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Abstract

We consider ground states of two-dimensional Bose-Einstein condensates in a
trap with attractive interactions, which can be described equivalently by positive
minimizers of the L?—critical constraint Gross-Pitaevskii energy functional. It is
known that ground states exist if and only if @ < a* := ||w||3, where a denotes the
interaction strength and w is the unique positive solution of Aw — w + w3 = 0 in
R2. In this paper, we prove the local uniqueness and refined spike profiles of ground
states as a * a*, provided that the trapping potential h(z) is homogeneous and
H(y) = [z h(z + y)w?(z)dz admits a unique and non-degenerate critical point.

Keywords: Bose-Einstein condensation; spike profiles; local uniqueness; Pohozaev iden-
tity.

1 Introduction

The phenomenon of Bose-Einstein condensation (BEC) has been investigated intensively
since its first realization in cold atomic gases, see [1, 5] and references therein. In these
experiments, a large number of (bosonic) atoms are confined to a trap and cooled to very
low temperatures. Condensation of a large fraction of particles into the same one-particle
state is observed below a critical temperature. These Bose-Einstein condensates display
various interesting quantum phenomena, such as the critical-mass collapse, the superflu-
idity and the appearance of quantized vortices in rotating traps (e.g.[5]). Specially, if the
force between the atoms in the condensates is attractive, the system collapses as soon
as the particle number increases beyond a critical value, see, e.g., [23] or [5, Sec. II1.B].
Bose-Einstein condensates (BEC) of a dilute gas with attractive interactions in R?
can be described ([2, 5, 10]) by the following Gross-Pitaevskii (GP) energy functional

Ea(u) = /RQ (|Vu|2 + V(m)\u|2>dx - g /RZ u|4dz, (1.1)
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where a > 0 describes the strength of the attractive interactions, and V(z) > 0 denotes
the trapping potential satisfying lim, o, V' (x) = oo. As addressed recently in [10, 11],
ground states of attractive BEC in R? can be described by the constraint minimizers of
the GP energy
e(a) := inf E,(u), (1.2)
{u€, [lul3=1}

where the space H is defined by

H = {uGHl(Rz): /

V(@)|u(z)|?dz < oo}. (1.3)
R2

The minimization problem e(a) was analyzed recently in [2, 10, 11, 12, 26] and references
therein. Existing results show that e(a) is an L?—critical constraint variational problem.
Actually, it was shown in [2, 10] that e(a) admits minimizers if and only if a < a* := |Jw||3,
where w = w(|z|) is the unique (up to translations) radial positive solution (cf. [7, 19, 14])
of the following nonlinear scalar field equation

Aw—w+w? =0 in R? where we H'(R?). (1.4)
It turns out that the existence and nonexistence of minimizers for e(a) are well connected
with the following Gagliardo-Nirenberg inequality

4 2 2 2 12
/R? lu(x)|*de < e /R2 |Vu(z)|*dx /]R2 lu(x)|*dx, Yue H (R?), (1.5)

where the equality is attained at w (cf. [25]).
Since Eq(u) > Eg(|u|) for any v € #H, any minimizer u, of e(a) must be either
non-negative or non-positive, and it satisfies the Euler-Lagrange equation

—Aug + V(x)ug = potiq +aup  in R? (1.6)

where p, € R is a suitable Lagrange multiplier. Thus, by applying the maximum princi-
ple to the equation (1.6), any minimizer u, of e(a) is further either negative or positive.
Therefore, without loss of generality one can restrict the minimizations of e(a) to positive
functions. In this paper positive minimizers of e(a) are called ground states of attractive
BEC. Applying energy estimates and blow-up analysis, the spike profiles of positive min-
imizers for e(a) as a /* a* were recently discussed in [10, 11, 12] under different types of
potentials V(z), see our Proposition 2.1 for some related results. In spite of these facts,
it remains open to discuss the refined spike profiles of positive minimizers. On the other
hand, the local uniqueness of positive minimizers for e(a) as a.e. a /* a* was also proved
[11] by the ODE argument, for the case where V(r) = V(|z|) is radially symmetric and
satisfies V/(r) > 0, see Corollary 1.1 in [11] for details. Here the locality of uniqueness
means that a is near a*. It is therefore natural to ask whether such local uniqueness
still holds for the case where V (x) is not radially symmetric. We should remark that all
these results mentioned above were obtained mainly by analyzing the variational struc-
tures of the minimization problem e(a), instead of discussing the PDE properties of the
associated elliptic equation (1.6).

By investigating thoroughly the associated equation (1.6), the main purpose of this
paper is to derive the refined spike profiles of positive minimizers for e(a) as a  a*, and
extend the above local uniqueness to the cases of non-symmetric potentials V' (z) as well.
Throughout the whole paper, we shall consider the trapping potential V(x) satisfying
lim, o0 V(%) = 0o in the class of homogeneous functions, for which we define



Definition 1.1. h(z) > 0 in R? is homogeneous of degree p € R (about the origin), if
there exists some p > 0 such that

h(tz) = t*h(z) in R? for any t > 0. (1.7)

Following [9, Remark 3.2], the above definition implies that the homogeneous function
h(z) € C(R?) of degree p > 0 satisfies

0 < h(z) < ClzfP in R? (1.8)

where C' > 0 denotes the maximum of h(z) on 9B1(0). Moreover, since we assume that
lim ;o0 h(7) = 00, z = 0 is the unique minimum point of A(z). Additionally, we often
need to assume that V(z) = h(x) € C?(R?) satisfies

Yo is the unique critical point of H(y) = / h(z + y)w?(z)dz. (1.9)
R2
The following example shows that for some non-symmetric potentials h(x), H(y) admits

a unique critical point gy, where yq satisfies yg # 0 and is non-degenerate in the sense

that
9%H (yo)

det ( O0x;0x;

) 40, where 4, j =1, 2. (1.10)
Example 1.1. Suppose that the potential h(z) satisfies
h(z) = |z|P[1 + 6ho(#)] >0, where p>2 and ¢ € R, (1.11)

where ho(0) € C2([0, 27]) satisfies

(/027r ho(6) cos@d9>2 + (/o

One can check from (1.12) that if |[§| > 0 is small enough, then H(y) admits a unique
critical point yo = —d9p € R?, where )y satisfies

2T 2
ho(9) sin 0d9> > 0. (1.12)

27 21
jo ~ (01 ho(8) cos §d6, Cs / ho(6) sinede) £(0,0) as & — 0 (1.13)
0 0

for some positive constants C7; and Cs depending only on w and p. Furthermore, if
2
|0] > 0 is small enough, then det <%%éi‘;)) > (0, which implies that the unique critical

point yo of H(y) is non-degenerate.

Our first main result is concerned with the following local uniqueness as a * a*,
which holds for some non-symmetric homogeneous potentials h(z) in view of Example
1.1.

Theorem 1.1. Suppose V(z) = h(z) € C*(R?) is homogeneous of degree p > 2, where
lim,| o0 h(7) = 00, and satisfies

Yo 18 the unique and non-degenerate critical point of H(y) = / h(z 4 y)w?*(x)dz.

R2
(1.14)
Then there exists a unique positive minimizer for e(a) as a /* a*.



The local uniqueness of Theorem 1.1 means that positive minimizers of e(a) must be
unique as a is near a*. It is possible to extend Theorem 1.1 to more general potentials
V(z) = g(z)h(x) for a class of functions g(x), which is however beyond the discussion
ranges of the present paper. We also remark that the proof of Theorem 1.1 is more
involved for the case where yoy # 0 occurs in (1.14). Our proof of such local uniqueness
is motivated by [3, 6, 9]. Roughly speaking, as derived in Proposition 2.1 we shall
first obtain some fundamental estimates on the spike behavior of positive minimizers.
Under the non-degeneracy assumption of (1.14), the local uniqueness is then proved in
Subsection 2.1 by establishing various types of local Pohozaev identities.

The proof of Theorem 1.1 shows that if one considers the local uniqueness of Theorem
1.1 in other dimensional cases, where R? is replaced by R? and u* is replaced by u2ta
for d # 2, the fundamental estimates of Proposition 2.1 are not enough. Therefore,
in the following we address the refined spike behavior of positive minimizers under the
assumption (1.14). To introduce our second main result, for convenience we next denote

_1
2+4p

Ao = (’2) /R2 h(z + yo)w2($)da:> : (1.15)

where 1o € R? is given by (1.14), and

@

5 [w(z) + 2 - Vw(z)],

P(x) = p(x)
where ¢(z) € C%(R?) N L>(R?) is the unique solution of

203 2h(z+yo)w
fRz wt  p fR2 h(z + yO)w2

Ve(0) =0 and [— A+ (1—3w?)]p(z) = — in R?, (1.16)

and the nonzero constant C* is given by

C’*:2ip<2/Rwa3+/RQg02)

with 1p3 € C?(R?) N L>®(R?) being the unique solution of (3.29). Using above notations,
we shall derive the following theorem.

Theorem 1.2. Suppose V(z) = h(z) € C%*(R?) is homogeneous of degree p > 2, where
limy| o0 h(7) = 00, and satisfies (1.14) for some yo € R2. If u, is a positive minimizer
of e(a) as a /' a*, then we have

tal) = 12 {; L (2o mral) | (gr gyt ( Lol —te))

B Hw||2 a*—a)m (a*—a)m (a* —a)m

(1.17)

+(a* —a) B ¢O(M)} +o((a* — a) 32125) as a S a*

(a* — a)?7

uniformly in R? for some function ¢g € C?(R%) N L>®(R?), where x, is the unique
mazximum point of ug satisfying
AZq

M yo| = @~ )O(y)) as 0 e (1.18)
(a* —a)?+rp

for some y° € R2.



Theorem 1.2 is derived directly from Theorem 1.1 and Theorem 3.6 in Section 3 with
more details, where ¢g € C?(R?)NL>(R?) is given explicitly. In Section 4 we shall extend
the refined spike behavior of Theorem 1.2 to more general potentials V(z) = g(x)h(x),
where h(—z) = h(z) is homogeneous and satisfies (1.14) and 0 < C < g(z) < % holds
in R?, see Theorem 4.4 for details. To establish Theorem 1.2 and Theorem 4.4, our
Proposition 2.1 shows that the arguments of [10, 11, 12] give the leading expansion
terms of the minimizer u, and the associated Lagrange multiplier p, satisfying (1.6) as
well. In order to get (1.17) for the rest terms of u,, the difficulty is to obtain the more
precise estimate of u,, which is overcome by the very delicate analysis of the associated
equation (1.6), together with the constraint condition of wu,.

This paper is organized as follows: In Section 2 we shall prove Theorem 1.1 on the
local uniqueness of positive minimizers. Section 3 is concerned with proving Theorem
1.2 on the refined spike profiles of positive minimizers for e(a) as a ,* a*. The main
aim of Section 4 is to derive Theorem 4.4, which extends the refined spike behavior of
Theorem 1.2 to more general potentials V(z) = g(z)h(xz). We shall leave the proof of
Lemma 3.4 to Appendix A.

2 Local Uniqueness of Positive Minimizers

This section is devoted to the proof of Theorem 1.1 on the local uniqueness of positive
minimizers. Towards this purpose, we need some estimates of positive minimizers for e(a)
as a /" a*, which hold essentially for more general potential V (x) € C%(R?) satisfying

V(z) = g(x)h(z), where 0 < C < g(z) < % in R? and h(x) is homogeneous of 2.1)
degree p > 2. '

For convenience, we always denote {uj} to be a positive minimizer sequence of e(ag)
with ap 7 a* as k — oo, and define

A= (192(0) /R2 h(x + yo)wQ(:v)dx> = , (2.2)

where V(x) = g(z)h(z) is assumed to satisfy (2.1) with p > 2 and yo € R? is given by
(1.9). Recall from (1.4) that w(|x|) satisfies

1
/ ]Vw|2d:v:/ lw|?dx = / lw|*dz, (2.3)
R2 R2 2 R2

see also Lemma 8.1.2 in [4]. Moreover, it follows from [7, Prop. 4.1] that w admits the
following exponential decay

w(x), |Vw(z)| = O(\af|*%e*‘x|) as |z| — oc. (2.4)

Proposition 2.1. Suppose V(z) = g(z)h(x) € C*(R?) satisfies lim ;o V(z) = 00 and
(2.1), and assume (1.9) holds for some yo € R?. Then there exist a subsequence, still
denoted by {ai}, of {ar} and {x} C R? such that

(I). The subsequence {uy} satisfies

L)%M as k — oo (2.5)

1
(a* _ ak)2+puk (:L'k + ;U(a* _ ak‘) 2+p
[[wl]2



uniformly in R%, and xy, is the unique mazimum point of wy, satisfying

A
lim — 7k, (2.6)
k—o0 (a* _ ak)m

where 3o € R? is the same as that of (1.9). Moreover, uy, satisfies
(a* — ak)ﬁuk (:Ek +z(a* — ak)ﬁ) < Ce2ll i R?, (2.7)
where the constant C' > 0 is independent of k.
(II). The energy e(ay) satisfies

. e(ag) A2p+2
lim =L -
k—oo (a* — ap)P/(2*+P)  a* p

(2.8)

Proof. Since the proof of Proposition 2.1 is similar to those in [10, 11, 12], which handle
(1.1) with different potentials V' (x), we shall briefly sketch the structure of the proof.
If V(z) € C?(R?) satisfies (2.1) with p > 2, we note that h(x) > 0 satisfies (1.8).

Take the test function -

ur(z) = Arm‘ﬂ(x)w(”?)’

where the nonnegative cut-off function ¢ € C§°(R?) satisfies 0 < p(z) < 1 in R?, and
A; > 0 is chosen so that [p, ur(z)?dz = 1. The same proof of Lemma 3 in [10] then
yields that

e(a) < C(a* — a,)ﬁ for 0 <a<a*, (2.9)

where the constant C' > 0 is independent of a. By (2.9), we can follow Lemma 4 in [10]
to derive that there exists a positive constant K, independent of a, such that

1 _2
/ g (z)[*dz < E(a* —a) 77 for 0 <a<a¥, (2.10)
R2

where u, > 0 is any minimizer of e(a). Applying (2.9) and (2.10), a proof similar to
that of Theorem 2.1 in [12] then gives that there exist two positive constants m < M,
independent of a, such that

m(a*—a)P% §e(a)§M(a*—a)P% for 0 <a<a”. (2.11)

Based on (2.11), similar to Theorems 1.2 and 1.3 in [12], one can further deduce that
there exist a subsequence (still denoted by {ax}) of {ax} and {z;} C R?, where a;  a*
as k — oo, such that (2.7) and (2.8) hold, and

Aw(A\x)

[[]l2

(a* — ap) Ty, (:ck +aat — ak)ﬁ) - strongly in HY(R?)  (2.12)
as k — oo, where xj is the unique maximum point of ug. Finally, since w decays
exponentially, the standard elliptic regularity theory applied to (2.12) yields that (2.5)
holds uniformly in R? (e.g. Lemma 4.9 in [18] for similar arguments).

We finally follow (1.9) and (2.5) to derive the estimate (2.6). Following (2.5), we
define

ug(x) == a/\gkuk (%x + xk>, where g := (a* — ak)ﬁ >0,

6



so that g (z) — w(z) uniformly in R? as k — oo. We then derive from (1.5) that

\2eP
= Vi 4 k —4
e(ar) = Eq, (ug) = Ek / Vg (z | dx / ay(x )dx} + 2 )? /R2 uy(x)dx

1 €k _

+— - V(Xx + a3 ) s (z)dx (2.13)
)\2€p 1 Ek Ek )\xk

> "k Sk 9

> 2(a*)2/R iy (z)de + — <)\) /R2g( 3 z+ zp)h(z + -, )iy (z)d,

which then implies from (2.5) that ]’\E—i’“] is bounded uniformly in k. Therefore, there
exist a subsequence (still denoted by {’\6%}) of {%} and y° € R? such that
Az,

——>y as k — oo.
€k

Note that

lim infg_, o0 / g(e—kx + xp)h(z + ﬂ)ﬂi(az)alav
R2 A €k

A
> liminfj,_o / 9z + ap)h(x + 228 a3 (z)de (2.14)
Vek

=¢(0) /R2 h(z + y")w?(x)dz.

Since wuy gives the least energy of e(ay) and the assumption (1 9) implies that yg is

essentially the unique global mlnlmum point of H (y fR2 (z+y)w?(z)dx, we conclude
from (2.13) and (2.14) that y° = yo, which thus 1mphes that (2.6) holds, and the proof
is therefore complete. ]

2.1 Proof of local uniqueness

Following Proposition 2.1, this subsection is focussed on the proof of Theorem 1.1, and
in the whole subsection we always assume that V(z) = h(x) € C%(R?) is homogeneous
of degree p > 2 and satisfies (1.14) and lim,_, h(z) = co. Our proof is stimulated by
[3, 6, 9]. We first define the linearized operator £ by

L:=—-A+(1-3w?) in R?

where w = w(|z]) > 0 is the unique positive solution of (1.4) and w satisfies the expo-
nential decay (2.4). Recall from [14, 20] that

ow Gw}'

ker(L) = spcm{a—xl, pr.

(2.15)

For any positive minimizer uy of e(ay), where a; * a* as k — oo, one can note that u
solves the Euler-Lagrange equation

—Auy(z) + V(@)ug(x) = prug () + apui(z) in R?, (2.16)

where pj, € R is a suitable Lagrange multiplier and satisfies

pi = e(ag) — % /R? up (z)de. (2.17)



Moreover, under the more general assumption (2.1), one can derive from (2.3) and (2.5)
that wu; satisfies

/ up(z)de = (a* — ak)_ﬁ [2);2 + 0(1)} as k — oo. (2.18)
R2 a

It then follows from (2.3), (2.17) and (2.18) that py satisfies

1kER
A2

— —1 as k — +oo0, (2.19)

where we denote .
e = (a" —ag) 2+ > 0.

Set

_ Va*e £
ug(x) == 3 kuk<7kx+a:k>,

so that Proposition 2.1 gives g (x) — w(z) uniformly in R? as k — oo. Note from (2.16)
that @, satisfies

€\ 2 € g2 .
—A(e) + () V(Fa+ o )un@) = BRae) + Sai@) m B (2.20)

Moreover, by the exponential decay (2.7), there exist Cp > 0 and R > 0 such that

la(2)| < Coe~ 3 for || > R, (2.21)

which then implies that

() 7G| < o >

if V(z) satisfies (2.1) with p > 2. Therefore, under the assumption (2.1), applying the
local elliptic estimates (see (3.15) in [8]) to (2.20) yields that

V(@) < Ce 7 as |a] — oc, (2.22)

where the estimates (2.19) and (2.21) are also used. In the following, we shall follow
Proposition 2.1 and (2.22) to derive Theorem 1.1 on the local uniqueness of positive
minimizers as a " a*.

Proof of Theorem 1.1. Suppose that there exist two different positive minimizers wq
and ug i, of e(ax) with ar, * a* as k — oo. Let 1 j, and 3 j, be the unique local maximum
point of uy j, and ug i, respectively. Following (2.16), u; ; then solves the Euler-Lagrange
equation

—Au; () + h(z)uk(x) = pipuir(e) + akug”k(a:) in R?, i=1,2, (2.23)
where V(x) = h(z) and p;, € R is a suitable Lagrange multiplier. Define

) Varey,
Uzk(iU) = b\

uik(z), where ¢=1,2. (2.24)



Proposition 2.1 then implies that 11171{(%’“95 + xg’k) — w(z) uniformly in R? and U
satisfies the equation

AZ
%ad(x) in R%, i=1,2. (2.25)

—ep AU 1, () + exh ()T o (7) = pi ket f(T) + e

Because w1 # ug, we consider

Eula) = 2@ muple) | Gan(w) = ()

 luggk —uipllewey N2k — G gl Loy

Then &, satisfies the equation
—ep A&, + Cr(2)r = Gr(x) in R? (2.26)
where the coefficient Cy,(x) satisfies

_ Nay o _
Cr(2) := —p1pes — o (u%k + Ug U i + u%k) + e2h(z), (2.27)

and the nonhomogeneous term gy (z) satisfies

_ _ 4 4
() = extin (o k — H1k) _ _)\4aku2,k / Uy — Up g e
([t2,k — 1 k| oo (r2) 2(a*)2e} Jre N2 x — @kl oo (r2) (2.28)
Maya .
_ Naglgg

F (=2 —2 0\ (- _
2(a*)%e;} /[R2 § (W5 + i p) (2 + W) d,
due to the relation (2.17).

Motivated by [3], we first claim that for any zo € R?, there exists a small constant
0 > 0 such that

_ A2 _ _
/aB ( [siyvgkﬁ + 3\5,42 + eih(x)|§k|2}ds =0(e2) ask — oo, (2.29)
s(Zo

To prove the above claim, multiplying (2.26) by & and integrating over R2, we obtain
that

22 / VEP — el / &2+l / () |G ?
R2 R2 R2

_ Nay -2 - —2 \|£ |2
=— (1, + U k1 k + U7 1) |k |
a R2

A4ak

T3 /R T2k /R k(3 + 1) (T + )

Aay,

a*

Mayg,
< U3 ), 4 Uo iy g + U +/u/u2+u2u+u
< /R2 (g 5 + U2k + T ) 2@ 22 Jar 2 o (3, + i ) (U2 + 1)
< Cai as k — oo,
since || and ﬂzk(%’“x + $27k) are bounded uniformly in k, and ﬂ%k(%"x + xg,k) decays
exponentially as |z| — oo, ¢ = 1, 2. This implies that there exists a constant C; > 0
such that

_ 22 _ _
I:= 5%/ V&L + 2/ €k|* + 8%/ h(z)|&|? < Cier  as k — oo. (2.30)
R? R? R?

9



Applying Lemma 4.5 in [3], we then conclude that for any ¢ € R?, there exist a small
constant 0 > 0 and Cy > 0 such that

_ A2 _
/83 » [e,z\vgkﬁ + SIE + ezh(xngkﬂds < Oyl < C109e2 as k — oo,
s\Zo

which therefore implies the claim (2.29).
We next define

- £
§e(r) = fk(xkfﬂ + 1‘2,k), kE=1,2,---, (2.31)
and
@zk(iﬂ) = \/i%uzk(il\cx + 172,k)7 where 7 =1,2,

so that @, x(z) — w(z) uniformly in R? as k — oo in view of Proposition 2.1. Under
the non-degeneracy assumption (1.14), we shall carry out the proof of Theorem 1.1 by
deriving a contradiction through the following three steps.

Step 1. There exist a subsequence {a;} and some constants by, by and bz such that
Ex(x) = () in Cloe(R?) as k — oo, where

2
ow
=0 -V bi—. 2.32
€o(x) = bo(w + w)+; D (2.32)
Note that & satisfies
— A& + Cr(2)6, = g(x) in R?, (2.33)
where the coefficient Cy () satisfies
2+4p
E}C ~92 ~ ~ ~2
Cu(@) i= = (1= = ) [ 4(@) + iz (@)1 () + T 4 (a)
) ) (2.34)
T2 HLE + Fh(T + k),
and the nonhomogeneous term gy (z) satisfies
g ep(poe —pag) | ok ARy u%,k - “ik
gk’('x) T 2 ~ ~ - T N2 = - dx
A2 |[tg ) — T ]| Lo A2 Jre gk — Gkl nee (2.35)

axus . . N _
s /R (B ) (B + ) o

Here we have used (2.17) and (2.25). Since [[€k[|®2) < 1, the standard elliptic regu-
larity then implies (cf. [8]) that ||&x| cle () < C for some a € (0,1), where the constant

C > 0 is independent of k. Therefore, there exist a subsequence {a;} and a function
& = &(x) such that & (z) — &(x) in Cpe(R?) as k — oo. Applying Proposition 2.1,
direct calculations yield from (2.17) and (2.18) that

Cr(z) — 1 — 3w?(x) uniformly on R? as k — oo,
and

2w(z)

gr(z) = — / w3¢y uniformly on R? as k — oo.
]RQ

10



This implies from (2.33) that &y solves

a*

£ = ~A& + (1-3uh)é = ( - 2 /RQ wi)w in B2 (2.36)

Since L(w + x - Vw) = —2w, we then conclude from (2.15) and (2.36) that (2.32) holds
for some constants by, by and bs.

Step 2. The constants by = by = by = 0 in (2.32).
We first derive the following Pohozaev-type identity

Oh(z + yo) / h(z+y0) o .
b —(x - b; _ =0 =1, 2. 2.37
O/RQ 83,’]' Z R2 8%8@ v J ’ ( )

Multiplying (2.25) by 8”3’“, where i, j = 1,2, and integrating over Bs(x2 ), where 6 > 0
is small and given by (2.29), we calculate that

ou; & ou;
—€2/ “E AT Us K +€k/ h(ili‘) b Ui k
g Bs(z2,k) O Bs(z2,k) dz;

ou;p )\2ak ou;
= Wi kEq / B Bk T / o Uy (2.38)
Bs(zay) 9Tj a Bs(zay) 9T

1 )\QCLk _
— 2#’6,’@5%/ kl/]ds 4+ — A / Uikljjds,
0Bs(z2,1) ar 0Bs(z2,1)

where v = (v1,12) denotes the outward unit normal of 0Bs(x2 ). Note that
0, j;
_e? / Lk A
Bs(za,5) 9%j
ou; 1, 0, Ju,;
=< / T g 05+ / Vit Vo
OBs(wzp) OTj OV Bs(w2,1) 0z;

ou; , Ouy; K _
= —52/ —m RS 4 75 / Vi 1, |2v;dS,
g 0Bs(x2,1) dr; Ov 27 9B5(x2,k) m

and

8—2, 2 2
8%/ h(zx) : k@zk = Ek/ h(z)u; pv;dS — gk/ 8h(w)ﬂ?k-
Bs(w2.) Oz 2 JoBs(wan) ’ 2 JBs(any) Orj

We then derive from (2.38) that
oh
g S
Bs(za,k) 95
ou, . 0u;
- _2gg/ ik O ”“czs+s§/ Vs o |2v;dS
9Bs(z2,1) Ox; Ov OBs(x2,1)
+e7 / h(x)u; v;dS — pikex / Uy yvidsS
0Bs(z2,1) 0Bs(z2,1)

)\2
ok / 1} 4 dS.
2a 0Bs(z2,1)

(2.39)
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Following (2.39), we thus have

Oh(x) ,_ s
2
5k/ Us i + U1 k) Epde
Bs(za,1) axj (

Oty k agk 6& o0uy k
= —25} / RISk SRk g
g OBs (o) [ Ox; Ov  Oxz; Ov ]

+e2 / V& - V(U + U1 k) v;dS
0Bs(z2,k) (2.40)
+€i/ h(:c) (fLQ’k + ﬂl,k)gkujds — Ml,kﬂfz/ (a2,k + ﬂl,k)fkyjds
0Bs(z2,k) 0Bs(2,k)
)\2ak _9 _9 _ _ - ]
— 50" (uzk + uLk) ('U/Z,]c + uLk)ka]dS
" JOoBs(za,)

(H2k — bik)ei / a2 . v.dS
— = k .
||U2,k: - U1,k||L°° 0Bs(x2,1) 2R

We now estimate the right hand side of (2.40) as follows. Applying (2.29), if § > 0
is small, we then deduce that

2 /

9Bs(x2,k) dz; v
calf,, [ mefus) (a ]

0Bs(xaz) | OTj OB o)

due to the fact that Vg (%’“x+x27k) satisfies the exponential decay (2.22), where C' > 0
is independent of k. Similarly, we have

&2 /
0Bs(z2,1)

_ _Cs
Ei‘ / V& - V(ﬁzyk + fLLk)deS‘ < Caie ek as k — oo,
0Bs(z2,1)

aﬂg’k 87&

ds

0%
ov

2 1 5 —C8
’dS’) < Ceje °x as k— oo,

T2 k)

08y Ot
8l‘j 61/

iel)
‘dS < Ceie % as k — oo,

and

On the other hand, since both |&;| and |(pa,kx — p1,%)€3| are bounded uniformly in k, we
also get from (2.22) that

‘6%/ h(z) (ﬂgjk + ﬂl,k)ngde - Nl,k‘@z/ (fLQJC + ﬂl,k)gkujds
0Bs(x2,1) 0Bs(z2,1)
)\Zak —2 2 = = &
o (@3, + 1 ) (G2 + Tr) ErvjdS
20* JoBs(ws) (2.42)
2
— €
Y T
a2k — @1 kllLe JoBs(eos)
_cs
=o(e k) as k — oo,
due to the fact that (2.28) gives
e = il Vo / (@54 + G5 1) (Top + T1 k) |&k] < M (2.43)
— — >~ 2 1 = ) .
|t — U1 pllLe — 2(a*)%e? Jgo 24k Lk ’ '

12



where the constants M > 0 is independent of k. Because h(z) is homogeneous of degree
p, it then follows from (2.40) that for small § > 0,

0(6_%’5) = 5% /Ba(m k) 8ga(fj) [“2 k(T) + ﬂl,k(lf)]gk(x)dx

:52 ih(e

A JBs0) 95 SN AR GRS

%ky + xg,k)}dy (2.44)

_ / 9yt Ax“ +
/\p+1[ ) ’(y )gk( Y+ w2)

. [@2 k( N + zo)) + ﬂ1,k(7ky + $1k)] dy + 0(1)}

'[ﬂ2k(>\y+$2k) +ﬂ1,k(

as k — oo. Applying (1.14), we thus derive from (2.6), (2.32) and (2.44) that

_y [ Ozt ) Oh(x + yo) ~, ow
O_Q/RZ s, wg_z/RQ s, w[bo(w—f—x Vw)+ZZbZaxi]

B Oh(x +y0 h(z +y0) o
= bo /Rz 0z Zb /Rz Oz j0x; v

=1
where j = 1, 2, which thus implies (2.37).

We next derive by = 0. Using the integration by parts, we note that

—8%/ [(l’ — ~T2,k) . Vﬂi,k] Aﬂi’k
Bs(z2,k)

ou; _ _ _
= —5%/ P L [(m - xlk) . Vui,k] + 5%/ VUZVkV[(x — $2,k) . VU@/J
dBs(za) OV Bs(z2,1)
ou; g2 _
= —8%/ P ok [(a: — $2’k) . Vﬂi,k] + 516 / [(LU — Ig’k) . I/] ]Vui,k|2.
OBs(za) IV 0Bs(z2,k)

(2.45)
Multiplying (2.25) by (x — z2%) - Vi, where ¢ = 1,2, and integrating over Bs(x2 ),

13



where § > 0 is small as before, we deduce that for i =1, 2,
ﬂfi/ [(x =z k) - Vit k] Aty g
Bs(xa,1)

= 5%/ [t — h(2) | Ui g [(x — z21) - Vil k]
Bs(za,1)

\2a _
+ *k / ﬁf)k [(z — za) - Vi ]
a Bs(x2,1)

2

I3 _
-2/ . a2 {2[ik — hl@)] = (@ = 224) - Vh(2)} (2.46)

2

+€2k/ ;g [pie — h(@)](x — 224 )vdS
0Bs(x2,k)

2 )\2
—)\ a*k / ﬂ;{k + a*k / ﬂik(fE — $27k)ljds
2a Bs(xa,1) da 0Bs(z2,1)

_ 2+4+p _ May, _
= _,ui,k&% /RQ uzz,k + 9 Ei /R2 h(x)uf,k — o0t - ui,k + Iia

where the lower order term I; satisfies

_ 24+p _
I; = Ni,kei/ “12k - 252/ h(x)“z%k
R2\Bs(z2,k) R2\ B (22,k)

Ma 1 _
+ 2k / Ty = i / Uy (w2 V()]
20" JR2\Bj(ws,1) Bs(wa,)

9 (2.47)

€k —92

5 ug [,u,l-’k — h(:U)] (x — zo)vdS

0Bs(2,k)
2
A a / Ui, (x — zop)vdS, i=1,2.
* sz )

4a* JoB;(wsi)

Since it follows from (2.17) that
_ )\Qak _4 a*54 ak 4 a*fi
— i kEh /R2 Uy — o /R2 Ui = _TQk [Mz‘,k +5 s Uzk} =" e(ag),
we reduce from (2.45)—(2.47) that
* 4 —
a & 2—|—p 2/ _9 2/ 8ui,/€ —
e(ag) — 5 h(z)u;, =1I; +¢ (x —zok) - Vi,
)\2 ( ) 2 k R? ( ) ik 1 k 8B5(x2’k) 8V [ 7 ]
2
_gik: [(m_$2,k) 'l/:||vai,k’|27 1= ]-727
2 0Bs(z2,1)
which implies that
2+ o
Ty pé‘i /2 h(z) [tk + 1k | & = Tk (2.48)
R
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Here the term T}, satisfies that for small § > 0,

I— 1§ 7

T [(LL’ — $27k) . I/] (Vﬂz’k + Vﬁl,k)vfk

 laeg — @kl 2 Joyas)

vet [ {l- ) Vi (- 96) + (v Vi) [ - 220)- V]

I -1 el
2l +o(e =x) as k — oo,

|tk — @1kl oo
(2.49)
due to (2.22) and (2.29), where the second equality follows by applying the argument of
estimating (2.41).
Using the arguments of estimating (2.41) and (2.42), along with the exponential
decay of 4, 1, we also derive that for small § > 0,

I, — I

[tk — U1kl Lo

3 _ - 24+ _ _ =
= Mz,ki/ (o + U1 k)& — 5 pé‘%/ h(z)(ta + t1k)Ek
R2\Bs(x2,k) R2\Bs(x2,k)

/\zak / L ) i )
i + +
2a* R2\ B; (22.) (u2,k ul,k) (ulk ul,k)gk

2

Mok — H1k)€E _ 1 _ _ N\E

+ (, . )<k / U%k - E%/ (o) - VR(z)] (U2 + T1k)Ek
[, — 1 k|| e R2\B;(z2,1) 2 Bs(wa,1)

Aa _
1 *k / (a%k + ﬁ%k) (g, + U1 k) &k(x — 22k)vdS
" JoBs(za,k)
2
€ _
-5 (tig . + 11 1) Exh() (2 — 94)vdS
0Bs(z2,1)
g2 _
‘ML’; . / (f@,k + ﬂl,k)ﬁk(:z — o p)vdS
0Bs(z2,k)

2
— 5
o = ) / i g (2 — 220)vdS
2|tz — Urkllze JoBs@ay)

2
Mok — H1,k)€E _ 1 _
- II(u — 1 I? : [/ W+ 2/ il - x2’k)yds]
2,k — ULk|[L> L JR2\Bs(2g 1) 9Bs(x2,1)

1 _ e
—Ei/ (@2 - V()] (U2 + U1 k) &k + 0le k) as k — oo.
2 Bs(z2,k

(2.50)
Note from (2.43) that

2

— € 1 _cs

H(ff"“_ k) [/ u’ik+2/ a2 (z — wo)vdS| = O(e %) (251)
2,k Ul,kHLw R2\ Bs (2 1) 0Bs (w2 k)

as k — oo, where the constant C' > 0 is independent of k. Moreover, we follow from the
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first identity of (2.44) that

1 _
sz/ (22, - Vh(x)] (U2 + tir,1) s
Bs(z2,1)

= ¢k Zxék /135(:(;2 N agg(cf) [t () + U1 (2)] & (x)da (2:52)

where we denote zof = (23,23 ). Therefore, we deduce from (2.49)-(2.52) that
Ty, = o(e) ™) as k — oo.

Further, we obtain from (2.48) that

2+ L
o(aiﬂ’) = —Tpsz /R2 h(x) {Ug}k + uLk} &

2+
— 2)\2p5i /R2 h(%l’ + xggk) [ﬂzk(%g% + xQ’k) + ﬂlyk(%x + Jfl’k)} fk(a:)da;

24
_ 2)\2105% /R2 h(%x + x27k) {ﬂLk(%x + xz,k) — ﬂl,k(%x + xl,k)} &k(z)dx

2+p a4 ALo k[ (Ek —
- _2)\2+p5k ! 2 h(x + r ) [UQ,k(Xm + 1‘27k) + uLk(Xx + zlvk)}fk(;f)dﬂj

+O(£i+p|x2,k —21]) as k — oo.

Since (x + yo) - VR(z + yo) = ph(x + yo), by Proposition 2.1 and Step 1, we thus obtain
from (1.14) and above that

2

2

0
0:2/ h(w+yo)w£0:2b0/ h(z + yo)w(w + z - Vw) + E bi/ h(x + yo) -
R2 R2 » 8171

1 JR?

1=

= 2by [/ h(x + yo)w* +
RQ

— 2b0{ / h(z + yo)w? —
RQ

= —pbo/ h(z + yo)w? + bo/ w?[yo - Vh(z + yo)]
R? R2

= —pbo/ h(z + yo)w?,
R2

which therefore implies that by = 0.
By the non-degeneracy assumption (1.14), setting by = 0 into (2.37) then yields that
b1 = by = 0, and Step 2 is therefore proved.

Step 3. &y = 0 cannot occur.

Finally, let yx be a point satisfying &k (yx)| = [|€kl| < r2) = 1. By the same argument
as employed in proving Lemma 3.1 in next section, applying the maximum principle to
(2.33) yields that |yx| < C uniformly in k. Therefore, we conclude that & — & # 0
uniformly on R?, which however contradicts to the fact that & = 0 on R?. This completes
the proof of Theorem 1.1. O
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3 Refined Spike Profiles

In the following two sections, we shall derive the refined spike profiles of positive minimiz-
ers uy = uq, for e(ay) as ay * a*. The purpose of this section is to prove Theorem 1.2.
Recall first that uy satisfies the Euler-Lagrange equation (2.16). Under the assumptions
of Proposition 2.1, for convenience, we denote

2
HEEY,
Az

where p € R is the Lagrange multiplier of the equation (2.16), so that

e = (a* — ak)ﬁ >0, a:= Eiﬂ’ >0 and fr:=1+ (3.1)

ar— 0 and B — 0 as k — oo,

where (2.19) is used. In order to discuss the refined spike profiles of uy as k — oo, the
key is thus to obtain the refined estimate of uy (equivalently [j) in terms of eg.
We next define

wi(x) == ag(r) — w(z) = \/fek Uk (%ka: + xk> —w(x), (3.2)

where . is the unique maximum point of wuy, so that wy(z) — 0 uniformly in R? by
Proposition 2.1. By applying (2.16), direct calculations then give that uy satisfies

2 2
() + 55V (Fa+ o) (@) = Bt an) + uj(@) in B2
Relating to the operator £ := —A + (1 — 3w?) in R?, we also denote the linearized
operator

Ly = A+ [1 = (4} + gpw +w®)] in R?,

so that wy, satisfies

1 1 A
Lrwi(x) = —ag [Eﬂ%($) + mg(% + l’k)h(ib + Ei:)ﬂk(l‘)}

+Bitiy(x) in R?,  Vwg(0) =0,

(3.3)

where V (z) = g(x)h(z) satisfies the assumptions of Proposition 2.1 and the coefficients
ar > 0 and S > 0 are as in (3.1). Define

1 A
Libr () = —on [ 5055 + wu) (e + ()

+%ﬂi(m)} in R?,  Vi1(0) =0, (34)

Lo (x) = Brtg(z) in R%, Vipg p(0) = 0.

Note that the right hand side of (3.4) is orthogonal to the kernel of Ly, which then
implies that both v j, and v, exist. One can get that the solution wy(x) of (3.3) then
satisfies

wi(2) 1= Py (@) + Yo p(r) in R (3.5)

We first employ Proposition 2.1 to address the following estimates of wy as k — oo.

Lemma 3.1. Under the assumptions of Proposition 2.1, where V(z) = g(x)h(z), we
have

17



1. Y () satisfies

1 k(z) = agpr(x) + o(ag) as k — oo, (3.6)
where Y1 (x) € C2(R?) N L¥(R?) solves uniquely
Vip1(0) =0, Li(z)= —%wg(x) - iz(?rzoh(a: + yo)w(z) in R?, (3.7)

where yo € R? is given by (1.9).

2. 1y 1 (x) satisfies

Yo k(x) = Prpe(z) + o(Br) as k — oo, (3.8)
where o (x) solves uniquely
Vipa(0) =0,  Lipa(x) = w(z) in R?, (3.9)
i.e., a(x) € C?(R?) N L¥(R?) satisfies
¢2:—%(w+x-Vw). (3.10)
3. wy satisfies
wi(x) == agp1(x) + Brpa(z) + olay + Pr) as k — 0. (3.11)

Proof. 1. We first derive [¢); ;| < Coy, in R? by contradiction. On the contrary, we

assume that
iy NPllzes
im ——=—

= o0. 3.12
k—ro0 (0% > ( )

Set 1,/_11,;C = szp% so that H&l,kHLOO = 1. Following (3.4), zZLk then satisfies

—Aiz)l,k + [1 — (fLZ + upw + wz)]iﬁl,k

Q { 1 ExT AZj 1 4 o, (3.13)
= - — g 9( F )bz + = 1 B2
lekaoo )\2+pg( A + wk) (x + . )Uk-(.fv) + a*uk(x) in
Let y be the global maximum point of ¢y j so that ¢y ;(yx) = max,cge % -1

Since both @y and w decay exponentially in view of (2.7), using the maximum principle
we derive from (3.13) that |yx| < C uniformly in k.

On the other hand, applying the usual elliptic regularity theory, there exists a sub-
sequence, still denoted by {11}, of {114} such that 1 x — 11 weakly in H'(R?) and
strongly in L (R?) for all ¢ € [2,00). Here ¢ satisfies

v&l (O) = Oa ‘qul(x) =0 in RQ?

which implies that ¢; = Z?Zl ci%' Since V1(0) = 0, we obtain that ¢; = co = 0.
Thus, we have ¥ (y) = 0 in R?, which however contradicts to the fact that 1 = 91 x(yx) —
¥1(7o) for some 7o € R? by passing to a subsequence if necessary. Therefore, we have
1,k < Cay, in R

We next set ¢ x(z) = ¥y x(x) — axp1(x), where 1 (z) € C*(R?) N L>®°(R?) is a
solution of (3.7). Then either ¢ ,(z) = O(ay) or ¢1k(x) = o(a) as k — oo, and ¢
satisfies

Vo1 1(0) =0, —A¢iy+ [1— (3 + trw + w?)]d1p = —apfe(z) in R?,
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where fi(x) satisfies

fe(z) = (2w? — @} — wew) Y1 (z) + ai(ﬂ%(x) —w(x))
+ﬁ [9(% + ap)h(z + ):c)uk( ) — g(0)h(z + yo)w(z)|.

One can note that fx(x) — 0 uniformly as k — oo. Therefore, applying the previous
argument yields necessarily that ¢ () = o(ay) as k — oo, and the proof of (3.6) is
then complete. Also, the property (2.15) gives the uniqueness of solutions for (3.7).

2. Since the proof of (3.8) is very similar to that of (3.6), we omit the details.
Further, the property (2.15) gives the uniqueness of 1. Also, one can check directly
that —(w + = - Vw)/2 is a solution of (3.9), which therefore implies that (3.10) holds.

3. The expansion (3.11) now follows immediately from (3.5), (3.6) and (3.8), and
the proof is therefore complete. O

3.1 Proof of Theorem 1.2

The main aim of this subsection is to prove Theorem 1.2 on the refined spike behavior
of positive minimizers. In this whole subsection, we assume that the potential V(z) =
h(z) € C*(R?) satisfies lim;_,o h(z) = oo and (1.14), where h(z) is homogeneous of
degree p > 2. Following (3.1), from now on we denote for simplicity that

o(Jok + Bk]?) = o(aq) + o(arBr) +o(B}) as k — oo, (3.14)

where oy and i are defined in (3.1). We first use Lemma 3.1 to establish the following
lemmas.

Lemma 3.2. Suppose that V(z) = h(z) € C*(R?) satisfies limy, oo h(z) = oo and
(1.14) for some yo € R2, where h(x) is homogeneous of degree p > 2. Then there exists
an xo € R? such that the unique maximum point x) of wy satisfies

A
o (T —w0) a5 | = o Ollaol) +o[ow + i) as koo (315)

Proof. Multiplying (3.7) and (3.9) by 8“1 and then integrating over R2, respectively,
we obtain from (1.14) and (2.15) that

- = - w = = 1
R2 al'l Ew R2 8:131w R2 81131 x + yO)w 07 (3 6)

where yq is given by the assumption (1.14). Similarly, we derive from (3.3) and (3.11)
that

ow 8w ow 3 U, ATy,
Az 81’1£kwk - Bk U Ak /1;2 83;1 |: Uk + )\2+ph($ + Ek )]

(3.17)
= akﬂk/ 71#1 + o(awBr + B) — I,

where the identity fR? %¢2 = ( is used, since %ﬂ)g is odd in x1 by the radial symmetry
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of 1p5. We obtain from (1.14) and (3.16) that

B owrl 4  ay Az,
Il—ak/R 7[5%4—%}1( +—)}

2 011 €k
“on [ B ) ¢ i o+ = e ]}
- 2"‘? 5 g;‘}lwk (3w? + 3wwy, + w}) (3.18)
+;2¥ip /R2 gxui [h( + )\;:)Uk — h(z + yo)?ﬂ}
= 3;? - g;liw Y1 +o(a + axBr) + I,

where we have used the identity fR2 o w2y = 0, since 87“’ 21h9 is odd in x4 by the
radial symmetry of 1. Further, applymg (3.11) and (3.16) yields that

A2+PI2 :/l% @{h(mﬁ- ﬂ) [ak — w] + [h({];—|— ﬂ) — h([]}—l—yo)]w}

ay 2 011 €k €k
ow
= | g, e+ yo)wk + o(ak + Bi)
RrR2 01
ow T/ Az AT
_ . R 3.19
+/I;2 8%1 |:( €k y0> Vh(x+yo)}w+o<‘ Ek yOD ( )

ow ow
= o [ Gehla s+ B [ SR )

+42§z[(?—y0> -Vh(w‘+yo)}w+0<ak+ \A:c — %0l +5k>’

where (2.6) is used for the second identity. We thus get that

3 ow
I :a%[ * Jpo 81’1 w?y )\2+p/ 7h$+y0)¢1}

Oékﬁk ow [/ Az
— | — = -Vh 3.20
t2 s 83:1 h(z + yo)tp2 + )\2+p /RZ P [( - Z/o) Vh(z +yo)|w (3.20)
2
+0(ak‘; - yo’ + [k + Bk )
On the other hand, we obtain from (3.16) that
ow ow ow
— — Ly — L
/R2 &Elﬁkwk &Ulﬁwar/RQ o7 1( k )wr
ow
= — 21
- 3361 —wi (3w + wy) (3.21)
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Combining (3.17), (3.21) and (3.20), we now conclude from (1.14) and (3.11) that
0 A
. / e Kﬂ - 3/0) - Vh(z +y0)]w

A2t Jpo O €k

ow ow 1 ow
= oSy [/}RQ 871¢1 + 6/R2 8755111”/)11/12 T2t /R2 aT;lh(x + y0)¢2} (3.22)

3 ow 1 ow
2 _
—ak[ e W+ 5 | o B 1 w0} 3/ wwl]

+o([ag + Bk] ).
We claim that the coefficient I3 of the term oy in (3.22) satisfies

0 ow 1 ow
I3 = / L+ 6/ S w1 — 2/ ~—h(z +yo)2
R2 61‘1 R2 8.1‘1 A +p R2 833’1 (3 23)
— L / w[ . Vh(x + )] aiw ‘
B 2>\2+p R2 %o % 6m1

If (3.23) holds, we then derive from (3.22) that there exists some zg = (210, 790) € R?
such that D \
1 w Tk yo}
_ — D1 wh
2\2+p /RQ a.%'j [ak< €k yo) akﬁk 2 v ($+y0)
= a;0(|zjo|) + ofo + Bi]?), j=1,2.

By the non-degeneracy assumption of (1.14), we further conclude from (3.24) that (3.15)
holds for some zy € R?, and the lemma is therefore proved.

To complete the proof of the lemma, the rest is to prove the claim (3.23). Indeed,
using the integration by parts, we derive from (3.10) that

0 0
A:_/ ww1+6/ 8—ww¢1w2
]R2 R2 011
_ _ 2 a2, 2 e . 2
N /R? 8$1¢1 3/ a$1w ¢1 2 R2 8:::11/]1(3: Vw )

ow ow
_/Waxlwl_s/ﬂ@amw (03

=/R2§;‘iw1+;’/ w [gwlu Vi) +haz-  (20 ooy,

Since (z + yo) - Vh(z 4+ yo) = ph(x + yo), we obtain from (1.14), (3.10) and (3.16) that

1 ow
B:= —h

1 w

_ _”\lﬂ?/RQw[Qh(:c—&-yo)gl"‘x V(gh@*y()))}
:”\iﬂ)/ww{[x-Vh(eryO)]gl+h(z+y0)x’v(g::i)}
:_”\iﬂ?/ﬂywh(eryo)[x.v(gZ)] +2/\;ﬂO/RQw[yo-Vh(a:+y0)]§;i.
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By above calculations, we then get from (3.23) that

13=A+B=/ aww1+3/ wQB—w(%Wl)
RQ@.’L‘l 2 R2

o Lt =G v ()]
+2)\%+p /R2 w[@/o - Vh(z + Z/o)} gxui

1 ow
s [, v Vh ] g

(3.25)

=1+ —
Applying the integration by parts, we derive from (3.7) that
[ ooy [, o - ) o (5]
[ o [ [t - (e Mg (2]
~[peag [ an s e 9(52)]
= [y [ o) eV (3E)] -5 [ 2 vt v
=5 [ (o[- 9(G)] -5 [ G e ),
which then gives from (3.25) that
o= [ anle V(2] [ =)@ ve

=/ Awl[:c v(gz)h/w aaill”(x.wl).

To further simplify I, we next rewrite ¥ as 11(z) = ¥1(r,0), where x = r(cosé,sin6)

(3.26)
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and (r,0) is the polar coordinate in R?. We then follow from (3.7) and (3.26) that

e ) 27r
e[ [

2w

9 (w cos G)dﬂdr

r(0), ], + - 00

/ / 87‘ w” T/)COSQT (wl)Tder
= — /oo /27r (1) ) cos 0dfdr
o Jo
oo 2w o w'
+/000/02ﬂ r(1), [ (w + )}cos&d&dr o
+/0 /0 (1) gy cos OdBdr
_ /000 /027r r(¢1) {( W) — [7‘% (w” + Ig)} } cos 0d0dr
— /oo 27r Yrw” cos OdOdr
o Jo

2w 2
= / (1), w' cos Odfdr — / Yrw” cos OdOdr = 0,
o Jo o Jo

i.e., Iy = 0, which therefore implies that the claim (3.23) holds by applying (3.25). O

Remark 3.1. Whether the point xg € R? in Lemma 3.2 is the origin or not is determined
completely by the fact that whether the coefficient I5 of the term ai in (3.22) is zero or
not, where I5 satisfies

ow
R2 aZL'l

Wiy + / b+ o) 3 2.

w
)\2+p (9.%'1

a*
If h(x) is not even in x, it however seems difficult to derive that whether Is =0 or not.

Lemma 3.3. Suppose that V(z) = h(z) € C*(R?) satisfies limy, oo h(z) = oo and
(1.14) for some yo € R?, where h(x) is homogeneous of degree p > 2. Then we have

wg 1= aphy + Btz + o Ps + Bitba + arbrts + o[k + Bil?) as k— oo, (3.28)
where 1 (x), Y2(z) € C*(R?) N L>®(R?) are given in Lemma 3.1 with g(0) = 1, and
Pi(z) € C3HR?) N L*>®(R?), i = 3,4,5, solves uniquely

Vi (0) =0 and Lipi(z) = fi(z) in R? i=3,4,5, (3.29)
and f;(z) satisfies for some y° € R2,
3w?  h(x +yo) o
3w¢f N ( a* + 2\2+p )T/Jl )\1+p [ 0. Vh(z + yo)]? if =3
3wips + 1o, if 1=4
filz) = 2 3u? Az + yo) (3.30)
6wip1ps + 1 — ( pral v )77112
w o
—m[yth(eryo)], if 1=05;

where yo € R? is given by (1.14). Moreover, 14 is radially symmetric.
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Proof. Following Lemma 3.1(3), set

v = Wy — 1 — Bre,
so that

Lrwy, = Li(vp + a1 + Brtho)
= Lyvg + (L, — L)1 + Br(Ly — L)h2 + aplapy + BrLie (3.31)
= Lyvg — wi(agr + Brp2) Bw + wi) — ag [% + W} + Brw
Applying (3.3), we then have

w?  h(z +yo)w

Lo, = Lrwg + wi(aghr + Brtp2) (3w + wy) + ay, {E + W} — Brw
= wi (a1 + Brtp2) (3w + wi) + Br(tug — w)
_ak{i(ﬂi —wd) + /\21+p [h(x + )\;;k)uk — h(z + yo)w} }
= wi (o1 + Brt2) Bw + wi) + Brwi, — I,

(3.32)

where I satisfies
a

o0 {h )= w) + [+ 225 o+ ) e}

\2+p
o L
= Ewk(?)wz + 3wwy, + wi) + Wh(x + yo)wg,
O )\l’k _ 2
+t21p Kz - yo) -Vh(z + yo)}uk + o([ak + Bi]?)

3w?  h(x+ a!
:akwk< pe + ()\2+pyo)> —i—;fw,%(i%w—i—w@

(2 ) e ot

_.I_

where Lemma 3.2 is used in the second equality. By Lemma 3.2 again, there exists
y° € R? such that

Az
‘ak<€—: — yo) — akﬁk% — a%yol = 0([0% + Bk]Q) as k — oo.

We thus obtain from above that

3w?  h(z+
Lyvp = wi(arhr + Brib2) Bw + wy) + Brwy, — akwkz< el ()\HI;UO))

« AT «
_Azip KT; - yo> - Vh(z + ?JO)} Uy, — a*fwi(i”w +wg) + o[k + Bi])

—ofount - (B2 Mty L 0o )]

+akﬁk{6w¢1¢2 + b1 — (3;22 + h(igtgo))% - 2)é+pw[yo - Vh(z + yo)} }

+B2(3wip2 + a) + o[ak + Br]?) in R

(3.33)
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Following (3.33), the same argument of proving Lemma 3.1 then gives (3.28). Finally,
since f4(x) is radially symmetric, there exists a radial solution 4. Further, the property
(2.15) gives the uniqueness of 14. Therefore, 14 must be radially symmetric, and the
proof is complete. O

Lemma 3.4. Suppose that V(z) = h(z) € C*(R?) satisfies limy,_,oo h(z) = oo and
(1.14) for some yo € R?, where h(x) is homogeneous of degree p > 2. Then we have

/R2 wipy = 0, /R2 wipy = 0, (3.34)

I= / (2wips +3) = 0. (3.35)
R2

and

However, we have

2+p

11:2/RQW5+2/R2¢1¢2_—2<0 (3.36)

Here 1(x),- - ,¥5(x) € C?(R%) N L®(R?) are given in Lemma 3.1 with g(0) = 1 and
Lemma 3.5.

Since the proof of Lemma 3.4 is very involved, we leave it to the appendix. Following
above lemmas, we are now ready to derive the comparison relation between 5, and ay.

Proposition 3.5. Suppose that V(x) = h(z) € C*(R?) satisfies lim,_,o h(z) = 0o and
(1.14) for some yo € R?, where h(x) is homogeneous of degree p > 2. Then we have

Br =C*ay, as k — oo, (3.37)
where the constant C* satisfies
2
= —12 2 . .
=5 /ngww/wwl)#o (3.38)
Moreover, wy, satisfies
= [1 + C* o] o + [ + (C*)*u + C*ys]of +o(af) as k— o0, (3.39)

Here ¥1(z), - ,¥5(x) € C?(R?) N L®(R?) are given in Lemma 3.1 with g(0) = 1 and
Lemma 3.3.

Proof. Note from (3.2) that wy satisfies

/ w —/ / (w—l—wk)z, i.e. 2/ wwk+/ w,%zO. (3.40)
R2 R2 R2 R2 R2
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Applying (3.40), we then derive from Lemma 3.3 that

0:2/ wwk+/ wi
R?2 R2

=2 /]R2 w(oty + Brtba + 03 + Biths + auBids)

+ /RQ(O%T/H + Brthe + aihs + Biva + cwBrs)? + o([ak + Br)?)

:Oék(2/R2w¢l> +5k<2/ﬂ£2w¢2)+B/%<2/RQW/J4+/RQ¢%)
vonfi(2 [ won 2 [ o) +ab(2 [ went [ o)+ ollon+ Ai)

: —;pakﬁk +aj (2 /R2 v /R2 dj%) +ollax+ Bl

(3.41)

where Lemma 3.4 is used in the last equality. It then follows from (3.41) that

2/Rwa3+/RQ¢%¢o,

and moreover,

2

+ . «
p5k+ak<2/ W¢3+/ @ZJ%) =0, e, B =C"ay,
2 R2 R2

where C* # 0 is as in (3.38). Finally, the expansion (3.39) follows directly from (3.37)
and Lemma 3.3, and we are done. ]

We remark from (3.1) and Proposition 3.5 that the Lagrange multiplier p; € R of
the Euler-Lagrange equation (2.16) satisfies

A
f = ——5 + )\QC*ai + o(el) as k — oo, (3.42)
€k

where A > 0 is defined by (2.2) with ¢g(0) = 1, and C* # 0 is given by (3.38). Moreover,
following above results we finally conclude the following refined spike profiles.

Theorem 3.6. Suppose that V(x) = h(z) € C*(R?) satisfies lim,_, h(z) = oo and

(1.14) for some yo € R?, where h(x) is homogeneous of degree p > 2. If u, is a positive

minimizer of e(a) for a < a*. Then for any sequence {ar} with ar / a* as k — oo,

there exist a subsequence, still denoted by {ay}, of {ax} and {x;} C R? such that the
1

subsequence solution uy = u,, satisfies for e = (a* — ay)?+r,

ug(x) A { 1 w(M) +eltp Wl +C*¢2} (>\($€—kxk)>

el Ve

o (3.43)
3+2p )2 * Az — zp) 3+2p
+ej, {1#34-(0 )*ha+C %} (gi)} +o(e;," ") as k — oo
k
uniformly in R?, where the unique mazimum point xj, of uy satisfies

A

g - yo) = 8z+p0(|y0|) as k — 0o (3.44)
k

for some y° € R%, and C* # 0 is given by (3.38). Here ¥1(x),--- ,5(x) € C*(R%) N
L>®(R?) are given in Lemma 3.1 with g(0) = 1 and Lemma 3.3.

26



Proof. The refined spike profile (3.43) follows immediately from (3.2) and (3.39). Also,
Lemma 3.2 and (3.37) yield that the estimate (3.44) holds. O

Proof of Theorem 1.2. Since the local uniqueness of Theorem 1.1 implies that Theo-
rem 3.6 holds for the whole sequence {ay}, Theorem 1.2 is proved. O

4 Refined Spike Profiles: V(z) = g(x)h(z)

The main purpose of this section is to derive Theorem 4.4 which extends the refined
spike behavior of Theorem 1.2 to more general potentials V(z) = g(x)h(z) € C?(R?),
where V() satisfies lim|; o V(2) = 0o and

(V). h(—x) = h(z) satisfies (1.14) and is homogeneous of degree p > 2, g(z) € C™(R?)
for some 2 < m € NU {+oo} satisfies 0 < C < g(z) < & in R? and G(z) :=
g9(x) — 9(0),

D*G(0) =0 for all |a| <m —1, and D*G(0) # 0 for some |a| = m.

Here it takes m = 400 if g(x) = 1.

Remark 4.1. The property h(—z) = h(x) in the above assumption (V') implies that
yo = 0 must occur in (1.14).

For the above type of potentials V' (z), suppose {uy} is a positive minimizer sequence
of e(ay) with ar ~ a* as k — oo, and let wy, be defined by (3.2), where xj, is the unique
maximum point of ug. Then Lemma 3.1 still holds in this case, where a > 0 and 5 > 0
are defined in (3.1). Similar to Lemma 3.2, we start with the following estimates.

Lemma 4.1. Suppose V(z) = g(x)h(z) € C%(R?) satisfies lim, o0 V(2) = 00 and the
assumption (V) forp > 2 and 2 < m € NU{+o0}. Then the unique mazimum point xj
of uy, satisfies the following estimates:

1. If m is even, then we have

)\ak\xk\ _

- o([a + Br? + aker’) as k — oo. (4.1)
k
2. If m is odd, then we have
A
al;|$k| = O(ayel|zol) + ook + Br]* + awel’) as k — oo, (4.2)
k

where zg € R? satisfies

4(0) /R ai“[xo-w(x)]w+%m )3 /R @[ﬁmg(m]h@)w:o. (4.3)

2 81’1

Proof. Recall that ¢ (z) and 2(x) are given in Lemma 3.1. Since h(—z) = h(z), we
have ¢;(—z) = ¢;(z) for i = 1, 2 and thus

Ow Jw

ow
[ —_— 2 = —_— == . 4.4
R2 8:61 ! R2 (95131 wwl R2 8951 w’lﬂﬂ/& 0 ( )
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Since (1.14) holds with yp = 0 as shown in Remark 4.1, the same calculations of (3.17)—
(3.18) then yield that

ow
0(04% + akﬁk) = 78.%1 Lpwg
owrl U ERT AT
2\ L -3 k k k
= o(a Bk + B},) Oék/R P [ —1j, + o (T + zp)h(z + = )}

—olanut 5) - 2% [ S (at - u)

Qy, ow [ epT ATg\
—o /RZ oo 957 + (e + - g(O)h(x)u]

(4.5)

A
= o(afr + B7) — A‘;ﬁp / g;‘fl[ (‘Eﬁ +ag)h(z+ Ei:)ak - g(O)h(a:)w}
= ooy + B87) — I,

where the first equality follows from (3.21) and (4.4). Similar to (3.19), we deduce from
(1.14) with yo = 0 that

2t w x T
i = [ o+ ) [~ ] +90) (e + ) — b))

Qe 2 8951 €k
+/ a—w[(g’“—%raz) (0)}h(x+ﬂ)
R2 6951 J A F g €k bl
ow [ Az
_ )\ack v ALYE
ol + 22| + ) +g<o>/2 oo (2 Vh(a) )
5k: )\:Ek «a )\l‘k _
Z R2 81‘1 Oé' €k ) g(o)} ($ + Ek )Uk * O(€k )’
which then implies that
(077 é‘k )\xk @ )\xk
2R T pe h i
h= )\2+p Z R2 8.731 €L ) 9(0):| (:U—i_ €L ) Uk (4 6)
o w (Ary 2 Ay m '
+)\2+pg(0) /R2 Py ( - Vh(z ))w + o(aj + arB + | o | + arep).

Combining (4.5) and (4.6), we then conclude from the estimate (3.11) that

o ow 7 Az
290 /R 071(; W‘U))
(677 Ek x®

Q) T [l oo i)

a_

(4.7)

If m is even, one can note that
E 0 ]h z)w = 0,
|a|=m /JR2 8301 ( ) ( )w

and it then follows from (4.7) and (1.14) with yo = 0 that (4.1) holds. If m is odd, we
then derive from (4.7) that both (4.2) and (4.3) hold. O
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Lemma 4.2. Suppose V(z) = g(x)h(x) € C*(R?) satisfies lim,_,o V(z) = oo and the
assumption (V) for p > 2 and 2 < m € NU {+oo}. Let ¥1(x) and yo(x) be given in
Lemma 3.1 with yo = 0. Then wy, satisfies

wy : = oy + Brtbe + ajibs + Biy

(4.8)
el d + o Brs + oo + Bel> + arel’) as k — oo,
where ¥;(z) € C?(R?) N L>®(R?), i = 3,4, 5, solves uniquely
Vipi(0) =0 and Lapi(z) = gi(z) in R?, i=3,4,5, (4.9)
and gi(x) satisfies
3w?  g(0)h(x) o
swid — (S + g ). if i =3;
gi(x) = { 3wyd + o, if =4 (4.10)
3w? 0)h(z o
uprt +n — (2 SO, g i,
Here ¢ € C%(R?) N L>®(R?) solves uniquely
1
Lé(x) = =375 { [z0- V()] g(0)w
1 . o B (4.11)
+/\7m‘ . [JD g(O)} h(:):)w} in R*, and V¢(0) =0,

where xog = 0 holds for the case where m is even, and xo € R? satisfies (4.3) for the case
where m is odd.

Proof. Following Lemma 3.1(3), we set
Vg = wg — ag1 — Brta.

Similar to (3.32), we then have

Lyvy = wi(aphr + Brip2) (3w + wi) + Srwy — %(ai —w?)
A
—)\C;J’ip [9(5% + xp)h(z + ei:)ﬂk = g9(0)h(x)w
= wi (a1 + Brip2) (Bw + wy) + Brwy,

—%wk(3w2 + 3wwy, + wi) — I,

(4.12)
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where I satisfies

I = )gf_p{ [g(% + a:k) — g(O)} h(iL‘ + ﬂ)ﬂk

+9(0) (e + ) — h@)| i+ 9(O)h() (a0~ w) |

=2 {(3)" T (e 2 o)t + 2

al=m

g(0)h(x) ap (AT ~
= We o7, )\2+p< e 'Vh($)>9(0)uk
e AT AT
et [a, (c+ ?'f) Dg(0)] e + =5 i+ o(onef),

|a|=m

where Lemma 4.1 is used in the last equality. Applying Lemma 4.1 again, we then obtain
from (4.12) and (4.13) that

(0]
Lyvy = wi (g1 + Bripe) (Bw + wy) + frwy — a—fw,%(?)w + wy,)

B A 08
- z (o +22) Doy )] (e + 25 ) + (el
= o3 [suut - (22 4 2000y, (4.14)
- (5 290
SO [0 VRO + 35 3 [S ()] b}

|la|=m

+B2(Bwyd + o) + o([ag, + Bi)? + axel) in R?,

where o = 0 holds for the case where m is even, and z¢ € R? satisfies (4.3) for the case
where m is odd. Following (4.14), the same argument of proving Lemma 3.1 then gives
(4.8), and the proof is therefore complete. O

Proposition 4.3. Suppose V(z) = g(z)h(z) € C*(R?) satisfies lim; o V(z) = o0
and the assumption (V') for p > 2 and 2 < m € NU {+o0}. Let ¢Y1(z), - ,¢5(x) €
C?(R%) N L>®(R?) be given in Lemma 3.1 with yo = 0 and Lemma 4.2, and ¢ is given by
(4.11).

1. If m > 2+ p, then
Br = C*ay, (4.15)

and wy satisfies
wy, = [P1 + C*ho] g + [P35 + (C*)*Pa + C*i5]ai + o(af) as k — oo, (4.16)

where the constant C* satisfies
2
= (2 ) : 4.1
€= (2 [ wwn s [ 0) 0 (417)
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2. If 1 <m <2+ p and m is odd, then B = C*ayp and wy, satisfies

Wy : = [wl —+ C*’(/JQ} o + (bOékE?]? (4 18)
[0+ (C*) s + C*s]ad + o(agel) as k — oo, ’
where the constant C* #£ 0 is given by (4.17).

3. If 1 <m <2+ p and m is even, consider
S = Z / h(g;)w2. (4.19)

Then for the case where S = 0, we have B = C*ay, and wy, satisfies (4.18), where
the constant C* # 0 is given by (4.17). However, for the case where S # 0, we
have

By = Crep, (4.20)

and wy, satisfies

wy, == CFoel + 1oy, + (CF)%hae?™ + o(e mm{2+p’2m}) as k — oo, (4.21)
where the constant CT satisfies
cr = mtp Z 0)] hz)w? #0 (4.22)
L™ 2+)p) A2+P+m a' ' '
4. If m =2+ p is even, then
Bk = Cyou, (4.23)

and wy satisfies

wy, : = [+ Csipo) g + [1h3 + (C3)*Pa + C3bs + ¢l ag + o(af) as k — oo,
(4.24)
where the constant C5 satisfies

Ci =12 /Wwww/ wl+2/ wg] #0. (4.25)

Proof. The same argument of proving Lemma 3.4 with yg = 0 yields that

/ wipy =0, / wipa =0 and [ = / (2ww4 + w;) =0, (4.26)
R2 R2 R2
and ot
. _ p
11_2/RQw¢5+2/RZw1¢2— — < 0. (4.27)

31



It thus follows from (3.40) and Lemma 4.2 that
0= 2/ wWwy, + / wi
R2 R?
=2 [ w(owdr + B + bt + BRun + cnef'd + au i)
R

+ /R2 (arthr + Brtbz + ajabs + Biwbs + aref'e + akﬁws)Z

—|—0([o¢k + Br)? + akagb)

:ak(Q/RQ w1/11> +ﬁ’“<2/w ww) +,3,§(2/RQ WH/RQ wg) (4.28)
+akﬁk<2/ﬂ§2w¢5+2/]&2¢1¢2) +Oé%(2/R2’w¢3+/RQ¢%>

+age) (2 /RQ w¢> +o([on + Bl” + aney)

:—2;pakﬂk+a%<2/ﬂpw¢3+/ﬂv¢%) +ak5?<2/ﬂgzw¢)

+0([Oék + ,Bk]2 + akszl),

where (4.26) and (4.27) are used in the last equality. Following (4.28), we next carry out
the proof by considering separately the following four cases:

Case 1. m > 2+ p. In this case, it follows from (4.28) that the constant C* defined in
(4.17) is nonzero and

24p
2

Bk+ak<2/ Uﬂbg-i—/ ¢%> =0, ie., Br=C"a.
R2 R2

Moreover, the expansion (4.16) follows directly from (4.15) and Lemma 4.2, and Case 1
is therefore proved.

Case 2. 1 <m <2+ p and m is odd. In this case, since m is odd and h(—z) = h(x), we
obtain from (3.10) and (4.11) that

2/R2w¢=2/]1{2¢£w2=2/ﬂ¥2w2£¢

- /R {lro- Vh()]g(0)u
+)\im [Z—TDO‘g(O)] h(w)w} (w +x- Vw) =0.

laf=m

We then derive from (4.28) that (4.17) still holds and thus fy = C*ay. Further, the
expansion (4.18) follows directly from (4.8) and (4.15).
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Case 3. 1 < m < 2+ p and m is even. Since m is even, then xy = 0 holds in (4.11).
Further, since z®h(x) is homogeneous of degree m + p, we then obtain from (4.11) that

2/R2“’¢:2/ szzz/ ol

)\2+p+m Z / h(fﬁ)w(w +z - Vw)

(4.29)

(07

tz-V [%Dag(())h(x)} }

_ m+p 2. m+p
e DY /R 5000 hwe = s,
o=

where S is as in (4.19). Therefore, if S = 0, then we are in the same situation as that
of above Case 2, which gives that 5, = C*ay, and wy, satisfies (4.18), where the constant
C* # 0 is given by (4.17).

We next consider the case where S # 0. By applying (4.29), in this case we derive

from (4.28) that
2+
pakﬁk + OékEZ1 (2/ ’LU(b) =0
2 R2

which implies that 3, = C7e}", where the constant C| # 0 satisfies (4.22) in view of
(4.29). Further, the expansion (4.21) follows directly from (4.20) and Lemma 4.2.

Case 4. m =2+ p is even. In this case, we derive from (4.28) that

2+
— 2pakﬁk+ai(2/ wng—k/ w%+2/ wgb):O,
R2 R2 R2

which gives that S, = C5ay, where the constant C3 # 0 satisfies (4.25). Further, the
expansion (4.24) follows directly from (4.23) and Lemma 4.2. O

Applying directly Lemmas 4.1 and 4.2 as well as Proposition 4.3, we now conclude
the following main results of this section. Recall that A > 0 is defined by (2.2) with
Yo = 0, Y1(x), -+ ,s5(x) € C*(R?) N L°°(R?) are given in Lemma 3.1 with yp = 0 and
Lemma 4.2, and ¢ is given by (4.11).

Theorem 4.4. Suppose V(z) = g(x)h(z) € C*(R?) satisfies lim|, o V() = 0o and
the assumption (V') for p > 2 and 2 < m € NU {+o0}. Let u, be a positive minimizer
of (1.1) for a < a*. Then for any sequence {ar} with a / a* as k — oo, there ezists
a subsequence, still denoted by {ax}, of {ar} such that uy, = ug, has a unique maximum

point v, € R? and satisfies for ey, := (a* — ak)2+P
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1. If m > 2+ p, then we have
(@) = — {iw(M> 27+ Cy) (M)

[|w]|2 €k €k

rel s+ €+ 0w (U)ol ) s ko oo

(4.30)
uniformly in R?, where x}, satisfies
2] = O(eP|y°)) + o(siﬂ)) as k — oo (4.31)
€k

for some y° € R%, and the constant C* # 0 is given by (4.17). Further, if m is
even, then xi satisfies
e

3+p
€k

2. If 1 <m <2+p and m is odd, then we have
uele) = 2 LAY ey o) (W)

lwll2 U e €k

=o(1) as k — . (4.32)

4 [y (O + O] (L) (4.3

m r—x m
+e k+ +p¢(7( - k)>}+ (5,1,+ ) as k— oo

uniformly in R?, where x), satisfies

|2k
+1
p

for some y° € R?, and the constant C* # 0 is given by (4.17).

=0(|y°)) as k — oo. (4.34)

3. If m =2+ p is even, then we have
ug(r) = A {iw(M> eltp [7111 n 02¢2} ((xg_kxk))

[wll2 Lex €k
gt (s + (C3)wa + Cs + 0] (A(“’E_km’“))} +o(e}") as k — oo

(4.35)
uniformly in R?, where xy satisfies (4.32) and the constant C3 # 0 is defined by

(4.25).

4. If 1 <m < 2+ p and m is even, let the constant S be defined in (4.19). Then for
the case where S = 0, uy, satisfies (4.33) and xy, satisfies

|k
m+1
€k

Howewver, for the case where S # 0, uy satisfies

ug(z) = )‘{Elkw()‘(:”_xk)) +EZ@—1CMQ<)\(:ce—kxk))

[[wll2 Ek
+er " (1) s ()\(ik xk)) +e, P (A(ik k) ) } (4.37)

+O(E;€nin{2+p,2m}fl )

=o(l) as k — oo. (4.36)

as k — oo
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uniformly in R?, where zy, satisfies (4.36), and the constant C; # 0 is defined by
(4.22).

Proof. (1). If m > 2 + p, then (4.30) follows directly from Proposition 4.3(1), and
(4.31) follows from Lemma 4.1. Specially, if m is even, then Lemma 4.1 gives 3° = 0,
and therefore (4.31) implies (4.32).

(2). If1 <m <2+ pand m is odd, then Proposition 4.3(2) gives (4.33). Moreover,

ff‘ = O(eP|y°]) + o(e) as k — oo, which then

it yields from (4.2) that xj satisfies

implies (4.34) for some y° € R2.

(3). If m = 2+ p is even, then Proposition 4.3(4) gives (4.35), and we reduce from
(4.1) that xj, satisfies (4.32).

(4). If1 < m < 24 p and m is even, it then follows from (4.1) that z; always
satisfies (4.36). Moreover, Proposition 4.3(3) gives that if S = 0, then uy, satisfies (4.33);
if S # 0, then uy, satisfies (4.37). O

A Appendix: The Proof of Lemma 3.4

In this appendix, we shall follow Lemmas 3.1 and 3.3 to address the proof of Lemma 3.4,
ie., (3.34)—(3.36).

The proof of (3.34). Under the assumptions of Lemma 3.4, we first note that the equation
(3.7) can be simplified as

2w? 2h(z + yo)w )
Vi (0) =0, L =— - n R=, Al
¥1(0) V1 fRz w? prz h(z 4 yo)w? (A1)
due to the fact that )
o =l =3 [ vt (A2)
2 Jge
By (1.14), (3.10) and (A.1), we then have
2/ w1 —2/ Lapo)y —2/ Yo Lapy
R2 R2 R2
23 2h
:/ [ w4 (@ + yo)w 2](w+x-Vw)
R2 fRQ w p f]R2 h(z + yo)w
2 2 2
=24+ -+ /ng-Vw—i— /haH— w(x - Vw
D fR2 w* Jpe ( ) prQ h(z + yo)w? Jg2 ( vo) ( )

2 1 1
—24 2

LI RO VA N T
p+2fR2w4/RQ( v )+pr2h(ﬂs+y0)w2/th( +y0) (2 - Vw?)

2 1
—24 1 /w22hx+ + (- Vh(z +

p P Jg2 h(z + yo)w? Jpe {( o) + ( ( yo))}
P S A )

p p

since (z+ o) - Vh(z +y0) = ph(z +yo) and [po w?[yo- Vh(z +y0)] = 0. Also, we deduce
from (3.10) that

2/ wwgz—/ w(w—i—x-Vw):—/ w2—1/(m-Vw2):0,
R2 R2 R2 2 R2
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which thus completes the proof of (3.34). O
The proof of (3.35). By Lemmas 3.1 and 3.3, we obtain that

T= [ Covirud) = [ 03+ 2(Cin 00
— [ 03 2ta, L) = [ 03+ 2 (Guvd + )
R2 R2

_3 w%+6/ wid,
R2 R2

which implies that

;{zi[/ﬂvwgw/ﬂwwlﬁ%}

~ - (A.3)
= / r(w + ruw')? — / rw(w + rw')? := A — B.
0 0
Here we have
oo oo oo oo
A= / r(w 4+ rw')? = / 3 (w')? +/ rw? —1—/ r2dw?
0 0 0 0
oo 1 o
= / 7“3(11/)2 — / rw?,
0 2 Jo
where (A.2) is used, and
oo
B = / rw(w + rw')?
0
oo o0 o0 oo
= [/ rw4+3/ r2w3w’} +3/ 7’3w2w’w’+/ rhw(w')?
0 0 0 0
1 oo oo oo
= —/ rw4+3/ r3w2w/w'+/ r4w(w/)3.
2 Jo 0 0
Therefore, we get from (A.3) that
2[ o0 o0 o0
— = / r3(w')? — / rlw(w')? — 3/ rww'vw' == C + D+ E. (A.4)
3t Jo 0 0
To further simplify I, recall that
rw” = —w' + rw — rw?, (A.5)

by which we then have

C':/ 3w dw = —/ w(rdw')
0 0

o0
= —/ w[3r2w’ + 72 (—w' +rw — rw?’)]
0
o
= —/ w[2r*w + rw — riw?)
0

oo oo oo
= 2/ rw? —/ riw? +/ 3wt
0 0 0
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Similarly, we have

1 o 1 [o.¢]
D= —2/ r(w')?dw? = 2/ w? [4r3 (w')? + 2r3w’ (—w' + rw — rw®)]
0 0

Note from (A.5) that

o0 [ee] 2 oo
—2/ rw?(w')? = —/ 3w dw® = 3/ w? [37“210’ + 7 (= +rw — rw?’)]
0 0 0

4 [ 2 [ 2 [
= / wiriw' + / 3wt — / r3w’
3 Jo 3 Jo 3 Jo

2 [ 2 [ =
= —/ rwt + 2 3wt — 2/ r3w.
3 Jo 3 Jo 3 Jo

by which we conclude from (A.2) and (A.4) that

:C+D—|—E:[2/ rw2—3/ T3w2+2/ rgwﬂ. (A.6)
3 3 0 0 0

In the following, we note that w satisfies
(rw’) = rw —rw®, r> 0. (A.7)

Multiplying (A.7) by 73w’ and integrating on [0, 00), we get that

/ 3w (rw') = / 3w [rw — rw’) = / rdw? — / rtdw?
0 0 2 Jo 4 Jo

o (oo}
= —2/ r3w? +/ rdw?.
0 0
Note also that
o0 o0 1 o0 o0
/ 7"311}/(7‘71}/)/ — / TS(w/)Q + / r4d(w')2 — _/ 7’3(10,)2.
0 0 2 Jo 0

By combining above two identities, it yields that

/ 3 (w')? :2/ 7“3w2—/ 3w, (A.8)
0 0 0
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On the other hand, multiplying (A.7) by r?w and integrating on [0, o0), we obtain that

o0 oo oo o0 oo
/ r3w2—/ r3w4:/ r2w(rw’)’:/ rzww/—F/ r3wdw’
0 0 0 0 0
oo [ee]
:/ r2ww'—/ w' (3w + r3w’)
0 0
o o
= —2/ 7‘2ww'—/ 3 (w')?
0 0
o0 o0
= / rwg—/ r3(w')?,
0 0
which then implies that

/ r3(w’)2:2/ er—/ r3w2+/ r3w?, (A.9)
0 0 0 0

We thus conclude from (A.8) and (A.9) that

o0 [e.e] oo
2/ rw2—3/ r3w2+2/ rduwt =0,
0 0 0
which therefore implies that I = 0 in view of (A.6), i.e., (3.35) holds. O
The proof of (3.36). Following Lemmas 3.1 and 3.3 again, we get that

Il = 2/]1%21/15&#24-2/]1%21/}11#2—2/RQ¢2[£¢5+¢1]
_ _/RQ<w+x.Vw)<6wwlw2+2w1>

1 3w?  h(z+ o) 2 (A.10)
_2/]1@2 [ ey }(w—l—a:-Vw)

+

N2 /RQ(w—I—x - Vw) [yo - Vh(z + yo)|w

= A+ B.

Since (z + yo) - Vh(x + yo) = ph(z + yo) holds in R?, we derive from (1.14) and (A.1)
that

w2 X
— —% /R2 [BG* + h()\:é/())} [w? + 2w(z - Vw) + (2 - Vw)?]

. /R;w + 2+ V) [yo - Vh(z + yo)]w

o /RQ [fJR? wi P Jr2 M + (l)lo)uﬂ} [w® +2u(z - V)]

1 3w?  h(z+ o) 2
2 fula e s

2);+p /R2 w(yo - Vh(z + yo)] (z - Vw)

1 3 / . 1 / )
- — x - Vw™) — h(z + z - Vw
P 2 [pow? RQ( ) P Jg2 h(x + yo)w? Jge (@ +30)( )

1 3w? | h(x + yo) 2 1
3 L L+ M vy s [ el S0+ w9

1 2+ +1
= 3--+43+— L =" 4,
p p p

= —3—
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where the term Cj satisfies

1 3w?  h(z+ o) 2 1
CO__Q/Rz[a* + 2 }(w-Vw) —i—W/R2w[yo-Vh(:r+yo)](x-Vw)

= —2:;* 2 (x - Vw)(z - Vw3) - 2)\;_]) /R2 h(z + yo)(x . Vw) (z - V)

1

1
_2(1* R2

+2)\%+p /Rz w{2h(e + yo) (- Vo) + [+ Tz + o)) (& - Vo)

w? {2(x -Vw)+z-V(x- Vw)}

+h(z + yo) [3: -V(z- Vw)} } + 2)\% /R2 wlyo - Vh(z + yo)] (z - Vw)

1 w wh(z + yo)
_2/Rz{a*+ N\2+p M:c-V(x-Vw)]
1 3 2+p
/R w(z - Vw) + S5 /RQwh(x—Fyo)(x Vw)

w?  wh(x
=3 [+ )l Ve v
1 z - Vw? 2+ p x z - Vw?
+2fR /( v )+2pr2h(x+y0)w2/th( +y0)( v )

w wh(x 2
:% 5 {JF(JFWMQ;.V(QT.vw)}_l_(?;pp)

)

in view of (A.1). We thus have

. 1 w3 wh(x—l—yo) p2+4p+2
b [ o

We next calculate the term A as follows. Observe that
1
/ - V($ . Vw)
2 Jp2

——3 [ v oo+ v

1
——/RQ¢1($-V10)—2/]1%2(:1:-V¢1)(:U-Vw)
—_/ wl(x-Vw)+;/ w2(z-Vin) + 2 V(2 V)]
R2 R2
——/RQ1/J1(;U-Vw)+/RZw(:E~V1,ZJ1)+;/wa-V(:r'le),
which implies that

/wlm Vw —i—/Rwa le

/ we - V(ac le)

B (A.12)

2 ¢1$ V(:c Vw)

l\)\r—t
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Using (A.12), we then derive that

A:—/ (w + 2 - V) (6wiprs + 2¢b1)
R2

- _2/1@2 Wi = Q/RQ iz - Vw) +3/R2 wip(w + z - Vaw)?

Z—Q/IRQW¢1—/JR2¢1($'VW)

(A.13)
+/ w[2¢1 +95~V¢1] +3/ wipy (w + x - Vw)?
R2 R2
=— wl(z-Vw)—k/ w(z - V1) + D
R? R?2
1 1
:2/R2d)1m-V(x-Vw) —2/R2wx-V(m-VdJ1)+D,
where the term D satisfies
D= 3/ wyn [wQ +2w(z - Vw) + (z - Vw)Q]
R2
= 3/R2 w3y + 6/R2 w?iy (z - Vw) + g - Y1(x - Vw)(z - Vw?)
:3/sz31/}1—|—6/R2w21/11(3:-Vw)
3 2
_2 2 .V -V -V -V(z-V .
2/sz { P1(z - Vw) + (- Vw)(x ¢1)+¢1[$ (x w)}}
Since 5
_= 2(p.V V4
5 /R2w (x - Vw)(x - Vi)
1
=_—— .V -V
5 @ V(e V)
= ;/W w? [ac -V(z-Vip) + 2(x - le)}
= ;/RQw3x~V(x-Vw1)—l—/}RQw?’(m-Vle)
= % /]1%{2 w3z - V(z - Vi) — /}R2 U [2w3 + 3w?(z - Vw)]
= ;/ﬂ§2w3m-V(x-V1ﬁ1)—2/RQw3w1—3/H§2w2¢1(x-Vw),
the term D can be further simplified as
D= . wiyy — g/RQ wiy [z V(z - Vw)] + ;/w w3z - V(x - V). (A.14)
Applying (A.14), we then obtain from (A.13) that
A= / w3y + ;/ (1= 3wy [z - V(z - V)]
k2 R (A.15)

_;/]R? Aw(z - V(z- V)],
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since w solves the equation w3 — w = —Aw in R2.
Combining (A.11) and (A.15) now yields that

2
]R12 P , (A.16)
+5 [ Vi vwlav -5 [ oV Vo) aw
2 R2 2 R2
We claim that .
/ whip = P (A.17)
R2 p

Actually, multiplying (A.1) by w and integrating on R? gives that

2wt 2h(x + yo)w? 2(p+1)
Vi Vw — 3/ wiiy = —/ + - _ :
R? V1 R? V1 R2 [ Jpew?  p fge h(x + yo)wZ} p

due to the fact that [z, wi)1 =0 by (3.34). On the other hand, multiplying (1.4) by ¢y
and integrating on R? gives that

ViﬂlV’u}:—/ Uﬂ/)l—i-/ walz/ wgwl.
R2 R2 R2 R2

The claim (A.17) then follows directly from above two identities. We next claim that
/ [ V(z- Vw)| Ay = / [ V(z - Vipr)| Aw. (A.18)
R2 R2

To prove (A.18), rewrite ¢; as Y1 (z) = ¥1(r,8), where (r,0) is the polar coordinate in
R?, such that

1 1 T rt
AYy = (Y1), + ;(%)T + ﬁ(¢1)997 Vipy = ;(wl)r + ﬁ(wl)w (A.19)

where ot = (—x9,71) for x = (z1,72) € R%2. We then derive from (3.7) that

/R2 [ V(z V)] Ay = /0% /OOO rirw'y{ [r(v),], + w?“’}drd@

- /027T /OOO r(rw') [r(41),],drd6 + /O27r /Om(rw/)/(i/fl)%drde
= ) e

and
/R2 [ V(z- V)| Aw = /02” /()mr[r(¢1)r]r(rw/)/drd9’

which thus imply that (A.18) holds. Applying (A.17) and (A.18), we therefore conclude
from (A.16) that
P+l P HApt2  2+4p
p 2p 2’

which gives (3.36), and the proof is complete. O
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