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Abstract. Localized spot patterns, where one or more solution components concentrates at certain points in the domain, are5
a common class of localized pattern for reaction-diffusion systems, and they arise in a wide range of modeling6
scenarios. Although there is a rather well-developed theoretical understanding for this class of localized pattern7
in one and two space dimensions, a theoretical study of such patterns in a 3-D setting is, largely, a new frontier.8
In an arbitrary bounded 3-D domain, the existence, linear stability, and slow dynamics of localized multi-spot9
patterns is analyzed for the well-known singularly perturbed Gierer-Meinhardt (GM) activator-inhibitor system in10
the limit of a small activator diffusivity. Our main focus is to classify the different types of multi-spot patterns, and11
predict their linear stability properties, for different asymptotic ranges of the inhibitor diffusivity D. For the range12
D = O(ε−1) � 1, although both symmetric and asymmetric quasi-equilibrium spot patterns can be constructed,13
the asymmetric patterns are shown to be always unstable. On this range of D, it is shown that symmetric spot14
patterns can undergo either competition instabilities or a Hopf bifurcation, leading to spot annihilation or temporal15
spot amplitude oscillations, respectively. For D = O(1), only symmetric spot quasi-equilibria exist and they are16
linearly stable on O(1) time intervals. On this range, it is shown that the spot locations evolve slowly on an O(ε−3)17
time scale towards their equilibrium locations according to an ODE gradient flow, which is determined by a discrete18
energy involving the reduced-wave Green’s function. The central role of the far-field behavior of a certain core19
problem, which characterizes the profile of a localized spot, for the construction of quasi-equilibria in the D = O(1)20
and D = O(ε−1) regimes, and in establishing some of their linear stability properties, is emphasized. Finally, for21
the range D = O(ε2), it is shown that spot quasi-equilibria can undergo a peanut-splitting instability, which leads22
to a cascade of spot self-replication events. Predictions of the linear stability theory are all illustrated with full PDE23
numerical simulations of the GM model.24

1. Introduction. We analyze the existence, linear stability, and slow dynamics of localized N -spot25

patterns for the singularly perturbed dimensionless Gierer-Meinhardt (GM) reaction-diffusion (RD) model26

(cf. [7])27

(1.1) vt = ε2∆v − v +
v2

u
, τut = D∆u− u+ ε−2v2 , x ∈ Ω ; ∂nv = ∂nu = 0 , x ∈ ∂Ω ,28

where Ω ⊂ R3 is a bounded domain, ε � 1, and v and u denote the activator and inhibitor fields,29

respectively. While the shadow limit in which D → ∞ has been extensively studied (cf. [20], [22], [19]),30

there have relatively few studies of localized RD patterns in 3-D with a finite inhibitor diffusivity D (see [2],31

[5], [10], [16] and some references therein). For 3-D spot patterns, the existence, stability, and slow-dynamics32

of multi-spot quasi-equilibrium solutions for the singularly perturbed Schnakenberg RD model was analyzed33

using asymptotic methods in [16]. Although our current study is heavily influenced by [16], our results34

for the GM model offer some new insights into the structure of localized spot solutions for RD systems35

in three-dimensions. In particular, one of our key findings is the existence of two regimes, the D = O(1)36

and D = O(ε−1) regimes, for which localized patterns can be constructed in the GM-model, in contrast37

to the single D = O(ε−1) regime where such patterns occur for the Schnakenberg model. Furthermore,38

our analysis traces this distinction back to the specific far-field behaviour of the appropriate core problem,39
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characterizing the local behavior of a spot, for the GM-model. By numerically solving the core problem, we40

formulate a conjecture regarding the far-field limiting behavior of the solution to the core problem. With41

the numerically established properties of the core problem, strong localized perturbation theory (cf. [17])42

is used to construct N -spot quasi-equilibrium solutions to (1.1), to study their linear stability, and to43

determine their slow-dynamics. We now give a more detailed outline of this paper.44

In the limit ε → 0, in §2 we construct N -spot quasi-equilibrium solutions to (1.1). To do so, we first45

formulate an appropriate core problem for a localized spot, from which we numerically compute certain46

key properties of its far field behavior. Using the method of matched asymptotic expansions, we then47

establish two distinguished regimes for the inhibitor diffusivity D, the D = O(1) and D = O(ε−1) regimes,48

for which N -spot quasi-equilibria exist. By formulating and analyzing a nonlinear algebraic system, we49

then demonstrate that only symmetric patterns can be constructed in the D = O(1) regime, whereas both50

symmetric and asymmetric patterns can be constructed in the D = O(ε−1) regime.51

In §3 we study the linear stability on an O(1) time scale of the N -spot quasi-equilibria constructed52

in §2. More specifically, we use the method of matched asymptotic expansions to reduce a linearized53

eigenvalue problem to a single globally coupled eigenvalue problem. We determine that the symmetric54

quasi-equilibrium patterns analyzed in §2 are always linearly stable in the D = O(1) regime but that55

they may undergo both Hopf and competition instabilities in the D = O(ε−1) regime. Furthermore, we56

demonstrate that the asymmetric patterns studied in §2 for the D = O(ε−1) regime are always unstable.57

Our stability predictions are then illustrated in §5 where the finite element software FlexPDE6 [6] is used58

to perform full numerical simulations of (1.1) for select parameter values.59

In §6 we consider the weak interaction limit, defined by D = O(ε2), where localized spots interact60

weakly through exponentially small terms. In this regime, (1.1) can be reduced to a modified core problem61

from which we numerically calculate quasi-equilibria and determine their linear stability properties. Unlike62

in the D = O(1) and D = O(ε−1) regimes, we establish that spot solutions in the D = O(ε2) regime63

can undergo peanut-splitting instabilities. By performing full numerical simulations using FlexPDE6 [6],64

we demonstrate that these instabilities lead to a cascade of spot self-replication events in 3-D. Although65

spike self-replication for the 1-D GM model have been studied previously in the weak interaction regime66

D = O(ε2) (cf. [4], [8], [11]), spot self-replication for the 3-D GM model has not previously been reported.67

In §7 we briefly consider the generalized GM system characterized by different exponent sets for the68

nonlinear kinetics. We numerically verify that the far-field behavior associated with the new core problem69

for the generalized GM system has the same qualitative properties as for the classical GM model (1.1) This70

directly implies that many of the qualitative results derived for (1.1) in §2–4 still hold in this more general71

setting. Finally, in §8 we summarize our findings and highlight some key open problems for future research.72

2. Asymptotic Construction of an N-Spot Quasi-Equilibrium Solution. In this section we asymp-73

totically construct an N -spot quasi-equilibrium solution where the activator is concentrated at N spec-74

ified points that are well-separated in the sense that x1, . . . , xN ∈ Ω, |xi − xj | = O(1) for i 6= j, and75

dist(xi, ∂Ω) = O(1) for i = 1, . . . , N . In particular, we first outline the relevant core problem and de-76

scribe some of its properties using asymptotic and numerical calculations. Then, the method of matched77

asymptotic expansions is used to derive a nonlinear algebraic system whose solution determines the quasi-78

equilibrium pattern. A key feature of this nonlinear system, in contrast to that derived in [16] for the79

3-D Schnakenberg model, is is that it supports different solutions depending on whether D = O(1) or80

D = O(ε−1). More specifically, we will show that the D = O(1) regime admits only spot quasi-equilibria81

that are symmetric to leading order, whereas the D = O(ε−1) regime admits both symmetric and asym-82
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Figure 1: Plots of numerical solutions of the core problem (2.1): (a) µ(S) versus S, as well as the (b) activator V
and (c) inhibitor U , at a few select values of S. The value S = S? ≈ 0.23865 corresponds to the root of µ(S) = 0.

metric N -spot quasi-equilibria.83

2.1. The Core Problem. A key step in the application of the method of matched asymptotic expansions84

to construct localized spot patterns is the study of the core problem85

∆ρV − V + U−1V 2 = 0 , ∆ρU = −V 2 , ρ > 0 ,(2.1a)86

∂ρV (0) = ∂ρU(0) = 0 ; V −→ 0 and U ∼ µ(S) + S/ρ , ρ→∞ ,(2.1b)8788

where ∆ρ ≡ ρ−2∂ρ
[
ρ2∂ρ

]
. For a given value of S > 0, (2.1) is to be solved for V = V (ρ;S), U = U(ρ;S),89

and µ = µ(S). Specifying the value of S > 0 is equivalent to specifying the L2(R3) norm of V , as can be90

verified by applying the divergence theorem to the second equation in (2.1a) over an infinitely large ball,91

which yields the identity S =
∫∞

0 ρ2 [V (ρ)]2 dρ.92

When S � 1 we deduce from this identity that V = O(
√
S). By applying the divergence theorem to93

the first equation in (2.1a) we get U = O(
√
S), while from (2.1b) we conclude that µ = O(

√
S). It is then94

straightforward to compute the leading order asymptotics95

(2.2) V (ρ;S) ∼
√
S

b
wc(ρ) , U(ρ;S) ∼

√
S

b
, µ(S) ∼

√
S

b
, for S � 1 ,96

where b ≡
∫∞

0 ρ2 [wc(ρ)]2 dρ ≈ 10.423 and wc > 0 is the unique nontrivial solution to97

(2.3) ∆ρwc − wc + w2
c = 0 , ρ > 0 ; ∂ρwc(0) = 0 , wc → 0 as ρ→∞ .98

We remark that (2.3) has been well studied, with existence being proved using a constrained variational99

method, while its symmetry and decay properties are established by a maximum principle (see for example100

Appendix 13.2 of [22]). The limit case S � 1 is related to the shadow limit obtained by taking D → ∞,101

for which numerous rigorous and asymptotic results have previously been obtained (cf. [20], [22], [19]).102

Although the existence of solutions to (2.1) have not been rigorously established, we can use the small S103

asymptotics given in (2.2) as an initial guess to numerically path-follow solutions to (2.1) as S is increased.104

The results of our numerical computations are shown in Figure 1 where we have plotted µ(S), V (ρ;S),105
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and U(ρ;S) for select values of S > 0. A key feature of the plot of µ(S) is that it has a zero crossing106

at S = 0 and S = S? ≈ 0.23865, while it attains a unique maximum on the interval 0 ≤ S ≤ S? at107

S = Scrit ≈ 0.04993. Moreover, our numerical calculations indicate that µ′′(S) < 0 on 0 < S ≤ S?. The108

majority of our subsequent analysis hinges on these numerically determined properties of µ(S). We leave109

the task of rigorously proving the existence of solutions to (2.1) and establishing the numerically verified110

properties of µ(S) as an open problem, which we summarize in the following conjecture:111

Conjecture 2.1. There exists a unique value of S? > 0 such that (2.1) admits a ground state solution112

with the properties that V,U > 0 in ρ > 0 and for which µ(S?) = 0. Moreover, µ(S) satisfies µ(S) > 0 and113

µ′′(S) < 0 for all 0 < S < S?.114

2.2. Derivation of the Nonlinear Algebraic System (NAS). We now proceed with the method of115

matched asymptotic expansions to construct quasi-equilibria for (1.1). First we seek an inner solution by116

introducing local coordinates y = ε−1(x− xi) near the ith spot and letting v ∼ DVi(y) and u ∼ DUi(y) so117

that the local steady-state problem for (1.1) becomes118

(2.4) ∆yVi − Vi + U−1
i V 2

i = 0 , ∆yUi − ε2D−1Ui + V 2
i = 0 , y ∈ R3 .119

In terms of the solution to the core problem (2.1) we determine that120

(2.5) Vi ∼ V (ρ, Siε) +O(D−1ε2) , Ui ∼ U(ρ, Siε) +O(D−1ε2) , ρ ≡ |y| = ε−1|x− xi| ,121

where Siε is an unknown constant that depends weakly on ε. We remark that the derivation of the next122

order term requires that x1, . . . , xN be allowed to vary on a slow time scale. This higher order analysis is123

done in §4 where we derive a system of ODE’s for the spot locations.124

To determine S1ε, . . . , SNε we now derive a nonlinear algebraic system (NAS) by matching inner and125

outer solutions for the inhibitor field. As a first step, we calculate in the sense of distributions that126

ε−3v2 −→ 4πD2
∑N

j=1 Sjε δ(x−xj) +O(ε2) as ε→ 0+. Therefore, in the outer region the inhibitor satisfies127

(2.6) ∆u−D−1u = −4πεD
N∑
j=1

Sjεδ(x− xj) +O(ε3) , x ∈ Ω ; ∂nu = 0 , x ∈ ∂Ω .128

To solve (2.6), we let G(x; ξ) denote the reduced-wave Green’s function satisfying129

∆G−D−1G = −δ(x− ξ) , x ∈ Ω ; ∂nG = 0 , x ∈ ∂Ω ,

G(x; ξ) ∼ 1

4π|x− ξ|
+R(ξ) +∇xR(x; ξ) · (x− ξ) , as x→ ξ ,

(2.7)130

where R(ξ) is the regular part of G. The solution to (2.6) can be written as131

(2.8) u ∼ 4πεD
N∑
j=1

SjεG(x;xj) +O(ε3) .132

Before we begin matching inner and outer expansions to determine S1ε, . . . , SNε we first motivate two133

distinguished limits for the relative size of D with respect to ε. To do so, we note that when D � 1 the134

Green’s function satisfying (2.7) has the regular asymptotic expansion135

(2.9) G(x, ξ) ∼ D|Ω|−1 +G0(x, ξ) +O(D−1) ,136
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where G0(x, ξ) is the Neumann Green’s function satisfying137

∆G0 =
1

|Ω|
− δ(x− ξ) , x ∈ Ω ; ∂nG0 = 0 , x ∈ ∂Ω ;

∫
Ω
G0 dx = 0 ,(2.10a)138

G0(x, ξ) ∼ 1

4π|x− ξ|
+R0(ξ) +∇xR0(x; ξ) · (x− ξ) , as x→ ξ ,(2.10b)139

140

and R0(ξ) is the regular part of G0. In summary, for the two ranges of D we have141

(2.11) G(x, ξ) ∼ 1

4π|x− ξ|
+

{
R(ξ) + o(1) , D = O(1) ,

D|Ω|−1 +R0(ξ) + o(1) , D � 1 ,
as |x− ξ| → 0 ,142

where R(ξ) is the regular part of G(x, ξ). By matching the ρ→∞ behaviour of Ui(ρ) given by (2.5) with143

the behaviour of u given by (2.8) as |x− xi| → 0, we obtain in the two regimes of D that144

(2.12) µ(Siε) = 4πε

{
SiεR(xi) +

∑
j 6=i SjεG(xi, xj) , D = O(1) ,

SiεR0(xi) +
∑

j 6=i SjεG0(xi, xj) +D|Ω|−1
∑N

j=1 Sjε , D � 1 .
145

¿From the D � 1 case we see that D = O(ε−1) is a distinguished regime for which the right-hand side146

has an O(1) contribution. Defining the vectors SSSε ≡ (S1ε, . . . , SNε)
T , µ(SSSε) ≡ (µ(S1ε), . . . , µ(SNε))

T , and147

eee ≡ (1, . . . , 1)T , as well as the matrices EN , G, and G0 by148

(2.13) EN ≡
1

N
eeeeeeT , (G)ij =

{
R(xi) , i = j

G(xi, xj) , i 6= j
, (G0)ij =

{
R0(xi) , i = j

G0(xi, xj) , i 6= j
,149

we obtain from (2.12) that the unknowns S1ε, . . . , SNε must satisfy the NAS150

µ(SSSε) = 4πεGSSSε , for D = O(1) ,(2.14a)151

µ(SSSε) = κENSSSε + 4πεG0SSSε , for D = ε−1D0 , where κ ≡ 4πND0

|Ω|
.(2.14b)152

153

2.3. Symmetric and Asymmetric N-Spot Quasi-Equilibrium. We now determine solutions to the NAS154

(2.14) in both the D = O(1) and the D = O(ε−1) regimes. In particular, we show that it is possible to155

construct symmetric N -spot solutions to (1.1) by finding a solution to the NAS (2.14) with SSSε = Scεeee in156

both the D = O(1) and D = O(ε−1) regimes. Moreover, when D = O(ε−1) we will show that it is possible157

to construct asymmetric quasi-equilibria to (1.1) characterized by spots each having one of two strengths.158

When D = O(1) the NAS (2.14a) implies that to leading order µ(Siε) = 0 for all i = 1, . . . , N . From159

the properties of µ(S) outlined in §2.1 and in particular the plot of µ(S) in Figure 1a, we deduce that160

Siε ∼ S? for all i = 1, . . . , N . Thus, to leading order, N -spot quasi-equilibria in the D = O(1) regime have161

spots with a common height, which we refer to as a symmetric pattern. By calculating the next order162

term using (2.14a) we readily obtain the two term result163

(2.15) SSSε ∼ S?eee+
4πεS?
µ′(S?)

Geee .164

We conclude that the configuration x1, . . . , xN of spots only affects the spot strengths at O(ε) through the165

Green’s matrix G. Note that if eee is an eigenvector of G with eigenvalue g0 then the solution to (2.14a) is166

SSSiε = Scεeee where Scε satisfies the scalar equation µ(Scε) = 4πεg0Scε.167
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Next, we consider solutions to the NAS (2.14b) in the D = ε−1D0 regime. Seeking a solution SSSε ∼168

SSS0 + εSSS1 + · · · we obtain the leading order problem169

(2.16) µ(SSS0) = κENSSS0.170

Note that the concavity of µ(S) (see Figure 1a) implies the existence of two values 0 < Sl < Sr < S? such171

that µ(Sl) = µ(Sr). Thus, in addition to the symmetric solutions already encountered in the D = O(1)172

regime, we also have the possibility of asymmetric solutions, where the spots can have two different heights.173

We first consider symmetric solutions, where to leading order SSS0 = Sceee in which Sc satisfies174

(2.17) µ(Sc) = κSc .175

The plot of µ(S) in Figure 1a, together with the S � 1 asymptotics given in (2.2), imply that a solution176

to (2.17) can be found in the interval 0 < Sc ≤ S? for all κ > 0. In Figure 3a we illustrate graphically that177

the common spot strength Sc is obtained by the intersection of µ(S) with the line κS. We refer to Figure178

4 for plots of the symmetric solution strengths as a function of κ. In addition, we readily calculate that179

(2.18) Sc ∼ S?
(

1 +
κ

µ′(S?)

)
+O(κ2) , for κ� 1 ; Sc ∼

1

bκ2
+O(κ−3) , for κ� 1 ,180

which provide a connection between the D = O(1) and D → ∞ (shadow limit) regimes, respectively.181

From (2.14b), the next order correction SSS1 satisfies µ′(Sc)SSS1 − κENSSS1 = 4πScG0eee. Upon left-multiplying182

this expression by eeeT we can determine eeeTSSS1. Then, by recalling the definition of EN ≡ N−1eeeeeeT we can183

calculate SSS1. Summarizing, a two term asymptotic expansion for the symmetric solution to (2.14b) is184

(2.19) SSSε ∼ Sceee+
4πε

µ′(Sc)

(
ScIN +

µ(Sc)

µ′(Sc)− κ
EN
)
G0eee ,185

provided that µ′(Sc) 6= 0 (i.e. Sc 6= Scrit). Note that µ′(Sc) − κ = 0 is impossible by the following simple186

argument. First, for this equality to hold we require that 0 < S < Scrit since otherwise µ′(Sc) < 0.187

Moreover, we can solve (2.17) for κ to get µ′(Sc) − κ = S−1
c g(Sc) where g(S) ≡ Sµ′(S) − µ(S). However,188

we calculate g′(S) = Sµ′′(S) < 0 and moreover, using the small S asymptotics found in (2.2) we determine189

that g(S) ∼ −
√
S/(4b) < 0 as S → 0+. Therefore, g(Sc) < 0 for all 0 < Sc < Scrit so that µ′(Sc) < κ190

holds. Finally, as for the D = O(1) case, if G0eee = g00eee then the common source values extends to higher191

order and we have SSSε = Scεeee where Scε is the unique solution to the scalar problem192

(2.20) µ(Scε) = (κ+ 4πεg00)Scε .193

Next, we construct of asymmetric N -spot configurations. The plot of µ(S) indicates that for any value194

of Sr ∈ (Scrit, S?] there exists a unique value Sl = Sl(Sr) ∈ [0, Scrit) satisfying µ(Sl) = µ(Sr). A plot of195

Sl(Sr) is shown in Figure 2a. Clearly Sl(Scrit) = Scrit and Sl(S?) = 0. We suppose that to leading order196

the N -spot configuration has n large spots of strength Sr and N − n small spots of strengths Sl. More197

specifically, we seek a solution of the form198

(2.21) SSSε ∼ (Sr, . . . , Sr, Sl(Sr), . . . , Sl(Sr))
T ,199

so that (2.16) reduces to the single scalar nonlinear equation200

(2.22) µ(Sr) = κf(Sr;n/N) , on Scrit < Sr < S? , where f(S; θ) ≡ θS + (1− θ)Sl(S) .201
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Figure 2: Plots of (a) Sl(Sr) and (b) S′
l(Sr) for the construction of asymmetric N -spot patterns. (c) Plots of f(S, θ)

for select values of θ ≡ n/N . For 0 < θ < 0.5 the function f(S, θ) attains an interior minimum in Scrit < S < S?.

Since µ(Scrit)− κf(Scrit;n/N) = µ(Scrit)− κScrit and µ(S?)− κf(S?;n/N) = −κnS?/N < 0, we obtain by
the intermediate value theorem that there exists at least one solution to (2.22) for any 0 < n ≤ N when

0 < κ < κc1 ≡ µ(Scrit)/Scrit ≈ 0.64619 .

Next, we calculate

f ′(S; θ) = (1− θ)
(

θ

1− θ
+ S′l(S)

)
,

where S′l(S) is computed numerically (see Figure 2b). We observe that −1 ≤ S′l(Sr) ≤ 0 with S′l(Scrit) = −1202

and S′l(S?) = 0. In particular, f(S;n/N) is monotone increasing if θ/(1 − θ) = n/(N − n) > 1, while it203

attains a local minimum in (Scrit, S?) if n/(N − n) < 1. A plot of f(S; θ) is shown in Figure 2c. In either204

case, we deduce that the solution to (2.22) when 0 < κ < κc1 is unique (see Figure 3a). On the other hand,205

when n/(N − n) < 1 we anticipate an additional range of values κc1 < κ < κc2 for which (2.22) has two206

distinct solutions Scrit < S̃r < Sr < S?. Indeed, this threshold can be found by demanding that µ(S) and207

κf(S;n/N) intersect tangentially. In this way, we find that the threshold κc2 can be written as208

(2.23a) κc2 = κc2(n/N) ≡ µ(S?r )

f(S?r ;n/N)
,209

where S?r is the unique solution to210

(2.23b) f(S?r ;n/N)µ′(S?r ) = f ′(S?r ;n/N)µ(S?r ) .211

In Figure 3c we plot κc2−κc1 as a functions of n/N where we observe that κc2 > κc1 with κc2−κc1 → 0+212

and κc2 − κc1 →∞ as n/N → 0.5− and n/N → 0+ respectively. Furthermore, in Figure 3b we graphically213

illustrate how multiple solutions to (2.22) arise as θ = n/N and κ are varied. We remark that the condition214

n/(N − n) < 1 implies that n < N/2, so that there are more small than large spots. The appearance of215

two distinct asymmetric patterns in this regime has a direct analogy to results obtained for the 1-D and216

2-D GM model in [18] and [21], respectively. The resulting bifurcation diagrams are shown in Figure 4 for217

n/N = 0.2, 0.4, 0.6. We summarize our results for quasi-equilibria in the following proposition.218
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Figure 3: (a) Illustration of solutions to (2.17) as the intersection between µ(S) and κS. There is a unique solution
if κ < κc1 ≡ µ(Scrit)/Scrit. (b) Illustration of solutions to (2.22) as the intersection between µ(S) and κf(S, θ)
where θ = n/N denotes the fraction of large spots in an asymmetric pattern. Note that when θ = 0.2 < 0.5 and
κ > κc1 ≈ 0.64619 there exist two solutions. (c) Plot of κc2 − κc1 versus n/N . Observe that κc2 − κc1 increases as
the fraction of large spots decreases.

Proposition 2.1. (Quasi-Equilibria): Let ε → 0 and x1, . . . , xN ∈ Ω be well-separated. Then, the 3-D219

GM model (1.1) admits an N -spot quasi-equilibrium solution with inner asymptotics220

(2.24) v ∼ DVi(ε−1|x− xi|) , u ∼ DUi(ε−1|x− xi|) ,221

as x→ xi for each i = 1, . . . , N where Vi and Ui are given by (2.5). When |x− xi| = O(1), the activator is
exponentially small while the inhibitor is given by (2.8). The spot strengths Siε for i = 1, . . . , N completely
determine the asymptotic solution and there are two distinguished limits. When D = O(1) the spot strengths
satisfy the NAS (2.14a), which has the leading order asymptotics (2.15). In particular, Siε ∼ S? so all N -
spot patterns are symmetric to leading order. When D = ε−1D0 the spot strengths satisfy the NAS (2.14b).
A symmetric solution with asymptotics (2.19) where Sc satisfies (2.17) always exists. Moreover, if

0 <
4πND0

|Ω|
< κc1 ≈ 0.64619 ,

then an asymmetric pattern with n large spots of strength Sr ∈ (Scrit, S?) and N −n small spots of strength
Sl ∈ (0, Scrit) can be found by solving (2.22) for Sr and calculating Sl from µ(Sl) = µ(Sr). If, in addition
we have n/(N − n) < 1, then (2.22) admits two solutions on the range

0.64619 ≈ κc1 <
4πND0

|Ω|
< κc2(n/N) ,

where κc2(n/N) is found by solving the system (2.23).222

As we have already remarked, in the D = D0/ε regime, if D0 � 1 then the symmetric N -spot solution223

(2.19) coincides with the symmetric solution for the D = O(1) regime given by (2.15). The asymmetric224

solutions predicted for the D = D0/ε regime persist as D0 decreases and it is, therefore, natural to ask225

what these solutions correspond to in the D = O(1) regime. From the small S asymptotics (2.2) we note226
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Figure 4: Bifurcation diagram illustrating the dependence on κ of the common spot strength Sc as well as the
asymmetric spot strengths Sr and Sl or S̃r and S̃l. In (a) and (b) we have n/N < 0.5 so that there are more small
spots than large spots in an asymmetric pattern. As a result, we observe that there can be two types of asymmetric
patterns with strengths Sr and Sl or S̃r and S̃l. In (c) the number of large spots exceeds that of small spots and only
one type of asymmetric pattern is possible.

that the NAS (2.14a) does admit an asymmetric solution, albeit one in which the source strengths of the227

small spots are of O(ε2). Specifically, for a given integer n in 1 < n ≤ N we can construct a solution where228

(2.25) SSSε ∼ (S?, . . . , S?, ε
2Sn+1,0, . . . , ε

2SN,0)T .229

By using the small S asymptotic expansion for µ(S) given in (2.2), we obtain from (2.14a) that230

(2.26) Si,0 = b

4πS?

n∑
j=1

G(xi, xj)

2

, i = n+ 1, . . . , N .231

We observe that in order to support N −n spots of strength O(ε2), we require at least one spot of strength232

O(1). Setting D = D0/ε, we use the large D asymptotics for G(x, ξ) in (2.9) to reduce (2.26) to233

(2.27) Si,0 ∼ bε−2

(
4πD0nS?
|Ω|

)2

, i = n+ 1, . . . , N .234

Alternatively, by taking κ� 1 in the NAS (2.14b) for the D = D0/ε regime, we conclude that Sr ∼ S? and235

Sl ∼ b (κnS?/N)2. Since κn/N = 4πD0n/|Ω|, as obtained from (2.14b), we confirm that the asymmetric236

patterns in the D = D0/ε regime lead to an asymmetric pattern consisting of spots of strength O(1) and237

O(ε2) in the D = O(1) regime.238

3. Linear Stability. Let (vqe, uqe) be an N -spot quasi-equilibrium solution as constructed in §2. We239

will analyze instabilities for quasi-equilibria that occur on O(1) time-scales. To do so, we substitute240

(3.1) v = vqe + eλtφ , u = uqe + eλtψ ,241

into (1.1) and, upon linearizing, we obtain the eigenvalue problem242

(3.2) ε2∆φ− φ+
2vqe
uqe

φ−
v2
qe

u2
qe

ψ = λφ , D∆ψ − ψ + 2ε−2vqeφ = τλψ ,243
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where ∂nφ = ∂nψ = 0 on ∂Ω. In the inner region near the jth spot, we introduce a local expansion in terms244

of the associated Legendre polynomials Pml (cos θ) of degree l = 0, 2, 3, . . . , and order m = 0, 1, . . . , l245

(3.3) φ ∼ cjDPml (cos θ)eimϕΦj(ρ) , ψ ∼ cjDPml (cos θ)eimϕΨj(ρ) ,246

where ρ = ε−1|x− xj |, and (θ, ϕ) ∈ (0, π)× [0, 2π). Suppressing subscripts for the moment, and assuming247

that ε2τλ/D � 1, we obtain the leading order inner problem248

(3.4a) ∆ρΦ−
l(l + 1)

ρ2
Φ− Φ +

2V

U
Φ− V 2

U2
Ψ = λΦ , ∆ρΨ−

l(l + 1)

ρ2
Ψ + 2V Φ = 0 , ρ > 0 ,249

with the boundary conditions Φ′(0) = Ψ′(0) = 0, and Φ → 0 as ρ → ∞. Here (V,U) satisfy the core250

problem (2.1). The behaviour of Ψ as ρ→∞ depends on the parameter l. More specifically, we have that251

(3.4b) Ψ ∼

{
B(λ, S) + ρ−1 , for l = 0 ,

ρ−(1/2+γl) , for l > 0 ,
as ρ→∞ ,252

where γl ≡
√

1
4 + l(l + 1) and B(λ, S) is a constant. Here we have normalized Ψ by fixing to unity the253

multiplicative factor in the decay rate in (3.4b). Next, we introduce the Green’s function Gl(ρ, ρ̃) solving254

(3.5) ∆ρGl −
l(l + 1)

ρ2
Gl = −ρ−2δ(ρ− ρ̃) , given by Gl(ρ, ρ̃) =

1

2γl
√
ρρ̃

{
(ρ/ρ̃)γl , 0 < ρ < ρ̃ ,

(ρ̃/ρ)γl , ρ > ρ̃ ,
255

when l > 0. For l = 0 the same expression applies, but an arbitrary constant may be added. For convenience256

we fix this constant to be zero. In terms of this Green’s function we can solve for Ψ explicitly in (3.4a) as257

(3.6) Ψ = 2

∫ ∞
0

Gl(ρ, ρ̃)V (ρ̃)Φ(ρ̃)ρ̃2 dρ̃+

{
B(λ, S) , for l = 0 ,

0 , for l > 0 .
258

Upon substituting this expression into (3.4a) we obtain the nonlocal spectral problems259

(3.7a) M0Φ = λΦ +B(λ, S)
V 2

U2
, for l = 0 ; MlΦ = λΦ , for l > 0 .260

Here the integro-differential operator Ml is defined for every l ≥ 0 by261

(3.7b) MlΦ ≡ ∆ρΦ−
l(l + 1)

ρ2
Φ− Φ +

2V

U
Φ− 2V 2

U2

∫ ∞
0

Gl(ρ, ρ̃)V (ρ̃)Φ(ρ̃)ρ̃2 dρ̃ .262

A key difference between the l = 0 and l > 0 linear stability problems is the appearance of an unknown263

constant B(λ, S) in the l = 0 equation. This unknown constant is determined by matching the far-field264

behaviour of the inner inhibitor expansion with the outer solution. In this sense, we expect that B(λ, S)265

will encapsulate global contributions from all spots, so that instabilities for the mode l = 0 are due to266

the interactions between spots. In contrast, the absence of an unknown constant for instabilities for the267

l > 0 modes indicates that these instabilities are localized, and that the weak effect of any interactions268

between spots occurs only through higher order terms. In this way, instabilities for modes with l > 0 are269

determined solely by the spectrum of the operator Ml. In Figure 5a we plot the numerically-computed270
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Figure 5: (a) Spectrum of the operator Ml defined in (3.7b). The dashed blue line indicates the eigenvalue with
second largest real part for l = 0. Notice that the dominant eigenvalue of M0 is zero when S = Scrit ≈ 0.04993,
corresponding to the maximum of µ(S) (see Figure 1a). (b) Plot of B(λ, S). The dashed line black indicates the
largest positive eigenvalue of M0(S) and also corresponds to the contour B(λ, S) = 0. We observe that B(λ, S) is
both continuous and negative for S > Scrit ≈ 0.04993.

dominant eigenvalue of Ml for l = 0, 2, 3 as well as the sub dominant eigenvalue for l = 0 for 0 < S < S?.271

This spectrum is calculated from the discretization of Ml obtained by truncating the infinite domain to272

0 < ρ < L, with L � 1, and using a finite difference approximation for spatial derivatives combined with273

a trapezoidal rule discretization of the integral terms. The l = 1 mode always admits a zero eigenvalue,274

as this simply reflects the translation invariance of the inner problem. Indeed, these instabilities will be275

briefly considered in Section 4 where we consider the slow dynamics of quasi-equilibrium spot patterns.276

From Figure 5a we observe that the dominant eigenvalues of Ml for l = 2, 3 satisfy Re(λ) < 0 (numerically277

we observe the same for larger values of l). Therefore, since the modes l > 1 are always linearly stable, for278

the 3-D GM model there will be no peanut-splitting or spot self-replication instabilities such as observed279

for the 3-D Schnakenberg model in [16]. In the next subsection we will focus on analyzing instabilities280

associated with l = 0 mode, which involves a global coupling between localized spots.281

3.1. Competition and Hopf Instabilities for the l = 0 Mode. ¿From (3.7a) we observe that λ is in the282

spectrum of M0 if and only if B(λ, S) = 0. Assuming that B(λ, S) 6= 0 we can then solve for Φ in (3.7a) as283

(3.8) Φ = B(λ, S)(M0 − λ)−1(V 2/U2) .284

Upon substituting (3.8) into the expression (3.6) for Ψ when l = 0, we let ρ → ∞ and use G0(ρ, ρ̃) ∼ 1/ρ285

as ρ→∞, as obtained from (3.5), to deduce the far-field behavior286

(3.9) Ψ ∼ B +
2B

ρ

∫ ∞
0

V (M0 − λ)−1(V 2/U2)ρ2d ρ , as ρ→∞ .287

We compare this expression with the normalized decay condition on Ψ in (3.4b) for l = 0 to conclude that288

(3.10) B(λ, S) =
1

2
∫∞

0 V (M0 − λ)−1(V 2/U2)ρ2 dρ
.289

We now solve the outer problem and through a matching condition derive an algebraic equation for the290

eigenvalue λ. Since the interaction of spots will be important for analyzing instabilities for the l = 0 mode,291
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we re-introduce the subscript j to label the spot. First, since ∂ρΨj ∼ −ρ−2 as ρ → ∞, as obtained from292

(3.4b) for l = 0, an application of the divergence theorem to ∆ρΨj = −2VjΦj yields that
∫∞

0 VjΦjρ
2 dρ =293

1/2. Next, by using vqe ∼ DVj(ρ) and φ ∼ cjDΦj(ρ) for |x− xj | = O(ε) as obtained from (2.24) and (3.3),294

respectively, we calculate in the sense of distributions for ε→ 0 that295

2ε−2vqeφ→ 8πεD2
N∑
j=1

cj

(∫ ∞
0

VjΦjρ
2 dρ

)
δ(x− xj) = 4πεD2

N∑
j=1

cjδ(x− xj) .296

Therefore, by using this distributional limit in the equation for ψ in (3.2), the outer problem for ψ is297

(3.11) ∆ψ − (1 + τλ)

D
ψ = −4πεD

N∑
j=1

cjδ(x− xj) , x ∈ Ω ; ∂nψ = 0 , x ∈ ∂Ω .298

The solution to (3.11) is represented as299

(3.12) ψ = 4πεD
N∑
j=1

cjG
λ(x, xj) ,300

where Gλ(x, ξ) is the eigenvalue-dependent Green’s function satisfying301

∆Gλ − (1 + τλ)

D
Gλ = −δ(x− ξ) , x ∈ Ω ; ∂nG

λ = 0 , x ∈ ∂Ω ,

Gλ(x, ξ) ∼ 1

4π|x− ξ|
+Rλ(ξ) + o(1) , as x→ ξ .

(3.13)302

By matching the limit as x → xi of ψ in (3.12) with the far-field behaviour ψ ∼ DciB(λ, Si) of the inner303

solution, as obtained from (3.9) and (3.3), we obtain the matching condition304

(3.14) B(λ, Si)ci = 4πε

(
ciR

λ(xi) +
N∑
j 6=i

cjG
λ(xi, xj)

)
.305

As similar to the construction of quasi-equilibria in §2, there are two distinguished limits D = O(1) and306

D = D0/ε to consider. The stability properties are shown to be significantly different in these two regimes.307

In the D = O(1) regime, we recall that Si ∼ S? for i = 1, . . . , N where µ(S?) = 0. From (3.14), we308

conclude to leading order that B(λ, S?) = 0, so that λ must be an eigenvalue of M0 when S = S?. However,309

from Figure 5a we find that all eigenvalues of M0 when S = S? satisfy Re(λ) < 0. As such, from our leading310

order calculation we conclude that N -spot quasi-equilibria in the D = O(1) regime are all linearly stable.311

For the remainder of this section we focus exclusively on the D = D0/ε regime. Assuming that312

ε|1 + τλ|/D0 � 1 we calculate Gλ(x, ξ) ∼ ε−1D0/ [(1 + τλ)|Ω|] + G0(x, ξ), where G0 is the Neumann313

Green’s function satisfying (2.10). We substitute this limiting behavior into (3.14) and, after rewriting the314

the resulting homogeneous linear system for ccc ≡ (c1, . . . , cN )T in matrix form, we obtain315

(3.15) Bccc =
κ

1 + τλ
ENccc+ 4πεG0ccc , where B ≡ diag(B(λ, S1), . . . , B(λ, SN )) , EN ≡ N−1eeeeeeT .316

Here G0 is the Neumann Green’s matrix and κ ≡ 4πND0/|Ω| (see (2.14b)). Next, we separate the proceeding317

analysis into the two cases: symmetric quasi-equilbrium patterns and asymmetric quasi-equilibria.318
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3.1.1. Stability of Symmetric Patterns in the D = D0/ε Regime. We suppose that the quasi-319

equilibrium solution is symmetric so that to leading order S1 = . . . = SN = Sc where Sc is found by320

solving the nonlinear algebraic equation (2.17). Then, from (3.15), the leading order stability problem is321

(3.16) B(λ, Sc)ccc =
κ

1 + τλ
ENccc .322

We first consider competition instabilities for N ≥ 2 characterized by cccTeee = 0 so that ENccc = 0. Since323

B(λ, Sc) = 0 from (3.16), it follows that λ must be an eigenvalue of M0, defined in (3.7b), at S = Sc.324

From Figure 5a we deduce that the pattern is unstable for S below some threshold where the dominant325

eigenvalue of M0 equals zero. In fact, this threshold is easily determined to correspond to Sc = Scrit, where326

µ′(Scrit) = 0, since by differentiating the core problem (2.1) with respect to S and comparing the resulting327

system with (3.4) when l = 0, we conclude that B(0, Sc) = µ′(Sc). The dotted curve in Figure 5b shows that328

the zero level curve B(λ, Sc) = 0 is such that λ > 0 for Sc < Scrit. As such, we conclude from (2.17) that329

symmetric N -spot quasi-equilibria are unstable to competition instabilities when κ > κc1 ≡ µ(Scrit)/Scrit.330

For special spot configurations {x1, . . . , xN} where eee is an eigenvector of G0 we can easily calculate331

a higher order correction to this instability threshold. Since G0 is symmetric, there are N − 1 mutually332

orthogonal eigenvectors qqq2, . . . , qqqN such that G0qqqk = gkqqqk with qqqTk eee = 0. Setting ccc = qqqk in (3.15), and using333

B(0, S) ∼ εµ′′(Scrit)δ for S = Scrit + εδ, we can determine the perturbed stability threshold where λ = 0334

associated with each eigenvector qqqk. By taking the minimum of such values, and by recalling the refined335

approximation (2.20), we obtain that N -spot symmetric quasi-equilibria are all unstable on the range336

(3.17) Scε < Scrit +
4πε

µ′′(Scrit)
min

k=2,...,N
gk .337

Next we consider the case ccc = eee for which we find from (3.15) that, to leading order, λ satisfies338

(3.18) B(λ, Sc)−
κ

1 + τλ
= 0 .339

First, we note that λ = 0 is not a solution of (3.18) since, by using B(0, S) = µ′(S), this would require that340

µ′(Sc) = κ, which the short argument following (2.19) demonstrates is impossible. Therefore, the ccc = eee341

mode does not admit a zero-eigenvalue crossing and any instability that arises must occur through a Hopf342

bifurcation. We will seek a leading order threshold τ = τh(κ) beyond which a Hopf bifurcation is triggered.343

To motivate the existence of such a threshold we consider first the κ→∞ limit for which the asymptotics344

(2.18) implies that Sc = 1/(bκ2) � 1 so that from the small S expansion (2.2) of the core solution we345

calculate from (3.7b) that M0Φ ∼ ∆ρΦ − Φ + 2wcΦ + O(κ−1). Then, by substituting this expression,346

together with the small S asymptotics (2.2) where Sc ∼ 1/bκ2 � 1, into (3.10) we can determine B(λ, Sc)347

when κ � 1. Then, by using the resulting expression for B in (3.18), we obtain the following well-known348

nonlocal eigenvalue problem (NLEP) corresponding to the shadow limit κ = 4πND0/|Ω| → ∞:349

(3.19) 1 + τλ−
2
∫∞

0 wc(∆ρ − 1 + 2wc − λ)−1w2
cρ

2 dρ∫∞
0 w2

cρ
2 dρ

= 0 .350

¿From Table 1 in [19], this NLEP has a Hopf bifurcation at τ = τ∞h ≈ 0.373 with corresponding critical351

eigenvalue λ = iλ∞h with λ∞h ≈ 2.174. To determine τh(κ) for κ = O(1), we set λ = iλh in (3.18) and352

separate the resulting expression into real and imaginary parts to obtain353

(3.20) τh = − Im (B(iλh, Sc))

λhRe (B(iλh, Sc))
,

|B(iλh, Sc)|2

Re (B(iλh, Sc))
− κ = 0 ,354
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Figure 6: Leading order (a) Hopf bifurcation threshold τh(κ) and (b) critical eigenvalue λ = iλh for a symmetric
N -spot pattern as calculated by solving (3.20) numerically. The leading order theory assumes ε|1 + τλ|/D0 � 1 and
is independent of the spot locations. We calculate the higher order Hopf bifurcation threshold for an N = 1 spot
pattern centered at the origin of the unit ball with ε = 0.01 by solving (3.14) directly (note κ = 3D0). In (c) we see
that although the leading order Hopf bifurcation threshold diverges as κ→ κc1, going to higher order demonstrates
that a large but finite threshold persists.

where Sc depends on κ from (2.17). Starting with κ = 50 we solve the second equation for λh using Newton’s355

method with λh = λ∞h as an initial guess. We then use the first equation to calculate τh. Decreasing κ and356

using the previous solution as an initial guess we obtain the curves τh(κ) and λh(κ) as shown in Figure 6.357

We conclude this section by noting that as seen in Figures 6a and 6c the leading order Hopf bifurcation358

threshold diverges as κ → κ+
c1, where κc1 = µ(Scrit)/Scrit. This is a direct consequence of the assumption359

that ε|1+τλ|/D0 � 1 which fails to hold as τ gets increasingly large. Indeed, by using the series expansion360

in (3.12)–(3.14) of [12] for the reduced wave Green’s function in the sphere, we can solve (3.14) directly using361

Newton’s method for an N = 1 spot configuration centered at the origin of the unit ball. Fixing ε = 0.001,362

this yields the higher order asymptotic approximation for the Hopf bifurcation threshold indicated by the363

dashed lines in Figure 6. This shows that to higher order the bifurcation threshold is large but finite in364

the region κ ≤ κc1. Moreover, it hints at an ε dependent rescaling of τ in the region κ ≤ κc1 for which a365

counterpart to (3.16) may be derived. While we do not undertake this rescaling in this paper we remark366

that for 2-D spot patterns this rescaling led to the discovery in [15] of an anomalous scaling law for the367

Hopf threshold.368

3.1.2. Stability of Asymmetric Patterns in the D = D0/ε Regime. When the N -spot pattern consists369

of n large spots of strength S1 = . . . = Sn = Sr and N − n small spots of strength Sn+1 = . . . = SN = Sl,370

the leading order linear stability is characterized by the blocked matrix system371

(3.21)

(
B(λ, Sr)In 0

0 B(λ, Sl)IN−n

)
ccc =

κ

1 + τλ
ENccc ,372

where Im denotes the m ×m identity matrix. In particular, an asymmetric quasi-equilibrium solution is373

linearly unstable if this system admits any nontrivial modes, ccc, for which λ has a positive real part. We374

will show that asymmetric patterns are always unstable by explicitly constructing unstable modes.375
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First, we assume that 1 ≤ n < N − 1 and we choose ccc to be a mode satisfying376

(3.22) c1 = · · · = cn = 0 , cn+1 + · · ·+ cN = 0 .377

Note that this mode describes competition among the N − n small spots of strength Sl. For such a mode,378

(3.21) reduces to the single equation B(λ, Sl) = 0, which implies that λ must be an eigenvalue of M0 at379

S = Sl. However, since Sl < Scrit, we deduce from Figure 5a that there exists a real and positive λ for M0380

at S = Sl. As such, any mode ccc satisfying (3.22) is linearly unstable.381

We must consider the n = N − 1 case separately since (3.22) fails to yield nontrivial modes. Instead of382

considering competition between the small spots, we instead consider competition between large and small383

spots collectively. We assume that n ≥ N − n, for which n = N − 1 is a special case, and we try to exhibit384

an unstable mode ccc of the form385

(3.23) c1 = . . . = cn = cr , cn+1 = . . . = cN = cl .386

Then, (3.21) reduces to the system of two equations387 (
B(λ, Sr)− κ

1+τλ
n
N

)
cr − κ

1+τλ
(N−n)
N cl = 0 , − κ

1+τλ
n
N cr +

(
B(λ, Sl)− κ

1+τλ
(N−n)
N

)
cl = 0 ,388

which admits a nontrivial solution if and only if the determinant of this 2× 2 system vanishes. Therefore,389

to show that this mode is unstable it suffices to prove that the zero-determinant condition, written as390

(3.24) F (λ) ≡ B(λ, Sl)B(λ, Sr)−
κ

1 + τλ

(
n

N
B(λ, Sl) +

(N − n)

N
B(λ, Sr)

)
= 0 ,391

has a solution λ > 0. To establish this, we first differentiate µ(Sr) = µ(Sl) with respect to Sr to obtain the392

identity µ′(Sl)S
′
l(Sr) = µ′(Sr). Combining this result with B(0, S) = µ′(S) we calculate that393

(3.25) F (0) = µ′(Sl)

[
µ′(Sr)− κ

(N − n)

N

(
n

(N − n)
+
dSl
dSr

)]
.394

Using µ′(Sl) > 0 and µ′(Sr) < 0 together with S′l(Sr) > −1 (see Figure 2b) and the assumption n/(N−n) ≥395

1, we immediately deduce that F (0) < 0. Next, we let λ0 > 0 be the dominant eigenvalue of M0 when396

S = Sl (see Figure 5a) so that B(λ0, Sl) = 0. Then, from (3.24) we obtain397

(3.26) F (λ0) = − κ

1 + τλ0

(N − n)

N
B(λ0, Sr) .398

However, since M0 at S = Sr > Scrit has no positive eigenvalues (see Figure 5a), we deduce that B(λ, Sr)399

is of one sign for λ ≥ 0 and, furthermore, it must be negative since B(0, Sr) = µ′(Sr) < 0 (see Figure 5b for400

a plot of B showing both its continuity and negativity for all λ > 0 when S > Scrit). Therefore, we have401

F (λ0) > 0 and so, combined with (3.25), by the intermediate value theorem it follows that F (λ) = 0 has a402

positive solution. We summarize our leading order linear stability results in the following proposition:403

Proposition 3.1. (Linear Stability): Let ε � 1 and assume that t � O(ε−3). When D = O(1), the404

N -spot symmetric pattern from Proposition 2.1 is linearly stable. If D = ε−1D0 then the symmetric N -405

spot pattern from Proposition 2.1 is linearly stable with respect to zero-eigenvalue crossing instabilities if406

κ < κc1 ≡ µ(Scrit)/Scrit ≈ 0.64619 and is unstable otherwise. Moreover, it is stable with respect to Hopf407

instabilities on the range κ > κc1 if τ < τh(κ) where τh(κ) is plotted in Figure 6a. Finally, every asymmetric408

N -spot pattern in the D = ε−1D0 regime is always linearly unstable.409
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4. Slow Spot Dynamics. A wide variety of singularly perturbed RD systems are known to exhibit slow410

dynamics of multi-spot solutions in 2-D domains (cf. [9], [3], [13], [17]). In this section we derive a system411

of ODE’s which characterize the motion of the spot locations x1, . . . , xN for the 3-D GM model on a slow412

time scale. Since the only N -spot patterns that may be stable on an O(1) time scale are (to leading order)413

symmetric we find that the ODE system reduces to a gradient flow. We remark that both the derivation414

and final ODE system are closely related to those in [16] for the 3-D Schnakenberg model.415

The derivation of slow spot dynamics hinges on establishing a solvability condition for higher order416

terms in the asymptotic expansion in the inner region near each spot. As a result, we begin by collecting417

higher order expansions of the limiting behaviour as |x − xi| → 0 of the Green’s functions G(x, xj) and418

G0(x, xj) that satisfy (2.7) and (2.10), respectively. In particular, we calculate that419

(4.1a) G(xi + εy, xj) ∼

{
G(xi, xj) + εy · ∇1G(xi, xj) , i 6= j ,

1
4περ +R(xi) + εy · ∇1R(xi;xi) , i = j ,

as |x− xi| → 0 ,420

where ρ = |y| and ∇1R(xi;xi) ≡ ∇xR(x;x1)|x=x1 . Likewise, for the Neumann Green’s function, we have421

(4.1b) G0(xi + εy, xj) ∼
D0

ε|Ω|
+

{
G0(xi, xj) + εy · ∇1G0(xi, xj) , i 6= j ,

1
4περ +R0(xi) + εy · ∇1R0(xi;xi) , i = j ,

as |x− xi| → 0 ,422

where ∇1 again denotes the gradient with respect to the first argument. We next extend the asymptotic423

construction of quasi-equilibrium patterns in §2 by allowing the spot locations to vary on a slow time scale.424

In particular, a dominant balance in the asymptotic expansion requires that xi = xi(σ) where σ = ε3t. For425

x near xi we introduce the two term inner expansion426

(4.2) v ∼ DVi ∼ D(Viε(ρ) + ε2Vi2(y) + · · · ) , u ∼ DUi ∼ D
(
Uiε(ρ) + ε2Ui2(y) + · · ·

)
,427

where we note the leading order terms are Viε(ρ) ≡ V (ρ, Siε) and Uiε(ρ) ≡ U(ρ, Siε). By using the chain428

rule we calculate ∂tVi = −ε2x′i(σ) · ∇yVi and ∂tUi = −ε2x′i(σ) · ∇yUi. In this way, upon substituting (4.2)429

into (1.1) we collect the O(ε2) terms to obtain that Vi2 and Ui2 satisfy430

(4.3a) LiεWWW i2 ≡ ∆yWWW i2 +QiεWWW i2 = −fff iε , y ∈ R2 ,431

where432

(4.3b) WWW i2 ≡
(
Vi2
Ui2

)
, fff iε ≡

(
ρ−1V ′iε(ρ)x′i(σ) · y
−D−1Uiε

)
, Qiε ≡

(
−1 + 2U−1

iε Viε −U
−2
iε V

2
iε

2Viε 0

)
.433

It remains to determine the appropriate limiting behaviour as ρ → ∞. From the first row of Qiε, we434

conclude that Vi2 → 0 exponentially as ρ→∞. However, the limiting behaviour of Ui2 must be established435

by matching with the outer solution. To perform this matching, we first use the distributional limit436

ε−2v2 −→ 4πεD2
N∑
j=1

Sjεδ(x− xj) + 2ε3D2
N∑
j=1

(∫
R3

VjεVj2 dy

)
δ(x− xj) ,437

where the localization at each x1, . . . , xN eliminates all cross terms. We then update (2.8) to include the438

O(ε3) correction term. This leads to the refined approximation for the outer solution439

(4.4) u ∼ 4πεD
N∑
j=1

SjεG(x;xj) + 2ε3D
N∑
j=1

(∫
R3

VjεVj2 dy

)
G(x;xj) .440
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We observe that the leading order matching condition is immediately satisfied in both the D = O(1) and the441

D = D0/ε regimes. To establish the higher order matching condition we distinguish between the D = O(1)442

and D = ε−1D0 regimes and use the higher order expansions of the Green’s functions as given by (4.1a)443

and (4.1b). In this way, in the D = O(1) regime we obtain the far-field behaviour as |y| → ∞ given by444

(4.5) Ui2 ∼
1

2πρ

∫
R3

ViεVi2 dy + y · biε ,
biε
4π
≡ Siε∇1R(xi;xi) +

∑
j 6=i

Sjε∇1G(xi, xj) .445

Similarly, in the D = D0/ε regime we obtain the following far-field matching condition as |y| → ∞:446

(4.6)

Ui2 ∼
1

2πρ

∫
R3

ViεVi2 dy +
2D0

|Ω|

N∑
j=1

∫
R3

VjεVj2 dy + y · b0iε ,
b0iε
4π
≡ Siε∇1R0(xi;xi) +

∑
j 6=i

Sjε∇1G0(xi, xj) .447

In both cases, our calculations below will show that only biε and b0iε affect the slow spot dynamics.448

To characterize slow spot dynamics we calculate x′i(σ) by formulating an appropriate solvability con-449

dition. We observe for each k = 1, 2, 3 that the functions ∂ykWWW iε where WWW iε ≡ (Viε, Uiε)
T satisfy the450

homogeneous problem Liε∂ykWWW iε = 0. Therefore, the null-space of the adjoint operator L ?
iε is at least451

three-dimensional. Assuming it is exactly three dimensional we consider the three linearly independent452

solutions ΨΨΨik ≡ ykPPP i(ρ)/ρ to the homogeneous adjoint problem, where each PPP i(ρ) = (Pi1(ρ), Pi2(ρ)T solves453

(4.7) ∆ρPPP i −
2

ρ2
PPP i +QTiεPPP i = 0 , ρ > 0 ; PPP ′i(0) =

(
0
0

)
; with QTiε −→

(
−1 0
0 0

)
as ρ→∞ .454

Owing to this limiting far-field behavior of the matrix QTiε, we immediately deduce that Pi2 = O(ρ−2)455

and that Pi1 decays exponentially to zero as ρ → ∞. Enforcing, for convenience, the point normalization456

condition Pi2 ∼ ρ−2 as ρ→∞, we find that (4.7) admits a unique solution. We use each ΨΨΨik to impose a457

solvability condition by multiplying (4.3a) by ΨΨΨT
ik and integrating over the ball, Bρ0 , centered at the origin458

and of radius ρ0 with ρ0 � 1. Then, by using the divergence theorem, we calculate459

(4.8) lim
ρ0→∞

∫
Bρ0

(
ΨΨΨT
ik LiWWW i2 −WWW i2 L ?

i ΨΨΨik

)
dy = lim

ρ0→∞

∫
∂Bρ0

(
ΨΨΨT
ik∂ρWWW i2 −WWW T

i2∂ρΨΨΨik

)∣∣∣∣
ρ=ρ0

ρ2
0 dΘ ,460

where Θ denotes the solid angle for the unit sphere.461

To proceed, we use the following simple identities given in terms of the Kronecker symbol δkl:462

(4.9)

∫
Bρ0

ykf(ρ) dy = 0 ,

∫
Bρ0

ykylf(ρ) dy = δkl
4π

3

∫ ρ0

0
ρ4f(ρ) dρ , for l, k = 1, 2, 3 .463

Since L ?
i ΨΨΨik = 0, we can use (4.3a) and (4.9) to calculate the left-hand side of (4.8) as464

lim
ρ0→∞

∫
Bρ0

ΨΨΨT
ikLiWWW i2dy = lim

ρ0→∞

(
−

3∑
l=1

x′il(σ)

∫
Bρ0

ykyl
Pi1(ρ)V ′iε(ρ)

ρ2
dy +

1

D

∫
Bρ0

yk
Pi2(ρ)Uiε(ρ)

ρ
dy

)
= −4π

3
x′ik(σ)

∫ ∞
0

Pi1(ρ)V ′iε(ρ)ρ2 dρ .

(4.10)

465
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Figure 7: Plot of the numerically-computed multiplier γ(S) as defined in the slow gradient flow dynamics (4.14).

Next, in calculating the right-hand side of (4.8) by using the far-field behavior (4.5) and (4.6), we observe466

that only biε and b0iε terms play a role in the limit. In particular, in the D = O(1) regime we calculate in467

terms of the components of biεl of the vector biε, as given in (4.5), that468

lim
ρ0→∞

∫
∂Bρ0

ΨΨΨT
ik∂ρWWW i2

∣∣
ρ=ρ0

ρ2
0 dΘ = lim

ρ0→∞

3∑
l=1

biεl

∫
∂Bρ0

ykyl
ρ2

0

dΘ =
4π

3
biεk ,

lim
ρ0→∞

∫
∂Bρ0

WWW T
i2∂ρΨΨΨik

∣∣
ρ=ρ0

ρ2
0 dΘ = −2 lim

ρ0→∞

3∑
l=1

biεl

∫
∂Bρ0

ykyl
ρ2

0

dΘ = −8π

3
biεk .

(4.11)469

¿From (4.8), (4.10), and (4.11), we conclude for the D = O(1) regime that470

(4.12) x′ik(σ) = − 3

γ(Siε)
biεk , where γ(Siε) ≡

∫ ∞
0

Pi1(ρ)V ′i (ρ, Siε)ρ
2 dρ ,471

which holds for each component k = 1, 2, 3 and each spot i = 1, . . . , N . From symmetry considerations we472

see that the constant contribution to the far-field behaviour, as given by the first term in (4.5), is eliminated473

when integrated over the boundary. In an identical way, we can determine x′ik for the D = D0/ε regime.474

In summary, in terms of the gradients of the Green’s functions and γiε ≡ γ(Siε), as defined in (4.12), we475

obtain the following vector-valued ODE systems for the two distinguished ranges of D:476

dxi
dσ

= −12π

γiε


(
Siε∇1R(xi;xi) +

∑
j 6=i Sjε∇1G(xi, xj)

)
, for D = O(1) ,(

Siε∇1R0(xi;xi) +
∑

j 6=i Sjε∇1G0(xi, xj)

)
, for D = D0/ε .

(4.13)477

Since only the symmetric N -spot configurations can be stable on an O(1) time scale (see Proposition478

3.1), it suffices to consider the ODE systems in (4.13) when Siε = S? +O(ε) in the D = O(1) regime and479

when Siε = Sc + O(ε), where Sc solves (2.17), in the D = ε−1D0 regime. In particular, we find that to480

leading order, where the O(ε) corrections to the source strengths are neglected, the ODE systems in (4.13)481

can be reduced to the gradient flow dynamics482

(4.14a)
dxi
dσ

= − 6πS

γ(S)
∇xiH (x1, . . . , xN ) , with γ(S) =

∫ ∞
0

P1(ρ)V1(ρ, S)ρ2 dρ ,483
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Figure 8: (a) Leading order Hopf bifurcation threshold for a one-spot pattern. (b) Plots of the spot height v(0, t)
from numerically solving (1.1) using FlexPDE6 [6] in the unit ball with ε = 0.05 at the indicated τ and D0 values.

where S = S? or S = Sc depending on whether D = O(1) or D = ε−1D0, respectively. In (4.14) the discrete484

energy H , which depends on the instantaneous spot locations, is defined by485

(4.14b) H (x1, . . . , xN ) ≡

{∑N
i=1R(xi) + 2

∑N
i=1

∑
j>iG(xi, xj) , for D = O(1) ,∑N

i=1R0(xi) + 2
∑N

i=1

∑
j>iG0(xi, xj) , for D = ε−1D0 .

486

In accounting for the factor of two between (4.14) and (4.13), we used the reciprocity relations for the487

Green’s functions. In this leading order ODE system, the integral γ(S) is the same for each spot, since488

P1(ρ) is computed numerically from the homogeneous adjoint problem (4.7) using the core solution V1(ρ, S)489

and U1(ρ, S) to calculate the matrix QTiε in (4.7). In Figure 7 we plot the numerically-computed γ(S), where490

we note that γ(S) > 0. Since γ(S) > 0, local minima of H are linearly stable equilibria for (4.14).491

We remark that this gradient flow system (4.14) differs from that derived in [16] for the 3-D Schnaken-492

berg model only through the constant γ(S). Since this parameter affects only the time-scale of the slow493

dynamics we deduce that the equilibrium configurations and stability properties for the ODE dynamics will494

be identical to those of the Schnakenberg model. As such, we do not analyze (4.14) further and instead refer495

to [16] for more detailed numerical investigations. Finally we note that the methods employed here and496

in [16] should be applicable to other 3-D RD systems yielding similar limiting ODE systems for slow spot497

dynamics. The similarity between slow dynamics for a variety of RD systems in 2-D has been previously498

observed and a general asymptotic framework has been pursued in [13] for the dynamics on the sphere.499

5. Numerical Examples. In this section we use FlexPDE6 [6] to numerically solve (1.1) when Ω is the500

unit ball. In particular, we illustrate the emergence of Hopf and competition instabilities, as predicted in501

§3 for symmetric spot patterns in the D = D0/ε regimes.502

We begin by considering a single spot centered at the origin in the unit ball, for the D = ε−1D0 regime.503

Since no competition instabilities occur for a single spot solution, we focus exclusively on the onset of Hopf504
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Figure 9: (a) Plots of the spot heights (solid and dashed lines) in a two-spot symmetric pattern at the indicated
values of D0. Results were obtained by using FlexPDE6 [6] to solve (1.1) in the unit ball with ε = 0.05 and τ = 0.2.
(b) plot of three-dimensional contours of v(x, t) for D0 = 0.112, with contours chosen at v = 0.1, 0.2, 0.4.

instabilities as τ is increased. In Figure 8a we plot the Hopf bifurcation threshold obtained from our linear505

stability theory, and indicate several sample points below and above the threshold. Using FlexPDE6 [6],506

we performed full numerical simulations of (1.1) in the unit ball with ε = 0.05 and parameters D0 and507

τ corresponding to the labeled points in Figure 8a. The resulting activator height at the origin, v(0, t),508

computed from FlexPDE6 is shown in Figure 8b for these indicated parameter values. We observe that509

there is good agreement with the onset of Hopf bifurcations as predicted by our linear stability theory.510

Next, we illustrate the onset of a competition instability by considering a symmetric two-spot configu-511

rations with spots centered at (±0.51565, 0, 0) in the unit ball and with τ = 0.2 (chosen small enough to512

avoid Hopf bifurcations) and ε = 0.05. The critical value of κc1 ≈ 0.64619 then implies that the leading513

order competition instability threshold for the unit ball with |Ω| = 4π/3 is D0 ≈ 0.64619/(3N) = 0.108. We514

performed full numerical simulations of (1.1) using FlexPDE6 [6] with values of D0 = 0.09 and D0 = 0.112.515

The results of our numerical simulations are shown in Figure 9, where we observe that a competition in-516

stability occurs for D0 = 0.112, as predicted by the linear stability theory. Moreover, in agreement with517

previous studies of competition instabilities (cf. [16], [3]), we observe that a competition instability triggers518

a nonlinear event leading to the annihilation of one spot.519

6. The Weak Interaction Limit D = O(ε2). In §3 we have shown in both the D = O(1) and520

D = O(ε−1) regimes that N -spot quasi-equilibria are not susceptible to locally non-radially symmetric521

instabilities. Here we consider the weak-interaction regime D = D0ε
2, where we numerically determine522

that locally non-radially symmetric instabilities of a localized spot are possible. First, we let ξ ∈ Ω satisfy523

dist(ξ, ∂Ω)� O(ε2) and we introduce the local coordinates x = ξ + εy and the inner variables v ∼ ε2V (ρ)524

and u ∼ ε2U(ρ). With this scaling, and with D = D0ε
2, the steady-state problem for (1.1) becomes525

(6.1) ∆ρV − V + U−1V 2 = 0 , D0∆ρU − U + V 2 = 0 , ρ = |y| > 0 .526
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Figure 10: (a) Bifurcation diagram for solutions to the core problem (6.1) in the D = ε2D0 regime. (b) Dominant
eigenvalue of the linearization of the core problem for each mode l = 0, 2, 3, 4, as computed numerically from (6.5).

For this core problem, we impose the boundary conditions Vρ(0) = Uρ(0) = 0 and (V,U)→ 0 exponentially527

as ρ→∞. Unlike the D = O(1) and D = O(ε−1) regimes, u and v are both exponentially small in the outer528

region. Therefore, for any well-separated configuration x1, . . . , xN , the inner problems near each spot centre529

are essentially identical and independent. In Figure 10a we plot V (0) versus D0 obtained by numerically530

solving (6.1). From this figure, we observe that for all D0 ' 14.825, corresponding to a saddle-node point,531

the core problem (6.1) admits two distinct radially-symmetric solutions.532

Since both the activator V and inhibitor U decay exponentially there are only exponentially weak533

interactions between individual spots. As a result, it suffices to consider only the linear stability of the core534

problem (6.1). Upon linearizing (1.1) about the core solution we obtain the eigenvalue problem535

(6.2) ∆ρΦ−
l(l + 1)

ρ2
Φ− Φ +

2V

U
Φ− V 2

U2
Ψ = λΦ , D0∆ρΨ−

l(l + 1)

ρ2
Ψ−Ψ + 2V Φ = 0 ,536

for each l ≥ 0 and for which we impose that Φ′(0) = Ψ′(0) = 0 and (Φ,Ψ) → 0 exponentially as ρ → ∞.537

We reduce (6.2) to a single nonlocal equation by noting that the Green’s function Gl(ρ, ρ0) satisfying538

(6.3) D0∆ρGl −
l(l + 1)

ρ2
Gl −Gl = −δ(ρ− ρ0)

ρ2
,539

is given explicitly by540

(6.4) Gl(ρ, ρ0) =
1

D0
√
ρ0ρ

{
Il+1/2(ρ/

√
D0)Kl+1/2(ρ0/

√
D0) , ρ < ρ0 ,

Il+1/2(ρ0/
√
D0)Kl+1/2(ρ/

√
D0) , ρ > ρ0 ,

541

where In(·) and Kn(·) are the nth order modified Bessel Functions of the first and second kind, respectively.542

As a result, by proceeding as in §3 we reduce (6.2) to the nonlocal spectral problem MlΦ = λΦ where543

(6.5) MlΦ ≡ ∆ρΦ−
l(l + 1)

ρ2
Φ− Φ +

2V

U
Φ− 2V 2

U2

∫ ∞
0

Gl(ρ, ρ̃)V (ρ̃) Φ(ρ̃)ρ̃2 dρ̃ .544

In Figure 10b we plot the real part of the largest numerically-computed eigenvalue of Ml as a function of545

V (0) for l = 0, 2, 3, 4. From this figure, we observe that the entire lower solution branch in the V (0) versus546
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Figure 11: Snapshots of FlexPDE6 [6] simulation of (1.1) in the unit ball with ε = 0.05, D = 16ε2, and τ = 1 and
with initial condition given by a single spot solution in the weak interaction limit calculated from (6.1) with V (0) = 5.
The snapshots show contour plots of the activator v(x, t) at different times where for each spot the outermost, middle,
and innermost contours correspond to values of 0.006, 0.009, and 0.012 respectively. Note that the asymptotic theory
predicts a maximum peak height of v ∼ ε2V (0) ≈ 0.0125.

D0 bifurcation diagram in Figure 10a is unstable. However, in contrast to the D = O(1) and D = O(ε−1)547

regimes, we observe from the orange curve in Figure 10b for the l = 2 mode that when D = ε2D0 there is548

a range of D0 values for which a peanut-splitting instability is the only unstable mode.549

In previous studies of singularly perturbed RD systems supporting peanut-splitting instabilities it has550

typically been observed that such linear instabilities trigger nonlinear spot self-replication events (cf. [16],551

[9], [13], and [3]). Recently, in [23] it has been shown using a hybrid analytical-numerical approach that552

peanut-splitting instabilities are subcritical for the 2-D Schnakenberg, Gray-Scott, and Brusselator models,553

although the corresponding issue in a 3-D setting is still an open problem. Our numerical computations554

below suggest that peanut-splitting instabilities for the 3-D GM model in the D = ε2D0 regime are also555

subcritical. Moreover, due to the exponentially small interaction between spots, we also hypothesize that556

a peanut-splitting instability triggers a cascade of spot self-replication events that will eventually pack the557

domain with identical spots. To explore this proposed behaviour we use FlexPDE6 [6] to numerically solve558

(1.1) in the unit ball with parameters τ = 1, ε = 0.05 and D0 = 16ε2, where the initial condition is a single559

spot pattern given asymptotically by the solution to (6.1) with V (0) = 5. From the bifurcation and stability560

plots of Figure 10 our parameter values and initial conditions are in the range where a peanut-splitting561

instability occurs. In Figure 11 we plot contours of the solution v(x, t) at various times. We observe that562

the peanut-splitting instability triggered between t = 20 and t = 60 leads to a self-replication process563

resulting in two identical spots at t = 110. The peanut-splitting instability is triggered for each of these564

two spots and this process repeats, leading to a packing of the domain with N = 8 identical spots.565

7. General Gierer-Meinhardt Exponents. Next, we briefly consider the generalized GM model566

(7.1) vt = ε2∆v − v + u−qvp , τut = D∆u− u+ ε−2u−svm , x ∈ Ω ; ∂nv = ∂nu = 0 , x ∈ ∂Ω ,567

where the GM exponents (p, q,m, s) satisfy the usual conditions p > 1, q > 0, m > 1, s ≥ 0, and568

ζ ≡ mq/(p− 1) − (s + 1) > 0 (cf. [19]). Although this general exponent set leads to some quantitative569
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differences as compared to the prototypical set (p, q,m, s) = (2, 1, 2, 0) considered in this paper, many of570

the qualitative properties resulting from the properties of µ(S) in Conjecture 2.1, such as the existence of571

symmetric quasi-equilibrium spot patterns in the D = O(1) regime, remain unchanged.572

Suppose that (7.1) has an N -spot quasi-equilibrium solution with well-separated spots. Near the ith573

spot we introduce the inner expansion v ∼ DαVi(y), u ∼ DβUi(y), and y = ε−1(x− xi), where574

∆Vi − Vi +D(p−1)α−qβU−qi V p
i = 0 , ∆Ui − ε2D−1Ui = −Dmα−(s+1)β−1U−si V m

i , y ∈ R3 .575

Choosing α and β such that (p− 1)α− qβ = 0 and mα− (s+ 1)β = 1 we obtain576

α = ν/ζ , β = 1/ζ , ν = q/(p− 1) ,577

with which the inner expansion takes the form v ∼ Dν/ζV (ρ;Siε) and u ∼ D1/ζU(ρ;Siε), where V (ρ;S)578

and U(ρ;S) are radially-symmetric solutions to the D-independent core problem579

∆ρV − V + U−qV p = 0 , ∆ρU = −U−sV m , ρ > 0 ,(7.2a)580

∂ρV (0) = ∂ρU(0) = 0 , V −→ 0 and U ∼ µ(S) + S/ρ , ρ→∞ .(7.2b)581582

By using the divergence theorem, we obtain the identity S =
∫∞

0 U−sV mρ2 dρ > 0.583

By solving the core problem (7.2) numerically, we now illustrate that the function µ(S) retains several584

of the key qualitative properties of the exponent set (p, q,m, s) = (2, 1, 2, 0) observed in §2.1, which were585

central to the analysis in §2 and §3. To path-follow solutions, we proceed as in §2.1 by first approximating586

solutions to (7.2) for S � 1. For S � 1, we use the identity S =
∫∞

0 U−sV mρ2 dρ > 0 to motivate a small587

S scaling law, and from this we readily calculate that588

(7.3) V (ρ;S) ∼
(
S

b

) ν
ζ+1

wc(ρ) , U(ρ;S) ∼
(
S

b

) 1
ζ+1

, µ(S) ∼
(
S

b

) 1
ζ+1

, b ≡
∫ ∞

0
wmc ρ

2dρ ,589

where wc > 0 is the radially-symmetric solution of590

(7.4) ∆ρwc − wc + wpc = 0 , ρ > 0 ; ∂ρwc(0) = 0 , wc → 0 as ρ→∞ .591

With this approximate solution for S � 1, we proceed as in §2.1 to calculate µ(S) in (7.2) for different592

GM exponent sets by path-following in S. In Figure 12b we plot µ(S) when (p, q,m, s) = (p, 1, p, 0)593

with p = 2, 3, 4, while a similar plot is shown in Figure 12a for other typical exponent sets in [19]. For594

each set considered, we find that µ(S) satisfies the properties in Conjecture 2.1. Finally, to obtain the595

NAS for the source strengths we proceed as in §2.2 to obtain that the outer solution for the inhibitor596

field is given by simply replacing D with D1/ζ in (2.8). Then, by using the matching condition u ∼597

D1/ζ (µ(Sjε) + Sjεε/|x− xj |) as x→ xj , for each j = 1, . . . , N , we conclude that the NAS (2.14) still holds598

for a general GM exponent set provided that µ(S) is now defined by the generalized core problem (7.2).599

8. Discussion. We have used the method of matched asymptotic expansions to construct and study600

the linear stability of N -spot quasi-equilibrium solutions to the 3-D GM model (1.1) in the limit of an601

asymptotically small activator diffusivity ε � 1. Our key contribution has been the identification of two602

distinguished regimes for the inhibitor diffusivity, the D = O(1) and D = O(ε−1) regimes, for which we603

constructed N -spot quasi-equilibrium patterns, analyzed their linear stability, and derived an ODE system604
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Figure 12: Left panel: Plot of µ(S), computed from the generalized GM core problem (7.2), for the indicated exponent
sets (p, q,m, s). Right panel: µ(S) for exponent sets (p, 1, p, 0) with p = 2, 3, 4. For each set, there is a unique S = S?

for which µ(S?) = 0. The properties of µ(S) in Conjecture 2.1 for the protypical set (2, 1, 2, 0) still hold.

governing their slow spot dynamics. We determined that in the D = O(1) regime all N -spot patterns are,605

to leading order in ε, symmetric and linearly stable on an O(1) time scale. On the other hand, in the606

D = O(ε−1) regime we found the existence of both symmetric and asymmetric N -spot patterns. However,607

we demonstrated that all asymmetric patterns are unstable on an O(1) time scale, while for the symmetric608

patterns we calculated Hopf and competition instability thresholds. These GM results are related to those609

in [16] for the 3-D singularly perturbed Schnakenberg model, with one of the key new features being the610

emergence of two distinguished limits, and in particular the existence of localized solutions in the D = O(1)611

regime for the GM model. For D = O(1), concentration behavior for the Schnakenberg model as ε→ 0 is612

no longer at discrete points typical of spot patterns, but instead appears to occur on higher co-dimension613

structures such as thin sheets and tubes in 3-D (cf. [14]). For the GM model, we illustrated the onset of614

both Hopf and competition instabilities by numerically solving the full GM PDE system using the finite615

element software FlexPDE6 [6]. We have also considered the weak-interaction regime D = O(ε2), where we616

used a hybrid analytical-numerical approach to calculate steady-state solutions and determine their linear617

stability properties. In this small D regime we found that spot patterns are susceptible to peanut-splitting618

instabilities. Finally, using FlexPDE6 we illustrated how the weak-interaction between spots together with619

the peanut-splitting instability leads to a cascade of spot self-replication events.620

We conclude by highlighting directions for future work and open problems. First, although we have621

provided numerical evidence for the properties of µ(S) highlighted in Conjecture 2.1, a rigorous proof622

remains to be found. In particular, we believe that it would be significant contribution to rigorously prove623

the existence and uniqueness of the ground state solution to the core problem (2.1), which we numerically624

calculated when S = S?. A broader and more ambitious future direction is to characterize the reaction625

kinetics F (V,U) and G(V,U) for which the core problem626

(8.1) ∆ρV + F (V,U) = 0, ∆ρU +G(V,U) = 0, in ρ > 0 ,627

admits a radially-symmetric ground state solution for which V → 0 exponentially and U = O(ρ−1) as628

ρ → ∞. The existence of such a ground state plays a key role in determining the regimes of D for629

which localized solutions can be constructed. For example, in the study of the 3-D singularly perturbed630
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Figure 13: Plots of the far-field constant behaviour for the (a) Gierer-Meinhardt with saturation, (b) Schnakenberg
or Gray-Scott, and (c) Brusselator models. See Table 1 for the explicit form of the kinetics F (v, u) and G(v, u) for
each model. A zero-crossing of µ(S) at some S > 0 occurs only for the GMS model.

Schnakenberg model it was found that the core problem does not admit such a solution and as a result631

localized spot solutions could not be constructed in the D = O(1) regime (cf. [16]). To further motivate632

such an investigation of (8.1) we extend our numerical method from §2.1 to calculate and plot in Figure 13633

the far-field constant µ(S) for the core problems associated with the GM model with saturation (GMS),634

the Schnakenberg/Gray-Scott (S/GS) model, and the Brusselator (B) model (see Table 1 for more details).635

Note that for the GMS model we can find values of S? such that µ(S?) = 0, but such a zero-crossing does636

not appear to occur for the (S/GS) and (B) models. As a consequence, for these three specific RD systems,637

localized spot patterns in the D = O(1) regime should only occur for the GMS model. Additionally,638

understanding how properties of µ(S), such as convexity and positiveness, are inherited from the reaction639

kinetics would be a significant contribution. In this direction, it would be interesting to try extend the640

rigorous numerics methodology of [1] to try to establish Conjecture 2.1.641

Acknowledgments. Daniel Gomez was supported by an NSERC Doctoral Fellowship. Michael Ward642

and Juncheng Wei gratefully acknowledge the support of the NSERC Discovery Grant Program.643

REFERENCES644

RD Model F (V,U) G(V,U) Decay behavior

Gierer-Meinhardt with Saturation (GMS) −V + V 2
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