > 0 such that if
(’L) ﬂi,j > 60 and |ﬁi,j — 6i,l| <<1 fO’f‘ all (’L,]), (’L,l) € le,s,ad with i 7é 7,
1£land j#1, andi,j,l <k—~vy+1,
(1) Bij < Bo for all other (i,j) with i # j that are not contained in (i),
then (1.1) has a ground state with Morse index v, provided that |\;— ;| <<
1 foralli,j € Kssa, andi # j with0 < s < s* satisfying as—as—1 > 3 and
foralli,j € Ko i1,s+41,a.,0 # 7 and i, j < k—vy+1 satisfying k—y—as- > 3.
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In particular, in the purely attractive case, for every 1 <~y <k, (1.1) has
a ground state with Morse index .

Suppose f3; ; = 5ti=j§i,j, where § > 0 is a parameter and t; ;, B\” are abso-
lutely positive constants. If the couplings f; ; are total-mized, t; ; = to for
all (i,7) € Ks,s,a, and all 0 < s < so, to < tmin,int.+5 tmaz,— < tmin,+ and

min{y/\j,, Vi) > min{ﬁ, Ao}

for all (o, jo) and (iy,jo) with Biyjo > 0 > By jr, then Cxr can not be
attained for 6 > 0 sufficiently small. That is, (1.1) has no ground states.
Here, tmaw)_ = max{ti,j | ﬁi,j < 0}, tmin,+ = min{tiyj | 61',]' > O}, and

tmin,int,+ = min{t; ; | BZ] >0 and B; ; is a inter-coupling}.

If the couplings B; ; are repulsive-mized with B; ; < Bo where By > 0 is a
small constant or the couplings B; j are purely repulsive, then Cpr can not be
attained, provided that the coefficient matriz © = [B; ;| is positively definite.
That is, (1.1) has no ground states.

Remark 3.1. (a) The existence result yields a very interesting consequence:

The degree of optimal block decompositions determines the lower bound of
Morse index of ground states of (1.1). According to our definitions, the de-
gree of optimal block decompositions is the smallest number of the groups,
which are made up by the components {u;} such that they are all attractive
to each others in these groups. This implies that, in Bose-FEinstein con-
densates for multi-species condensates, the components {u;} will huddle as
much as possible. On the other hand, as one can see by comparing Theo-
rems 2.1 and 2.2, the existence conditions of the four-coupled system (2.3)
in the total-mized case (H) at (2.4) are much stronger than that of the
three-coupled system (2.1). This is caused by the fact that the four-coupled
system (2.3) has more (s,s) blocks in its optimal block decompositions in
the total-mized case (H) at (2.4), which needs more interaction forces to
be positive to grantee the existence of ground states. Thus, it seems that
ground states are harder to exist if its optimal block decompositions has
more (s,s) blocks. In the extremal case in this direction, i.e., the purely
repulsive case or the repulsive-mixed cases, there are no ground states.

As we pointed out in (c) of Remark 2.1, some existence and nonexistence
results for (1.1) in some very special cases have been obtained in the liter-
ature, see, for example, [17, 20,31, /0].

Another interesting fact is that Morse index of ground states is related to the
number of positive eigenvalues of the coefficient matriz. To understand this
relation, we use the four-coupled system (2.3) in the total-mized case (H)
at (2.4) as an example. Indeed, under the conditions of (1) of Theorem 2.2,
the coefficient matriz is nonsingular. Moreover, in (i) of (1) of Theorem 2.2
the coefficient matriz has four positive eigenvalues, while in (ii) of (1) of
Theorem 2.2 the coefficient matrix has three positive eigenvalues and one
negative eigenvalue. Since roughly speaking, the superlinear nonlinearities
are determined by the coefficient matriz and they “generate” the negative
part in the second derivative of the functional, v positive eigenvalues of the
coefficient matriz will “generate” v Morse index of ground states.
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(d) The interaction forces can be defined in another similar way. To define
the T interaction forces, we can use the information of ground states of
the (s,s) blocks in the (7 — 1)y, decomposition of a given optimal block
decomposition. In this way, the iteration is more involved in every stage
(in our definition of the interaction forces, the iteration is only involved in
the first stage for the purely attractive case or just use the results in [71]
for simplicity), and the related constants (cf. Cf;) are different in different
stages, in general. It will make the choices of B;; to be slightly complex.
(Of course, we can fix the B; ; since the iteration can be finished at finitely
many stages.) Thus, to make our ideas to be clearer and easier to follow,
we define the interaction forces as (3.2) from the second stage.

Since the main ideas in proving these three Theorems are similar, to make our
proof easier to follow and to avoid unnecessary complicated calculations, we only
give a complete proof of Theorem 2.1 in section 4. We will also sketch the proof of
Theorems 2.2 and 3.1 by pointing out necessary changes in section 5.

Notations. Throughout this paper, C and C’ are indiscriminately used to denote
various absolutely positive constants. a ~ b means that C'b < a < Cband a <)
means that a < Cb.

4. THREE-COUPLED SYSTEM (2.1)

4.1. Some preliminaries. In this section, we state some well-known results which
will be frequently used in proving Theorem 2.1. Let w; be the unique solution of
the following scalar field equation

—Au+ \ju = ﬂju?’ in RY,

u>0 inRY, wu(0)= max u(zx), (4.1)

u(z) -0 as |z] = +oo.

Then, wj, satisfying

wy(la]) ~ 2|7 F e VI as 2] = too, (4.2)
is radially symmetric and strictly decreasing in |z|. The energy functional of (4.1)
in H; is given by
5(w) = Il — 22l (43)
and the corresponding Nehari manifold is
Nj = {u € H;\{0} | & (u)u = 0}

We need the following estimate which will be used frequently in this paper. The
proof is technical and thus delayed to appendix.

Lemma 4.1. Let N = 1,2,3 and w; € H*(RY) such that w; satisfy w;(|z]) ~
1-N

|| = e~ VAl gg |z| — +oo for some constants \; > 0. Suppose e; € RY such
that le1| = 1. Then as R — +o0,

RI,Ne—QmiII{\/Tia\/TJ}R, i 7£ Aj;

2 2(x — Rey)dx ~
/RN w; (z)wi(x — Rey)dx RUFaNem2VAR A=),
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where a« =1 for N =1 andaz%forN=2,3.

We also define energy functionals, which are of class C? in H; ; = H; x H;, as
follows:

€ii(8) = 5UelX + 16513, = (ill bill s + pllosl70) — S b7, (44)
where E) = (¢, ¢;) and (4, 7) equals to (1,2), (1,3) or (2, 3). Positive critical points
%
of & j( @) are equivalent to the solutions of the following system

— Au; + Au; = uiuf + BiJU?Ui in RV,
— Auj + Ajuy = pjud + Bijuiu;  in RY, (4.5)
uu; >0 in RN wi(2),uj(z) =0 as |z| — +oo.

%
We define the Nehari manifold of &; (¢ ) as follows:

Nij =13 ey | Gos(3) = (G(3).6:(3) =T,
where Hy; = (H\OD) x (H\(OD). 6,(B) = 16,13, =l 1~ Bus
Gi(3) = 6112, — illgullds — Busllsdsll2a. Let

C, = ol £,(3). (4.6)

I

|6i6;]172 and

Then, Cy;, ; is well defined and nonnegative for all i # j. Moreover, there exists
0 < B« < \/papy such that if 0 < B; ; < Bi then Cyy, ; is attained by ?” which
is positive and radially symmetric (cf. [19, Theorem 1.2]). Clearly, E\” is also a
solution of (4.5). Applying the comparison principle as for [28, (4.6) and (4.7)] (see
also [22, (4.7)]) yields that

o (2]) ~ o7 YA ] — 400, (4.7)

4.2. Ground states with Morse index 3. In this section, we will study the
existence of ground states of (2.1) with Morse index 3, in the total-mixed case (d):
ﬂLg > 0, ﬂ173 > 0 and ﬂg’g < 0.

Recall the definition of the Nehari manifold A at (1.3) and the least energy
value Cpr = infpr E() at (1.4). Using (w1, Re,, Wa, W3 ge,) with |e;| =1 as a test
function and calculating similarly in the proof of [26, Theorem 1] yields

3
Cn <Y Ei(wy), (4.8)
j=1
where w; and &;(u) are given by (4.2) and (4.3), respectively, and w; . = w;(z+z).

Lemma 4.2. There exists By > 0 such that N contains a (PS) sequence at the
least energy value Cpr for 0 < B1,2,B1,3 < By and P23 < 0. Moreover, minimizers
of E(U) on N are also critical points of E(W) and any positive minimizer of £()
on N is a ground state of (2.1) with Morse indez 3.

Proof. The proof is standard, so we only sketch it. Let

3 3
N ={T e N | |lul3, <8>_&(w)}.

Jj=1 Jj=1



COUPLED ELLIPTIC SYSTEM 15

Then, by a standard argument, there exists 8y > 0 such that 1 < |ju;||7. for
all ¥ € N* and j = 1,2,3 in the case of 0 < B1,2,013 < Bo and Ba3 < 0.
Thus, 6> ¢ ON* and the matrix = = [ |uiuj||%2]i’j:1’2$3 is strictly diagonally
dominant for @ € N*, where §; ; = ;. It follows that = is positively definite, with
1 < |det(Z)]. By the Ekeland variational principle, there exists {@,} C N* C N
such that

(1) E(U ) = Cn + 0n(1),

(2) E(V) 2 E(Up) — 23772, oy — w3, for all ¥ e N* C N.

n £aj

Now, for every ¥’ € # such that Z?:l ||vj||§J =1, let us consider the system:
Tu(1,%) = (G(T o Wu+ 7 o)),

where _l> o U, = (lyu1 p, lous n, l3ug ) and ToW = (s1v1, S22, 83v3). Since Z is
positively definite with 1 < |det(Z)| in N*, applying the implicit function theorem
and the Taylor expansion in a standard way (cf. [51]) yields that, {,} is a (PS)
sequence at the least energy value Cps. By the method of Lagrange’s multipliers,
for every minimizer ¥ of £(W) in N,

3
00, E(V) = > 0;0,,G;(V) =0 foralli=1,2,3,
j=1

where & = (01,02,03) € R3 is the Lagrange multiplier. Multiplying the equation
with (v1,0,0), (0,v2,0) and (0,0, vs), respectively, and using that = is positively
definite with 1 < |det(Z)| in N*, we have & = 0. Thus, N* is a natural constraint
in H, which implies that minimizers of £(@) on N are also critical points of £().
Moreover, since 1 < |det(Z)| for @ € N*, for any positive minimizer of £() on
N, say U, H=TaN@PRV, xRT, x RV3), where 75 is the tangent space of
N at 7, U= (v1,0,0), U= (0,v9,0) and Uy = (0,0, v3). Since 7 is a positive
minimizer of £() on N, 5”(7)(?,?) > 0 for all W e THN. Tt follows that
Morse index of ¥ is less than or equals to 3. On the other hand, since

3
W)W, Vi) = uill3, = Bpallvill e — Y BijllvivilTe = —2pallvill 7 <0
j=1.5#i
for all ¢ = 1,2,3, Morse index of 7 is greater than or equals to 3. Thus, T is a
ground state of (2.1) with Morse index 3. O

By Lemma 4.2, to prove the existence of ground states of (2.1) with Morse
index 3 in the total-mixed case, it is sufficient to prove the existence of a positive
minimizer of & (7) on the Nehari manifold A/. We start by the following energy
estimate.

Lemma 4.3. Let $12 >0, 81,3 >0 and fa3 < 0. If \y < min{Aa, A3} then
C_/\/ < IIliIl{C_/\/l’2 +53(’U)3),CNL3 =+ 52('(1)2)}

for 12,813 < Bo, where By is given by Lemma 4.2, Cn;, , are given by (4.6) and
Cyn = infur ().

Proof. We only give the proof of Cor < Cp;, , + E3(w3) since the proof of the other
inequality is similar. For the sake of simplicity, we denote @;’2 by ¢;, where A2 =
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(1%, 05%) is a ground state of (4.5) for (i,7) = (1,2). Let w3 gre, = w3(z — Rey)

where e; € RY satisfying |e;| = 1. We consider the following system:
leallX, = pallenllzati(R) 1Z283(R) + Brsllo1ws, re, |75 (R),
lp2llX, = p2lle2l7at3(R) + Brallore2lz2t1(R) + Boslloaws ke, [ 2215(R),  (4.9)
w33, = Hallwsl|Zat3(R) + Brallo1ws,re, | 2217 (R) 3(R).

Clearly, {t;(R)}, j = 1,2, 3, are bounded for sufficiently large R > 0 and ¢,;(R) — 1
as R — +o00. Moreover, since |¢;jws ge, ||3 — 0 as R — +oo for j = 1,2, by taking
Bo in Lemma 4.2 sufficiently small if necessary, the above linear system is uniquely
solvable for 31 2 < fp. Its unique solution (t3(R),t3(R),t3(R)) is given by

(1+0r(1))(B)3

w3 ke, 17211 ll@ill 1a — Bisllpiws re, 7281 2llp102(132)

t2(R)=1— .
’ [z mllellze — B 2llorezlle

for (i,7) equals to (1,2) or (2,1) and
1 + OR( ) ( 2 )
 psl|ws|[s
Here, og(1) — 0 as R — +o00. Since 812 > 0, (4.7) holds for ¢;, j = 1,2. Thus, by
Lemma 4.1 and A; < min{As, A3},

llo1ws Re, |32 ~ R Ne VMR a5 R 400, (4.10)
By Lemma 4.1 once more, as R — +o0,
R17N672min{\/g,\/g}R’ )\2 7& )\3;

t3(R) =

lp2ws,re, |22 ~ { (4.11)

R1+Q7N€72\/XR, Ap = /\3 _ /\’

where o = 1 for N =1 and a = § for N = 2,3. Since (t1(R), t2(R), t3(R)) satisfies
(4.9), we can test Cpr by

(tl(R)QDth(R)(pQu t3(R)w3,Rel)
and estimate it by (4.10) as follows:

Cn < Zt2 Mesl3, + (R wsl3,)

< C_/\/12 +53(UJ3) Cﬁl 3R1 N _QFR C'ﬂ2’3||g02w3,R61||2L2 (4.12)

By (4.11) and taking R > 0 sufficiently large in (4.12), it follows from A\; <
min{As, A3} that

Cn < CNl,z + 53(11}3),
which completes the proof. (I

Remark 4.1. As that in the proof of Lemma 4.3, if we use (w;,w;) as a test func-
tion of Cny, , where (i, j) equals to (1,2) or (1,3), then by taking By > 0 sufficiently
small if necessary,

Bi,j
Cn,y < Ei(wi) + Ej(wy) — TJHWWHQH +0(87;)

fOT 0< ﬂi)j < ﬂo.

Now, we are prepared to prove the following existence result.
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Proposition 4.1. Let $12 > 0, f1,3 > 0 and B23 < 0. If Ay < min{As, A3} then
there exists a positive minimizer of 5(7) on N for 12,513 < Bo, where By is
given by Lemma 4.2. That is, (2.1) has a ground state with Morse index 3.

Proof. By Lemma 4.2, there exists a (P.S) sequence {Un} at the least energy value
Cy. Clearly, {@,,} is bounded in H. Since 1 < |[uj.n|/ps for all j = 1,2,3, by the
Lions lemma ( [25, Lemma I.1], see also [53, Lemma 1.21]) and the Sobolev embed-
ding theorem, there exist {y;.,} C RY such that u;,(z + yjn) — vj.c0 # 0 weakly
in H'(RY) as n — oo. We denote v; j, = win(z + yjn). Then, v;jn, — v 0o
weakly in H1(RY) as n — co. Moreover, v j.0o = Vj.00 # 0 for all j = 1,2,3. Since
{7n} is a (PS) sequence, it is standard to show that 7]-,00 = (V15,005 V2,5,00, U3 j,00)
is a critical point of 5(7) for all j =1,2,3. If for every j = 1,2, 3, we always have
Vi j,0o = 0 with 4 = j, then,
3 4 3 4 3

Cnv=> ZHUj,nHij +on(l) =) ZHUj,j,nHi,. +ou(1) 2D &(wy) + on(1),
j=1

j=1 j=1

which contradicts Lemma 4.3 and Remark 4.1 by taking Sy > 0 sufficiently small
if necessary. Thus, without loss of generality, we assume that for j = 1, one of the
following cases must happen:

(1) v1,1,00 # 0, V21,00 # 0 and v31,00 = 0.
(2) v1,1,00 #0, V21,00 = 0 and v3 1 o # 0.
(3) V1,1,00 7é 07 V21,00 7& 0 and U3,1,00 75 0.
We first consider the case (1). Clearly, (v1,1,00,v2,1,00) 18 & nontrivial critical point

of 5172(3), where 5172(3) is given by (4.4). Note that for j = 3, one of the following
cases must happen:

(1) V13,00 # 0, V23,00 = 0 and v3 3 o # 0.
(’Ll) V1,3,00 = 07 V2,3,00 7& 0 and V3,3,00 75 0.
(ZZ’L) V1,3,00 = O7 V23,00 = 0 and V3,3,00 7’5 0.
(iv) V13,00 # 0, V2,300 # 0 and v3 3.5 # 0.

If the case (iv) happens, then by a standard argument, Cy is attained by —’IA)>3’OO =
(Jv1,3,00] [V2.3,00]s |V3.3,00]), which, together with the Harnack inequality and Lemma 4.2,
implies that there exists a positive minimizer of £(%) on . Thus, by Lemma 4.2
once more, (2.1) has a ground state with Morse index 3. Therefore, without loss of
generality, we assume that one of the cases (7)—(#i7) must happen in what follows.
Since v3 3,00 7 0 and v3 35 () = v3.1,0(T + Y3,n — Y1,n), by the Sobolev embedding
theorem, |ys n — Y1,n| = +00 as n — oo. It follows that for every R > 0,

/ [v1 10| de > / |Ul,1,n|4d$+/ 0110 | da
RN BR(O) BR(yS,n_yl,n)

/ |Ul,1,n|4d9€ + / [v1,3,n
Br(0) Br(0)

By letting n — oo first and R — 400 next,

4da.

o1l 7 > l[or100ll7s + 013,00l 70 + 0n(1).
%
If the case (i) happens, then (v1 3,00, v3.3.00) i a nontrivial critical point of £; 3( ¢ ),
)

%
where & 3(¢) is given by (4.4). Since it is standard to show that [|v;3 |74 >
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lw;]|74 — CBy for sufficiently small Sy,

3 3
1 1
CN = Z ZMHW,nH?} + 5 Z 5¢,j||ui7nuj7n||%2 + On(l)
j=1 i=1,i<j

2
1 4 M3
> 7 ;ujllvj,mllm + Z||U3,3,n||i4 —CBo+on(1)

> Cx i+ Eslws) + B[ s — CBo + 0n(1),

which contradicts Lemma 4.3 for 3; ; < By by taking 8y > 0 sufficiently small if
necessary. The case (4i7) is also impossible since in this case,

3
1
Cnv = 1 Z ||uj,n||§\j + on(1)
j=1

2
1 1
= 1 sl + glessald, +on()
j=1

> CN1,2 + 53(11)3) + On(l),

which still contradicts Lemma 4.3. Thus, we must have the case (i7). If |y;, —
Yyon| S 1, then by |y1.n — Ys.n| — +00 as n — 00, |ya,n — Ys.n| = +00 as n — oo.
It follows from

1}272771(1') = ’U2737n(1‘ + Yan — yS,n)

that [[va,3n]74 > [[v2,3,00l174 + |V2.2,00[|74 + 05(1). Then by a similar calculation
used in the above arguments,

2
Cx 2 O+ E1(w) = OBy + 2 fwa[F4 + 0,(1).
Since 2.3 < 0, it is well known that Cp, , = 2322 &;(w;). Thus, it is impossible
for sufficiently small 5y > 0, owing to Lemma 4.3. It remains to exclude the case
|Y1,n — Y2.n| = 00 as n — oo. In this case, it follows from

V220 () = V2,1.0(C + Y2, — Yi,n)

that ||U271,n|‘%4 > HU2,17OOH%4 =+ ||U2,2,oo||i4 + On(l). Similarly,
Cx > oo + Ea(ws) = CBo + E2 Juwnllfs + 0 (1).

It is also impossible for sufficiently small 8y > 0, owing to Lemma 4.3 and Re-
mark 4.1. Thus, the case (1) can not happen. Similarly, we can show that the
case (2) can not happen either, which implies the case (3) must happen. Now, by
a standard argument, Cyr is attained by 01,00 = (|1,1,00/, [V2,1,00]; [V3,1,00])- Thus,
by the Harnack inequality and Lemma 4.2, (2.1) has a ground state with Morse
index 3. [l

4.3. Ground states with Morse index 2. In this section, we shall study the
existence of ground states of (2.1) with Morse index 2, in the total-mixed case (d):
5172 > 0, 5173 > 0 and 5273 < 0. Let

%

Mgz = {7 € ﬁ12,3 \ 312,3(10 = (91(7) + 92(7)7%(7)) =0},
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Where_%(?) = luill3, = plluslge = iy Biglluiusle and Hizs = (Ha x
H2)\{0}) x (H3\{0}). Let

C/th,s =

nf £().

1
Miz 3

Then, Cpy,, , is well defined and nonnegative. Using (0, w2, w3 re,) as a test func-
tion and calculating similarly in the proof of [26, Theorem 1] yields

3
CM12,3 < Zgj(wj)7 (413)

=2

where w3 re, = wz(z — Rey) with e; € RY satisfying |e;| = 1.

Lemma 4.4. There exists By > 0 such that M1a 3 contains a (PS) sequence at the
least energy value Caq,, , for Bi2 >0, 0 < B13 < By and Ba3 < 0. Moreover, min-

imizers of 5(7) on Mg 3 are critical points of 5(7) and any positive minimizer
of E() on Mz 3 is a ground state of (2.1) with Morse index 2.

Proof. The proof is similar to that of [12, Lemma 2.1], so we only sketch it. By
(4.13),

3 3
Mios ={U € Miaz | Y llul3, <8 Ei(w))} #0.
j=1 j=2
Moreover, since 353 < 0, there exists By > 0 such that

2

min{ _ pjllu;lze + 2612 lluruz|Fa, usl3,} > Cp . >0 (4.14)
j=1

forall W € M7, 3 with 13 < Bo, where Cp, , is a constant only depending on 3 2.
It follows that

2 2
> willuile + 281 2llwausli Y Biallujus)?a
j=1 j=1
T= 2
> Bjallujuslli s us || 74
j=1

is strictly diagonally dominant and [det(Y)[ > Cj, , > 0 for U e Miy 5. Here, C |
is also a constant only depending on ;2. Now, we can follow the argument in the
proof of Lemma 4.2 (see also the proof of [12, Lemma 2.1]) to obtain a (P.S) sequence
at the least energy value Cpq,, , and to show that M7, 5 is a natural constraint in H
for 812 > 0,0 < B1,3 < By and P23 < 0. For the estimate of Morse index, the proof
is also similar to that of Lemma 4.2 since we have # = To M @RV 12 x RT3)
for any positive minimizer of 5(7) on Mjz 3 now, where 71,2 = (v1,v2,0) and
U3 =(0,0,v3). O

By Lemma 4.4, to prove the existence of ground states of (2.1) with Morse index
2, it is sufficient to prove the existence of a positive minimizer of £ (7) on Mis 3.
Let

lel3, LIl }

ueHLEN\(0} [[wiul|F, we HI ®V)\{0} [lwoullF.

Bip= maX{ (4.15)
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where w; is the unique solution of (4.1).
Lemma 4.5. Let f12 > 0, 0 < B13 < Bo and P23 < 0, where By is given by
Lemma 4.4. If \y < min{)\g, A3}, then
CMyss < Canp + E3(w3)
for Bia > BLQ, where Cyr, , is given by (4.6).

Proof. Since this proof is similar to that of Lemma 4.3, we only sketch it and point
out the differences. By [I, Theorems 1 and 2], Cy, , is attained by a positive and

radially symmetric function ? for B12 > 3172. Let w3 ge, = ws(xz — Rey), where
e1 € RY satisfying |e;| = 1. We consider the following system:

2 2 2
S leill3, =0 uilleslita + 281 2llerpalli2)* (R) + O Bjsllejws re I172)5%(R)
j=1

=1 j=1

2
lwsl3, = Biallejws.re, 1720 (R) + psllwsl|zas®(R).

j=1
As (4.7), applying the comparison principle yields that

illz]) ~ |z|~ "7 eVl

Thus, by Lemma 4.1 and A\; < min{Xa, A3}, Y7, Bjsll0jws re, |22 > 0 for R > 0
sufficiently large. Thus, as in the proof of Lemma 4.3, the above linear system is
uniquely solvable for 31 2 > ; 5 and the unique solution is given by

t*(R) =1 — C(Bsllprws, ge, 172 + Ba.3llp2ws ke, [172)

as |z| = +oo.

and

s°(R) =1 — C' (B3l erws, ge, |72 + Ba.3ll92ws,re, [172)

for sufficiently large R > 0. Moreover, (t(R)p1,t(R)p2, s(R)ws re,) € Mias.
Thus, by similar estimates as that used in the proof of Lemma 4.3, it follows from
A< min{)\g, )\3} that

CM12,3 < 5((t1(R)<p1’tQ(R)@Qvt?)(R)w&ReJ) < CN1,2 + 63(w3)7
for sufficiently large R > 0. O

Now, we are prepared to prove the following existence result.

Proposition 4.2. Let 512 > 31727 0 < B3 < Po and B3 <0, where Bl,2 and By
are given by (4.15) and Lemma 4.4, resectively. If A\ < min{\a, A3}, then there
exists a positive minimizer of E(U) on Mias. That is, (2.1) has a ground state
with Morse index 2.

Proof. By Lemma 4.4, M3 3 contains a (PS) sequence of 5(7), say {7n}, at
the least energy value Cay,,,. Since B12 > B, by (4.14) and [I, Theorems 1
and 2], applying the Lions lemma ( [25, Lemma I.1], see also [53, Lemma 1.21])
and the Sobolev embedding theorem in a standard way yields that, there exist
{yn}, {zn} C RY such that vj,, = uj,(z + yn) — vj 0o # 0 for both j = 1,2 and
Vg = Uz n(T+ 2,) — V3,00 # 0 weakly in H*(RY) as n — oo. Indeed, if we denote
V3.5 = U3 n(T + yn) and v;, = u;n(z + 2z,) for both j = 1,2, then vs,, — v3
and U, — U 0 weakly in H*(RY) as n — oo for both j = 1,2. Now, if 0 o # 0
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for all 5 = 1,2,3, then similar as that in the proof of Proposition 4.1, we can
show that there exists a positive minimizer of £ (7) on Mg 3. Otherwise, if either
V1,00 = 0 Or vy oo = 0, then by taking fy sufficiently small if necessary and using
similar arguments in the proof of Proposition 4.1, Caq,, ; > min{&; (w1 ), Ea(wa)} +
Es(ws) — C Py, which contradicts [1, Theorems 1 and 2], 81 2 > Bl,g and Lemma 4.5.
We next claim that either vs o 7# 0 or Uj o # 0 for both j = 1,2. Suppose the
contrary; then, one of the following cases must happen:
(Z) V3,00 = 0, @\1700 =0 and 62)00 75 0.

(’L’L) V3,00 = 0, 7}\1700 7é 0 and 62,00 =0.

(ZZ’L) V3,00 = 0, 51\1700 =0 and %\2700 =0.
Since {7n} is a (PS) sequence, it is standard to show that

= ~ ~ ~
7oo = (Ul,ooa V2,00, U3,<x>) and v oo — (Ul,ooa V2,00, U3,oo)
are both critical points of £(@). In the case (i), (v1,00, V2,00) is a nontrivial critical

point of &1 2(¢ ) and (V2,00,73,00) is a nontrivial critical point of 52,3(2). Since
U100 = 0 and v1,00 # 0, by the Sobolev embedding theorem, |y, — 2,| — 400 as
n — oo. Now, as in the proof of Proposition 4.1, we have the following energy
estimate:

3
1
CMizs = 7 ||Uj7n||§\j+0n(1)
4
Jj=1

2
1 1
= 1 gl + 1Bl + on()
j=1

1
> Cny, +E(ws) + Z”w2”>\2 = CBo +on(1).

It contradicts Lemma 4.5 by taking Sy > 0 sufficiently small if necessary. Thus,
the case (4) is impossible. Similarly, the case (i¢) is also impossible. It remains to
exclude the case (4i4). In this case,

3
1
C/Vl12,3 = 7 ”uj,n”i, +On(1)
4
j=1

2
1 -
= 72 lvinl}, + 18sal13, +o0n(D)
4 J
Jj=1

Z CNLQ +53(w3)+0n(1)7

which contradicts Lemma 4.5. Therefore, without loss of generality, we may as-
sume that (01,00, 2,00, V3,00) 1S a nontrivial critical point of 5(7) By a standard
argument, we can show that Cay,,, is attained by (|v1,eol, [V2,00]s [V3,00]). By the
Harnack inequality and Lemma 4.4, (|01 00, [V2,00], [U3,00|) is & ground state of (2.1)
with Morse index 2. (]

We need to further prepare an existence result for the purely attractive case:
Bi2 >0, B13>0and f23 > 0. By checking the proof of Lemma 4.4, we can see
that it still works for f12 > 0 and 0 < f13,02,3 < Bo. Thus, we can still work
in Myg 3 for f12 >0 and 0 < f1,3, 823 < Bo. Since the Schwarz symmetrization
works for this case, the minimizing sequence, at the least energy value Cp4,, ,, can
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be chosen to be radially symmetric. Recall that Ca;, , < min{&;(w1),E(wz)} for
Bi2 > 31’2 by [I, Theorems 1 and 2], by a standard argument, we can obtain the
following:

Proposition 4.3. If 81 2 > BLQ and 0 < 313,023 < Po, then there exists a positive

minimizer of E(U) on Mygs. That is, (2.1) has a ground state with Morse index
2.

4.4. Ground states with Morse index 1. In this section, we shall study the
existence of ground states with Morse index 1. We define another Nehari manifold
of £() as follows:

w

M={T eH\{T}| Qu) Z

3
where G; () = |[u|3, = myllugllts — S0y iy Bisllwsugl[3z. Let
Cm = inf E(T).
M 1/1\1/1 ()
Then, Caq is well defined and nonnegative.

Lemma 4.6. Let f12 > 0, 13 > 0 and P23 > 0. Then, M contains a (PS)
sequence at the least energy value Caq. Moreover, minimizers of 5(7) on M are
critical points of E(U) and any positive minimizer of E(U) on M is a ground state
of (2.1) with Morse index 1.

_>
Proof. By considering the fibering map ¢ — £(tW) for every @ € H\{ 0}, it is
easy to see that M is homeomorphous to the set

0= {7EH\{O}|ZMJ|U‘J”L4+2 Z Bm||uzuj||L2>0}

4,j=1,1<]
The conclusion now follows from a standard argument (cf. [2]). O
By Lemma 4.6, to prove the existence of ground states of (2.1) with Morse index

1, it is sufficient to prove the existence of a positive minimizer of £ (7) on M.
Let

—{¢¢ %,j\{?} Qi 5(0) = Gi(8) + G;(4) = 0},

Where Hij = HixHy, g]( ) = ||¢J||>\ Nquij%/l —Bi
to (1,2), (1,3) and (2,3). We define

. —
C./\/li,j = 'Al/?f g%](d))

(2

|¢i¢j||2L2 and (4, ) equals

Then, Cpy, ; is well defined and nonnegative. Caq, ; can also be variational expressed
as follows:

( A luglR,)?
inf 5
Ue(Hs x?—t N{T} 4(MZ||UZHL4 + NJHUJH + QBMHU%'UJ'”L'Z)

Cm,,; =

Moreover, if 3; ; > B then Cpq, ; = Cy, ; is attained by ? *J which is positive and
radially symmetric. Here7 6 is defined as that of 3, , at (4. 10) (cf. [1, Theorems 1
and 2]). Clearly, B is also a solution of (4.5).
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Lemma 4.7. If 8; ; — +oo, then

\/613901 7\/@]‘»% 90:],954]])

up to a subsequence, where @” = ((szj,ﬁ‘]j), which is positive and radially sym-

metric, is a minimizer of the following minimizing problem:
2 212
~ A 215
B, it (luallX, + 1 2]”)\]) ' (4.16)
TemixHN\(0}  Slluilze

Proof. Using the Schwarz symmetrization and the Sobolev embedding theorem in
a standard way yields that DZ,- is attained by apz j» which is positive and radially
symmetric. Testing Caq, ; by @4 ; yields that Cay, ,Bi; < Dm +o(1) as 3, ; = +o0,
where o(1) = 0 as 8; ; — +oo. It follows that (\/mapzj7 \/Ecp;j) is bounded in
H; x H; for B; ; > 0 sufficiently large. On the other hand, it is easy to see that

Cm,, — 0 as f;; — 4oo. It follows that [|¢;|3, + ||§0J||§J — 0 as f;; = +oo. By

the Hélder and Sobolev inequalities, ;i l¢il|7s + w;lleill7s = o(lledlX, + ||‘PJH§\])

as fBi; — +oo. Thus, testing D;; by ( \/@7@2»" /ﬁm‘P;’j yields that D;; <
Cm, ,Bij +o(1) as B; ; — +oo. Therefore, Cuq, ;Bi; = Dij + o(1) as f;; — +o0.
Since ? 7 is radially Symmetrlc it is standard to show that

\/ Bi j<Pz » V Bi ](P]’j SOZ’J,SB/;J)

as f;; — oo up to a subsequence, where 6 i,j» which is positive and radially
symmetric, is a minimizer of (4.16). O

Let

lull%,
Pijil = inf J N2Vu2de (4.17)
uwe H (RN)\{0} fIRN <pl’ )2 +(<pj’ )2)uldx
where 7,5,0 =1,2,3 with ¢ # j, i £ [ and j # [. It follows from Lemma 4.7 that

piji = Bij(piji +o(1)) as B j — +00, (4.18)

where
Pui= inf o, (4.19)
T wem @O} [ ((877)2 + (§17)2)uda

Since @7 is a solution of (4.5), by Lemma 4.7, &, ; also satisfies the following
system:

_ A@’i}j + )\i@?j _ (@?_J)Qﬁ’j in RN, (420)
— A+ N30 = (377)%3 in RN, '
Proposition 4.4. Let 812 > 0, 813 > 0 and P23 > 0. Then, there exist Eg >0
such that if min{B; ;} > By and
. Bii 1
Piti < 7 =
’ Bii  Pij
for all i,5,1 = 1,2,3 with i # j, i # 1 and | # j, then Cpq < min{Cpy, ;} and
consequently there exists a positive minimizer of € (7) on M, provided that |\; —
Nl << 1 foralli,j = 1,2,3 with i # j. That is, (2.1) has a ground state with
Morse index 1.

(4.21)
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Proof. Let us first prove that pj;; < 5 for all 4,5,0l = 1,2,3 with i # j, i A1 and
[ # j, provided that |A\; — A;| << 1 for all i,7 = 1,2,3 with z 7é j. Without loss of
generality, we assume that A1 < Ay < A3. Testing p132 by @ g03 ylelds that

~1,3 ~1,3
1857113, + (A2 = A3) 185172 -1
1257114 18735112 T

~1,3
185113,

+1

p132 < H~13~13H

Similarly, testing p2s1 by @33 yields that pas; < 1. For pis s, by the Pohozaev
identity,
(4-N)

N
Allws 2 = = g 4, (422)

where w; is the unique solution of (4.1). On the other hand, it is well known that

llul3,

infye 1@V {0} Tz, = pjllwjllf. Thus, by (4.20), pullwi|Fs < [1857°][74. Now,

testing pi2,3 by @. 502 )

~1,2 ~1,2
P2 (As = M)[IB5" 172 — pid llwn |74

i3 = e
3 181785 17 + mdllwnl|7s

P12,3 < —G5=
|| 1,2 12 +|

Since H~1 212, < /\4—219172, testing 25172 by (w1, w;) and using (4.22) yields that

(lwal3, + llwill3,)?

C2=A) , O — M)
- 8[w1 |74

~ 1
D1,2 — /‘L1(§ + )\1 A% )”u}l”%4

Thus, there exists dp > 0, only depending on min{\;}, such that if |X; — ;| < do,
then pj;; < oo - for all 4,7,l =1,2,3 with i # j, i #l and [ # j. It follows that

there exists 50 > 0 such that (4.21) holds for 8; ; > Bo and |Bi,j — Bial << 1 for
all 4,7,1 = 1,2,3 with i # j, i # [ and | # j. Since Cpq can also be variational
expressed as follows:

3
inf (Zj:l ||“j||§j)2
3 3 ’
Ter\ 0} 4052 millugllzs + 2307 o iy Biglluiugl3z)

Cm =
. 7 1,2 1,2 .
testing Caq by Vs = (9177, p5", su) yields that
52 2
C < Catya + 5 (l, = 3 Bralle) ullfa) + O, (1.23)
Let u = 112,35 be the minimizer of (4.17). Then, by (4.18), (4.21) and (4.23),

Cm < Camypt leZH% 1ﬁ123||L2—2:533||80 Pra3ll72) + O(s*)

= Crmi + 51 20123Z||%0] ¢123||L2—Zﬁy, 72)

Jj=1

+o(s?)
< CM1,2
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for s > 0 sufficiently small and min{g; ;} > Bo by taking By > 0 sufficiently large if
necessary. Similarly,

Cm <Cpm,, and Cp <Cpn,, for min{f;;} > Bo.

Since we have already shown that Carq < min{Ca, ;} for min{3;;} > Bo > 0, it is
standard to use the Schwarz symmetrization to show that there exists a positive
minimizer of £(W) on M, which implies that (2.1) has a ground state with Morse
index 1. d

4.5. Nonexistence of ground states. In this section, let us focus our attention
on the nonexistence of ground states of (2.1), in the total-mixed case (d): 1,2 > 0,
B1,3 >0 and B3 < 0. We begin with the following observation.

Lemma 4.8. Let f12 = 53172, B1,3 = 5%\173 and P23 = —5552,3, where § > 0 is
a parameter, 0 < s < min{1,t} and Bi,j are absolutely positive constants. Suppose
that U s is a ground state of (2.1) and y; s is the mazimum point of u; s, respectively.
Then, U5 = ujs(x + y;,6) — w; strongly in H*(RY) N L°(RN) as § — 0 up to a
subsequence. Moreover, either

(1) y1,6 —Y2,6 = 0 and |y2,5 — y3,5| = +00 or

(#) y1,6 —ys,6 — 0 and [y2,5 — ys,5] = +00.
Proof. We respectively re-denote Cxr and Cyy, ; by C}S\f and st\/i.j for the sake of
clarity in this proof, where Cy;, ; is given by (4.6) and (4, j) equals to (1,2), (1,3) or
(2,3). We also re-denote @I by %7, where G = (o}, gpjﬁj) is a ground state
of (4.5) and (i,5) equals to (1,2) or (1,3). As in the proof of Lemma 4.3, Using

(cp}ﬁ, gpé:?, w3, Re, ) as a test function of C3, and letting R — +oo yields that

Cr < Chey, + Es(ws), (4.24)

which together with Remark 4.1, implies C3, < 25?:1 Ej(wj) — C9 for sufficiently
small 6 > 0. Similarly, if we test C/‘i; by ((p}zg,wgﬁel,(pé:g), then we obtain Cf\/ <

Z;’:l E;j(w;) — CH* for sufficiently small § > 0. Hence, we always have

3
Cy < Zé'j (w;) — O™t for sufficiently small § > 0. (4.25)
j=1
On the other hand, applying the Lions lemma ( [25, Lemma I.1], see also [53,

Lemma 1.21]) and the Sobolev embedding theorem in a standard way yields that
there exist {2;5} C RY such that U5 = ujs(z + zj5) — w; strongly in H'(RY)
as § — 0 up to a subsequence. Let v; s = ¥; 5 — wj, then v; 5 satisfies the following
equation:
—Avjs+Nvjs = p[Bwivs + 3w (v)5)* + (v5)°]

+8i.5 (01,6)*0s6 + Br,; (01,6)*06 (4.26)
in RY, where i, 7,1 = 1,2,3 with i # [, [ # j and i # j. Applying the Moser iteration
in a standard way yields that v; 5 — 0 strongly in LP(RY) for all p > 2 as § — 0
up to a subsequence. Using the classical elliptic estimates in a standard way yields
that U, 5 — w; strongly in L>(RY) as § — 0 up to a subsequence. In particular,
|U,5(z)] << 1 for || >> 1 uniformly for sufficiently small § > 0. Since y; s is the
maximum point of u;s, |y;s — 255] S 1 for sufficiently small 6 > 0. Thus, since
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w;(0) = max, gy w;j(z) and y; 5 is the maximum point of u; 5, we may assume that
zj.5 = yj.¢ for sufficiently small § > 0. That is, ;5 = u;s(z + y;5) — w; strongly
in HY(RY) N L>®(RN) as 6 — 0 up to a subsequence. Since by scaling, the best
embedding constant from H; to L*(RY) is pu;{|w; |3 4, ||uj75||§j > pil|wjlallwgs ) 4
It follows that

1
pillujslia > pyllwilI 7 — W(ﬁi,ﬂlui,awﬁl\%z + Brgllunsug sl ),
7y
which implies
2 4 ||wj||%4 2 2
lujsllx, = millwsllzs — m(ﬂi,j\\ui,éuxéﬂm + Bujllusugsllz=).  (4.27)
3,8 1lT,

Here, 4,5,1 =1,2,3 with ¢ #£ [, | # j and i # j. Therefore, we have a lower bound
estimate of Cf\/ as follows:

1
el > ZS w;) +0“ Z Bi (4.28)
1,7=1,1<g

_C+o
> 28 w3) = SO (s g306 + s 30
C”+0
+%()HUQ75U375H%255. (429)

Here, 05(1)
§ = 0or 15 |Jugsuss|?. for sufficiently small 6 > 0, then (4.25) and (4.29) can
not hold at the same time for sufficiently small § > 0. Thus, either

(1) 1 < [Juysugsll7- and [lug,sus s)|7. = 05(1) or
(2) 1 S [JugsusslFz and [lugsus s)|7. = 0s5(1)

as § — 0. By the Lebesgue dominated convergence theorem, either

(1) ly1,6 —y2,5] S 1 and [yg5 —
(@) [y1,6 —y3,5] S 1 and [y25 —

as 0 — 0. Without loss of generality, we assume y1 5 — y2,5 — yo as 6 — 0 in
the case (i) and y1,6 — y3,6 — Yo as & — 0 in the case (i7). It remains to show
that both yo and yj equal to 0. In what follows, we only give the proof of yq
since that of y(, is similar. In the case (i), we also have |y1 5 — y3,5] = 400 as
6 — 0 and t > 1. It follows from the Lebesgue dominated convergence theorem
= 05(1) and

Junsuzslfe = [ wi@Pusle +yo)do -+ os(1)
R

Moreover, since U 5 = u; 5(z + y;.5) — w; strongly in HX(RY)NL>®(RY) as § — 0
up to a subsequence, it is standard to show that there exist ¢;(6) — 1 and s(d) — 1
as 0 — 0 such that (t1(0)u1s,t2(0)uss) € Nio and s(d)uss € N3. Thus, by [20,
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Theorem 5],

Cn = E(Us)
> E((t1(0)u1,s,t2(d)us,s, s(d)uss))

Z C/\/’112+€3(wg)
_1—|—05(1)

2 U2,6“3,6”%2), (4.30)

72+ B2l

(B1,3]|u1,5us,s]

which together with (4.24), implies £1 3|lu1,5us,s
by Remark 4.1 and (4.28),

122 + Ba,3l|uz,sussl|3. > 0. Thus,

l[ur,5u2,672 > max{|lwiws||7s, lwiws||7>} + 0s(1).

It follows that

/ w1 ()2 (wo(x + yo) ) dx 2/ w1 (2)?ws(z)?dz. (4.31)
RN

RN

Let F(z) = [on wi(2)?(w2(x + 2))2dz. Then,

2 , T+ z
VF(z) = /RN2w1(|x|) w2(|x—|—z|)w2(\x+z\)|x+z|das
_ /RN2w1(|x—z|)2w2(|x|)w’2(\x|)|gx€—‘dx. (4.32)

Since wy (x) and wo () are radially symmetric and strictly decreasing for |z|, VF(z) =
0 if and only if 2 = 0. Thus, by F(z) > 0 and F(z) — 0 as |z] — o0,
F(0) = max,cgn F(2). It follows from (4.31) that yo = 0. O

Now, we are prepared to prove the following nonexistence result.

PI'OpOSitiOIl 4.5. Let ﬂLQ = 531,2, 6173 = (5t,§173 and ﬁ2,3 = —583273, where § >0
is a parameter, 0 < s < min{1,t} and B\” are absolutely positive constants. If
A1 > min{ g, A3} then Car can not be attained for sufficiently small § > 0. That is,
(2.1) has no ground states.

Proof. Let us assume the contrary that (2.1) has a ground state U for sufficiently
small 6 > 0, in the case Ay > min{A, A\3}. Let y;s be the maximum point of
uj s, respectively. Then, by Lemma 4.8, v;5 = u;s(x + yjs) — w; strongly in
HYRN)N L*(RY) as § — 0 up to a subsequence. Moreover, either

(1) y1,6 — y2,6 — 0 and |y2,5 — y3.6| — 400 or
(4) y1,6 —ys,s — 0 and |y2 s — y3,6] — +00.

Without loss of generality, we assume that the case (i) happens. We claim that
% = 05(1) uniformly in RY as § — 0 up to a subsequence. Since U; 5 — w; strongly
in HY(RM)NL>®(RY) as § — 0 up to a subsequence, [|v; 5|1 = 05(1) as § — 0 up to
a subsequence, moreover, by standard arguments based on the comparison principle,
we also |vjs| + [05] < w; in RY. Thus, applying the representation formula to
(4.26) yields that Z’}—]“ = 05(1) uniformly in RY as § — 0 up to a subsequence. For

the sake of simplicity, we assume y; s = 0 and denote w;, = w;(x + y) in what
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follows. Thus,
[ 0w ds
RN

_ 2,2 2
= /N WW3,_y, 4T + 2 /N Wiws, —y, ;V3,5( — Y3,5)dx
R R

+/ w%(”&a(fﬂ —ys3,5))dx + 2/ w?z,,—yg, ,Wiv sdx
RN R '

N

+4/ W1V, 5W3,—y, sV3,5(T — Y3,6)d
RN

N

+2/ wyv1,5(v3,5(z — yg’g))2d$+/ v%(gwgﬁy“daz
RN R ’

+2/ 0] 5W3,—y, 5 V3,6 (T — Y3,8)dw + / 0] 5(vs.5(x — y3,6)) dw
RN RN

= (1+05(1)) /RN w%w?,ﬁys)&dx. (4.33)
Similarly,
/ (us,)*(uz 5)’dr = (1—}—05(1))/ w%w;_ywdz‘. (4.34)
RN RN '

Since |y3,s| = 400 as § — 0, by Lemma 4.1,

1=N _—2min{v/1,vX: )
5 o |y3,5 e min{vX1 s}|y3,5\’ )\1 75 /\3,
WIW3 o de ~ ¥
Y, l+a—N _—2VX

RN |y315| ta=N, |y3,5\7 Al =A3 =2\

and

1-N _ —2min{v/X2,v/X :
2 9 lys,s] e 2min{VAzVAsHlyssl Ny oL Ag;

. w2w3,fy3,adx ~ 1+a—N _—2VX|ys 5]
R |y3,6| e ol AQ:A:},:)\

a85—>0,wherea:1forN:1anda:%forN:2,3. Since s < t and
) that

A1 > min{Aq, A3}, it follows from (4.33) and (4.34

Brsllursussllie + Baslluzsussliz < 6'Bia(l +05(1))/ wiwi _y,  de

RN
5 Baall+os(V) [ whud ., da
R
<0 (4.35)

for sufficiently small § > 0. On the other hand, since U5 = ujs(x + y;5) —
w; strongly in H'(RY) as 6 — 0 up to a subsequence, By (4.24) and (4.30),
5173||u175u375||2L2 + 52,3\@2751@,5”%2 > 0 for sufficiently small 6 > 0. It contradicts
(4.35). Therefore, (2.1) has no ground states for sufficiently small § > 0. O

Remark 4.2. By the proof of Proposition 4.5, we can obtain a by-product: Suppose
U s is a ground state of (2.1) for sufficiently small § > 0, in the total-mized case (d)
with Ay < min{Az, A3} and s < min{1,t}. Then, by (4.24) and (4.30),

Bisllur sus sl + Boalluz.sussl|rz >0
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for sufficiently small § > 0 in the case (i), which is given by Lemma 4.8. It follows
that

{C/(;te—?\mlyu—ys,al _ 0586—2min{\/gﬂ/g}lyz,s—ys,al >0, Ao # s

C’/(;te*z\/)\llyz&*y:},&l _ C5S|y275 _ y375|a672v>\2\y2,57y3,5| >0, A=\,

which implies

t—s
|y275 _ y3,5| < (log %)umin{ﬁ,\/@—ﬁ)

in the case (i). Similarly, in the case (i1) which is given by Lemma 4.8,

1—s
< (10g%)2<min{\/§\/@—\/ﬁ_

Y26 — Y3.6
We close this section by

Proof of Theorem 2.1: The conclusion (1) follows from Propositions 4.3 and
4.4 and [26, Theorem 1] (see also [40, Corollary 1.3]), the conclusion (2) follows
from [26, Theorem 3] (see also [27, Theorem 3] and [10, Theorem 1.6]), the conclu-
sion (3) follows from Propositions 4.1 and 4.2, and the conclusion (4) follows from
Proposition 4.5. O

5. k-COUPLED SYSTEM (1.1)

In this section, we will consider the general k-coupled system (1.1) and prove
Theorems 2.2 and 3.1. Since the main ideas are similar to those of Theorem 2.1,
we only sketch the proofs.

Proof of Theorem 2.2: (1) Since the proof of the existence of ground states of
(2.3) in the total-mixed case (H) with Morse index 4 is very similar to the Morse
index 3 case of Theorem 2.1, we shall only give the proof of the Morse index 3 case.
Let

~ =
Missa ={U € Hizga | Qa,34(w) = (G1(W) + Go(W), G3(), Gu(W)) = ﬁ},
Wheregj(7) = w3, = pillugllte — iy iy Biglluwins |22 and Hizsa = (M x
H2)\{ 0}) x (H3\{0}) x (Ha\{0}). Let
Crypsss = inf E(T).
Then, Cpq,, ,, is well defined and nonnegative. Since (12 > B\O > 0and 8;; < Bo

for all other (7,7) # (1,2), where 30 is sufficiently large and 8y is sufficiently small,
it is standard to show that Caq,, , , < 2?21 Ei(wj). Let

4 4
Mgy ={U € Miaza | > lluil3, <8 &(w))}.
j=1 j=1
Moreover, by similar arguments, as that used in the proof of Lemma 4.4, we can
show that the matrix 2 = [B; j||u;u;]|22]i j=1,2, 4 is strictly diagonally dominant
for U e M7y 3 4. Here, B;; = pj. It follows that = is positively definite with
|det(Z)| 2 1. Thus, by similar arguments, as that in the proof of Lemma 4.4,
there exists a (PS) sequence {,} at the least energy value Cp,, , ,. Moreover,
minimizers of () on My 34 are also critical points of £() and any positive
minimizer is a ground state of (2.3) with Morse index 3. Thus, it is sufficient to find
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a positive minimizer of £() on Mjg34. We start by estimating CMys5.- By our
assumptions, it is easy to verify that the degrees of eventual block decompositions
of A; all equal to 1. Thus, we can further group A; which is given by (2.5) into
A which is given by (2.8). Since the interaction force §9,, given by (2.7), is
positive, by Lemma 4.5, the least energy value of ground states in the block Cj 1,
denoted by Caq,,,, is strictly less than Cp, , + £3(ws3). Under the permutation:
(1,2,3,4) — (1,2,4, 3), there is another choice of C 1, which is consisted by (u1, us)
and uy. Similarly, this least energy value of ground states, denoted by Cay,, ,, is
also strictly less than Cay, , +&4(ws4). Thus, by [I, Theorems 1 and 2] and our choice

that 81 2 > Bo sufficiently large,
C= min{chz,s + 54(1114), CM12,4 + 53(w3)}

is the smallest energy value that the (PS) sequence, at the least energy value
CMis 5.4, Will split into blocks in passing to the limit in the optimal block decom-
position A;. Even though there is another optimal block decomposition consisted
by the blocks (u1,us), us and uy, by the assumptions 81 o > BO > 0 and B;; < Bo
for all other (i,7) # (1,2), the smallest energy value in this optimal block decom-
position, defined similarly as C, is strictly large than C. Thus, C is the smallest
energy value that the (PS) sequence, at the least energy value Caq,,,,, will split
into blocks in passing to the limit. Now, using the fact that the degrees of eventual
block decompositions of A all equal to 1 and similar arguments as that used in the
proof of Lemma 4.5 yields Cpq,,,, < C. Thus, applying the arguments similar to
the proof of Proposition 4.2 yields that &£ (7) has a positive minimizer on Mig 3 4.

(2) Since we assume that all |5; ;| sufficiently small, ground states, if they exist,
should be minimizers of £() on

Moasa={U € ﬁ1,2,3,4 | 51,2,3,4(u) = (G1(W),Go(W),G3(W), Gu(W)) = ﬁ},
where g](ﬁ) = ||uj||§\j _Mjlluj||i4_2?:1,i¢j Bi,j Uiuj||2L2 and 7:[\1,2’3,4 = (7‘[1\{0})><
(H2\{0}) x (H3\{0}) x (H4\{0}). Let

CNiasa = Ninf ().

1,2,3,4

Then, by a similar choice of test functions as that in the proof of Lemma 4.3,
CN1‘2,3,4 < CN1,2 + 53(11)3) + 54(104). (51)
On the other hand, by similar arguments as used for (4.30),
CN1,2,3,4 > CN1,2 + 53(103) + 54(11}4)
1+o05(1) 5.8 5,6 5,0
*T(ﬂl,slluluslliz + Baslluguglliz + Bralluduglz
+B2.allugull|7z + B alludug|Fe)- (5.2)
Thus, since t1 2 < min{¢; 3,24}, we can apply the arguments used in the proof of
Lemma 4.8 to show that |y1.6 — y2,6| <1 and |yi5 — vi,s| = +o0 for (4,5) # (1,2),
where y; 5 is the maximum point of uf, respectively. Moreover, similar computations

as (4.31) and (4.32) yields y1,56 — y2,6 — 0 as d — 0. Now, we can use Lemma 4.1
and similar computations as that in the proof of Proposition 4.5 to estimate the

term B 3lludud||Fs + Bosllududl|7 + Buallugudlli + Baalludullie + Bsallufull?.
Since min{tgﬁg, t174, t3,4} < t172 and min{)\g, )\4} < min{)\l, )\2},

Bralluguslzs + Baslluguslzs + Bralluguilizs + Bzalluguillis + Bsalluguil|7= <0
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for § > 0 sufficiently small. This contradicts (5.1) and (5.2). As a result, the ground
states of (2.3) do not exist. O

We close this section by

Proof of Theorem 3.1: (1) In proving this conclusion, we need to further employ
the iteration argument. We assume this conclusion is true for 3,4, --- ,k—1. Recall
that we have assumed that {(i,j) € Kssa,,t # j} # 0 for s = 1,2,---,s9 and
{(1,j) € Kssapsi #jt=0for s=s9+1, - ,d with an sp € {0,1,2,--- ,d}. Since
d < v < k, there exists a unique 0 < s* < sg such that as« <k — v < ag«y1. Now,
we define the following Nehari manifold:

_ as k—~v+1
Nv—{7€H7 Yy 1gj(ﬁ):o, > 1gj(ﬁ):o, G(d)=0
Jj=as—1+ Jj=asx+

Ga, (u) =0, 1§s§s*,k—’y+2§t§a5mso+1§n§m},

k
where G;(7) = llusl13, = mylles[4s — 0y 1y Bl
o, Jull 4 amd

%:ﬁ(( I H»\{ﬁ})x((kﬁl Hn\{?})x(_ﬁ HAO)).

s=1 i=as—1+1 i=agx—+1 i=k—y+2

witjl|7ss Ga, (w) = [lulX, —

Let
Cy, = %fg(ﬁ).

Then Cp, is nonnegative and well defined. Since all s, inner-couplings are positive,
it is standard to show that Cxr, < 25:1 &;(w;). Thus, by similar arguments, as in
the proof of Lemma 4.4 for v < k and also in the proof of Lemma 4.2 for v = k, there
exists a (PS) sequence {,} at the least energy value C N, - Moreover, minimizers
of () on N, are also critical points of () and any positive minimizer of £()
on N, is a ground state with Morse index . Thus, it is sufficient to show that
there exists a positive minimizer of () on N,. Recall that

Aj = (0] (Jts=12, as

is the ¢ decomposition. Here,
[ s—1
0is = 05 lGiex, . as.

and 0 <¢ <,

]Ct7s,a3< = (agflvaﬂN X (a;—lvag]N

with aj. = (ag,ai, -, ay), (a;_1,ai]ny = (a;_1,a;) "N and 0 = ay < aj <--- <
Ay 4 < QY = d*~'. Since the eventual block decomposition A7, has the degree
m = 1, by the iteration assumptions, in every ©f ., there exists a ground state 75@
Moreover, by similar estimates as that in Lemma 4.5, the least energy value of ﬁs,g
is strictly less than the sum of the least energy values of ;.1 for i € (a5_;,aS]y.
Since all eventual block decompositions have the degree m = 1, this fact also holds
for all other eventual block decompositions. Thus, in passing to a limit, if the (P.S)
sequence {7n} at the least energy value Cxr, will split into several blocks and some

of them will vanish at infinity, then the smallest energy value is generated by the
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sum of the least energy values of ground states, denoted by 7’{ and 7;, in the
(s, s) blocks of the following decomposition

i (01,1 C1,2> |
Cia Cap

where A is the last second decomposition of an optimal block decomposition. Since
all eventual block decompositions have the degree m = 1, using 7{ and 7; as
basic elements to construct test functions as that in Lemma 4.5 yields that Cxr, is
strictly less than the sum of the least energy values of 7*{ and 73 Thus, applying
the Lions lemma ( [25, Lemma I.1], see also [53, Lemma 1.21]) and the Sobolev
embedding theorem, similar as that in the proofs of Propositions 4.1 and 4.2, yields
that the (PS) sequence { ,,} at the least energy value C n., will not split such that
some blocks vanish at infinity in passing to a limit. It follows that there exists
a minimizer of £ (7) on N,. By the Harnack inequality, there exists a positive
minimizer of () on N,. In the purely attractive case, since the {p;;;}, given
by (4.19), are nonincreasing for k, the existence of ground states in the purely
attractive case can also be obtained by iteration the arguments of Propositions 4.3
and 4.4 from 3 to k, under the similar assumptions on A; and 3; ;.

(2) For (2) of Theorem 3.1, as in the proof of Proposition 4.5, we still assume

the contrary that, (1.1) has a ground state s under the assumptions of (2) of
Theorem 3.1 for § > 0 sufficiently small. We define functionals as follows:

2o 1 1 1
E(U) = Z (§||uj||§j - ZujIIUjII‘iz;) 3 Z Bijllwiu |7
j=as_1+1 i#5,(1,5) €K s 5,04
Hag

for s =1,2,---,s0 and &, (u) = %||u||§\as — Bes|lu|7a for s = sg 4+ 1,--- ,m. We

define the corresponding Nehari manifolds as follows:

Qs

_>
No={te J[ LMY (Garrirs(@) - Gars(W)) =0}
j=as—1+1
with
Gius (W) = i3, — mlluilie — > Bijllusuy)2
i=as—1+1,i#7
for s=1,2,---,59 and

Ma, = {¥ € Ha, \{0} | Q. () := ||ull3,, — pa, |lullz: = 0} (5:3)

for s=s9+1,---,m. Let
Cn. = %555(7) and Cpq,, = Ai}afs Ea. (u).

Then Cy, and Cpq,_ are all well defined and nonnegative. As in Remark 4.1, since
Bii > 01in &) for all (i,7) € {(i,5) € Kia,,i # j} and all 1 <1 < sg,

ay

(1+0s(1))

CM < Z gj (’LUJ) - f Z Bi,ijiwj“QL? (54)
j=a;_1+1 (4,0)ERL1,a,517]
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for 1 <1 < sg. On the other hand, by similar calculations as for (4.28),

1+0
£ (wy) — 11260 Z S Biilluisuisls. (5.5

1 s,t=1 (i,5)€Ls ¢ ad§i7&j

M-

Cn >

J

It follows from tpae,— < tmin,+ and to < tmin,int,+ that
| =o05(1) forall (4,5) € Kisa, i #J and t#s. (5.6)

By Lions’ lemma ( [25, Lemma I.1], see also [53, Lemma 1.21]) and the Sobolev
embedding theorem, there exists {y; s} C RY such that u; s(x+y;s) — w; strongly
in H; as 6 — 0 up to a subsequence. Applying the Moser iteration and the elliptic
estimates, as that used in the proof of Lemma 4.8, yields that u; s(z + y;.5) — w;
strongly in L>°(R¥) as 6 — 0 up to a subsequence. Without loss of generality,
14,5 can be chosen to be the maximum point of u;s. By a similar argument as for
(4.24), it is standard to show that

CN<ZCM + Z Crm,, -

s=so+1

Thus, by a similar calculation as for (4.30),

d
> S Bijlluisuslia >0 (5.7)

8,t=1;5<t (i,§) €K t.am

for ¢ > 0 sufficiently small. It follows from (5.4) and (5.5) that

S0 S0
> > Bijlluisussllzz > > Bijllwiw; (|72 + 0s(1). (5.8)

1=1 (4,5) €K1, 1,a, 5177 1=1 (i,5) €K1, 1,a,1#]

Thus, yi,6 — yj,6 = yij + 05(1) and

1 < |luisujsli32 for all (i,5) € Kija,,i#jand alll =1,2,--- , s0. (5.9)

d

Let F(y) = 23:1 Z(i,j)elcs,s,ad;i;éj Bi,j”wiwj,yij
creasing for |z|, by a similar argument as that used for (4.32), VF(y) = 0 if and
only if y = 0. Thus, by (5.8), yi;; = 0 for all (4,7) € K;,a, with i # j and all
I =1,2,---,50. Without loss of generality, we assume y; 5 = yj5s = ¥i,5 for all
(1,7) € Kija, with ¢ # j and all [ =1,2,---,so with ¢ > 0 sufficiently small. By
(5.6) and the Lebesgue dominated convergence theorem, |y; 5 — yi, 5] — +oo for

all [,I! =1,2,---,d with [ # I'. We denote y;5 — yrr.s by yur.s, for the sake of
simplicity. Then, by similar arguments as for (4.33) and (4.34),

d
> > Bijlluisussle

s,t=1;5<t (4,5)EKs ¢+ ag

- Y Y (e

s,t=1;s<t (1, J)EKstad A=A

S CLlg (e R Rl ), (5.10)

NN

2,. Since w;(z) is strictly de-

YN —1=0o=2vRi[yar 5|

J |y té‘
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Since

min{y/ g, v/} > mindy A, S}

for all (io,jo) and (Zé,jé) with Bimjo >0> 5%7]'6, by tmax,— < tmin,+ and (510),

d
> > Bijlluisuslie <0

s,t=1;5<t (4,§) €K t,a,

for 6 > 0 sufficiently small, which contradicts (5.7). Hence, (1.1) has no ground
states for § > 0 sufficiently small under the conditions of (2) of Theorem 3.1.

(3) Inthe purely repulsive case, this result has been proved in [26] (see also [27]).
For the repulsive-mixed case, by regarding the blocks in optimal block decomposi-
tions as a whole, we can follow the argument as used in the proof of [26, Theorem 3]
(see also [27, Theorem 3]) to show that ground states of (2.3) do not exist. O

6. APPENDIX:PROOF OF LEMMA 4.1

Proof. When A; # \j, the Lemma is proved in [26, Lemma 6]. Thus, we assume
that A; = A; = A. Let M > 0 be sufficiently large but fixed such that the decay
estimate holds for w; with |z| > M. We first consider the case N = 1. Without
loss of generality, we assume that A\; = A\; = A\; and w; = w; = w;. Moreover, we
also assume that e; = 1. Then, Re; = R and for R > 0 sufficiently large,

/*mwﬂwwﬂx—RMx

— 00

=(ﬁjﬁummFMM+/iﬁmﬁ@—mw

R-M RAM
+ [ e - R+ [ wd @i - Ry
M R—M

+oo
—I—/ wi(2)wi(z — R)da.
R+M

For fin wi(z)wi(z — R)dx, we estimate as follows:

M M
/ U}%(m)w%(ﬂ? — R)d.]j ~ / w%(l‘)e—Qm‘m_Rldw
M Y

M
= / wf(m)e‘Qm(R_z)dx
-M

M
= e_QNR/ wf(x)ezmzd@“
-M

672\/)\1R
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as R — +oo. For gj]\]\/[/[ wi(z)w?(x — R)dz, the estimate is similar to that of

fiVIM wi(z)wi(z — R)dx. For f:g wi(z)wi(z — R)dz, we estimate as follows:

-M -M
/ wi(z)wi(z — R)dr ~ / e~ 2Vl g2Vl =Rl g

— 00

-M
_ / 2VATE — 2V (R=2) g,

-M
_ 6—2\/,\11%/ ALz g,
— 00

~

672\/)\1R

as R — +oo. For fgﬁw w?(x)w?(x — R)dz, the estimate is similar to that of

f__ol\j w}(r)wi(z — R)dz. For fﬁ_M w}(z)wi(x — R)dz, we estimate as follows:

R—M R—M
/ wi(z)w?(x — R)dr ~ / e~ 2Vl g=2Vule =Rl gy,
M M
R—M
_ / =2V~ 2VAT(R=2) g
M
= e 2YME(R - 2M)
Re 2R
as R — +oo. Thus, fjoo w2(z)w?(z — R)dx ~ Re=2V MR a5 R — +00. Without

[ee]

loss of generality, we assume that e; = (0,1) for N =2 and e; = (0,0, 1) for N = 3.
Thus, for the cases N = 2,3,

/ wi (z)wi(z — Rey)da
RN

= / w(z)wi(z — Rey)dr + / w?(z)wi(x — Rey)dx
{lz|<M} {lz—Re1|<M}
+f W@ (e~ Renydo + [ WP (& — Ren)da
{M<‘$‘§%} {M<|w—R51\S%}

wi(x)w?(z — Rey)dx

g/
{lz|>F}n{lz—Re1|>F}

for R > 0 sufficiently large. For f{\xISM} w}(z)wi(z — Rey)dz, we estimate as

follows:
/ wi(z)wi(x — Rey)dr ~ / wi(z)|z — Rel|1_Ne_2m‘I_Rel‘dx
{lz]<M} {lz|<DM}
< Rl_Ne_2‘mR/ w?(z)e2V 117 dy
{lz|<M}

as R — +oo. For f{lz—ReﬂSM} wi}(z)w?(x — Rey)dz, the estimate is similar to that

of f{\wISM} wi(z)w?(x — Rey)dx. For f{lw\>%}ﬂ{|z—Rell>§} wi(z)w?(x — Rey)dz,
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we estimate as follows:

/{| 2}0{|z—Res| R}w%(x)w%(xiRel)dx
T|>5 N{|z—Re1 >

~ / (lz||z — R61|)1*Ne*2m|$|e*2m‘w*&1‘dx
{lz|> £} {|z—Re1|> £}

g Rl—Ne—\/KR/ |x|1—Ne—2\/A1\m|dl,
{l=|>%}
+oo

Rl_Ne_mR/ e VAT gy

%

~ R1—Ne—2\N1R

as R — 4o0. For f{M<\z\§§} wi(z)wi(z — Rep)dr, we denote x = (', x1). Then,

=

R
|Rey —x| — R~ —x1 + SR uniformly for M < |z| < 7 (6.1)

Thus, by £ < |z — Rey| < 38 uniformly for M < |z| < &,
2 2
/ wi(z)wi(z — Rey)dx
{M<|z|<£}
~ / (‘me - R€1|)17N672mlr‘e*2\/x\171{61|dx
{M<|z|< 5}
‘2

~ RLNB*NHR/ ] LN e 2V =) gy (6.2)
{M<|z|<F}

Recall that we write x = (2/, 21), ' = |z| cos p and 1 = |x| sin p. Thus, we estimate
the upper bound as follows:

/{M ) w?(x)w?(x — Rey)dx
<|z|]<F

A

s R s R
R17N€72\/HR(/2 /2 efzx/x(rfrsinp)drdp+ /2 /2 672\/H(T*TCOSP)dT’dp)
0 M 0 M

s R
~ R17N€72\/XR/2 /2 672\/X(r77‘sinp)d,rdp
0 M

A

s id
R17N€72\/)\1R/2 /2 672\//\1r(cosp)2drdp
0 M

fus R
- leNefsz/z / 2RO (0
0 M

A

s R
R17N672\/XR/2 /2 efzm’"ﬁdrdp
0

aM

T2

1-N _—2VXiR R e 2vA1y?
~ RTVeTtVAM ro2dr e VMY dy
0

4M

T2

R3-N,—2VAIR
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For the lower bound, the estimates is similar to that of the upper bound:

/{M ey wi(z)w?(x — Rey)dx
<|z[]<F

172
N R17N€f2\/xR/ 2|1~ N e=2VAi(al+ 5 —a1) g
{M<|z|<E}
T g 2
Z R17N€72\/XR/ (Sinp)Nfz/ 672\/)\71(r+ﬁfsinp)d,rdp
0 M
3 3
2
Z R17N€72\/XR/ (sinp)Nfz/ 674mrcos pd’/’dp
0 M
S
2
> R17N672mR/ sinp/ e~ 4VALT cos Pdrdp
0 M
¥, qtee )
~ R17N672mR/ riidr/ e 2V Ay dy
M 0
~ R%_Ne_QmR.

The estimate of f{lm—Rell<M} wi(z)w}(z — Rep)dx is similar to that of

/{M s wi(x)w?(x — Rey)d.
<|z|]<%

Thus, the proof is completed. [
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