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ABSTRACT. In a seminal work, Struwe proved that if 0 ≤ u ∈ Ḣ1(Rn) and

Γ(u) := ‖∆u + u
n+2
n−2 ‖H−1 → 0 then dist(u, T ) → 0, where T denotes the

manifold of sums of Aubin-Talenti bubbles and dist(u, T ) denotes the Ḣ1(Rn)-
distance of u from T . Ciraolo, Figalli and Maggi obtained the first quantitative
version of Struwe’s decomposition with one bubble in all dimensions, namely
dist(u, T ) ≤ CΓ(u). For two or more bubbles, Figalli and Glaudo showed
a striking dimensional dependent quantitative estimate, namely dist(u, T ) ≤
CΓ(u) when 3 ≤ n ≤ 5 while this is false for n ≥ 6. In this paper, we show

dist(u, T ) ≤ C

{
Γ(u) |log Γ(u)|

1
2 if n = 6,

|Γ(u)|
n+2

2(n−2) if n ≥ 7.

Furthermore, we show that this inequality is sharp.

CONTENTS

1. Introduction 2
1.1. Motivation and main results 2
1.2. Sketch of the proof 5
2. Proof of the main theorem 8
3. Setting up spaces and norms 13
4. Analysis of bubbles with weak interaction 21
4.1. Rough upper bound 21
4.2. Configuration of bubbles tree 28
5. Point-wise estimate for the main part of error function 32
5.1. A priori estimate 32
5.2. Existence and point-wise estimate 42
6. Gradient estimate of the error function 45
7. A sharp example 50
Acknowledgement 53
Appendix A. Some useful estimates 53
Appendix B. Integral estimates required in section 5 56
References 57

Date: January 3, 2024 (Last Typeset).
2010 Mathematics Subject Classification. Primary 35A23, 26D10; Secondary 35B35, 35J20.
Key words and phrases. Sobolev inequality, stability, quantitative estimates, Struwe’s decompo-

sition, reduction method.
1



2 BIN DENG, LIMING SUN, AND JUN-CHENG WEI

1. INTRODUCTION

1.1. Motivation and main results. The Sobolev inequality with exponent 2 states
that, for any n ≥ 3 and any u ∈ Ḣ1 (Rn) := D1,2 (Rn), the completion of
C∞c (Rn) under the norm ‖∇u‖L2 , it holds that

S‖u‖L2∗ ≤ ‖∇u‖L2 , (1.1)

where 2∗ = 2n
n−2 and S = S(n) is a dimensional constant.

It is well-known that the Euler-Lagrange equation of (1.1), up to scaling, is given
by

∆u+ |u|p−1u = 0 in Rn. (1.2)

Throughout this paper, we denote p = n+2
n−2 . By Caffarelli et al. [10] and Gidas

et al. [26], it is known that all the positive solutions are Aubin-Talenti bubbles [35],
which are defined as

U [z, λ](x) := (n(n− 2))
n−2
4

(
λ

1 + λ2|x− z|2

)n−2
2

. (1.3)

Here and after, we shall call z the center and λ the height of the bubble U [z, λ].
These bubbles are all the minimizers of the Sobolev inequality, up to scaling. There
are many advances in the study of the stability of (1.1). From the perspective of
discrepancy in the Sobolev inequality, Bianchi and Egnell [6] gave a quantitative
estimate near the minimizers, which is

inf
z∈Rn,λ>0,α∈R

‖∇(u− αU [z, λ])‖2L2 ≤ C(n)
(
‖∇u‖2L2 − S2‖u‖2

L2∗
)
. (1.4)

A natural and more challenging perspective is through the Euler-Lagrange equa-
tion: whether a function u that almost solves (1.2) must be quantitatively close to
Aubin-Talenti bubbles. There are many obstacles to addressing this question. First,
(1.2) has many sign-changing solutions [18, 20]. Second, even if we restrict to the
non-negative functions, u could be a sum of many weakly interacting Aubin-Talenti
bubbles. In fact, a seminal work of Struwe [34] showed that this is always the case,
at least for non-negative functions.

Theorem 1.1 (Struwe [34]). Let n ≥ 3 and ν ≥ 1 be positive integers. Let
(uk)k∈N ⊆ Ḣ1 (Rn) be a sequence of non-negative functions such that

(
ν − 1

2

)
Sn ≤∫

Rn |∇uk|
2 ≤

(
ν + 1

2

)
Sn with S = S(n) as in (1.1), and assume that∥∥∥∆uk + u2∗−1

k

∥∥∥
H−1
→ 0 as k →∞.

Then there exist a sequence (z
(k)
1 , . . . , z

(k)
ν )k∈N of ν-tuples of points in Rn and a

sequence (λ
(k)
1 , . . . , λ

(k)
ν )k∈N of ν-tuples of positive real numbers such that∥∥∥∥∥∇

(
uk −

ν∑
i=1

U [z
(k)
i , λ

(k)
i ]

)∥∥∥∥∥
L2

→ 0 as k →∞.
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One can also show that the family of U [z
(k)
i , λ

(k)
i ] are asymptotically orthog-

onal in Ḣ1(Rn) as k → ∞ (see Brezis and Coron [9, p. 35]). More precisely,
denoting U (k)

i = U [z
(k)
i , λ

(k)
i ], by Lemma A.3, we have

∫
Rn ∇U

(k)
i · ∇U (k)

j =∫
Rn(U

(k)
i )pU

(k)
j ≈ q

(k)
ij → 0 as k → ∞, where q(k)

ij = q(z
(k)
i , z

(k)
j , λ

(k)
i , λ

(k)
j ) is

defined as the following.

Definition 1.2 (Interaction of Aubin-Talenti bubbles). Let U [zi, λi] and U [zj , λj ]
be two bubbles. Define the interaction of them by

q(zi, zj , λi, λj) =

(
λi
λj

+
λj
λi

+ λiλj |zi − zj |2
)−n−2

2

. (1.5)

We shall denote qij = qji = q(zi, zj , λi, λj). Let {Ui : 1 ≤ i ≤ ν} be a family of
Aubin-Talenti bubbles. We say that the family is δ-interacting if

Q := max{qij : 1 ≤ i 6= j ≤ ν} ≤ δ. (1.6)

Despite the difficulty of the non-negativity issue, one can still investigate the
problem locally. That is, if u is already near to a sum of weakly interacting Aubin-
Talenti bubbles in Ḣ1-norm, then ‖∆u + u|u|p−1‖H−1 should control the Ḣ1-
distance between u and T . Here T denotes the manifold of sums of Aubin-Talenti
bubbles. Along this direction, Ciraolo et al. [13] obtained the first quantitative
estimate dist(u, T ) ≤ C‖∆u + u|u|p−1‖

L
2n
n+2

for all n ≥ 3 when ν = 1, i.e.,
when only one bubble is present. Later, Figalli and Glaudo [22] established the
following theorem for any finite number of bubbles.

Theorem 1.3 (Figalli and Glaudo [22]). For any dimension 3 ≤ n ≤ 5 and ν ∈ N,
there exist a small constant δ = δ(n, ν) > 0 and a large constantC = C(n, ν) > 0

such that the following statement holds. Let u ∈ Ḣ1 (Rn) be a function such that∥∥∥∥∥∇u−
ν∑
i=1

∇Ũi

∥∥∥∥∥
L2

≤ δ,

where {Ũi : 1 ≤ i ≤ ν} is a δ-interacting family of Aubin-Talenti bubbles. Then
there exist ν Aubin-Talenti bubbles U1, U2, . . . , Uν such that∥∥∥∥∥∇u−

ν∑
i=1

∇Ui

∥∥∥∥∥
L2

≤ C
∥∥∆u+ u|u|p−1

∥∥
H−1 . (1.7)

Furthermore, for any i 6= j, the interaction between the bubbles can be estimated
as ∫

Rn
Upi Uj ≤ C

∥∥∆u+ u|u|p−1
∥∥
H−1 .

When n ≥ 6 and ν > 1, Figalli and Glaudo constructed some counterexamples
that show that (1.7) is no longer true. They conjectured that one needs to modify
the RHS of (1.7) to Γ| log Γ| when n = 6 and to |Γ|γ for some γ < 1 when
n ≥ 7, where Γ =

∥∥∆u+ u|u|p−1
∥∥
H−1 . However, the exact value of γ is not

known. On the other hand, it is well-known that dimension plays an important role
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in the analysis of (1.2). The Yamabe problem also has dimension 6 as a threshold,
see Aubin [1], Schoen [32]. Prescribing scalar curvature problem has a similar
analysis to bubbles, and there the dimension seems to play a more important role.
For instance (not intended to be complete), one can see Li [27], Druet [21], Chang
and Yang [12], Bahri and Coron [5], Ayed et al. [2], Malchiodi and Mayer [29],
and the references therein.

In this paper, we give affirmative answers to both questions of Figalli and Glaudo.
Throughout this paper, we define ζn(x) for x > 0 and n ≥ 6 as the following

ζn(x) =

{
x
p
2 if n ≥ 7,

x| log x|
1
2 if n = 6.

(1.8)

It is easy to see that ζn(x) is increasing near zero.

Theorem 1.4. Suppose n ≥ 6. There exist a small constant δ = δ(n, ν) > 0 and
a large constant C = C(n, ν) > 0 such that the following statement holds. Let
u ∈ Ḣ1 (Rn) be a function such that∥∥∥∥∥∇u−

ν∑
i=1

∇Ũi

∥∥∥∥∥
L2

≤ δ, (1.9)

where {Ũi : 1 ≤ i ≤ ν} is a δ-interacting family of Aubin-Talenti bubbles. Then
there exist ν Aubin-Talenti bubbles U1, U2, . . . , Uν such that∥∥∥∥∥∇u−

ν∑
i=1

∇Ui

∥∥∥∥∥
L2

≤ Cζn(Γ) (1.10)

for Γ =
∥∥∆u+ u|u|p−1

∥∥
H−1 . Furthermore, for any i 6= j, the interaction between

the bubbles can be estimated as∫
Rn
Upi Uj ≤ C

∥∥∆u+ u|u|p−1
∥∥
H−1 . (1.11)

Note that our theorem completely solves the remaining cases in higher dimen-
sions n ≥ 6. Moreover, we improve the conjecture of [22] when n = 6. After
finding this intriguing power p

2 , we went back to check the counterexamples in
[22]. Their examples show that there exists u ∈ Ḣ1(Rn) when n = 7 and ν = 2
such that

inf
z1,z2∈Rn
λ1,λ2>0

∥∥∥∥∥∇u−
2∑
i=1

∇Ui

∥∥∥∥∥
L2

≥ CΓ
9
10 .

Notice the fact that 9
10 = p

2 when n = 7 exactly implies that (1.10) is sharp in this
case. Indeed, we can prove that our result (1.10) is sharp for all n ≥ 6.

Theorem 1.5. For sufficiently large R > 0, there exists some ρ such that if u =
U [−Re1, 1] + U [Re1, 1] + ρ where e1 = (1, 0, · · · , 0) ∈ Rn, then

inf
z1,z2∈Rn
λ1,λ2>0

∥∥∥∥∥∇u−
2∑
i=1

∇U [zi, λi]

∥∥∥∥∥
L2

≥ Cζn(Γ)
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for Γ =
∥∥∆u+ u|u|p−1

∥∥
H−1 .

As a consequence of Theorem 1.4, we obtain the following sharp quantitative
estimates of Struwe’s decomposition.

Corollary 1.6. Suppose n ≥ 6. There exists a large constant C = C(n, ν) >
0 such that the following statement holds. For any non-negative function u ∈
Ḣ1 (Rn) such that(

ν − 1

2

)
Sn ≤

∫
Rn
|∇u|2 ≤

(
ν +

1

2

)
Sn,

then there exist ν Aubin-Talenti bubbles U1, U2, . . . , Uν such that∥∥∥∥∥∇u−
ν∑
i=1

∇Ui

∥∥∥∥∥
L2

≤ Cζn(Γ)

for Γ = ‖∆u+ up‖H−1 . Furthermore, for any i 6= j, the interaction between the
bubbles can be estimated as∫

Rn
Upi Uj ≤ C ‖∆u+ up‖H−1 .

Finally, we remark that recently there has been a growing interest in understand-
ing quantitative stability for functional and geometric inequalities, due to important
applications to problems in the calculus of variations and PDEs. For extension of
(1.4) to Sobolev inequality with general exponents we refer to Figalli and Neu-
mayer [23], Figalli and Zhang [24], and the references therein. Stability results
on Sobolev inequality can be used to obtain quantitative convergence rates for fast
diffusion equations. We refer to Bonforte and Figalli [7], del Pino and Sáez [15],
and the references therein. There is also rich literature on quantitative versions
of the isoperimetric inequality and other geometric inequalities analogous to the
Sobolev inequality. A nice description of the comparison between Sobolev in-
equality and isoperimetric inequality can be found in Figalli and Glaudo [22]. We
refer to Brasco et al. [8], Cavalletti et al. [11], Delgadino et al. [19], Figalli and
Glaudo [22], Fusco et al. [25], Maggi [28], and the references therein.

1.2. Sketch of the proof. We briefly explain the ideas of our proof. Throughout
this paper, we shall write that a . b (resp. a & b) if a ≤ Cb (resp. Ca ≥ b) where
C is a constant depending only on the dimension n and the number of bubbles ν.
The constant C may change line by line. Also, we say that a ≈ b if a . b and
a & b. The integral

∫
always means

∫
Rn unless specified. We always denote with

o(1) any quantity that goes to 0 when δ goes to 0. The common notion o(Q) means
o(Q)/Q goes to 0 when Q goes to 0.

Suppose u satisfies (1.9) with a family of δ-interacting bubbles. Consider the
following minimization problem

dist(u, T ) := inf
z1,··· ,zν∈Rn
λ1,··· ,λν>0

∥∥∥∥∥∇u−∇
(

ν∑
i=1

U [zi, λi]

)∥∥∥∥∥
L2

.



6 BIN DENG, LIMING SUN, AND JUN-CHENG WEI

It is well-known that (for instance, see [4, Appendix A]) if δ is small enough then
such an infimum is achieved by the best approximation

σ :=
ν∑
i=1

U [zi, λi] . (1.12)

Let us denote Ui := U [zi, λi]. Since the family {Ũi : 1 ≤ i ≤ ν} is δ-interacting,
then {Ui : 1 ≤ i ≤ ν} is δ′-interacting for some δ′ that goes to 0 as δ goes to 0.

Let ρ := u − σ be the difference between the original function and the best
approximation. We call ρ the error function. Then ρ satisfies ‖∇ρ‖L2 ≤ δ and the
equation (cf. eq (2.4))

∆ρ+ pσp−1ρ+ σp −
ν∑
i=1

Upi +Nσ(ρ) + f = 0, (1.13)

where Nσ(ρ) = (σ + ρ)|σ + ρ|p−1 − σp − pσp−1ρ and f = −∆u − u|u|p−1.
Moreover, ρ also satisfies the following orthogonal conditions∫

Rn
∇ρ · ∇Zai = 0 for any 1 ≤ i ≤ ν; 1 ≤ a ≤ n+ 1, (1.14)

where Zai are the (rescaled) derivatives of U [zi, λi] with respect to the a-th com-
ponent of zi and λi (cf. eq (2.1)).

The linearized operator of (1.13) is ∆ + pσp−1, which will have a non-trivial
kernel when σ is the sum of a family of weakly interacting bubbles. The non-
homogeneous term σp −

∑
i U

p
i is the main data that encodes the interaction of

bubbles. The key idea of this paper is to obtain a precise behavior of the first
approximation of ρ.

To illustrate the main idea, we start with the easiest case. Assume Ui = U [zi, 1]
is a family of δ-interacting bubbles with the same height. Since δ is very small, the
centers zi, i = 1, · · · , ν, are far from each other. Define R = min{1

2 |zi− zj | : i 6=
j} and then Q ≈ R2−n from (1.6).

By some standard finite-dimensional reduction method (see for example [17,
37]), given a δ′-interacting family {Ui : 1 ≤ i ≤ ν}, we can find a function ρ0 (in
an appropriate space) and a family of scalars

(
cia
)

such that∆ρ0 + (σ + ρ0) |σ + ρ0|p−1 −
∑ν

j=1 U
p
j =

ν∑
i=1

n+1∑
a=1

ciaU
p−1
i Zai ,∫

∇ρ0 · ∇Zai = 0, i = 1, · · · , ν; a = 1, · · · , n+ 1.

(1.15)

We obtained the following point-wise estimate of ρ0, which is the central part of
the paper. Denote 〈x〉 =

√
1 + |x|2. When the dimension n ≥ 7, the point-wise

estimate of ρ0 is

|ρ0(x)| .
ν∑
j=1

R2−n

〈x− zj〉2
χ{|x−zj |≤R} +

R−4

〈x− zj〉n−4
χ{|x−zj |>R}. (1.16)
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Here χΩ is the characteristic function for a set Ω. When the dimension n = 6, the
point-wise estimate of ρ0 is

|ρ0(x)| .
ν∑
j=1

R−4

〈x− zj〉2
χ{|x−zj |≤R2} +

R−2

〈x− zj〉3
χ{|x−zj |>R2}. (1.17)

Notice that ρ0 is small but decays very slowly in the core of each bubble. Using
these point-wise estimates, we multiply (1.15) by ρ0 and integrate it to get

‖∇ρ0‖L2 .

{
R2−nR

n−6
2 ≈ Q

p
2 , n ≥ 7,

R−4| logR|
1
2 ≈ Q| logQ|

1
2 , n = 6,

= ζn(Q). (1.18)

Here the dimension of the space plays an important role in the integration.
Now consider the remaining part of the error function ρ1 = ρ− ρ0. Then (1.13)

and (1.15) imply that ρ1 satisfies

∆ρ1 + (σ + ρ0 + ρ1) |σ + ρ0 + ρ1|p−1 − (σ + ρ0) |σ + ρ0|p−1

+
ν∑
i=1

n+1∑
a=1

cjaU
p−1
i Zai + f = 0.

(1.19)

Observe that the equation of ρ1 no longer contains the interaction term σp −∑ν
i=1 U

p
i . Therefore, ρ1 should be bounded by a higher order term of Q. In-

deed, Proposition 6.4 proves that ‖∇ρ1‖L2 . Q2 + ‖f‖H−1 . Combining with the
previous L2 estimate of∇ρ0, we get

‖∇ρ‖L2 ≤ ‖∇ρ0‖L2 + ‖∇ρ1‖L2 . ‖f‖H−1 + ζn(Q).

On the other hand, we shall multiply (1.13) by some appropriate Zn+1
k and inte-

grate it to arrive (cf. Lemma 2.1)

Q . ‖f‖H−1 +

∣∣∣∣∫ σp−1ρZn+1
k

∣∣∣∣+

∫
|ρ|p|Zn+1

k |.

To establish the above estimates, unlike [22], we did not use cut-off functions.
Using the point-wise estimates (1.16) and (1.17) of ρ0, we can show that the last
two terms are higher order terms in Q and then Q . ‖f‖H−1 . Consequently,
‖∇ρ‖L2 ≤ ζn(‖f‖H−1). Thus one can establish Theorem 1.4 in this setting.

Things are much more complicated for a general family of bubbles {U [zi, λi] :
1 ≤ i ≤ ν}. We may have bubbling towers mixed with bubbling clusters (see the
definition 3.1). This is one of the major difficulties we have to deal with. The proof
of [37] only works for bubbling clusters. To our knowledge, we are the first ones to
handle the mixed cases altogether. Also, we remark that there are many papers in
the literature concerning the construction of the bubbling cluster or bubbling tower
solutions. For bubbling towers, we refer to Del Pino et al. [16], Musso and Pistoia
[30], Pistoia and Vétois [31], and the references therein. For bubbling clusters, we
refer to Wei and Yan [36, 37], and the references therein. Our strategy is to design
a “good” space for the interaction term σp −

∑
i U

p
i so that (1.15) has a solution

ρ0 with the desired control. Choosing the right norm is a very delicate process.
We start with just two bubbles and examine the magnitude of the interaction term
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(Ui+Uj)
p−Upi −U

p
j on different regions of Rn. Fortunately, we obtain a uniform

norm ‖ · ‖∗∗ (cf. eq (3.16)) to handle the bubbling tower and bubbling cluster
at the same time, which reduces the amount of work significantly. Then ‖σp −∑

i U
p
i ‖∗∗ ≤ C(n, ν) follows from the estimates of all pairs by a simple inequality.

The existence of ρ0 satisfying (1.15) is based on some a priori estimates (cf.
Lemma 5.1). We use a contradiction argument to establish such estimates and
divide Rn into three regions: core, neck, and exterior region (cf. Proposition 3.4).
The core region of a particular bubble is where it dominates all the others. The
exterior region is where far from the core of all bubbles. The neck regions are
the rest. A standard blow-up argument handles the core regions. The exterior
region is excluded by a rough point-wise estimate using Green’s representation (cf.
Proposition 4.3). The neck region is a new phenomenon we have to deal with.
We leverage the fact that neck regions are narrow domains to modify the weight
function W (x) (cf. eq (5.14)) to be a super-solution. This is the most crucial and
technical part of the proof. After establishing the a priori estimate, we get the
existence of ρ0 from the standard contraction mapping theorem (cf. Proposition
5.4). Consequently ‖ρ0‖∗ ≤ C(n, ν).

We also construct an example that demonstrates the sharpness of the exponents
in (1.10). Suppose σ = U1 + U2 where U1 := U [−Re1, 1] and U2 = U [Re1, 1].
By Proposition 5.4, there exists ρ0 satisfying (1.15) when ν = 2. Then we let
u = U1 +U2 + ρ0 and f = −∆u− u|u|p−1 = −

∑
i,a c

i
aU

p−1
i Zai . Using Green’s

representation and the point-wise estimates (1.16) and (1.17), we establish that
‖∇ρ0‖L2 is (up to some constant) no less than ζn(‖f‖H−1). We prove that the
dist(u, T ) & ‖∇ρ0‖L2 and this finishes the construction.

The organization of the paper is as follows. In the section 2, we prove the main
results Theorem 1.4 and Corollary 1.6 assuming several crucial estimates on ρ and
∇ρ. In the section 3, we set up the norms and spaces for the error function. We
start with just two bubbles and construct the weight functions V and W . Then
we list several integral estimates involving V and W . In the section 4, we prove
a rough C0 bound by Green’s representation and establish a bubble tree structure
for a family of bubbles with vanishing interaction. Section 5 is the main part of
this paper. We use the contradiction argument to prove a priori estimate for ρ0.
The crucial Proposition 5.4 is derived based on that estimate. Section 6 is devoted
to proving the L2 estimate of ∇ρ. With section 5 and section 6, the main results
Theorem 1.4 and Corollary 1.6 are justified. In section 7, we construct an example
to verify Theorem 1.5. Appendix A mainly consists of various integral estimates
between bubbles and their derivatives. Appendix B is devoted to computing the
integral required in section 5.

2. PROOF OF THE MAIN THEOREM

In this section, we will prove Theorem 1.4 and Corollary 1.6 based on some cru-
cial estimates, whose proofs are deferred to the section 6. We first give some basic
properties of Aubin-Talenti bubble and its derivatives with respect to parameters
z, λ.
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For i = 1, · · · , ν, let us define

Zai (x) :=
1

λi

∂U [z, λi]

∂za

∣∣∣∣
z=zi

= (2− n)U [zi, λi](x)
λi(x

a − za)
1 + λ2

i |x− zi|2
,

Zn+1
i (x) := λi

∂U [zi, λ]

∂λ

∣∣∣∣
λ=λi

=
n− 2

2
U [zi, λi](x)

1− λ2
i |x− zi|2

1 + λ2
i |x− zi|2

,

(2.1)

where za is the a-th component of z for a = 1, · · · , n.
Since Ui := U [z, λ] satisfies ∆U + Up = 0, by taking derivatives with respect

to za and λ, we have Zai satisfies

∆Zai + pUp−1
i Zai = 0, (2.2)

for any i = 1, · · · , ν and 1 ≤ a ≤ n + 1. In fact, the kernel of ∆ + pUp−1
i in

Ḣ1(Rn) is exactly spanned by {Zai : a = 1, · · · , n + 1} (see [6]). We call this
property the non-degeneracy of Aubin-Talenti bubbles. Using the explicit form of
U [z, λ] and (2.1), it is easy to verify

|Zai | . Ui, ∀ i = 1, · · · , ν,∀ a = 1, · · · , n+ 1.

It is also well-known that ‖U [z, λ]‖Ḣ1 , ‖U [z, λ]‖L2∗ are all dimensional constants
independent of z and λ. These facts will be utilized repeatedly without being
explicitly stated.

Suppose u = σ + ρ where σ =
∑ν

i=1 Ui is the best approximation (see (1.12)).
Then

∆u+ u|u|p−1 = ∆ρ+ pσp−1ρ+ h+Nσ(ρ), (2.3)

where

h = σp −
ν∑
i=1

Upi , Nσ(ρ) = (σ + ρ)|σ + ρ|p−1 − σp − pσp−1ρ.

Let f = −∆u− u|u|p−1. Then (2.3) can be reorganized as

∆ρ+ pσp−1ρ+ h+Nσ(ρ) + f = 0. (2.4)

If n ≥ 6, then p ∈ (1, 2]. We have the following elementary inequality (for in-
stance, see [14, Appendix D])∣∣∣∣(σ + ρ)|σ + ρ|p−1 − σp − pσp−1ρ

∣∣∣∣ . |ρ|p.
Thus

|Nσ(ρ)| . |ρ|p.
Multiplying (2.4) by Zn+1

k (we specify the choice of k in Lemma 2.3) and integrat-
ing over Rn, by the orthogonal condition (1.14), we have∣∣∣∣∫ hZn+1

k

∣∣∣∣ ≤ ∣∣∣∣∫ fZn+1
k

∣∣∣∣+

∣∣∣∣∫ pσp−1ρZn+1
k

∣∣∣∣+ C

∫
|ρ|p|Zn+1

k |.
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It follows from (2.2) that ‖∇Zn+1
k ‖2L2 . ‖Uk‖2

∗

L2∗ which is a dimensional constant
independent of zk and λk. Thus |

∫
fZn+1

k | ≤ C‖f‖H−1 . Hence∣∣∣∣∫ hZn+1
k

∣∣∣∣ . ‖f‖H−1 +

∣∣∣∣∫ σp−1ρZn+1
k

∣∣∣∣+

∫
|ρ|p|Zn+1

k |. (2.5)

Lemma 2.1. Suppose that u satisfies (1.9) with δ small enough. Then∫
hZn+1

k =

∫
hλk∂λkUk =

ν∑
i=1,i 6=k

∫
Upi λk∂λkUk + o(Q), (2.6)

where Q is defined at (1.6).

Proof. The first identity follows from the definition Zn+1
k = λk∂λkUk. Denote

σ = σk + Uk where σk =
∑ν

i=1,i 6=k Ui. We make the following decomposition∫
hλk∂λkUk =

∫
(σp −

ν∑
i=1

Upi )λk∂λkUk = J1 + J2 + J3 + J4,

where

J1 =

∫
{νUk≥σk}

(pUp−1
k σk −

ν∑
i=1,i 6=k

Upi )λk∂λkUk,

J2 =

∫
{νUk≥σk}

(σp − Upk − pU
p−1
k σk)λk∂λkUk,

J3 =

∫
{σk>νUk}

(pσp−1
k Uk + σpk −

ν∑
i=1

Upi )λk∂λkUk,

J4 =

∫
{σk>νUk}

(σp − σpk − pσ
p−1
k Uk)λk∂λkUk.

Notice that |λk∂λkUk| . Uk. Based on the inequality

|(a+ b)p − ap − pap−1b| . ap−2b2 if a ≥ b > 0,

we have

|J2| .
∫
{νUk>σk}

Up−1
k σ2

k .
∫
Up−εk σ1+ε

k ≈ Q1+ε. (2.7)

Here ε > 0 is very small, such that 1 + ε < p− ε, and in the last step we have used
Lemma A.3. Similarly |J4| . Q1+ε. For J3,

|J3| =

∣∣∣∣∣
∫
{σk≥νUk}

(pσp−1
k Uk + σpk −

ν∑
i=1

Upi )λk∂λkUk

∣∣∣∣∣
.
∫
{σk≥νUk}

pσp−εk U1+ε
k +

∫ ∣∣∣∣∣∣σpk −
ν∑

i=1,i 6=k
Upi

∣∣∣∣∣∣Uk +

∫
{σk≥νUk}

Up+1
k .
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Using an elementary inequality∣∣∣∣∣∣σpk −
ν∑

i=1,i 6=k
Upi

∣∣∣∣∣∣ .
∑

1≤i<j≤ν
i 6=k,j 6=k

Up−1
i Uj

and the triple integral estimate in Lemma A.4, we have

|J3| . Q1+ε +

∫
{σk≥νUk}

Up+1
k .

Consider the second term on the RHS. Lemma A.1 implies∫
{Ui≥Uk}

Up+1
k ≤

∫
Up−εk inf(U1+ε

i , U1+ε
k ) = O(q

n
n−2

ik | log qik|) = o(Q),

therefore ∫
{σk≥νUk}

Up+1
k ≤

ν∑
i=1,i 6=k

∫
{Ui>Uk}

Up+1
k = o(Q).

Therefore |J3| = o(Q). Now consider J1:

J1 −
ν∑

i=1,i 6=k
p

∫
Up−1
k Uiλk∂λkUk = J1 −

∫
pUp−1

k σkλk∂λkUk

= −
∫
{νUk<σk}

pUp−1
k σkλk∂kUk −

∫
{νUk>σk}

ν∑
i=1,i 6=k

Upi λk∂λkUk = o(Q).

We applied the same trick in (2.7) to obtain o(Q). With the above estimates of Ji,
i = 1, 2, 3, 4, we can get∫

hλk∂λkUk =

ν∑
i=1,i 6=k

p

∫
Up−1
k Uiλk∂λkUk + o(Q).

Simple integration by parts shows that

p

∫
Up−1
k Uiλk∂λkUk =

∫
Upi λk∂λkUk.

Thus (2.6) holds. �

Now let us go back to (2.5). In Lemma 6.5, we will provide two important
estimates∣∣∣∣∫ σp−1ρZn+1

k

∣∣∣∣ = o(Q) + ‖f‖H−1 ,

∫
|ρ|p|Zn+1

k | = o(Q) + ‖f‖H−1 . (2.8)

Remark 2.2. These two terms have rough bounds easily by Hölder’s inequality
and Sobolev inequality. Indeed, for instance, when n ≥ 7, as did in [22, (3.31)],∣∣∣∣∫ σp−1ρZn+1

k

∣∣∣∣ . ‖∇ρ‖L2Qp−1,∫
|ρ|p|Zn+1

k | . ‖∇ρ‖p
L2 .



12 BIN DENG, LIMING SUN, AND JUN-CHENG WEI

By Lemma 2.1 and the above two estimates, one can achieve

Q . ‖∇ρ‖L2Qp−1 + ‖∇ρ‖p
L2 + ‖f‖H−1 . (2.9)

Multiplying (2.4) by ρ, the approach in [22] would induce ‖∇ρ‖L2 . Qp−1 +

‖f‖H−1 . Plugging in this fact to (2.9), we obtain Q . Q2(p−1) + ‖f‖H−1 . One
fails to conclude anything when 2(p−1) ≤ 1 (equivalent to n ≥ 10). This obstacle
motivates us to have better control of ρ instead of simply using Hölder’s inequality
and Sobolev inequality.

Using (2.8), the interaction between the bubbles can be estimated as follows.

Lemma 2.3. Suppose that u satisfies (1.9) with δ small enough. Then we have

Q . ‖f‖H−1 .

Proof. We shall prove qij . ‖f‖H−1 for each pair i < j by an iteration argument.
Without loss of generality (WLOG), we may assume that λ1 ≤ λ2 ≤ · · · ≤ λν .
Applying Lemma A.2, one has∣∣∣∣∫ Upi λk∂λkUk

∣∣∣∣ . qik, ∀ i 6= k, (2.10)∫
Upi λk∂λkUk ≈ −qik, ∀ i < k. (2.11)

For each 2 ≤ l ≤ ν, let us introduce the following induction hypothesis (Pl).

(Pl) :
ν∑
j=l

j−1∑
i=1

qij . ‖f‖H−1 + o(Q).

First, we take k = ν in (2.5) and (2.6). From (2.8) and (2.11) we have
ν−1∑
i=1

qiν ≈ −
ν−1∑
i=1

∫
Upi λν∂λνUν . ‖f‖H−1 + o(Q).

It implies that (Pν) is true. Second, suppose (Pl+1) is true. Now we take k = l in
(2.5) and (2.6). By (2.8), (2.10), (2.11) and the assumption (Pl+1), we get

l−1∑
i=1

qil ≈ −
l−1∑
i=1

∫
Upi λl∂λlUl .

ν∑
i=l+1

∣∣∣∣∫ Upi λl∂λlUl

∣∣∣∣+ ‖f‖H−1 + o(Q)

.
ν∑

i=l+1

qil + ‖f‖H−1 + o(Q) . ‖f‖H−1 + o(Q).

Then (Pl) holds. Inductively, we obtain that (P2) holds. That is Q ≈
∑

i<j qij .
‖f‖H−1 + o(Q). Then Q . ‖f‖H−1 .

�

Now we can prove the main result Theorem 1.4.
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Proof of Theorem 1.4. Write ρ = ρ0 + ρ1 where ρ0 solves (1.15). By Proposition
6.1, we have

‖∇ρ0‖L2 . ζn(Q).

By Proposition 6.4, we have

‖∇ρ1‖L2 . Q2 + ‖f‖H−1 .

Since we have shown Q . ‖f‖H−1 in the previous Lemma 2.3, then

‖∇ρ‖L2 ≤ ‖∇ρ0‖L2 + ‖∇ρ1‖L2 . ζn(‖f‖H−1).

Here we have used the fact that ζn(x) is increasing near 0. Therefore (1.10) holds.
Finally, (1.11) follows from the fact

∫
Upi Uj ≈ qij ≤ Q and Lemma 2.3. �

Proof of Corollary 1.6. The proof is identical to that of Corollary 3.4 in [22]. �

It remains to establish Lemma 6.5, Proposition 6.1 and Proposition 6.4. These
depend crucially on a point-wise estimate of ρ0, which will be done in section 5.

3. SETTING UP SPACES AND NORMS

In this section, we shall introduce two weight functions V and W , which mea-
sure the behavior of the interaction between bubbles and the ρ functions defined in
(2.4). These are fundamental for obtaining point-wise estimates of ρ.

Let us begin with a rough analysis. Consider the equation (2.4) of ρ. The lin-
earized operator is ∆+pσp−1, h+Nσ(ρ)+f is the non-homogeneous term and ρ is
the solution. h is the main data that encodes the interaction of bubbles. Nσ(ρ) is a
higher-order term in ρ and negligible. Therefore, an approximation of ρ can be ob-
tained from studying the linear equation ∆ρ0 +pσp−1ρ0 = h. As the interaction of
bubbles becomes smaller and smaller, (∆ + pσp−1)Zai will converge to 0. This in-
dicates the linearized operator has a non-trivial approximate kernel when the inter-
action is small. According to Fredholm’s alternative, to solve ∆ρ0 + pσp−1ρ0 = h
in a nice space, one needs h to be orthogonal to the approximate kernel. Equiva-
lently, we can project h to the orthogonal space of the approximate kernel. This
amounts to solving the equation up to some Lagrange multiplier.

It leads us to consider the following linear equation∆φ+ pσp−1φ = h+
ν∑
i=1

n+1∑
a=1

ciaU
p−1
i Zai ,∫

Up−1
i φZai = 0, i = 1, · · · , ν; a = 1, · · · , n+ 1,

(3.1)

where σ =
∑ν

i=1 U [zi, λi] is the sum of a family of δ-interacting bubbles. We
always assume δ is very small. We shall use finite-dimensional reduction to prove
the solvability of φ given a reasonable h in Proposition 5.3. To that end, we need
to set up the norms and spaces.

Let I = {1, 2, · · · , ν}. Throughout this paper, we denote yi = λi(x− zi) and

Rij := max
i 6=j∈I

{√
λi/λj ,

√
λj/λi,

√
λiλj |zi − zj |

}
. (3.2)
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Definition 3.1. For any two bubbles Ui, Uj , if Rij =
√
λiλj |zi− zj |, then we call

them a bubbling cluster, otherwise call them a bubbling tower.

We always denote

R :=
1

2
min
i 6=j∈I

Rij . (3.3)

It holds that R2−n ≈ Q (see (1.6)).
Let us define various weight functions designed to measure the behavior of h

and ρ. When the dimension n ≥ 7, for each i ∈ I and any t > 1, the inner (outer)
v-weight and w-weight of bubble Ui with radius t are defined by

vin
i (x, t) =

λ
n+2
2

i t2−n

〈yi〉4
χ{|yi|≤t}, vout

i (x, t) =
λ
n+2
2

i t−4

〈yi〉n−2
χ{|yi|>t},

win
i (x, t) =

λ
n−2
2

i t2−n

〈yi〉2
χ{|yi|≤t}, wout

i (x, t) =
λ
n−2
2

i t−4

〈yi〉n−4
χ{|yi|>t}.

When n = 6, we also define the following v̂-weight and ŵ-weight:

v̂in
i (x, t) =

λ4
i t
−2

〈yi〉4
χ{|yi|≤t}, v̂out

i (x, t) =
λ4
i t
−1

〈yi〉5
χ{|yi|>t},

ŵin
i (x, t) =

λ2
i t
−2

〈yi〉2
χ{|yi|≤t}, ŵout

i (x, t) =
λ2
i t
−1

〈yi〉3
χ{|yi|>t}.

Now we can define ‖ · ‖∗∗ and ‖ · ‖∗ norms as

‖h‖∗∗ = sup
x∈Rn

|h(x)|V −1(x), ‖φ‖∗ = sup
x∈Rn

|φ(x)|W−1(x) (3.4)

with the total weights

V (x) =

{∑ν
i=1

(
vin
i (x,R) + vout

i (x,R)
)
, n ≥ 7,∑ν

i=1

(
v̂in
i (x,R2) + v̂out

i (x,R2)
)
, n = 6,

(3.5)

W (x) =

{∑ν
i=1

(
win
i (x,R) + wout

i (x,R)
)
, n ≥ 7,∑ν

i=1

(
ŵin
i (x,R2) + ŵout

i (x,R2)
)
, n = 6.

(3.6)

For simplicity, we denote vin(out)
i (x) = v

in(out)
i (x,R) andwin(out)

i (x) = w
in(out)
i (x,R),

while v̂in(out)
i (x) = v̂

in(out)
i (x,R2) and ŵin(out)

i (x) = w
in(out)
i (x,R2).

Remark 3.2. (1) The ad hoc weight V captures the interaction behavior be-
tween bubbles h = σp −

∑ν
i=1 U

p
i . See Proposition 3.4. The weight W

is designed to solve ∆xW ≈ V , see Lemma 3.6. We have to define a
separate norm on n = 6, as explained in Remark 3.5. The definitions of
V and W depend on U [zi, λi], i = 1, · · · , ν. This is implicitly understood
throughout this paper.
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(2) For each i ∈ I , let fi(x, t) = vin
i (x, t) + vout

i (x, t). By the explicit form of
v

in(out)
i , we have

fi(x, t) = (1 + o(t−1))λ
(n+2)/2
i min{t2−n〈yi〉−4, t−4〈yi〉2−n}.

One can verify that fi(x, t) is an approximately non-increasing function of
t. That is, for 1 < t1 ≤ t2, we have

fi(x, t2) . fi(x, t1). (3.7)

The monotonicity also holds forwin
i (x, t)+wout

i (x, t), v̂in
i (x, t)+v̂out

i (x, t),
and ŵin

i (x, t)+ŵout
i (x, t) in dimension 6. This monotonicity of total weight

functions will help us to obtain the convenient form of weight functions for
any finite number of bubbles in Proposition 3.4.

In this paper, we often need to deal with terms like Uγii U
γj
j where γi, γj ≥ 0.

Note that Ui = (n(n − 2))(n−2)/4λ
(n−2)/2
i 〈yi〉2−n where yi = λi(x − zi) and

〈y〉 =
√

1 + |y|2 ≈ 1 + |y|. It is natural to define the following cross-term

gij(x) = 〈yi〉−γi〈yj〉−γj . (3.8)

The following lemma gives us an applicable estimate of the cross-term and will be
heavily used throughout the rest of this paper. It has the advantage of not having
to distinguish between bubbling clusters and towers. To make the estimates more
flexible to different scenarios, we introduce parameter τ in the second line of in-
equality (3.9). In some regions, we set τ = 0 to obtain the fastest decay of 〈y1〉,
while in other regions, we set τ = γ2 to achieve a more negative power of R12.

Lemma 3.3. Suppose λ1 ≤ λ2 and 1 � R12 where R12 is defined at (3.2). For
γ1 ≥ 0, γ2 ≥ τ ≥ 0, it holds that

g12(x) .


R−γ112

(
λ2
λ1

)γ1/2
〈y2〉−γ2 , |y2| ≤

√
λ2
λ1

R12
2 ,

R−τ12

(
λ1
λ2

)γ2−τ/2
〈y1〉−γ1−γ2+τ , |y2| ≥

√
λ2
λ1

R12
2 .

(3.9)

Proof. First, suppose that U1 and U2 form a bubbling cluster. That is, R12 =√
λ1λ2|z1 − z2| ≥

√
λ2/λ1, and so that R12

√
λ1/λ2 = λ1|z1 − z2| ≥ 1.

For |y2| ≤
√
λ2/λ1R12/2, we have

|y1| =
λ1

λ2
|y2 − λ2(z1 − z2)| ≥ λ1

λ2

(√
λ2

λ1
R12 − |y2|

)
≥
√
λ1

λ2

R12

2
. (3.10)

Then

g12(x) . R−γ112 (λ2/λ1)γ1/2 〈y2〉−γ2 .

For |y2| ≥
√
λ2/λ1R12/2, equivalently (λ1/λ2)|y2| ≥ λ1|z1 − z2|/2 ≥ 1/2, then

1 + |y1| ≤ (λ1/λ2)|y2|+ λ1|z1 − z2|+ 1 ≤ 5(λ1/λ2)|y2|.
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It means that both of 〈y2〉 &
√
λ2/λ1R12 and 〈y2〉 & (λ2/λ1)〈y1〉 hold. Then

g12(x) . R−τ12 (λ1/λ2)γ2−τ/2 〈y1〉−γ1−γ2+τ .

Second, suppose thatU1 andU2 form a bubbling tower. That is,R12 =
√
λ2/λ1 >√

λ1λ2|z1 − z2|, and so that λ1|z1 − z2| < 1.
For |y2| ≤

√
λ2/λ1R12/2, we have

1 + |y1| ≥ 1 + λ1|z1 − z2| − (λ1/λ2)|y2| ≥ 1/2 =
√
λ1/λ2R12/2. (3.11)

Then

g12(x) . 〈y2〉−γ2 = R−γ112 (λ2/λ1)γ1/2 〈y2〉−γ2 .

For
√
λ2/λ1R12/2 ≤ |y2|, equivalently 1/2 ≤ (λ1/λ2)|y1|, it holds that

1 + |y1| ≤ (λ1/λ2)|y2|+ λ1|z1 − z2|+ 1 ≤ 5(λ1/λ2)|y2|.
Consequently,

g12(x) . R−τ12 (λ1/λ2)γ2−τ/2 〈y1〉−γ1−γ2+τ .

�

Proposition 3.4. There exist a small constant δ0 = δ0(n, ν) and a constantC(n, ν)
such that if δ < δ0, then

‖σp −
ν∑
i=1

Upi ‖∗∗ ≤ C(n, ν).

Proof. We shall start with the case of just two bubbles and then generalize it to
finitely many ones.
• Let U1 = U [z1, λ1] and U2 = U [z2, λ2]. WLOG, we can assume that λ1 ≤ λ2.
Since p ∈ (1, 2], we have h = (U1 + U2)p − Up1 − U

p
2 > 0.

On the other hand, if 0 < a < b, then

(a+ b)p − ap − bp . bp−1a = ap−1b(a/b)2−p ≤ ap−1b.

If 0 < b ≤ a, then

(a+ b)p − ap − bp . ap−1b = bp−1a(b/a)2−p ≤ bp−1a.

In conclusion, we have

h = (U1 + U2)p − Up1 − U
p
2 . min{Up−1

1 U2, U
p−1
2 U1}.

On the set {|y2| ≤ R12/2}, thanks to (3.10) and (3.11), we always have 〈y1〉 ≥√
λ1/λ2R12/2. Hence, it holds that U1/U2 = (λ1/λ2)(n−2)/2〈y2〉n−2〈y1〉2−n ≤

2n−2. Thus, applying Lemma 3.3 we get

h . Up−1
2 U1χ{|y2|≤R12/2} . λ

n+2
2

2 R2−n
12 〈y2〉−4χ{|y2|≤R12/2}. (3.12)

We shall call the region {|y2| . R12} the core of U2 (concerning U1). One can see
that h has slow decay in this region. See the illustration of the bubbling tower and
cluster in Figure 1 and 2 respectively.
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On the set {R12/2 ≤ |y2| ≤
√
λ2/λ1R12/2}, we have |y1| ≤ 2

√
λ1/λ2R12.

Hence, it holds that U2/U1 ≤ (λ2/λ1)(n−2)/2〈y1〉n−2〈y2〉2−n ≤ 6n−2. Thus,
applying Lemma 3.3 we get

h . Up−1
1 U2χ{|y2|≥R12/2} . λ

n+2
2

2 R−4
12 〈y2〉2−nχ{|y2|≥R12/2}. (3.13)

We shall call the region {R12 . |y2| .
√
λ2/λ1R12} the neck of U2 (concerning

U1). Within it, h has the same decay as Green’s function.
On the set {|y1| ≤ R12/2} ∩ {|y2| ≥

√
λ2/λ1R12/2}, we have U2/U1 =

(λ2/λ1)(n−2)/2〈y1〉n−2〈y2〉2−n ≤ 2n−2. By Lemma 3.3 when τ = γ2 = n − 2,
we get

h . Up−1
1 U2χ{|y1|≤R12/2} . λ

n+2
2

1 R2−n
12 〈y1〉−4χ{|y1|≤R12/2}. (3.14)

This region is the core of U1 (concerning U2), removing the core and neck of U2.
In the outer region {|y1| > R12/2} ∩ {|y2| >

√
λ2/λ1R12/2}, we have

h . Up1 + Up2 .
λ
n+2
2

1 R−4
12

〈y1〉n−2
χ{|y1|>R12/2} +

λ
n+2
2

2 R−4
12

〈y2〉n−2
χ{|y2|>R12/2}. (3.15)

From (3.12)-(3.15), we conclude

h .
2∑
i=1

[
vin
i + vout

i

]
(x,

R12

2
) .

2∑
i=1

[
vin
i + vout

i

]
(x,R). (3.16)

Note that, thanks to the monotonicity (3.7), the 1
2R12 can be replaced by a fixed R

in the last inequality in (3.16). It is the key to define the weight V for any finite
number of bubbles where the common R = 1

2 mini 6=j{Rij} will be used.
When n = 6, i.e., p = 2 and 2 − n = −4, the core, neck, and outer region of

U2 have the same decay. We strengthen (3.15) to have a faster decay in the outer
region. That is,

h .
2∑
i=1

λ4
i

〈yi〉8
.

2∑
i=1

(
λ4
iR
−4
12

〈yi〉4
χ
{|yi|>

R2
12
2
}

+
λ4
iR
−2
12

〈yi〉5
χ
{|yi|>

R2
12
2
}

)
. (3.17)

From (3.12)-(3.14) and (3.17), we conclude

h .
2∑
i=1

[
v̂in
i + v̂out

i

]
(x,

R2
12

2
) .

2∑
i=1

[
v̂in
i + v̂out

i

]
(x,R2). (3.18)

• For any finite number of bubbles, we shall use the following inequality in Lemma
A.6.

h = σp −
ν∑
i=1

Upi ≤
∑
i<j

|(Ui + Uj)
p − Upi − U

p
j |.

Each term in the summation on the RHS can be bounded above by the previous
estimates of two bubbles in (3.16) and (3.18). Summing them up, one can obtain
h ≤ C(n, ν)V (x).

�
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FIGURE 1. U1 and U2 form a bubbling tower with λ1 � λ2. The
dotted line denotes the h. The right picture shows that the core
region of U1 (i.e. {|y1| ≤ R12} = {x : |x− z1| ≤

√
λ2/λ1/λ1})

contains that of U2 (i.e. {|y2| ≤ R12} = {x : |x − z2| ≤
1/
√
λ1λ2}).

FIGURE 2. U1 and U2 form a bubbling cluster. The right picture
shows that the core region ofU1 contains that ofU2 like a bubbling
tower when λ1 � λ2. However, if λ1 ≈ λ2, the core region of
them shall be disjoint.

Remark 3.5. To have a simple form of V , we bound h just by 〈yi〉2−n in (3.15). In
fact, h decays faster than V at infinity. Such relaxation causes a problem for n = 6
when estimating

∫
(wout

i )p+1, because wout
i has the critical decay (in the sense of∫

(wout
i )p+1 =∞) in the outer region of bubbles. Thus we have to define a separate

norm in dimension n = 6. Any weight in the outer region that decays faster than
wout
i works in dimension n = 6. For simplicity, we just choose ŵout

i .

The previous proposition justifies the choice of V . The weight function W (x)
is designed to satisfy ∆xW ≈ V . We verify this through Lemma 3.6.
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Lemma 3.6. Suppose that R� 1. For V andW defined in (3.5) and (3.6) respec-
tively, we have ∫

Rn
|x̃− x|2−nV (x)dx ≈W (x̃). (3.19)

Proof. Let us first consider n ≥ 7. Denote yi = λi(x − zi) and ỹi = λi(x̃ − zi).
Making a change of variable we get∫

Rn
|x̃− x|2−nvin

i (x)dx =

∫
Rn
|x̃− x|2−n

λ
n+2
2

i R2−n

〈yi〉4
χ{|yi|≤R}dx

= λ
n−2
2

i R2−n
∫
|yi|≤R

|ỹi − yi|2−n〈yi〉−4dyi.

(3.20)

If |ỹi| ≤ 3
2R, on the one hand, we use (A.3) in Lemma A.7 to obtain∫
|yi|≤R

|ỹi − yi|2−n〈yi〉−4dyi ≤
∫
Rn
|ỹi − yi|2−n〈yi〉−4dyi . 〈ỹi〉−2.

On the other hand, on the set Ω = {yi : |yi| ≤ 〈ỹi〉/2} ⊂ {|yi| ≤ R}, we have
|ỹi − yi| ≤ 3〈ỹi〉/2 and∫

|yi|≤R
|ỹi − yi|2−n〈yi〉−4dyi ≥

∫
Ω
|ỹi − yi|2−n〈yi〉−4dyi

& 〈ỹi〉2−n
∫

Ω
〈yi〉−4dyi & 〈ỹi〉−2.

(3.21)

If |ỹi| ≥ 3
2R, then |ỹi − yi| ≈ |ỹi| on {|yi| ≤ R}. Consequently,∫

|yi|≤R
|ỹi − yi|2−n〈yi〉−4dyi ≈ 〈ỹi〉2−n

∫
|yi|≤R

〈yi〉−4dyi ≈ 〈ỹi〉2−nRn−4.

Inserting the above two inequalities to (3.20), we have∫
Rn
|x̃− x|2−nvin

i (x)dx ≈ λ
n−2
2

i [R2−n〈ỹi〉−2χ{|ỹi|≤ 3
2
R} +R−2〈ỹi〉2−nχ{|ỹi|≥ 3

2
R}].

Consequently,

win
i (x̃) .

∫
Rn
|x̃− x|2−nvin

i (x)dx . win
i (x̃) + wout

i (x̃).

Similarly, we have the following estimate for the integral of vout
i ,∫

Rn
|x̃− x|2−nvout

i (x)dx = λ
n−2
2

i R−4

∫
|yi|>R

|ỹi − yi|2−n〈yi〉2−ndyi

≈ λ
n−2
2

i R−nχ{|ỹi|≤ 2
3
R} + λ

n−2
2

i R−4〈ỹi〉4−nχ{|ỹi|≥ 2
3
R}.

Consequently,

wout
i (x̃) .

∫
Rn
|x̃− x|2−nvout

i (x)dx . win
i (x̃) + wout

i (x̃).



20 BIN DENG, LIMING SUN, AND JUN-CHENG WEI

The proof of n ≥ 7 is completed by combining the above two estimates. When
n = 6, one needs to divide the ỹi near R2 and repeat the above proof. We omit the
details. �

We have the following integral estimates for V and W . They are needed in
Lemma 5.2 and Proposition 6.1.

Lemma 3.7. Suppose that n ≥ 6 and R� 1. It holds that

‖W‖L2∗ .

{
R−

n+2
2 , n ≥ 7,

R−4(logR)
1
3 , n = 6,

. ζn(Q), (3.22)

‖V ‖L(2∗)′ .

{
R−

n+2
2 , n ≥ 7,

R−4(logR)
2
3 , n = 6,

(3.23)

where (2∗)′ = 2n
n+2 is the Hölder conjugate of 2∗.

Proof. For n ≥ 7, we have∫
(win

i )p+1 =

∫
|yi|≤R

λ−ni R−2n〈yi〉−
4n
n−2dx . R−np,∫

(wout
i )p+1 =

∫
|yi|≥R

λ−ni R−4(p+1)〈yi〉(4−n)(p+1)dx . R−np.

Similarly, direct computation yields that, for n = 6,∫
(ŵin

i )3 + (ŵout
i )3 . R−12 logR.

Summing over i, we get∫
W p+1 .

{
R−np, n ≥ 7,

R−12 logR, n = 6.

Since p = (n+ 2)/(n− 2) and R2−n ≈ Q, this implies (3.22).
For n ≥ 7, we have∫

(vin
i )

2n
n+2 =

∫
|yi|≤R

λ−ni R−
2n(n−2)
n+2 〈yi〉−

8n
n+2dx . R−n,∫

(vout
i )

2n
n+2 =

∫
|yi|≥R

λ−ni R−
8n
n+2 〈yi〉−

2n(n−2)
n+2 dx . R−n.

Similarly, direct computation yields that, for n = 6,∫
(v̂in
i )

3
2 + (v̂out

i )
3
2 . R−6 logR.

Summing over i, we get∫
V

2n
n+2 .

{
R−n, n ≥ 7,

R−6 logR, n = 6.

Since (2∗)′ = 2n/(n+ 2), this yields (3.23).
�
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4. ANALYSIS OF BUBBLES WITH WEAK INTERACTION

This section presents some preliminary analysis leading to the proof of the main
point-wise estimate in section 5. In the first subsection, we derive several technical
lemmas. Then we prove a rough upper bound of solutions to (3.1) using Green’s
representation. In the second subsection, we deal with a sequence of ν bubbles
with vanishing interaction. We show that there is a bubble tree structure of them.
This tree structure facilitates various estimates of bubbles. We expect that it can be
used in some other problems.

4.1. Rough upper bound. Denote I = {1, · · · , ν}. Suppose {Ui = U [zi, λi] :
i ∈ I} is a set of ν bubbles such that Q = max{qij : 1 ≤ i 6= j ≤ ν} < δ.
WLOG, assume that they are ordered as

λ1 ≤ λ2 ≤ · · · ≤ λν .

Define zij = λi(zj−zi). It is easy to see that if λi ≤ λj , thenRij
√
λi/λj ≈ 〈zij〉.

In the following, we frequently have to compare Up−1
i w

in(out)
j with v-weights. It

is easy to see that Up−1
i w

in(out)
i = n(n − 2)v

in(out)
i 〈yi〉−2. For i 6= j, we have the

following lemma.

Lemma 4.1. Suppose that λi ≤ λj . We have

Up−1
j win

i . R
−2
ij v

in
j +R−2vout

j +R−2vin
i , (4.1)

Up−1
j wout

i . R
−2
ij v

in
j +R−2vout

j +R−2vout
i , (4.2)

Up−1
i win

j . R
−2
ij v

in
j , (4.3)

Up−1
i wout

j . 〈zij〉−2(vin
i + vout

i + vout
j ). (4.4)

For any 0 < ε < 1 and M > 1, we also have the following

Up−1
i wout

j . ((λi/λj)
2 + ε2)vout

j , on {x : |yi − zij | ≤ ε}, (4.5)

wout
j . 〈zij〉2n−10ε4−n(win

i + wout
i ), on {x : |yi − zij | > ε}, (4.6)

Up−1
i wout

j . (|zij |+M)−2vout
j , on {x : |yi| ≥ 2|zij |+M}, (4.7)

Up−1
i wout

j . 〈zij〉
2(n−6)
n−2 (ε−

n−4
2 vin

i + εvout
j ), on {x : |yi| ≤ R}. (4.8)

It follows from (4.4) that Up−1
i wout

j is smaller compared to the v-weight only
when 〈zij〉 is large. This is insufficient for late use, especially in the bubbling
tower case. However, if |zij | is small, then the weak interaction will force λj/λi to
be very large, and (4.5) and (4.6) guarantee that Up−1

i wout
j is still smaller or faster-

decaying compared to the v-weight. The last two inequalities (4.7) and (4.8) will
be used in a narrow domain, i.e., see A(k)

i in case 3 of the proof of Lemma 5.1,
where we only need smallness of the coefficient before vout

j , j ∈ S(i).
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Proof. • To prove (4.1), we divide it into two cases. First, on the set {|yi| ≤
R, |yj | ≤ R}, using (3.9), we get that 〈yi〉−2〈yj〉−4 . R−2

ij (λj/λi)〈yj〉−4. Then

Up−1
j win

i ≈
λ2
j

〈yj〉4
λ
n−2
2

i R2−n

〈yi〉2
. R−2

ij

(
λi
λj

)n−4
2 λ

n+2
2

j R2−n

〈yj〉4
≤ R−2

ij v
in
j .

Second, on the set {|yi| ≤ R, |yj | ≥ R}, denoting α = 4
n+2 ≤

1
2 , we have

Up−1
j win

i ≈ Rα(6−n) 〈yi〉2−4α

〈yj〉4−nα
(
vout
j 〈yj〉−2

)α
(vin
i )1−α

. R2α−2
(
vout
j 〈yj〉−2

)α
(vin
i )1−α

. R2α−2[ε−1〈yj〉−2vout
j + εα/(1−α)vin

i ] . R−2vout
j +R−2vin

i .

We apply Young’s inequality in the third step and take ε = R2α−2 in the last step.
• To prove (4.2), we divide it into two cases. First, on the set {|yj | ≤ R}, using

(3.9), we get that 〈yi〉4−n〈yj〉−4 . R4−n
ij (λj/λi)

n−4
2 〈yj〉−4. Then

Up−1
j wout

i ≈
λ2
j

〈yj〉4
λ
n−2
2

i R−4

〈yi〉n−4
. R4−n

ij

λi
λj
Rn−6vin

j . R
−2
ij v

in
j .

Second, on the set {|yi| > R, |yj | ≥ R}, we have

Up−1
j wout

i ≈
λ2
j

〈yj〉4
λ
n−2
2

i R−4

〈yi〉n−4
=

(
λi
λj

) 4
n
(
vouti

〈yi〉2

)n−4
n

(
voutj

〈yj〉2

) 4
n

. 〈yi〉−2vout
i + 〈yj〉−2vout

j ≤ R−2vout
i +R−2vout

j .

• To prove (4.3), note that since λj ≥ λi, thenR ≤ Rij/2 ≤
√
λj/λiRij/2. On

the set {|yj | ≤ R}, using (3.9), we have 〈yi〉−4〈yj〉−2 . R−4
ij (λj/λi)

2〈yj〉−2 .

R−2
ij (λj/λi)

2〈yj〉−4. Then, on the set {|yj | ≤ R}, we have

Up−1
i win

j ≈
λ2
i

〈yi〉4
λ
n−2
2

j R2−n

〈yj〉2
. R−2

ij

λ
n+2
2

j R2−n

〈yj〉4
= R−2

ij v
in
j .

• To prove (4.4), we divide it into three cases. First, on the set {R ≤ |yj | ≤√
λj/λiRij/2}, using (3.9), we can obtain 〈yi〉−4〈yj〉4−n . R−4

ij (λj/λi)
2〈yj〉4−n .

R−2
ij (λj/λi)

3〈yj〉2−n. Then

Up−1
i wout

j ≈
λ2
i

〈yi〉4
λ
n−2
2

j R−4

〈yj〉n−4
.
λj
λi
R−2
ij

λ
n+2
2

j R−4

〈yj〉n−2
≈ 〈zij〉−2vout

j .

We have used the fact that Rij
√
λi/λj ≈ 〈zij〉 when λi ≤ λj in the last step.
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Second, on the set {|yj | ≥
√
λj/λiRij/2, |yi| ≤ R}, we obtain 〈yi〉−4〈yj〉4−n .

R4−n
ij (λi/λj)

n−4
2 〈yi〉−4. Then

Up−1
i wout

j ≈
λ2
i

〈yi〉4
λ
n−2
2

j R−4

〈yj〉n−4
. Rn−6R4−n

ij

λj
λi

λ
n+2
2

i R2−n

〈yi〉4
.
λj
λi

vin
i

R2
ij

≈ vin
i

〈zij〉2
.

Third, on the set {|yj | ≥
√
λj/λiRij/2, |yi| ≥ R},

Up−1
i wout

j ≈
λ2
i

〈yi〉4
λ
n−2
2

j R−4

〈yj〉n−4
= 〈yj〉−2

(
λj
λi

) 8
n−2 (

vout
i

) 4
n−2

(
vout
j

)n−6
n−2

.

(
λj
λi

) 8
n−2

[vout
i + vout

j ]〈yj〉−2 ≤ 〈zij〉−2[vout
i + vout

j ],

where we have used Young’s inequality and(
λj
λi

) 8
n−2

〈yj〉−2 . R−2
ij

(
λj
λi

) 10−n
n−2

. R−2
ij

λj
λi
≈ 〈zij〉−2.

• Now we prove (4.5). On the set {|yi − zij | ≤ ε}, we have 〈yj〉2 = 1 +

(λj/λi)
2 |yi − zij |2 ≤ 1 + (λj/λi)

2ε2. Consequently,

Up−1
i wout

j ≈
λ2
i

〈yi〉4
λ
n−2
2

j R−4

〈yj〉n−4
=
λ2
i 〈yj〉2

λ2
j 〈yi〉4

vout
j . ((λi/λj)

2 + ε2)vout
j .

• Now we prove (4.6). On the set {|yi − zij | > ε}, we have |yi − zij | ≥
ε

1+|zij |+ε〈yi〉, then 〈yj〉 ≥ λj
λi

ε
1+|zij |+ε〈yi〉 &

λj
λi

ε
〈zij〉〈yi〉. Then

wout
j =

λ
n−2
2

j R−4

〈yj〉n−4
.
λ
n−2
2

i R−4

〈yi〉n−4

(
λi
λj

)n−6
2
(
〈zij〉
ε

)n−4

. Rn−6
ij

(
λi
λj

)n−6
2
(
〈zij〉
ε

)n−4

[win
i + wout

i ],

where we have used

λ
n−2
2

i R−4〈yi〉4−n . Rn−6
ij win

i + wout
i .

If λi ≤ λj , then Rij
√
λi/λj ≈ 〈zij〉. This completes the proof of (4.6).

• Now we prove (4.7). On the set {|yi| > 2|zij | + M}, we have 〈yj〉2 =

1 + (λj/λi)
2 |yi − zij |2 ≤ 2(λj/λi)

2|yi|2. Then

Up−1
i wout

j ≈
λ2
i 〈yj〉2

λ2
j 〈yi〉4

vout
j . 〈yi〉−2vout

j . (|zij |+M)−2vout
j .

• To prove (4.8), we denote α = 2
n−2 . Using Young’s inequality, we get

Up−1
i wout

j ≈
λ2
i

〈yi〉4
λ
n−2
2

j R−4

〈yj〉n−4
. ( λiλj )

α
2

(n−6)Rα(n−6)(vin
i )α(vout

j )1−α
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. 〈zij〉α(n−6)[ε−
1−α
α vin

i + εvout
j ].

We have used Rij
√
λi/λj ≈ 〈zij〉 when λi ≤ λj in the last step.

�

A similar result holds for dimension n = 6. Note that we have ŵin
i (x,R2) =

win
i (x,R) +wout

i (x,R)χ{R≤|yi|≤R2} when plugging in n = 6. So does v̂in
i (x,R2).

Therefore, the proof related to wout
i and wout

j in the previous lemma can establish
the same estimates about ŵin

i and ŵin
j in dimension n = 6.

Lemma 4.2. Suppose that λi ≤ λj . When the dimension n = 6, we have

Ujŵ
in
i . R

−2[v̂in
j + v̂out

j + v̂in
i ], (4.9)

Ujŵ
out
i . R

−2[v̂in
j + v̂out

j + v̂out
i ], (4.10)

Uiŵ
in
j . 〈zij〉−2[v̂in

i + v̂in
j ] +R−2〈zij〉−1v̂out

i , (4.11)

Uiŵ
out
j . 〈zij〉−1v̂in

i +R−2v̂out
i + 〈zij〉−2v̂out

j . (4.12)

For any 0 < ε < 1 and M > 1, we also have the following

Ui[ŵ
in
j + ŵout

j ] . ((λi/λj)
2 + ε2)[v̂in

j + v̂out
j ], on {x : |yi − zij | ≤ ε}, (4.13)

[ŵin
j + ŵout

j ] . 〈zij〉5ε−3[ŵin
i + ŵout

i ], on {x : |yi − zij | ≥ ε}, (4.14)

Uiŵ
in(out)
j . (|zij |+M)−2v̂

in(out)
j , on {x : |yi| ≥ 2|zij |+M}, (4.15)

Uiŵ
in
j . ε

−1v̂in
i + εv̂in

j , on {x : |yi| ≤ R2}, (4.16)

Uiŵ
out
j . 〈zij〉

4
5 [ε−

3
2 v̂in
i + εv̂out

j ], on {x : |yi| ≤ R2}. (4.17)

Proof. • To prove (4.9), we divide it into three cases. First, on the set {|yi| ≤
R2, |yj | ≤ R}, one can use the first case in the proof of (4.1) to get Uiŵin

i .
R−2
ij v̂

in
j . Second, on the set {|yi| ≤ R2, R ≤ |yj | ≤ R2}, we have

Ujŵ
in
i ≈

λ2
j

〈yj〉4
λ2
iR
−4

〈yi〉2
= 〈yj〉−2(v̂in

j )
1
2 (v̂in

i )
1
2 ≤ R−2[v̂in

j + v̂in
i ].

Third, on the set {|yi| ≤ R2, |yj | ≥ R2}, we have

Ujŵ
in
i ≈

λ2
j

〈yj〉4
λ2
iR
−4

〈yi〉2
=

R−1

〈yj〉3/2
(
v̂out
j

)1/2 (
v̂in
i

)1/2
. R−4[v̂out

j + v̂in
i ].

• To prove (4.10), we divide it into three cases. First, on the set {|yj | ≤
R, |yi| ≥ R2}, using (3.9), we get that 〈yi〉−3〈yj〉−4 . R−2〈yi〉−2〈yj〉−4 .
R−2R−2

ij (λj/λi) 〈yj〉−4. Then on the set {|yj | ≤ R, |yi| ≥ R2}, we have

Ujŵ
out
i ≈

λ2
j

〈yj〉4
λ2
iR
−2

〈yi〉3
. R−2

ij

λi
λj
v̂in
j . R

−2v̂in
j .

Second, on the set {R ≤ |yj | ≤ R2, |yi| > R2}, one has

Ujŵ
out
i ≈

λ2
j

〈yj〉4
λ2
iR
−2

〈yi〉3
=

(
R2v̂in

j

〈yj〉4

)1/2(
v̂out
i

〈yi〉

)1/2

.
v̂in
j

R2
+
v̂out
i

R2
.
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Third, on the set {|yj | ≥ R2, |yi| ≥ R2}, one has

Ujŵ
out
i ≈

λ2
j

〈yj〉4
λ2
iR
−2

〈yi〉3
=

1

〈yj〉

(
v̂out
j

〈yj〉

)1/2(
v̂out
i

〈yi〉

)1/2

.
v̂out
i

R4
+
v̂out
j

R4
.

• To prove (4.11), we divide it into three cases. First, on the set {|yj | ≤ R2} ∩
{|yj | ≤

√
λj/λiRij/2}, similar the first case in the proof of (4.4), we have

Uiŵ
in
j ≈

λ2
i

〈yi〉4
λ2
jR
−4

〈yj〉2
.
λj
λi
R−2
ij

λ4
jR
−4

〈yj〉4
. 〈zij〉−2v̂in

j .

Second, on the set {|yj | ≤ R2} ∩ {|yj | ≥
√
λj/λiRij/2, |yi| ≤ R2}, similar to

the second case in the proof of (4.4), we have

Uiŵ
in
j ≈

λ2
i

〈yi〉4
λ2
jR
−4

〈yj〉2
. R−2

ij

λj
λi

λ2
iR
−4

〈yi〉4
. 〈zij〉−2v̂in

i .

Third, on the set {|yj | ≥
√
λj/λiRij/2, |yi| ≥ R2}, we have

Uiŵ
in
j ≈

λ2
i

〈yi〉4
λ2
jR
−4

〈yj〉2
=

R−
3
2

〈yi〉1/4〈yj〉
λj
λi

(v̂in
j )1/4(v̂out

i )3/4

. R−2R−1
ij

√
λj/λi[v̂

in
j + v̂out

i ] . R−2〈zij〉−1[v̂in
j + v̂out

i ].

• To prove (4.12), we divide it into three cases. First, on the set {R2 ≤ |yj | ≤√
λj/λiRij/2}, using (3.9), we can obtain 〈yi〉−4〈yj〉−3 . R−4

ij (λj/λi)
2〈yj〉−3 .

R−2
ij (λj/λi)

3〈yj〉−5. Then

Uiŵ
out
j ≈

λ2
i

〈yi〉4
λ2
jR
−2

〈yj〉3
. R−2

ij

λj
λi

λ4
jR
−2

〈yj〉5
≈ 〈zij〉−2v̂out

j .

Second, on the set {|yj | ≥
√
λj/λiRij/2, |yi| ≤ R2}, we obtain that 〈yi〉−4〈yj〉−3 .

R−3
ij (λi/λj)

3/2〈yi〉−4. Then

Uiŵ
out
j ≈

λ2
i

〈yi〉4
λ2
jR
−2

〈yj〉3
. R−1

ij

(
λj
λi

)1/2

v̂in
i ≈ 〈zij〉−1v̂in

i .

Third, on the set {|yj | ≥
√
λj/λiRij/2, |yi| ≥ R2}, we have

Uiŵ
out
j ≈

λ2
i

〈yi〉4
λ2
jR
−2

〈yj〉3
.

1

〈yi〉

(
v̂out
i

〈yi〉

)1/2
(
v̂out
j

〈yj〉

)1/2

. R−2[v̂out
j + v̂out

i ].

• Now we prove (4.13). On the set {|yi − zij | ≤ ε}, we have 〈yj〉2 = 1 +

(λj/λi)
2 |yi − zij |2 ≤ 1 + (λj/λi)

2ε2. Consequently,

Uiŵ
in
j ≈

λ2
i

〈yi〉4
λ2
jR
−4

〈yj〉2
=
λ2
i 〈yj〉2

λ2
j 〈yi〉4

v̂in
j . ((λi/λj)

2 + ε2)v̂in
j ,

Uiŵ
out
j ≈

λ2
i

〈yi〉4
λ2
jR
−2

〈yj〉3
=
λ2
i 〈yj〉2

λ2
j 〈yi〉4

v̂out
j . ((λi/λj)

2 + ε2)v̂out
j .
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• To prove (4.14), we use idea similar to the proof of (4.6). On the set {|yi −
zij | > ε}, we have 〈yj〉 ≥ λj

λi
ε

1+|zij |+ε〈yi〉 &
λj
λi

ε
〈zij〉〈yi〉. Then

ŵin
j =

λ2
jR
−4

〈yj〉2
.

(
〈zij〉
ε

)2 λ2
iR
−4

〈yi〉2
.

On the support of ŵin
j , we also have R2 & λj

λi
ε
〈zij〉〈yi〉. Then

λ2
iR
−4〈yi〉−2 . ŵin

i +R−2〈yi〉ŵout
i . ŵ

in
i +
〈zij〉
ε
ŵout
i .

Thus combining the above two inequalities, we get

ŵin
j .

(
〈zij〉
ε

)2

ŵin
i +

(
〈zij〉
ε

)3

ŵout
i .

For the other one ŵout
j , we have

ŵout
j =

λ2
jR
−2

〈yj〉3
.
λ2
iR
−2

〈yi〉3
λi
λj

(
〈zij〉
ε

)3

.
λi
λj

(
〈zij〉
ε

)3 [ R2

〈yi〉
ŵin
i + ŵout

i

]
. 〈zij〉3ε−3[〈zij〉2ŵin

i + ŵout
i ].

• Now we prove (4.15). On the set {|yi| > 2|zij | + M}, we have 〈yj〉2 =

1 + (λj/λi)
2 |yi − zij |2 ≤ 2(λj/λi)

2|yi|2. Then

Uiŵ
in(out)
j ≈ λ2

i 〈yj〉2

λ2
j 〈yi〉4

v̂
in(out)
j . 〈yi〉−2v̂

in(out)
j . (|zij |+M)−2v̂

in(out)
j .

• Now we prove (4.16). On the set {|yi| ≤ R2, |yj | ≤ R2}, we have

Uiŵ
in
j ≈

λ2
i

〈yi〉4
λ2
jR
−4

〈yj〉2
≤ (v̂in

i )
1
2 (v̂in

j )
1
2 . ε−1v̂in

i + εv̂in
j .

• Now we prove (4.17). On the set {|yi| ≤ R2, |yj | ≥ R2}, we have

Uiŵ
out
j ≈

λ2
i

〈yi〉4
λ2
jR
−2

〈yj〉3
. ( λiλj )

2
5R

4
5 (v̂in

i )
2
5

(
v̂out
j

〈yj〉

) 3
5

. 〈zij〉
4
5 [ε−

3
2 v̂in
i + εv̂out

j ].

�

In the following proposition, we derive a rough C0 estimate of ρ. Note that
W decays much faster than W . It shows that the behavior of ρ at infinity can be
bounded by ‖h‖∗∗W (x) up to some constant and small error. It will be used in
Lemma 5.1 to exclude the blow-up points going to infinity.

Proposition 4.3. There exists a constantC(n, ν) such that, for any h with ‖h‖∗∗ <
∞, if φ satisfies

∆φ+ pσp−1φ = h in Rn,
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then the following inequality holds for any M > 1,

|φ(x)|
W (x)

≤ C(n, ν)

(
‖h‖∗∗ +M3n‖φ‖∗

W (x)

W (x)
+M4R−2 +M−1

)
, (4.18)

where W (x) =
∑

i 6=j(w̄
in
i (x) + w̄out

i (x)) is defined by

w̄in
i (x) =

{
λ
n−2
2

i R2−n〈yi〉−4χ{|yi|≤R}, n ≥ 7,

λ2
iR
−4〈yi〉−3(1 + log〈yi〉)χ{|yi|≤R2}, n = 6,

w̄out
i (x) =

{
λ
n−2
2

i R−4〈yi〉2−n log〈yi〉χ{|yi|>R}, n ≥ 7,

λ2
iR
−2〈yi〉−4 log〈yi〉χ{|yi|>R2}, n = 6.

Proof. By the Green’s representation, we have

φ(x̃) = C(n)

∫
Rn
|x̃− x|2−n

(
pσp−1(x)φ(x)− h(x)

)
dx

=: P1 + P2,

where C(n) is a positive dimensional constant. Applying Lemma 3.6, we get

|P2| ≤ C(n)‖h‖∗∗
∫
Rn
|x̃− x|2−nV (x)dx . ‖h‖∗∗W (x̃).

Consider P1. Let us assume n ≥ 7. Using σp−1 .
∑ν

i′=1 U
p−1
i′ , we have

|P1| . ‖φ‖∗
ν∑

i,i′=1

∫
Rn
|x̃− x|2−nUp−1

i′ (x)(win
i (x) + wout

i (x))dx

=: ‖φ‖∗
ν∑

i,i′=1

(Ain
ii′ +Aout

ii′ )(x̃).

(4.19)

Consider Ain
ii (that is i′ = i). We use a similar trick in estimating the last line

of (3.20), that is, dividing into two cases according to the relation of ỹi and R, and
applying Lemma A.7 to get

Ain
ii(x̃) = n(n− 2)λ

n+2
2

i R2−n
∫
Rn
|x̃− x|2−n〈yi〉−6χ{|yi|≤R}dx

≈ λ
n−2
2

i R2−n
∫
Rn
|ỹi − yi|2−n〈yi〉−6χ{|yi|≤R}dyi

. λ
n−2
2

i R2−n [〈ỹi〉−4χ{|ỹi|≤2R} +Rn−6〈ỹi〉2−nχ{|ỹi|≥2R}
]

. w̄in
i (x̃) + w̄out

i (x̃).

Similarly,

Aout
ii (x̃) ≈ λ

n−2
2

i R−4

∫
Rn
|ỹi − yi|2−n〈yi〉−nχ{|yi|>R}dyi

. λ
n−2
2

i

[
R−2−nχ{|ỹi|≤R/2} +R−4〈ỹi〉2−n log〈ỹi〉χ{|ỹi|≥R/2}

]
. w̄in

i (x̃) + w̄out
i (x̃).
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Consider the case i′ 6= i. Let us first assume λi < λi′ . Using (4.1), (4.2) and
Lemma 3.6, we have

Ain
ii′ +Aout

ii′ . R
−2

∫
Rn
|x̃− x|2−nV (x) . R−2W (x̃).

If λi ≥ λi′ and 〈zii′〉 > M , then using (4.3) and (4.4), we have

Ain
ii′ +Aout

ii′ . (R−2 +M−2)

∫
Rn
|x̃− x|2−nV (x) . (R−2 +M−2)W (x̃).

If λi ≥ λi′ and 〈zii′〉 ≤ M , we apply (4.3), (4.5) and (4.6) (taking ε = M−1) to
get

Ain
ii′ +Aout

ii′

. ((λi′/λi)
2 +M−2)W (x̃) +M3n−14

∫
Rn
|x̃− x|2−nUp−1

i′ (win
i′ + wout

i′ )

. (M4R−4 +M−2)W (x̃) +M3n[Ai′i′ in +Ai′i′out](x̃)

. (M4R−4 +M−2)W (x̃) +M3nW (x̃).

Here we used Ri′i
√
λi′/λi ≈ 〈zi′i〉 when λi ≥ λi′ to get λi′/λi . R−2M2.

Consolidating the estimates of P1 and P2, we can prove the proposition when
the dimension n ≥ 7.

When the dimension n = 6, the proof is similar to that for n ≥ 7. We point out
modifications without giving details. One shall use ŵin

i and ŵout
i in (4.19) to define

Âin
ii′ and Âout

ii′ . Similarly,

Âin
ii ≈ λ4

iR
−4

∫
|yi|≤R2

|x̃− x|−4〈yi〉−6dx

. λ2
iR
−4
[
〈ỹi〉−4(1 + log〈ỹi〉)χ{|yi|≤R2} + (logR)〈ỹi〉−4χ{|ỹi|≥R2}

]
,

Âout
ii ≈ λ4

iR
−2

∫
|yi|≥R2

|x̃− x|−4〈yi〉−6dx

. λ2
iR
−2
[
R−8χ{|yi|≤R2} + 〈ỹi〉−4(1 + log〈ỹi〉)χ{|ỹi|≥R2}

]
.

Consider i′ 6= i. If λi < λi′ , then (4.9) and (4.10) imply Âin
ii′ + Âout

ii′ . R−2W .
If λi ≥ λi′ and 〈zi′i〉 > M , then (4.11) and (4.12) imply that Âin

ii′ + Âout
ii′ .

(R−2 + M−1)W . If λi ≥ λi′ and 〈zi′i〉 ≤ M , then (4.13) and (4.14) imply that
Âin
ii′ + Âout

ii′ . (M4R−4 +M−2)W +M8W .
�

4.2. Configuration of bubbles tree.
Denote I = {1, . . . , ν}. Suppose that

{
U

(k)
i := U [z

(k)
i , λ

(k)
i ] : i ∈ I

}∞
k=1

is a

sequence of ν bubbles with the interaction Q(k) = max{q(k)
ij : ∀ i, j ∈ I, i 6=

j} → 0 as k →∞, or equivalently,

R(k) =
1

2
min{R(k)

ij : ∀ i, j ∈ I, i 6= j} → ∞ as k →∞. (4.20)
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By reordering them and taking subsequences (for finitely many times), we can
always assume

λ
(k)
1 ≤ · · · ≤ λ(k)

ν , (4.21)

either lim
k→∞

z
(k)
ij exists or lim

k→∞
|z(k)
ij | =∞ (4.22)

where z(k)
ij := λ

(k)
i (z

(k)
j − z

(k)
i ) for j ∈ I \ {i}.

There is a geometric interpretation of z(k)
ij . In the rescaled zi-centered coor-

dinates yi = λi(x − zi), we see that Ui(x) = λ
(n−2)/2
i U(yi), where U(y) =

U [0, 1](y). Here we omit the superscript (k) to ease the notation. That is, Ui is the
λ

(n−2)/2
i multiple of the standard bubble. Under yi-coordinates, the other bubbles

become new ones with

Uj(x) =

(
(n(n− 2))1/2λj

1 + (λj/λi)2|yi − zij |2

)n−2
2

= λ
n−2
2

i U [zij , λj/λi](yi).

Then zij is the new center of Uj , j ∈ I \ {i}. Under yi-coordinates and omitting
λ

(n−2)/2
i factor, we obtain a new set of ν bubbles {U [0, 1], U [zij , λj/λi] : j ∈
I \ {i}}. It is easy to check that Ri′j′ remains unchanged in this rescaling for all
i′, j′ ∈ I .

We define a partial order ≺ on I = {1, · · · , ν} as

i ≺ j ⇐⇒ i < j and lim
k→∞

z
(k)
ij exists, (4.23)

i � j ⇐⇒ i ≺ j or i = j.

Lemma 4.4. ≺ is a strict partial order.

Proof. We can see that it is irreflexive and asymmetry. We only need to check the
transitivity. Suppose that i ≺ j and j ≺ l. It follows from the definition that
i < j < l and z(k)

ij = λ
(k)
i (z

(k)
j − z

(k)
i ) and z(k)

jl = λ
(k)
j (z

(k)
l − z

(k)
j ) are both

uniformly bounded as k → ∞. Then, using interpolation and λ(k)
i ≤ λ

(k)
j , we get

|z(k)
il | is also uniformly bounded. That is

|z(k)
il | ≤ λ

(k)
i |z

(k)
j − z

(k)
i |+ λ

(k)
i |z

(k)
l − z

(k)
j | ≤ |z

(k)
ij |+ |z

(k)
jl |.

Then by assumption (4.22), we know limk→∞ z
(k)
il exists. Thus i ≺ l. �

Lemma 4.5. Suppose that {U (k)
i : i = 1, · · · , ν} is a sequence of ν bubbles

satisfying (4.20), (4.21) and (4.22). Then

C∗ := 1 + max
i,j∈I,k≥0

{|z(k)
ij | : i ≺ j} <∞. (4.24)

Moreover,

i ≺ j ⇐⇒
√
λ

(k)
j /λ

(k)
i ≤ R

(k)
ij ≤ C

∗
√
λ

(k)
j /λ

(k)
i , ∀ k ≥ 0, (4.25)
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i 6≺ j and j 6≺ i ⇔
√
λ

(k)
j /λ

(k)
i +

√
λ

(k)
i /λ

(k)
j = o(1)R

(k)
ij . (4.26)

Here o(1) denotes some quantity that goes to 0 as k → ∞. We will call i and j
incomparable in the case (4.26).

Proof. It is easy to see that C∗ is finite by the definition of ≺ relation (4.23). Sup-
pose that i ≺ j. Then λ(k)

i ≤ λ
(k)
j and thus

R
(k)
ij = max{

√
λ

(k)
j /λ

(k)
i ,

√
λ

(k)
i λ

(k)
j |z

(k)
i − z

(k)
j |}

=

√
λ

(k)
j /λ

(k)
i max{1, |z(k)

ij |} ≤ C
∗
√
λ

(k)
j /λ

(k)
i .

Conversely, by R(k)
ij → ∞ as k → ∞, we have λ(k)

j > λ
(k)
i when k is large

enough. Thus i < j. The above inequality shows that |z(k)
ij | is uniformly bounded.

Thus by (4.22) and (4.23), we have i ≺ j.
If i 6≺ j and j 6≺ i, WLOG, assume λ(k)

i ≤ λ
(k)
j , then z(k)

ij must be unbounded,
thus √

λ
(k)
j /λ

(k)
i ≤ o(1)R

(k)
ij .

�

Recall that a tree is a partially ordered set, say (T,≺), such that for any t ∈ T,
the set {s ∈ T : s ≺ t} is well-ordered by the relation ≺. The following lemma
shows that I can be decomposed into several trees.

Lemma 4.6. For any sequences of {U (k)
i : i = 1, · · · , ν} satisfying (4.20), (4.21)

and (4.22), there exists α∗ (depends on the sequences) such that I = {1, · · · , ν}
can be partitioned into Tα, α = 1, · · · , α∗, where each Tα is a tree.

Proof. Fixing any i0, let us prove the set {s ∈ I : s ≺ i0} is a well-ordered set.
That is, if s ≺ i0, t ≺ i0, and s 6= t, then either s ≺ t or t ≺ s. In fact, by the
assumption and the definition of ≺ relation in (4.23), we obtain

lim
k→∞

z
(k)
si0

and lim
k→∞

z
(k)
ti0

both exist.

WLOG, assume s > t, then λ(k)
s ≥ λ(k)

t . Since z(k)
ts = λ

(k)
t (z

(k)
s − z(k)

t ), then

|z(k)
ts | ≤ λ

(k)
t |z

(k)
i0
− z(k)

t |+ λ
(k)
t |z(k)

s − z
(k)
i0
| ≤ |z(k)

ti0
|+ |z(k)

si0
| <∞

as k →∞. This implies that t ≺ s.
Suppose that the partially ordered set (I,≺) has α∗ minimal elements, say they

r1, · · · , rα∗ . Define Tα = {i ∈ I : rα � i}. The above proof shows that each Tα

is a tree with root rα.
Moreover, these Tα are mutually disjoint sets. For if i ∈ Tα∩Tα′ , α 6= α′, then

the above proof shows that either rα ≺ rα′ or rα′ ≺ rα, which contradicts the fact
that rα and rα′ are minimal elements. Thus {Tα : α = 1, · · · , α∗} is a partition of
I . This completes the proof.

�



SHARP QUANTITATIVE ESTIMATES 31

For each i ∈ I , define the set S(i) = {j ∈ I : i ≺ j} (which means the
successor of i), that is

S(i) = {j ∈ I : i < j, lim
k→∞

z
(k)
ij exists}. (4.27)

One can have a clear picture of the sequence in each y(k)
i = λ

(k)
i (x − z

(k)
i )

coordinates.
On the one hand, for any j ∈ S(i), it is clear that U (k)

j are bubbles “higher”(i.e.

λ
(k)
j ≥ λ

(k)
i ) than U (k)

i and becomes higher and higher than it and eventually “sin-

gular” at limk→∞ z
(k)
ij as k → ∞, since the interaction of them must become

smaller and smaller as k → ∞. Moreover, if |z(k)
ij | < 1, then U (k)

i and U (k)
j form

a bubbling tower, otherwise they form a bubbling cluster. In both cases, one must
have λ(k)

j /λ
(k)
i →∞ for such j, because the interaction of all bubbles is vanishing

as k →∞.
On the other hand, for any j 6∈ S(i), either U (k)

j is “lower” than U (k)
i or U (k)

j

escapes to infinity in y(k)
i coordinates. These bubbles are benign in the limiting

process. More precisely,

Lemma 4.7. Fix any M > 0. If j 6∈ S(i), then as k →∞,

U
(k)
j (x) = o(1)U

(k)
i (x), (4.28)

win
j (x) + wout

j (x) = o(1)win
i ,

vin
j (x) + vout

j (x) = o(1)vin
i ,

uniformly on {x : |y(k)
i | ≤M}. Here o(1) denotes some quantity that goes to 0 as

k →∞. Consequently,
ν∑
j=1

U
(k)
j =

∑
j∈S(i)

U
(k)
j + (1 + o(1))U

(k)
i ,

W (x) =
∑
j∈S(i)

(
win
j (x) + wout

j (x)
)

+ (1 + o(1))win
i (x),

V (x) =
∑
j∈S(i)

(
vin
j (x) + vout

j (x)
)

+ (1 + o(1))vin
i (x),

(4.29)

uniformly on {x : |y(k)
i | ≤M} as k →∞.

The above statements also hold replacing win(out) and vin(out) by ŵin(out) and
v̂in(out) respectively in dimension n = 6.

Proof. In fact, j 6∈ S(i) means either j ≺ i or j and i are incomparable. We
shall prove two cases respectively. We will omit the superscript (k) for various
notations, like λ(k)

i , y(k)
i , U (k)

i , R(k), and R(k)
ij .

• In the case j ≺ i, one must have λi/λj → ∞ as k → ∞. Recall that

Ui(x) ≈ λ
n−2
2

i 〈yi〉2−n and Uj(x) ≈ λ
(n−2)/2
j 〈yj〉2−n. Thus Uj(x) . λ

n−2
2

j =
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o(1)λ
n−2
2

i . o(1)〈M〉n−2Ui(x) on the set {yi ≤ M} as k → ∞. The support of
wout
j does not intersect {|yi| ≤M}, thus we only need to consider win

j . We have

win
j

win
i

=

(
λj
λi

)n−2
2 〈yi〉2

〈yj〉2
.M2

(
λj
λi

)n−2
2

→ 0. (4.30)

The proof for v-weights is completely analogous and we omit it.
• If i and j are incomparable, clearly we have Rij =

√
λj/λi|zij | and |zij | →

∞ as k → ∞. Recall that yj = λj/λi(yi − zij), then |yj | ≥ 1
2λj/λi|zij | =

1
2

√
λj/λiRij on the set {|yi| ≤M} when k is large enough. Then

Uj(x)

Ui(x)
.

(
λj
λi

1 +M2

(Rij)2λj/λi

)n−2
2

.

(
1 +M2

(Rij)2

)n−2
2

→ 0.

If λj/λi > 1, then the support of win
j (x) does not intersect {x : |yi| ≤ M}. If

λj/λi ≤ 1, then

win
j

win
i

=

(
λj
λi

)n−2
2 〈yi〉2

〈yj〉2
.M2

(
λj
λi

)n−6
2

〈zij〉 → 0.

For wout
j , by (4.26) we have

wout
j

win
i

=

(
λj
λi

)n−2
2

Rn−6 〈yi〉2

〈yj〉n−4
.M2λj

λi
R−2
ij → 0,

This finishes the proof of the statement about w-weights in (4.29). The proof for
v-weights is completely analogous and we omit it.

By the same argument, it is easy to see that all the above assertions hold for
n = 6 after some minor modifications.

�

5. POINT-WISE ESTIMATE FOR THE MAIN PART OF ERROR FUNCTION

This section is the central part of this paper. We shall establish the C0 estimates
for the main part of ρ, i.e., ρ0, see Proposition 5.4, which comes from the inter-
action between bubbles. The crucial part is to obtain a priori estimate in Lemma
5.1.

5.1. A priori estimate. Suppose that {U (k)
i : i = 1, · · · , ν} is a sequence of ν

bubbles satisfying (4.20), (4.21), and (4.22). Recall the definition of S(i) = {j ∈
I : i ≺ j}, see (4.27). Recall that y(k)

i = λ
(k)
i (x− z(k)

i ), z(k)
ij = λ

(k)
i (z

(k)
j − z

(k)
i )

and the definition of C∗, see (4.24). Let us define

Ω(k) :=
⋃
i∈I

{
x : |y(k)

i | ≤ L
}
,

Ω
(k)
i :=

{
x : |y(k)

i | ≤ L, |y
(k)
i − z

(k)
ij | ≥ ε1,∀ j ∈ S(i)

} (5.1)
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with a large constant L = L(n, ν, C∗) and a small constant ε1 = ε1(n, ν, C∗) to
be determined later. The domain Ω

(k)
i is where U (k)

i dominates over other bubbles,
and there is no “singular bubble” in Ω

(k)
i . When k is large enough, one can see that

(1) For all j ∈ S(i), {|y(k)
i − z

(k)
ij | ≤ ε1} ⊂⊂ {|y(k)

i | ≤ L}. Moreover,

{|y(k)
j | ≤ L} ⊂⊂ {|y

(k)
i − z

(k)
ij | ≤

1
2ε1}.

(2) If i and j are incomparable (that is, i 6≺ j and j 6≺ i), then Ω
(k)
i and Ω

(k)
j

are disjoint.

See Figure 3 for an illustration of Ω
(k)
i in a simple case.

Lemma 5.1. There exist positive constants δ0 and C, independent of δ, such that
for all δ 6 δ0, if {Ui}1≤i≤ν is a δ-interacting bubble family and φ solves the
equation {

∆φ+ pσp−1φ = h,∫
Up−1
i φZai = 0, i = 1, · · · , ν; a = 1, · · · , n+ 1,

(5.2)

for some h with ‖h‖∗∗ <∞. Then

‖φ‖∗ ≤ C‖h‖∗∗. (5.3)

Proof. We use contradiction arguments to prove (5.3). Suppose that there exist a
sequence of bubbles

{
U

(k)
i = U [z

(k)
i , λ

(k)
i ] : i ∈ I

}∞
k=1

with interaction no more

than 1/k, and a sequence of functions hk(x) and φk(x) satisfying (5.2) such that
‖φk‖∗ ≥ k‖hk‖∗∗. Replacing φk(x) by φk(x)/‖φk‖∗ and hk(x) by hk(x)/‖φk‖∗,
we can assume ‖φk‖∗ = 1 and ‖hk‖∗∗ ≤ 1/k → 0 as k →∞.

Going to a subsequence if necessary, we assume that {U (k)
i : i ∈ I}∞k=1 satisfies

(4.20), (4.21), and (4.22). Thus Lemma 4.7 holds for such sequence. We can
associate a sequence of weight functions V (x) and W (x) to this sequence. We
shall prove that for this sequence there holds φk(x) < W (x) on Rn when k is
large enough. This contradicts the fact ‖φk‖∗ = 1 for any k. We first assume
n ≥ 7. We divide Rn into the following three regions: core, neck, and exterior.

Case 1: Exterior region Rn \ Ω(k). Applying Proposition 4.3, there exists
C(n, ν) such that for any M ≥ 1 the following holds:

|φk(x)|
W (x)

≤ C(n, ν)

(
‖hk‖∗∗ +M3nW (x)

W (x)
+M4R−2 +M−1

)
.

Now choose M = M(n, ν) sufficiently large such that C(n, ν)M−1 < (100ν)−1.
Note that w̄in

i and w̄out
i decay faster thanwin

i andwout
i . More precisely, on Rn\Ω(k),

w̄in
i ≤ 2L−2win

i , w̄out
i ≤ 2L−2(logL)wout

i .

Taking L = L(n, ν, C∗) sufficiently large such that

2C(n, ν)M3nL−2(1 + logL) ≤ (100ν)−1, (5.4)
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we shall have C(n, ν)M3nW (x) < 1
100νW (x) for x 6∈ Ω(k). Since we assume

‖hk‖∗∗ → 0, then as k →∞ we have

|φk(x)|
W (x)

≤ o(1) +
1

50ν
, on Rn \ Ω(k).

Case 2: Core region ∪i∈IΩ(k)
i . We shall prove |φk|(x) = o(1)W (x) as k →∞

on this region.
Suppose not. Then there exist ε∗ > 0 and a sequence xk ∈ ∪i∈IΩ

(k)
i such

that φk(xk) > ε∗W (xk). Going to a subsequence if necessary, we assume that
xk ∈ Ω

(k)
i0

for some fixed i0 ∈ I when k is large enough. As explained before,

Ω
(k)
i0

is the domain where U (k)
i0

has domination. One can use a blow-up argument
to reach a contradiction. Define

φ̃k(y) := W−1(xk)φk(y/λ
(k)
i0

+ z
(k)
i0

) with y = λ
(k)
i0

(x− z(k)
i0

),

h̃k(y) := (λ
(k)
i0

)−2W−1(xk)hk(y/λ
(k)
i0

+ z
(k)
i0

),

σ̃k(y) := U [0, 1](y) +
∑

j∈I\{i0}
U [z

(k)
i0j
, λ

(k)
j /λ

(k)
i0

](y).

(5.5)

Then φ̃k satisfies{
∆φ̃k(y) + pσ̃p−1

k (y)φ̃k(y) = h̃k(y) in Rn,∫
Up−1Zaφ̃kdy = 0, 1 ≤ a ≤ n+ 1.

Here U = U [0, 1](y) and Za = Za(y) = Zai (y) defined in (2.1) for z = 0 and
λi = 1. Denote z̄j = limk→∞ z

(k)
i0j

and define

Kl := {y : |y| ≤ l, |y − z̄j | ≥ 1/l, ∀ j ∈ S(i0)}. (5.6)

Suppose l ≥ 2 max{L, ε−1
1 }, it is easy to see that

λ
(k)
i0

(Ω
(k)
i0
− z(k)

i0
) = {y : y = λ

(k)
i0

(x− z(k)
i0

), x ∈ Ω
(k)
i0
} ⊂⊂ Kl

when k is large enough.

Claim 1. In each Kl, it holds that, as k →∞,

σ̃k(y)→ U [0, 1](y), |h̃k|(y)→ 0,

uniformly y ∈ Kl. Moreover, we have

|φ̃k|(y) .
∑

j∈S(i0)

(
L

|y − z̄j |

)n−4

+ L2, ∀ y ∈ Kl. (5.7)

We postpone the proof of Claim 1 to the end of this subsection and finish the
blow-up argument in Case 2. By the standard elliptic regularity theorem, the Claim
1 shows a subsequence of φ̃k uniformly converges in each Kl. Furthermore, by the
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diagonal argument, let l→∞, we have a subsequence of φ̃k converges to φ̃ locally
uniformly on Rn \ {z̄j : j ∈ S(i0)} which satisfies that

∆φ̃+ pUp−1φ̃ = 0, in Rn \ {z̄j : j ∈ S(i0)},

|φ̃|(y) .
∑

j∈S(i0)

(
L

|y−z̄j |

)n−4
+ L2, in Rn \ {z̄j : j ∈ S(i0)},∫

Up−1Zaφ̃dy = 0, 1 ≤ a ≤ n+ 1.

Notice that each singular z̄j is removable since the singularity near z̄j is strictly
“less” than that of Green’s function. Therefore φ̃ satisfies the equation on the whole
Rn. By the orthogonality condition and non-degeneracy of Aubin-Talenti bubbles,
we get φ̃ ≡ 0. However, since |ξk| := |λ

(k)
i0

(xk − z
(k)
i0

)| ≤ L and |ξk − z
(k)
i0j
| ≥ ε1,

going to a subsequence if necessary, then limk→∞ ξk = ξ∞ /∈ {z̄j : j ∈ S(i0)}
and consequently φ̃(ξ∞) ≥ ε∗ > 0. This is a contradiction.

FIGURE 3. Illustration for the blow-up regions of a simple bubble
configuration. The solid circles denote {yi = L} for i = 1, · · · , 4.
The dashed circles mean {|y1 − z1j | = ε1}. The shaded regions
constitute A1.

Case 3: Neck region Ω(k) \
(
∪i∈IΩ(k)

i

)
. In this case, we can not use a blow-up

argument directly, because we do not know which bubble will dominate others.
Fortunately, this set is a narrow domain (see the following A(k)

i in yi-coordinates),
we will construct some barrier functions and use the maximum principle to prove
|φk(x)| ≤W (x)/2 as k →∞.

Note that Ω(k) \
(
∪i∈IΩ(k)

i

)
= ∪i∈IA(k)

i where A(k)
i is defined by

A
(k)
i = ∪j∈S(i){x : |y(k)

i − z
(k)
ij | ≤ ε1} \ ∪j∈S(i){x : |y(k)

j | < L}. (5.8)

One can interpret A(k)
i as the union of the neck regions of U (k)

j with j ∈ S(i). See

Figure 3 for A(k)
i in a simple case. We have the following observations.
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(1) x ∈ ∂A(k)
i implies that either x satisfies |y(k)

i − z
(k)
ij | = ε1 or |y(k)

j | = L

for some j ∈ S(i). In the first case, x ∈ ∂Ω
(k)
i , and in the second case,

x ∈ ∂Ω
(k)
j .

(2) A(k)
i are disjoint from A

(k)
j for any j 6= i.

To construct a barrier function, we need to modify the weight functions W and
V in two steps. First, we need to smooth functions W and V to derive some differ-
ential inequality because they are piece-wise defined. We introduce the following
function

F (a, b) =
a+ b

2
−

√(
a− b

2

)2

+
1

4
ab. (5.9)

It can be considered as a smooth 1/4-approximation of min{a, b}. It satisfies that

min{a, b}/2 ≤ F (a, b) ≤ min{a, b}. (5.10)

Moreover, it is symmetric, 1-homogeneous, and concave (see [33]).
Second, on A(k)

i , win
i is not a good candidate for barrier because it does not

satisfy ∆xw
in
i + pUp−1

i win
i ≤ −vin

i . We need to replace the weight win
i by w̃in

i
which is defined by

w̃in
i (x) =

∑
j∈S(i)

λ
n−2
2

i R2−n
(

1 + |z(k)
ij |

2 + ε−2
1 |y

(k)
i − z

(k)
ij |

2
)−1

. (5.11)

Claim 2. On A(k)
i , it holds that

1

3
win
i ≤ w̃in

i ≤ 3νwin
i , (5.12)

∆xw̃
in
i (x) ≤ −n− 4

8ε21
vin
i (x). (5.13)

Note that w̃in
i is comparable to win

i but has negatively large second-order deriva-
tives. This is exactly where we need to use the narrow property of A(k)

i .
Now let us work on a particular A(k)

i0
. Define the barrier function W̃ by

W̃ (x) =
∑

j∈I\{i0}

λ
n−2
2

j F

(
R2−n

〈yj〉2
,
R−4

〈yj〉n−4

)
+ w̃in

i0 . (5.14)

Using win
j +wout

j = (1+o(R−1))λ
n−2
2

j min{R4−n〈yj〉−2, R−4〈yj〉2−n} and the
above claim, we have W̃ (x) ≈ W (x). Moreover, combining with (4.29), (5.10)
and (5.12), we have

1

4
W (x) ≤ W̃ (x) ≤ 3νW (x) on A(k)

i0
. (5.15)

More importantly, we have the following estimate of ∆xW̃ (x).
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Claim 3. On A(k)
i0

, we have

∆xW̃ (x) ≤ −(n− 4)(1 + o(1))
∑

j∈S(i0)

(vin
j (x) + vout

j (x))− n− 4

8ε21
vin
i0(x).

We also postpone the proofs of Claim 2 and Claim 3 to the end of this subsection.
We will show that W̃ (x) is a super-solution to our problem in the region A(k)

i0
.

That is, for σk =
∑ν

i=1 U
(k)
i ,

∆xW̃ + pσp−1
k W̃ ≤ −V, onA(k)

i0
. (5.16)

In the region A(k)
i0
⊂ {|y(k)

i0
| ≤ L}, by (4.28),

∑
j∈I\S(i0) Uj = (1 + o(1))Ui0

for k large. Since p ∈ (1, 2], we have (
∑ν

i=1 ai)
p−1 ≤

∑ν
i=1 a

p−1
i for any ai ≥ 0.

Thus, for k large,

σp−1
k ≤

ν∑
i=1

Up−1
i ≤

∑
j∈S(i0)

Up−1
j + (1 + o(1))Up−1

i0
.

Consequently, thanks to (4.29) and (5.15), we have
1

3ν
σp−1
k W̃ ≤

∑
i,j∈S(i0)

Up−1
i

(
win
j + wout

j

)
+

∑
j∈S(i0)

Up−1
j w̃in

i0

+ (1 + o(1))

Up−1
i0

∑
j∈S(i0)

(
win
j + wout

j

)
+ Up−1

i0
w̃in
i0

 .

(5.17)

For the first term on the RHS of (5.17), if λi ≥ λj , then we apply (4.1) and (4.2) in
Lemma 4.1. If λi < λj , then we apply (4.3) and (4.7), since |yi| ≥ L > 2C∗ for
i ∈ S(i0) and x ∈ A(k)

i0
. Combining these two results, we have

Up−1
i

(
win
j + wout

j

)
. (L−2 + o(1))[vin

j + vout
j + vin

i + vout
i ].

For the second term on the RHS of (5.17), using (4.1), for j ∈ S(i0), we have

Up−1
j w̃in

i0 ≈ U
p−1
j win

i0 = o(1)[vin
j + vout

j + vin
i0 ].

For the third term, using (4.3) and (4.8), for j ∈ S(i0), we have

Up−1
i0

(
win
j + wout

j

)
. o(1)vin

j + (C∗)
2(n−6)
n−2 [ε−

n−4
2 vin

i0 + εvout
j ]

for any ε ∈ (0, 1). For the fourth term, using (5.12), we have

Up−1
i0

w̃in
i0 ≈ λ

2
i0〈yi〉

−4w̃in
i0 . λ

2
i0〈yi〉

−4win
i0 . v

in
i0 .

Plugging in the above four inequalities into (5.17), we have

σp−1
k W̃ . ((C∗)

2(n−6)
n−2 ε+

1

L2
+ o(1))

∑
j∈S(i0)

(vin
j + vout

j ) +

(
(C∗)2

ε
n−4
2

+ o(1)

)
vin
i0 .

Combining this with Claim 3, we have

∆xW̃ + pσp−1
k W̃
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≤ [−(n− 4) + C((C∗)
2(n−6)
n−2 ε+ L−2) + o(1)]

∑
j∈S(i0)

(vin
j + vout

j )

+

(
C(C∗)2ε−

n−4
2 + o(1)− n− 4

8ε21

)
vin
i0

for some C = C(n, ν). Then we choose L = L(n, ν, C∗) large enough, ε =
ε(n, ν, C∗) small, and k large enough such that

[−(n− 4) + C((C∗)
2(n−6)
n−2 ε+ L−2) + o(1)] ≤ −1. (5.18)

Then we choose ε1 = ε1(n, ν, C∗) small such that(
C(C∗)2ε−

n−4
2 + o(1)− n− 4

8ε21

)
≤ −1. (5.19)

This finishes the proof of (5.16). In the following, we will use the maximum prin-
ciple to prove |φk(x)| ≤ 1

6ν W̃ (x) on A(k)
i0

.
Denote f±(x) = 1

6ν W̃ ± φk(x). Recall that ∆xφk + pσp−1
k = hk. Then, for k

large enough, we have

∆xf± + pσp−1
k f± ≤ −

1

6ν
V ± ‖hk‖∗∗V ≤ 0 on A(k)

i0
. (5.20)

By the observation after (5.8), we see that ∂A(k)
i0
⊂ ∂Ω

(k)
i0
∪
(
∪j∈S(i0)∂Ω

(k)
j

)
.

It follows from the conclusion of Case 2 and (5.15) that f±(x) ≥ 0 on ∂A(k)
i0

for k

large. Let us show f±(x) ≥ 0 in A(k)
i0

by the maximum principle.
Consider g(x) = f±(x)/W̃ (x). Then

∆xg(x) = −2∇g(x) · ∇W̃ (x)

W̃ (x)
+

1

W̃ (x)

(
∆xf± −

∆xW̃ (x)

W̃ (x)
f±(x)

)
.

Suppose g(x) takes its minimum in A(k)
i0

at x0 and g(x0) < 0. Then ∇g(x0) = 0

and ∆xg(x0) ≥ 0. Then using f±(x0) < 0 and−∆W̃ ≥ pσp−1
k W̃+V and (5.20),

we have

∆xf±(x0)− ∆xW̃

W̃
f±(x0) ≤ ∆xf±(x0) +

pσp−1
k W̃ + V

W̃
f±(x0) < 0,

which is a contradiction. This shows that g(x) ≥ 0 for x ∈ A(k)
i0

. Thanks to (5.15),
we obtain

|φk(x)| ≤ 1

6ν
W̃ (x) ≤ 1

2
W (x) on A(k)

i0
,

when k is large enough. This finishes the proof of Case 3.
Combining all three cases above, we always have |φk(x)| ≤ W (x)/2 for k

large. It is a contradiction because ‖φk‖∗ = 1. Thus we prove (5.3).
To complete the whole proof, it suffices to prove the three claims we have used.
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Proof of Claim 1. By (4.28) in Lemma 4.7,

σ̃k(y) = (1 + o(1))U [0, 1](y) +
∑

j∈S(i0)

U [zi0j , λj/λi0 ](y), y ∈ Kl.

We shall show the sum of the right-hand side is also o(1)U [0, 1](y) onKl. Invoking
the definition of Kl in (5.6), we see that |y − zi0j | ≥ |yi − z̄j |/2 ≥ 1/2l when k is
large enough. On the other hand, j ∈ S(i0) implies that λj/λi0 → ∞ as k → ∞.
Thus,

U [zi0j , λj/λi0 ]

U [0, 1]
=

(λj/λi0)
n−2
2 (1 + |y|2)

n−2
2

(1 + (λj/λi0)2|y − z̄j |2)
n−2
2

≤
(
λj
λi0

) 2−n
2

(2l)2n−4 → 0

as k →∞. Hence

σ̃k(y) = (1 + o(1))U [0, 1](y), y ∈ Kl.

By Lemma 4.7, for k large enough, we have

|φk(x)|
W (xk)

.
win
i0

(x) +
∑

j∈S(i0)(w
in
j + wout

j )(x)

win
i0

(xk) +
∑

j∈S(i0)(w
in
j + wout

j )(xk)
,

|hk(x)|
λ2
i0
W (xk)

.
vin
i0

(x) +
∑

j∈S(i0)(v
in
j + vout

j )(x)

λ2
i0

[
win
i0

(xk) +
∑

j∈S(i0)(w
in
j + wout

j )(xk)
]‖hk‖∗∗,

when x = y/λi0 + zi0 and y ∈ Kl. To prove the rest of the claim, we need to use
a simple inequality ∑

i ai∑
i bi
≤ max

i
{ai
bi
}, (5.21)

which holds for any positive ai, bi. It suffices to establish the following estimates
for each ratio on Kl.
• For the inner weight functions of Ui0 , let y = λi0(x− zi0) and ξk = λi0(xk −

zi0), we have

win
i0

(x)

win
i0

(xk)
=

1 + |ξk|2

1 + |y|2
≤ 1 + L2,

vin
i0

(x)

λ2
i0
win
i0

(xk)
=

1 + |ξk|2

(1 + |y|2)2
≤ 1 + L2.

• If i0 ≺ j, then λi0/λj → 0 as k → ∞. In this case, Kl is contained in the
support of wout

j when k is large enough. Using |zi0j | ≤ C∗ and |ξk| ≤ L, we have

wout
j (x)

wout
j (xk)

=

(
(λi0/λj)

2 + |ξk − zi0j |2

(λi0/λj)
2 + |y − zi0j |2

)n−4
2

.

(
L

|y − z̄j |

)n−4

,

vout
j (x)

λ2
i0
wout
j (xk)

=
((λi0/λj)

2 + |ξk − zi0j |2)
n−4
2

((λi0/λj)
2 + |y − zi0j |2)

n−2
2

. ln−2Ln−4.
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Combining the above two cases and using (5.21), we have

|φ̃k(y)| . L2 +

(
L

|y − z̄j |

)n−4

,

|h̃k(y)| . ‖hk‖∗∗
(
L2 + ln−2Ln−4

)
→ 0 as k →∞.

From this, the assertion follows.
�

Proof of Claim 2. • To prove (5.12), using (5.11), we obtain that

w̃in
i

win
i

=
∑
j∈S(i)

1 + |yi|2

1 + |zij |2 + ε−2
1 |yi − zij |2

. (5.22)

Here we have omitted the superscript (k) for y and z.
Pick any j ∈ S(i). On the set {|yi − zij | ≤ ε1}, it holds that

1 + |yi|2

1 + |zij |2 + ε−2
1 |yi − zij |2

≤1 + 2ε21 + 2|zij |2

1 + |zij |2
≤ 2,

1 + |yi|2

1 + |zij |2 + ε−2
1 |yi − zij |2

≥1− 2ε21 + 2|zij |2

2 + |zij |2
≥ 1

3
.

(5.23)

Let us consider any other l ∈ S(i). There are the following two cases:
Case 1: |zij − zil| ≤ 2ε1. In this case, for |yi − zij | ≤ ε1 we have

1 + |zij |2 + ε−2
1 |yi − zij |2

1 + |zil|2 + ε−2
1 |yi − zil|2

≤ 2 + 8ε21 + 2|zil|2

1 + |zil|2
≤ 3. (5.24)

Case 2: |zij−zil| ≥ 2ε1. Note |yi−zil| ≥ |zij−zil|− |yi−zij | ≥ |zij−zil|/2.
Then |zil|2 + ε−2

1 |yi − zil|2 ≥ |zil|2 + |zij − zil|2 ≥ |zij |2/2. We have

1 + |zij |2 + ε−2
1 |yi − zij |2

1 + |zil|2 + ε−2
1 |yi − zil|2

≤ 2 + |zij |2

1 + |zij |2/2
≤ 2. (5.25)

Plugging in (5.23)-(5.25) to (5.22), we have

1

3
≤ w̃in

i

win
i

≤ 2 +
∑

l∈S(i),l 6=j

3 ≤ 3ν, on {|yi − zij | ≤ ε1}.

Since j ∈ S(i) is arbitrary, then the above inequalities hold on A(k)
i .

• Towards proving (5.13), we denote fj(x) = (1 + |zij |2 + ε−2
1 |yi − zij |2)−1

temporarily. Recall that yi = λi(x− zi). By direct calculation, we have

∆xfj = λ2
i [−2(n− 4)ε−2

1 f2
j − 8ε−2

1 (1 + |zij |2)f3
j ].

Since w̃in
i (x) =

∑
l∈S(i) λ

n−2
2

l R2−nfl, then on the set {|yi − zij | ≤ ε1}, we have

∆xw̃
in
i (x) ≤ λ

n−2
2

i R2−n∆xfj ≤ −2(n− 4)λ
n+2
2

i R2−nf2
j ≤ −

n− 4

8ε21
ṽin
i .

We use (5.23) to get fj ≥ 1
3〈yi〉

−2 in the last step.
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By the arbitrariness of j, we can prove Claim 2 on A(k)
i . �

Proof of Claim 3. It is easy to verify that F is a smooth function except a = b = 0.
Also, F is homogeneous and increasing on a, b with 0 ≤ ∂F

∂a ≤ 1 and 0 ≤ ∂F
∂b ≤ 1.

Moreover, F is concave on a, b (see [33]). Denote aj = R2−n/〈yj〉2 and bj =
R−4/〈yj〉n−4. Therefore,

∆xW̃ ≤
∑

λ
n−2
2

j

(
∂F

∂a
(aj , bj)∆xaj +

∂F

∂b
(aj , bj)∆xbj

)
+ ∆xw̃

in
i0(x).

We have

∆xaj = ∆x
R2−n

〈yj〉2
= −2(n− 4)

λ2
jR

2−n

〈yj〉4
−

8λ2
jR

2−n

〈yj〉6
≤ −2(n− 4)

λ2
jaj

〈yj〉2
,

∆xbj = −2(n− 4)
λ2
jR
−4

〈yj〉n−2
− (n− 2)(n− 4)

λ2
jR
−4

〈yj〉n
≤ −2(n− 4)

λ2
jbj

〈yj〉2
.

Since F is homogeneous degree 1, we get a∂F∂a +b∂F∂b = F (a, b). Moreover, it also
implies ∂F

∂a ,
∂F
∂b are homogeneous 0, that is ∂F

∂a (aj , bj) = ∂F
∂a (aj/〈yj〉2, bj/〈yj〉2).

Applying the above facts to ∆xW̃ , we get

∆xW̃ (x) ≤ −2(n− 4)
∑

j∈S(i0)

λ
n+2
2

j F

(
aj
〈yj〉2

,
bj
〈yj〉2

)
+ ∆xw̃

in
i0(x)

≤ −(n− 4)
∑

j∈S(i0)

λ
n+2
2

j min{R2−n〈yj〉−4, R−4〈yj〉n−4} − n− 4

8ε21
vin
i0

≤ −(n− 4)(1 + o(1))
∑

j∈S(i0)

[vin
j + vout

j ]− n− 4

8ε21
vin
i0 .

We have used (5.10) and (5.13) in the second step. The proof of Claim 3 is com-
plete. �

The proof of Lemma 5.1 is complete when the dimension n ≥ 7.
Replacing win(out)

i by ŵin(out)
i and vin(out)

i by v̂in(out)
i , one can prove Lemma 5.1

when the dimension n = 6 by following the above one verbatim. We point out
some necessary modifications.

When n = 6, on Rn \ Ω(k), we have

w̄in
i ≤ 2L−1(logL)ŵin

i , w̄out
i ≤ 2L−1(logL)ŵout

i .

Therefore, Case 1 can be established by choosing L large enough.
For Case 2, in the statement of claim 1, φ̃k should be modified to

|φ̃k|(y) .
∑

j∈S(i0)

(
L

|y − z̄j |

)3

+ L2, ∀ y ∈ Kl. (5.26)

Using this upper bound, the other parts of Case 2 still hold in n = 6.
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For Case 3, the barrier function is

W̃ (x) =
∑

j∈I\{i0}

λ2
jF

(
R−4

〈yj〉2
,
R−2

〈yj〉3

)
+ w̃in

i0 , (5.27)

where w̃in
i0

is again (5.11). Since ∆x〈yj〉−3 ≤ −3λ2
i 〈yj〉−5, Claim 3 must be

modified to

∆xW̃ (x) ≤ −3

2
(1 + o(1))

∑
j∈S(i0)

(v̂in
j + v̂out

j )− 1

4ε21
vin
i0(x).

To estimate σp−1
k W̃ , one should use Lemma 4.2. The other parts of the proof still

hold. �

5.2. Existence and point-wise estimate. In this subsection, we shall use the a
priori estimate we have derived to prove the existence of ρ0.

First, we estimate the coefficients cjb in (3.1). See the definition of ζn(x) in (1.8).

Lemma 5.2. Suppose σ is the sum of a family of δ-interacting bubbles. If φ, h and
cjb satisfy (3.1), then

|cjb| . Q‖h‖∗∗ + ζn(Q)2‖φ‖∗, 1 ≤ j ≤ ν, 1 ≤ b ≤ n+ 1.

Proof. Multiplying (3.1) by Zbj and integrating we get∫
pσp−1φZbj =

∫
hZbj +

∑
i,a

∫
ciaU

p−1
i Zai Z

b
j , (5.28)

for any 1 ≤ j ≤ ν, 1 ≤ b ≤ n+1. Here we used the orthogonal condition in (3.1).
By the Lemma A.5, for a, b ≤ n + 1, there exist some constants γb > 0 such

that ∑
i,a

∫
ciaU

p−1
i Zai Z

b
j = cjbγ

b +
∑
i 6=j

n+1∑
a=1

ciaO(qij).

Plugging in the above estimates to (5.28), we see that {cjb} satisfies the linear sys-
tem

cjbγ
b +

∑
i 6=j

n+1∑
a=1

ciaO(qij) =

∫
pσp−1φZbj −

∫
hZbj .

Denote ~c j := (cj1, · · · , c
j
n+1) ∈ Rn+1 for j = 1, · · · , ν. We concatenate these

vectors to ~c = (~c 1, · · · ,~c ν) ∈ Rν(n+1) and think of the above equations as a linear
system on ~c. Since qij ≤ Q ≤ δ, the coefficient matrix is diagonally dominant and
hence solvable. It remains to estimate the terms on the right-hand side.

For each j and b, by the orthogonal condition in (3.1) and |Zbj | . Uj , we have∣∣∣∣∫ pσp−1φZbj

∣∣∣∣ =

∣∣∣∣∫ p
(
σp−1 − Up−1

j

)
Zbjφ

∣∣∣∣ . ‖φ‖∗ ∫ (σp−1 − Up−1
j

)
UjW.

(5.29)
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Thanks to the fact that (σp−1 − Up−1
i )Ui ≥ 0 for each i, we have

(σp−1 − Up−1
j )Uj ≤

∑
i

(σp−1 − Up−1
i )Ui = σp −

∑
i

Upi .

By Proposition 3.4, we have |σp−
∑

i U
p
i | . V . Then by Lemma 3.7 and Hölder’s

inequality, (5.29) can be bounded by∣∣∣∣∫ pσp−1φZbj

∣∣∣∣ . ‖φ‖∗ ∫ VW ≤ ‖V ‖L(2∗)′‖W‖L2∗‖φ‖∗ . ζn(Q)2‖φ‖∗.

By Lemma B.1, we also have∣∣∣∣∫ hZbj

∣∣∣∣ . ‖h‖∗∗ ∫ V Ujdx . R
2−n‖h‖∗∗ ≈ Q‖h‖∗∗.

With the above two inequalities, the Lemma 5.2 is proved.
�

From Lemma 5.1 and Lemma 5.2, using a standard argument as in the proof of
Proposition 4.1 in [17], we can prove the following result.

Proposition 5.3. There exist positive constants δ0 and C, independent of δ, such
that for all δ 6 δ0 and all h with ‖h‖∗∗ <∞, problem (3.1) has a unique solution
φ ≡ L(h). Besides,

‖L(h)‖∗ 6 C‖h‖∗∗,
∣∣cia∣∣ 6 Cδ‖h‖∗∗.

Proof. Let {Ui : 1 ≤ i ≤ ν} be a family of bubbles with δ-interaction, i.e., Q ≤ δ.
Let us consider the space

H := {φ ∈ Ḣ1(Rn) :

∫
φZai U

p−1
i = 0, 1 ≤ i ≤ ν, 1 ≤ a ≤ n+ 1}

endowed with the inner product 〈φ, ψ〉 =
∫
∇φ · ∇ψ. Problem (3.1) expressed in

a weak form is equivalent to that of finding a φ ∈ H such that

〈φ, ψ〉 =

∫ (
pσp−1φ− h

)
ψ, ∀ψ ∈ H. (5.30)

With the aid of Riesz’s representation theorem, we can rewrite this equation in the
operational form

φ = T (φ) + h̃ (5.31)

with certain h̃ which depends linearly in h and where T is a compact operator in
H . Fredholm’s alternative guarantees the unique solvability of this problem for
any h provided that the homogeneous equation

φ = T (φ) (5.32)

has only the zero solution in H . Observe that this equation (5.32) is equivalent to{
∆φ+ pσp−1φ =

∑ν
i=1

∑n+1
a=1 c

i
aU

p−1
i Zai , in Rn,∫

Up−1
i φZai = 0, i = 1, · · · , ν; a = 1, · · · , n+ 1,

(5.33)
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for certain constants cia. Assume it has a nontrivial solution φ = φ0, which with no
loss of generality may be taken so that ‖φ0‖∗ = 1. But with the aid of Lemma 5.1
and Lemma 5.2, we have

‖φ0‖∗ ≤ Cζn(Q)2‖φ0‖∗ ≤
1

2
‖φ0‖∗.

This is certainly a contradiction that proves this equation only has the zero solution
in H . We conclude then that for each h, problem (3.1) admits a unique solution.
Denote this solution as φ = L(h). Note that |Up−1

i Zai | . Upi . Rn−2(vin
i + vout

i )

or R4(v̂in
i + v̂out

i ) in dimension n = 6. Thus ‖Up−1
i Zai ‖∗∗ . Rn−2 ≈ Q−1. It

follows from Lemma 5.1 and Lemma 5.2 that

‖L(h)‖∗ ≤ C‖h‖∗∗ + C
[
Q‖h‖∗∗ + ζn(Q)2‖L(h)‖∗

]
Q−1

≤ C‖h‖∗∗ + o(Q)‖L(h)‖∗.

Thus ‖L(h)‖∗ ≤ C‖h‖∗∗ when δ is small enough. Consequently, |cia| . Q‖h‖∗∗+
o(Q)‖L(h)‖∗ ≤ Cδ‖h‖∗∗. �

With the aid of the above linear theory, we can solve the following nonlinear
equation of ρ0,∆ρ0 + (σ + ρ0)|σ + ρ0|p−1 −

ν∑
i=1

Upi =
∑
i,a
ciaU

p−1
i Zai in Rn,∫

Up−1
i Zai ρ0 = 0, i = 1, · · · , ν; a = 1, · · · , n+ 1.

(5.34)

Proposition 5.4. Suppose that δ is small enough. There exist a solution ρ0 and a
family of scalars (cia) which solve (5.34). Moreover,

|ρ0|(x) ≤ CW (x). (5.35)

Proof. Let us consider the following equation{
∆φ+ (σ + φ)|σ + φ|p−1 −

∑ν
i=1 U

p
i =

∑
i,a c

i
aU

p−1
i Zai in Rn,∫

Up−1
i Zai φ = 0, i = 1, · · · , ν; a = 1, · · · , n+ 1.

(5.36)

Recall that Nσ(φ) = (σ + φ)|σ + φ|p−1 − σp − pσp−1φ and h = σp −
∑ν

i=1 U
p
i .

Then, (5.36) is equivalent to

φ = A(φ) =: −L(Nσ(φ))− L(h), (5.37)

where L is defined in Proposition 5.3. We will show that A is a contraction map-
ping.

First, we claim that ‖Nσ(φ)‖∗∗ ≤ C1R
−4(p−1)‖φ‖∗. In fact, since |Nσ(φ)| ≤

C|φ|p ≤ C‖φ‖p∗W p, then

‖Nσ(φ)‖∗∗ ≤ C‖φ‖∗ sup
Rn

W p(x)V −1(x). (5.38)

For the inner weight functions, if |yi| ≤ R, we have

(win
i )p

vin
i

=

λn−2
2

i R2−n

〈yi〉2

p 〈yi〉4

λ
n+2
2

i R2−n

 = R−4〈yi〉4−2p ≤ R−2p.
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For the outer weight functions, if R < |yi|, we have

(wout
i )p

vout
i

=

λn−2
2

i R−4

〈yi〉n−4

p 〈yi〉n−2

λ
n+2
2

i R−4

 = R4(1−p)〈yi〉n−2−p(n−4) ≤ R4(1−p),

since n − 2 − p(n − 4) < 0 when n ≥ 7. One can also prove (ŵin
i )2/v̂in

i +
(ŵout

i )2/v̂out
i ≤ R−4 in dimension n = 6. Thanks to the inequality (5.21), we have

W pV −1 ≤ R−4(p−1).

Thus, there exists C1 = C1(n, ν) such that

‖Nσ(φ)‖∗∗ ≤ C1R
−4(p−1)‖φ‖∗. (5.39)

Making C1 possibly larger, we also have ‖L(h)‖∗ ≤ C1‖h‖∗∗ in Proposition 5.3.
Second, it follows from Proposition 3.4 that there exists C2 = C2(n, ν) such

that ‖h‖∗∗ ≤ C2.
Now we define the space

E = {u : u ∈ C(Rn), ‖u‖∗ ≤ C1C2 + 1}.
We will show thatA is a contraction mapping fromE toE. Choosing δ small, then
R large such that R−4(p−1)C2

1 (C1C2 + 1) ≤ 1, we have

‖A(φ)‖∗ ≤ C1‖Nσ(φ)‖∗∗ + C1‖h‖∗∗
≤ R−4(p−1)C2

1 (C1C2 + 1) + C1C2 ≤ C1C2 + 1.

Thus, A(E) ⊂ E. Furthermore,

‖A(φ1)−A(φ2)‖∗ ≤ ‖L(Nσ(φ1))− L(Nσ(φ2))‖∗∗
≤ C1‖Nσ(φ1)−Nσ(φ2)‖∗∗.

If n ≥ 6, then we have the |Nσ(φ1) − Nσ(φ2)| . |φ1 − φ2|(|φ1|p−1 + |φ2|p−1)
(see [14, Appendix D]). As a result,

|Nσ(φ1)−Nσ(φ2)| ≤ C
(
‖φ1‖p−1

∗ + ‖φ2‖p−1
∗
)
‖φ1 − φ2‖∗W p.

Since W pV −1 ≤ R−4(p−1) � 1 if δ small, we get

‖A(φ1)−A(φ2)‖∗ ≤
1

2
‖φ1 − φ2‖∗.

Thus,A is a contraction mapping. It follows from the contraction mapping theorem
that there exists a unique ρ0 ∈ E, such that ρ0 = A(ρ0). Moreover, it follows from
Proposition 5.3 that ‖ρ0‖∗ ≤ C. �

6. GRADIENT ESTIMATE OF THE ERROR FUNCTION

In this section, we will establish L2 estimates for the ∇ρ, based on the point-
wise estimates from the previous section 5.

Proposition 6.1. Suppose δ is small enough. We have the gradient estimate

‖∇ρ0‖L2 . ζn(Q). (6.1)
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Proof. By (5.34), we have ρ0 satisfies that

∆ρ0 + pσp−1ρ0 + (σp −
ν∑
i=1

Upi ) +Nσ(ρ0) =
∑
i,a

ciaU
p−1
i Zai .

Multiplying the above equation by ρ0 and using the orthogonal condition in (5.34),
we get∫

|∇ρ0|2 .
∫
σp−1ρ2

0 +

∫
|Nσ(ρ0)ρ0|+

∫
(σp −

∑
Upi )ρ0. (6.2)

It follows from Proposition 3.4 and Proposition 5.4 that |σp−
∑

i U
p
i | . V (x) and

|ρ0(x)| . W (x). By Lemma 3.7 and R2−n ≈ Q, we have ‖W‖L2∗ . ζn(Q) and
‖W‖L2∗‖V ‖L(2∗)′ . ζn(Q)2. Therefore∫

σp−1ρ2
0 .

∫
σp−1W 2 . ‖σ‖p−1

L2∗ ‖W‖2L2∗ . ζn(Q)2,∫
(σp −

ν∑
i=1

Upi )ρ0 .
∫
VW . ‖W‖L2∗‖V ‖L(2∗)′ . ζn(Q)2,∫

|Nσ(ρ0)ρ0| .
∫
|ρ0|p+1 .

∫
W p+1 . ζn(Q)p+1.

Plugging in the above inequalities to (6.2), the proof is complete. �

Now consider ρ1 = ρ− ρ0. Recall ρ satisfies (2.4) and ρ0 satisfies (5.34). Thus
ρ1 solves{

∆ρ1 + [(σ + ρ0 + ρ1)p − (σ + ρ0)p] +
∑

i,a c
j
aU

p−1
j Zaj + f = 0,∫

Up−1
i Zai ρ1 = 0 i = 1, · · · , ν; a = 1, · · · , n+ 1.

(6.3)

Here the notation xp means x|x|p−1 for any x. We do not know whether σ+ρ0+ρ1

is positive everywhere or not. For rigorous reasons, one needs to write (σ + ρ0 +
ρ1)|σ+ ρ0 + ρ1|p−1. However, we abuse the notation here and adopt it for the rest
of this paper to save some space.

Since (1.14) and
∫
∇ρ0 · ∇Zai = p

∫
Up−1
i ρ0Z

a
i = 0, we see that ρ1 = ρ − ρ0

is also orthogonal to Zai in Ḣ1 for any 1 ≤ i ≤ ν and a = 1, · · · , n+ 1. Now we
decompose

ρ1 =
ν∑
i=1

βiUi + ρ2, (6.4)

with

βi =

∫
∇ρ1 · ∇Ui. (6.5)

Then ρ2 satisfies that ∫
∇ρ2 · ∇Ui = 0 =

∫
∇ρ2 · ∇Zai , (6.6)



SHARP QUANTITATIVE ESTIMATES 47

for all i = 1, · · · , ν and a = 1, · · · , n + 1. The definition of ρ2 is intended to
provide a second variation estimate in the following lemma.

Lemma 6.2. If δ is small enough, then ρ2 satisfies

‖∇ρ2‖L2 .
ν∑
i=1

|βi|+ ‖f‖H−1 .

Consequently, ‖∇ρ1‖L2 .
∑ν

i=1 |βi|+ ‖f‖H−1 .

Proof. Multiplying (6.3) by ρ2 and integrating by parts, we get∫
|∇ρ2|2 =

∫
[(σ + ρ0 + ρ1)p − (σ + ρ0)p]ρ2 +

∫
ρ2f.

Here we have used the orthogonal condition (6.6). Using the elementary inequality

|(σ + ρ0 + ρ1)p − (σ + ρ0)p − p(σ + ρ0)p−1ρ1| . |ρ1|p, (6.7)

we have∫
|∇ρ2|2 ≤ p

∫
|σ + ρ0|p−1|ρ1ρ2|+ C

∫
|ρ1|p|ρ2|+

∫
|ρ2f |. (6.8)

Let us estimate each term on the RHS. Denote B =
∑ν

i=1 |βi|. The second and last
ones are easy to be controlled as follows.∫

|ρ1|p|ρ2| ≤ ‖ρ1‖pL2∗‖ρ2‖L2∗ . (B + ‖∇ρ2‖L2)p‖∇ρ2‖L2 ,∫
|ρ2f | . ‖ρ2‖Ḣ1‖f‖H−1 .

(6.9)

The first one on the RHS of (6.8) is a bit more difficult to estimate. First, notice
the decomposition of ρ1 in (6.4), we have |ρ1| ≤ CBσ + |ρ2|,

p

∫
|σ + ρ0|p−1|ρ1ρ2| ≤ CB

∫
|σ + ρ0|p−1σ|ρ2|+ p

∫
|σ + ρ0|p−1ρ2

2.

By Hölder’s inequality and Sobolev inequality,∫
|σ + ρ0|p−1σ|ρ2| . ‖σ + ρ0‖p−1

L2∗ ‖σ‖L2∗‖ρ2‖L2∗

. ‖∇σ +∇ρ0‖p−1
L2 ‖∇ρ2‖L2 . ‖∇ρ2‖L2 .

(6.10)

We used (6.1) and the fact that ‖Ui‖Ḣ1 and ‖Ui‖L2∗ are some dimensional con-
stants for all 1 ≤ i ≤ ν.

Second, it follows from the second variation estimate (for instance, see [4, Prop
3.1] and [22, Prop 3.10]) and the orthogonal condition (6.6) of ρ2 that there exists
a constant c̃ < 1 such that

p

∫
σp−1ρ2

2 ≤ c̃
∫
|∇ρ2|2.
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Recall a simple inequality that if x > 0 and p ∈ (1, 2] then
∣∣|x+y|p−1−|x|p−1

∣∣ ≤
C|y|p−1 for any y. Consequently,

p

∫
|σ + ρ0|p−1ρ2

2 ≤ c̃
∫
|∇ρ2|2 + C

∫
|ρ0|p−1ρ2

2 ≤ (c̃+ C‖∇ρ0‖p−1
L2 )‖∇ρ2‖2L2 .

Combining the above inequality with (6.10), we obtain

p

∫
|σ + ρ0|p−1|ρ1ρ2| ≤ (c̃+ C‖∇ρ0‖p−1

L2 )‖∇ρ2‖2L2 + CB‖∇ρ2‖L2 . (6.11)

By Proposition 6.1, we can make ‖∇ρ0‖L2 � 1. Plugging in (6.9) and (6.11) to
(6.8), we obtain

‖∇ρ2‖2L2 . B‖∇ρ2‖L2 + (B + ‖∇ρ2‖L2)p‖∇ρ2‖L2 + ‖f‖H−1‖∇ρ2‖L2 .

Dividing ‖∇ρ2‖L2 on both sides (unless ρ2 ≡ 0, when there is nothing to prove),
we have

‖∇ρ2‖L2 . B + (B + ‖∇ρ2‖L2)p + ‖f‖H−1 .

By (6.5) and Hölder’s inequality, |βi| . ‖∇ρ1‖L2 ≤ ‖∇ρ‖L2 + ‖∇ρ0‖L2 . Since
σ =

∑
i Ui is the best approximation of u, then ρ = u − σ satisfies ‖∇ρ‖L2 ≤ δ.

Taking δ small and using (6.1), we can obtain B � 1 and ‖∇ρ2‖L2 � 1. Thus,
the above inequality proves the lemma. �

Lemma 6.3. If δ is small enough, then

|βi| . Q2 + ‖f‖H−1 , 1 ≤ i ≤ ν.

Proof. We shall multiply (6.3) byUk and integrate it. Before that, let us make some
preparations. It follows from (6.7) and |(σ + ρ0)p−1 − Up−1

k | .
∑

i 6=k U
p−1
i +

|ρ0|p−1 that∣∣∣∣∫ [(σ + ρ0 + ρ1)p − (σ + ρ0)p]Uk − p
∫
Upkρ1

∣∣∣∣
.
∑
i 6=k

∫
Up−1
i Uk|ρ1|+

∫
|ρ1|pUk +

∫
|ρ0|p−1|ρ1|Uk.

Denote B =
∑ν

i=1 |βi|. It follows from Sobolev inequality and Lemma 6.2 that
‖ρ1‖L2∗ . ‖∇ρ1‖L2 . B + ‖∇ρ2‖L2 . B + ‖f‖H−1 . By Hölder’s inequality,
Sobolev inequality, Lemma 6.2 and Lemma A.3, we have∫

|ρ1|pUk . ‖ρ1‖pL2∗ . ‖∇ρ1‖pL2 . Bp + ‖f‖p
H−1 ,∫

|ρ0|p−1|ρ1|Uk . ‖∇ρ0‖p−1
L2 ‖ρ1‖L2∗‖Uk‖L2∗ . o(1) (B + ‖f‖H−1) ,∫

Up−1
i Uk|ρ1| ≤ ‖Up−1

i Uk‖L(2∗)′‖ρ1‖L2∗ . o(1) (B + ‖f‖H−1) , i 6= k.
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Here o(1) denotes a quantity that goes to 0 when δ → 0. Multiplying (6.3) by Uk
and integrating it, the above estimates give∫

∆ρ1Uk + pUpkρ1 . o(1) (B + ‖f‖H−1) +
∑
j,a

|cja|
∣∣∣∣∫ Up−1

j Zaj Uk

∣∣∣∣+

∫
|fUk|.

For the LHS, we use integration by parts and (6.4) to get∫
∆ρ1Uk + pUpkρ1 = (p− 1)

∫
Upkρ1

= −(p− 1)

∫
∇Uk · ∇ρ1 = −(p− 1)βk.

For the RHS, we see that
∫
Up−1
j Zaj Uk = 0 if j = k and

∫
Up−1
j Zaj Uk .∫

Upi Uk ≈ Q if j 6= k by Lemma A.3. It follows from Proposition 3.4 and Lemma
5.2 that |cja| . Q. Putting these estimates together, we obtain

|βk| . o(1)B +Q2 + ‖f‖H−1 .

Summing over k, we obtain B . Q2 + ‖f‖H−1 when δ is small. This completes
the proof.

�

Proposition 6.4. Suppose δ is small enough. We have

‖∇ρ1‖L2 . Q2 + ‖f‖H−1 .

Proof. This just follows from Lemma 6.3 and Lemma 6.2 with

‖∇ρ1‖L2 .
∑
i

|βi|+ ‖∇ρ2‖L2 .

�

Finally, we can prove the estimates which are used in the proof of the main
theorem.

Lemma 6.5. Suppose δ is small enough. We have∣∣∣∣∫ σp−1ρZn+1
k

∣∣∣∣ = o(Q) + ‖f‖H−1 ,

∣∣∣∣∫ |ρ|pZn+1
k

∣∣∣∣ = o(Q) + ‖f‖H−1 .

Proof. Notice ρ = ρ0 + ρ1. Then∫
σp−1ρZn+1

k =

∫
σp−1ρ0Z

n+1
k +

∫
σp−1ρ1Z

n+1
k . (6.12)

By Hölder’s inequality, Sobolev inequality and Proposition 6.4, we have∣∣∣∣∫ σp−1ρ1Z
n+1
k

∣∣∣∣ ≤ ‖ρ1‖L2∗‖σ‖p−1

L2∗ ‖Zn+1
k ‖L2∗ . ‖∇ρ1‖L2 . Q2 + ‖f‖H−1 .

It remains to consider the first term on the RHS of (6.12). By the orthogonality
condition of ρ0, similar to (5.29), one has∣∣∣∣∫ σp−1ρ0Z

n+1
k

∣∣∣∣ =

∣∣∣∣∫ (σp−1 − Up−1
k )ρ0Z

n+1
k

∣∣∣∣ = o(Q).
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Finally, by Hölder’s inequality and Sobolev inequality, it follows from Proposition
6.1 and Proposition 6.4 that∣∣∣∣∫ |ρ|pZn+1

k

∣∣∣∣ ≤ ‖ρ‖pL2∗ . ‖∇ρ‖
p
L2 . ‖∇ρ0‖pL2 + ‖∇ρ1‖pL2 . o(Q) + ‖f‖p

H−1 .

�

7. A SHARP EXAMPLE

In this section, we shall construct an example showing that our quantitative es-
timate is sharp, i.e., Theorem 1.5. The example is built on two widely separated
bubbles with the same height, which is the same as the one in [22]. We obtain
refined estimates using the point-wise estimate developed in Proposition 5.4.

Let us consider the two functions U1 := U [−Re1; 1] , U2 := U [Re1; 1] where
e1 = (1, 0, · · · , 0) ∈ Rn and R � 1. Then the interaction between U1 and U2

satisties that Q ≈ R2−n � 1. One can define σ = U1 + U2 and construct norms
‖ · ‖∗ and ‖ · ‖∗∗ as (3.4) with yi = x− (−1)iRe1, i = 1, 2.

By Proposition 5.4, choosing R large enough, we can find a solution ρ and a
family of scalars (cia) such that{

∆ρ+ (σ + ρ) |σ + ρ|p−1 − Up1 − U
p
2 +

∑
j,a c

j
aU

p−1
j Zaj = 0,∫

Up−1
j Zaj ρ = 0, j = 1, 2; a = 1, · · · , n+ 1.

(7.1)

Here σ = U1+U2, Zaj are the corresponding ones in (2.1) for U1 and U2. It follows
from Lemma 5.2, Proposition 5.4 and Proposition 6.1 that∑

j,a

∣∣cja∣∣ . Q, ‖ρ‖∗ ≤ C(n, ν), ‖∇ρ‖L2 . ζn(Q). (7.2)

Now let u := U1 + U2 + ρ. Then

∆u+ |u|p−1u = −
∑
a,j

cjaU
p−1
j Zaj := −f.

By the Sobolev embedding, |Zaj | ≤ Uj and (7.2), it is easy to see that

‖f‖H−1 . ‖f‖
L

2n
n+2
.
∑
j,a

∣∣cja∣∣ ‖Upj ‖L 2n
n+2
. Q. (7.3)

Lemma 7.1. For R large enough, one has

‖∇ρ‖L2 & ζn(‖f‖H−1).

Proof. It follows from (7.1) that

∆ρ+ pσp−1ρ+ h+Nσ(ρ) + f = 0, (7.4)

where

Nσ(ρ) = (σ + ρ)|σ + ρ|p−1 − σp − pσp−1ρ,

h = σp − Up1 − U
p
2 .
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Using Green’s representation, we have

ρ(x) = C(n)

∫
Rn
|x− ξ|2−n(pσp−1ρ(ξ) + h(ξ) +Nσ(ρ(ξ)) + f(ξ))dξ.

Using (5.39) and Lemma 3.6, we have∣∣∣∣∫
Rn
|x− ξ|2−nNσ(ρ(ξ))dξ

∣∣∣∣ . ‖ρ‖∗R−4(p−1)W (x).

Using the estimate of P1 in Proposition 4.3, we have∣∣∣∣∫
Rn
|x− ξ|2−nσp−1ρ(ξ)dξ

∣∣∣∣ .W (x) +R−2W (x).

In fact, in this case of two bubbles, the estimate of P1 is much simpler than that
of Proposition 4.3. We just highlight some details for dimension n ≥ 7, and omit
those of dimension n = 6. We still adopt the notation Ain

ii′ and Aout
ii′ (i, i′ ∈ {1, 2})

in (4.19). It follows from the proof of Proposition 4.3 thatAin
ii .W andAout

ii .W .
For the terms when i′ 6= i, we note z12 = z21 ≈ 2R, then Ain

ii′ +Aout
ii′ . R

−2W .
Note that |f | .

∑
j,a |c

j
a|Upj . R2−n(〈y1〉−n−2 + 〈y2〉−n−2). Thus, by Lemma

A.7, we have ∣∣∣∣∫
Rn
|x− ξ|2−nf(ξ)dξ

∣∣∣∣ . R2−n(〈y1〉2−n + 〈y2〉2−n).

Combining the above three estimates and using the fact that W (x) decays faster
than W (x), we have

P (x) : = C(n)

∫
Rn
|x− ξ|2−n(Nσ(ρ) + pσp−1ρ+ f)(ξ)dξ

. R2−n(χ{|y1|≤L} + χ{|y2|≤L}) + L−1W (x)χ{|y1|≥L,|y2|≥L} (7.5)

for some fixed L large enough to be determined.
We multiply (7.4) by ρ and integrate it by parts to get∫

Rn
|∇ρ|2 =

∫
Rn

(pσp−1ρ+ h+Nσ(ρ))ρ. (7.6)

Here the term that involves f vanishes because of the orthogonality condition in
(7.1). To get a lower bound of ‖∇ρ‖L2 , we shall throw away the term

∫
σp−1ρ2 >

0 and estimate the other two terms in the above identity.
First, since |ρ| ≤ ‖ρ‖∗W (x) and by (5.39), we have∣∣∣∣∫

Rn
Nσ(ρ)ρ

∣∣∣∣ . ‖ρ‖∗R−4(p−1)

∫
Rn
V (x)W (x)dx . R−4(p−1)ζn(Q)2.

Second, we notice that ρ(x) =
∫
Rn |x− ξ|

2−nh(ξ)dξ + P (x), then∫
Rn
hρ =

∫
Rn

∫
Rn
|x− ξ|2−nh(x)h(ξ)dxdξ +

∫
Rn
h(x)P (x)dx

=: J1 + J2.
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For J1, denoting ξ1 = ξ +Re1, we use (3.21) to get

J1 ≥ R4−2n

∫∫
|y1|≤R,|ξ1|≤R

|y1 − ξ1|2−n〈y1〉−4〈ξ1〉−4dy1dξ1

& R4−2n

∫
|ξ1|≤R

〈ξ1〉−6dξ1 & ζn(Q)2.

For J2, we use h(x) ≤ R2−n〈y1〉−4 on the set {|y1| ≤ L} and (7.5) to get∣∣∣∣∫
Rn
h(x)P (x)dx

∣∣∣∣ .∫
|y1|≤L

R4−2n〈y1〉−4dx+

∫
|y2|≤L

R4−2n〈y2〉−4dx

+ L−1

∫
|y1|≥L,|y2|≥L

V (x)W (x)

. R4−2nLn−4 + L−1ζn(Q)2 ≤
[
Ln−4

logR
+

1

L

]
ζn(Q)2.

Plugging in the above three facts to (7.6), we get that there exists a constant C =
C(n, ν) such that

‖∇ρ‖2L2 & ζn(Q)2

[
1− CR−4(p−1) − CL−1 − CL

n−4

logR

]
.

Now we choose L = L(n, ν) large and fix it. Using (7.3) and monotonicity of
ζn(x), we have ζn(‖f‖H−1) . ζn(Q). Taking R large enough, the proof is com-
plete. �

Proof of Theorem 1.5. According to Lemma 7.1, it suffices to show that

inf
z1,z2∈Rn
λ1>0,λ2>0

∥∥∥∥∥∥∇
u− ∑

j=1,2

U [zj ;λj ]

∥∥∥∥∥∥
L2

& ‖∇ρ‖L2 .

It is well-known that the minimization problem on the left-hand side can be attained
(cf. [4], Lemma A.1) by some

Ũ1 := U [z1;λ1] , Ũ2 := U [z2;λ2] .

Denote σ̃ = Ũ1 + Ũ2 and ρ̃ = u− σ̃. We need to show ‖∇ρ̃‖L2 & ‖∇ρ‖L2 . Since
σ̃ is the minimizer, then

‖∇ (u− σ̃)‖L2 ≤ ‖∇(u− σ)‖L2 = ‖∇ρ‖L2 . ζn(Q).

Recall that 〈v, w〉Ḣ1 =
∫
∇v · ∇w. Hence ‖σ− σ̃‖Ḣ1 . ζn(Q). This implies that

(up to some reordering of z1 and z2)

λj = 1 + oR(1), z1 = −(R+ oR(1))e1, z2 = (R+ oR(1))e1. (7.7)

Here oR(1) means a quantity that goes to 0 when R→∞. Denote

ε =
∑
i=1,2

|λi − 1|+ |zi − (−1)iRe1|.



SHARP QUANTITATIVE ESTIMATES 53

It is easy to see that (z, λ)→ U [z, λ] is a smooth map from Rn×(0,∞) to Ḣ1(Rn).
Using the Taylor expansion, there exist A1, A2 ∈ Ḣ1 and ‖A1‖Ḣ1 = O(ε2),
‖A2‖Ḣ1 = O(ε2) such that

Ũ1 − U1 =

n∑
a=1

Za1 (z1 +Re1)a + Zn+1
1 (λ1 − 1) +A1,

Ũ2 − U2 =
n∑
a=1

Za2 (z2 −Re1)a + Zn+1
2 (λ2 − 1) +A2,

where Za1 , Z
a
2 are defined in (2.1) with respect to U1 and U2. Consequently, ‖U1−

Ũ1‖Ḣ1 ≈ ε, ‖U2 − Ũ2‖Ḣ1 ≈ ε, and using Lemma A.5 we get

|〈U1 − Ũ1, U2 − Ũ2〉Ḣ1
| ≈ o(ε2) + ε2

n+1∑
a=1

|〈Za1 , Za2 〉Ḣ1 | = o(ε2).

Combining the above estimates, we have ‖∇(σ − σ̃)‖L2 ≈ ε because

‖∇(σ − σ̃)‖2L2 =‖∇(U1 − Ũ1)‖2L2 + ‖∇(U2 − Ũ2)‖2L2

+ 2〈U1 − Ũ1, U2 − Ũ2〉Ḣ1
.

By the orthogonality condition in (7.1), we have ρ is orthogonal to Za1 and Za2 in
Ḣ1 for a = 1, · · · , n+ 1. Thus

〈σ − σ̃, ρ〉Ḣ1 =

∫
∇(A1 +A2) · ∇ρ . o(1)‖∇(σ − σ̃)‖L2‖∇ρ‖L2 .

Since ρ̃ = ρ+ σ − σ̃, the above inequality implies that

‖∇ρ̃‖2L2 = ‖∇ρ‖2L2 + ‖∇(σ − σ̃)‖2L2 + 2〈σ − σ̃, ρ〉Ḣ1

& ‖∇ρ‖2L2 + ‖∇(σ − σ̃)‖2L2 ≥ ‖∇ρ‖2L2 .

From this, the assertion follows.
�
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APPENDIX A. SOME USEFUL ESTIMATES

This appendix contains some useful estimates involving Aubin-Talenti bubbles
and their derivatives. We always denote Ui = U [zi, λi] defined in (1.3). See the
definition of qij in (1.5).
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Lemma A.1. Let α > β > 1 and α+ β = 2∗,∫
Uβi inf(Uαi , U

α
j ) = O(q

n
n−2

ij | log qij |).

Proof. See the proof in [3, E4]. �

Lemma A.2. For any two bubbles, there exists Cn such that∫
Rn
Upi λj∂λjUj = −Cn

(
q
− 2
n−2

ij − 2
λi
λj

)
q

n
n−2

ij +O(q
n
n−2

ij | log qij |).

Proof. See the proof in [3, F16]. Moreover, if λi ≤ λj then RHS ≈ −qij when
qij � 1. �

Lemma A.3. Given n ≥ 3, for any fixed ε > 0 and any non-negative exponents
such that α+ β = 2∗, it holds∫

Rn
Uα1 U

β
2 ≈n,ε

{
q

min(α,β)
12 if |α− β| ≥ ε,
q

n
n−2

12 | log qij | if α = β.

Proof. See the proof of proposition B.2 in [22]. �

Lemma A.4. Given n ≥ 6, let {Ui}3i=1 be three bubbles with δ-interaction, that is
Q := max{q12, q13, q23} ≤ δ which is small enough.

(1) For n = 6, we have∫
Rn
U1U2U3 . Q

3
2 | logQ|. (A.1)

(2) For n ≥ 7, we have∫
Rn
Up−1

1 U2U3 . Q
n−1
n−2 | logQ|

n−5
n . (A.2)

Proof. For n = 6, 2∗ = 3, by the Hölder’s inequality, we get∫
Rn
U1U2U3 ≤

(∫
Rn
U

3
2

1 U
3
2

2

) 1
3
(∫

Rn
U

3
2

1 U
3
2

3

) 1
3
(∫

Rn
U

3
2

2 U
3
2

3

) 1
3

.

By Lemma A.3, we have∫
Rn
U1U2U3 . q

1
2
12| log q12|

1
3 q

1
2
13| log q13|

1
3 q

1
2
23| log q23|

1
3 .

Since the function x
1
2 | log x|

1
3 is increasing near 0, choosing δ small, we get (A.1).

For n ≥ 7, 2∗ = 2n
n−2 , let α = 4n

5(n−2) , β = 6n
5(n−2) , s1 = 5

2n and s2 = n−5
n . By

the Hölder’s inequality and Lemma A.3, we get∫
Rn
U1U2U3 ≤

(
Uα1 U

β
2

)s1 (
Uα1 U

β
3

)s1 (
U

2∗
2

2 U
2∗
2

3

)s2
. q

2
n−2

12 q
2

n−2

13 q
n−5
n−2

23 | log q23|
n−5
n .

Since the function x
n−5
n−2 | log x|

n−5
n is increasing near 0, choosing δ small, we get

(A.2). �
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Lemma A.5. For the Zai defined in (2.1), there exist some constants γa = γa(n) >
0 such that ∫

Up−1
i Zai Z

b
i =

{
0 if a 6= b,

γa if 1 ≤ a = b ≤ n+ 1.

If i 6= j and 1 ≤ a, b ≤ n+ 1, we have∣∣∣∣∫ Up−1
i Zai Z

b
j

∣∣∣∣ . qij .
Proof. See the proof in [3, F1-F6]. Moreover, it is known that γ1 = · · · = γn. �

Lemma A.6. Suppose p ∈ (1, 2] and ai ≥ 0, then(
ν∑
i=1

ai

)p
−

ν∑
i=1

api ≤
∑
i<j

[(ai + aj)
p − api − a

p
j ],

the equality holds when at most two of ai are non-zero or p = 2.

Proof. It is equivalent to prove

f(a1, a2, · · · , aν) =

(
ν∑
i=1

ai

)p
+ (ν − 2)

ν∑
i=1

api −
∑
i<j

(ai + aj)
p ≤ 0.

Denote a1 + a2 = s. Define g(x) = f(x, s− x, a3, · · · , aν). It is easy to see

g′′(x)

p(p− 1)
= (ν − 2)[xp−2 + (s− x)p−2]−

ν∑
i=3

[(x+ ai)
p−2 + (s− x+ ai)

p−2].

Since p− 2 ≤ 0 and ai ≥ 0, then g′′(x) ≥ 0 for x ∈ [0, s]. Since g(0) = g(s), we
must have g achieve the maximum at x = 0 or s. Therefore f(a1, a2, · · · , aν) ≤
f(0, a1 +a2, · · · , aν). Repeating the above process for any pairs, we obtain f ≤ 0.

If the equality holds, that is, f(a1, a2, · · · , aν) = 0, then the above proof shows
that either x = 0 or s, or g(x) = g(0) = g(s) for x ∈ [0, s]. The first case implies
at most one of a1 and a2 is non-zero. The second case implies g′′(x) = 0 for
x ∈ [0, s]. It leads to either a3 = · · · = aν = 0 or p = 2. Repeating this process
for any pairs, one can get at most two ai which are non-zero or p = 2. �

Lemma A.7. Denote 〈y〉 =
√

1 + |y|2. We have

∫
Rn
|y − z|2−n〈z〉−γdz .


〈y〉2−γ , if γ ∈ (2, n),

〈y〉2−n(1 + log〈y〉), if γ = n,

〈y〉2−n, if γ > n,

(A.3)

Proof. This follows from a simple modification of the proof in [37, Lemma B.2].
�
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APPENDIX B. INTEGRAL ESTIMATES REQUIRED IN SECTION 5

This appendix is devoted to computing the integral
∫
V Uj in Lemma 5.2.

Recall that Uj(x) = (n(n−2))(n−2)/4λ
(n−2)/2
j 〈yj〉2−n where yj = λj(x− zj).

For i 6= j, see the definition of Rij in (3.2). To compute integrals in this section,
we split the involved integral domain into inner and outer parts where the integrand
has a power-like behavior as in the Lemma 3.3.

Lemma B.1. Suppose n ≥ 6 and 1� R ≤ Rij/2, we have∫
|yi|≤R

λ
(n+2)/2
i R2−n

〈yi〉4
λ

(n−2)/2
i

〈yi〉n−2
dx . R2−n, (B.1)

∫
|yi|≥R

λ
(n+2)/2
i R−4

〈yi〉n−2

λ
(n−2)/2
i

〈yi〉n−2
dx . R−n, (B.2)

∫
|yi|≤R

λ
(n+2)/2
i R2−n

〈yi〉4
λ

(n−2)/2
j

〈yj〉n−2
dx . R−n, (B.3)

∫
|yi|≥R

λ
(n+2)/2
i R−4

〈yi〉n−2

λ
(n−2)/2
j

〈yj〉n−2
dx . R2−n. (B.4)

Proof. Recall that yi = λi(x − zi) and dyi = λni dx. (B.1) and (B.2) follow
from direct computations. To prove (B.3), we consider the following two cases
separately:

Case 1: λi ≥ λj . Obviously, R ≤
√
λi/λjRij/2. By (3.9) in Lemma 3.3,

R2−n
∫
|yi|≤R

λ
(n−2)/2
j

〈yj〉n−2

λ
(n+2)/2
i

〈yi〉4
dx . R2−nR2−n

ij

∫
|yi|≤R

dyi
〈yi〉4

. R−2R2−n
ij . R−n. (B.5)

Case 2: λi ≤ λj . Let {|yi| ≤ R} = D1 ∪ D2, where D1 = {|yi| ≤ R, |yj | ≤√
λj/λiRij/2} and D2 = {|yi| ≤ R, |yj | ≥

√
λj/λiRij/2}. By (3.9) in Lemma

3.3 when τ = n− 2,

R2−n
∫
|yi|≤R

λ
(n−2)/2
j

〈yj〉n−2

λ
(n+2)/2
i

〈yi〉4
dx

. R2−n
(
λi
λj

)(n−2)/2 ∫
D1

R−4
ij

dyj
〈yj〉n−2

+R2−n
∫
D2

R2−n
ij

dyi
〈yi〉4

. R2−nR−2
ij +R−2R2−n

ij . R−n. (B.6)

Combining with (B.5) and (B.6), we obtain (B.3).
To prove (B.4), as before, we consider the following two cases:
Case 1: λi ≥ λj . Let {|yi| ≥ R} = D1 ∪ D2 ∪ D3, where D1 = {R ≤

|yi| ≤
√
λi/λjRij/2}, D2 = {|yi| ≥

√
λi/λjRij/2, |yj | ≤

√
λj/λiRij/2} and
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D3 = {|yi| ≥
√
λi/λjRij/2, |yj | ≥

√
λj/λiRij/2}. By (3.9) in Lemma 3.3,

choosing τ = n− 2 in D2 and τ = 0 in D3,

R−4

∫
|yi|≥R

λ
(n−2)/2
j

〈yj〉n−2

λ
(n+2)/2
i

〈yi〉n−2
dx . R−4

∫
D1

R2−n
ij

dyi
〈yi〉n−2

+R−4R2−n
ij

(
λi
λj

)2 ∫
D2

dyj
〈yj〉n−2

+R−4

(
λj
λi

)(n−6)/2 ∫
D3

dyj
〈yj〉2n−4

. R−4R4−n
ij (λi/λj) ≤ R2−n. (B.7)

We have used the fact that R−2
ij (λi/λj) ≤ 1 in the last step.

Case 2: λi ≤ λj . Let D1 = {|yi| ≥ R, |yj | ≤
√
λj/λiRij/2} and D2 =

{|yi| ≥ R, |yj | >
√
λj/λiRij/2}. By (3.9) in Lemma 3.3 when τ = 0,

R−4

∫
|yi|≥R

λ
(n−2)/2
j

〈yj〉n−2

λ
(n+2)/2
i

〈yi〉n−2
dx

. R−4

(
λi
λj

)2 ∫
D1

R2−n
ij

dyj
〈yj〉n−2

+R−4

(
λi
λj

)(n−2)/2 ∫
D2

dyi
〈yi〉2n−4

. R−4R4−n
ij +R−n . R−n. (B.8)

Combining with (B.7) and (B.8), we obtain (B.4). �
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