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Abstract. We prove that axially symmetric solutions to the Q-curvature type

problem

αP6u+ 120(1−
e6u∫
S6 e

6u
) = 0 on S6

must be constants, provided that 1
2
≤ α < 1. In view of the existence of

non-constant solutions obtained by Gui-Hu-Xie [17] for 1
7
< α < 1

2
, this result

is sharp. This result closes the gap of the related results in [17], which proved
a similar uniqueness result for α ≥ 0.6168. The improvement is based on two

types of new estimates: one is a better estimate of the semi-norm bGc2, the

other one is a family of refined estimates on Gegenbauer coefficients, such as
pointwise decaying and cancellations properties.

1. Introduction and Main Results

Beckner’s inequality on S6, a higher order Moser-Trudinger inequality, asserts
that the functional

Jα(u) :=
α

2

∫
S6
u(P6u)dw + 120

∫
S6
udw − 20 ln

∫
S6
e6udw

is non-negative for α = 1 and all u ∈ H2(S6), where dw denotes the normalized
Lebesgue measure on S6 with

∫
S6 dw = 1 and P6 = −∆(−∆+4)(−∆+6) represents

the Paneitz operator on S6. Additionally, with the extra assumption that the mass
center of u is at the origin and u belongs to the set

L =

{
u ∈ H2(S6) :

∫
S6
e6uxjdw = 0, j = 1, ..., 7

}
,

an improved higher-order Moser-Trudinger-Onofri inequality demonstrates that for
any α ≥ 1

2 , a constant C(α) ≥ 0 exists such that Jα(u) ≥ −C(α). As in the
second-order case [7], it is conjectured that C(α) can be chosen to be 0 for any
α ≥ 1

2 .
The functional Jα’s Euler-Lagrange equation is the following Q-curvature-type

equation on S6

αP6u+ 120(1− e6u∫
S6 e

6udw
) = 0 on S6, (1.1)

If (1.1) admits only constant solutions, then the conjecture is valid. If α < 1 is
near 1, the third author and Xu [26] proved that all solutions to (1.1) are constants.
However, for general α ∈ [ 1

2 , 1), it remains unresolved. For results and backgrounds
on Q-curvature problems, we refer to [9, 10, 11, 12, 16, 19, 21, 23, 26] and the
references therein.
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The corresponding problem on S2 is known as the Nirenberg problem:

−α∆u+ 1− e2u∫
S2 e

2u
= 0 on S2.

This problem has been extensively studied over the past four decades. For more
information, refer to [7, 8, 20] and the references therein. A. Chang and P. Yang
conjectured in [7, 8] that the following functional

α

∫
S2
|∇u|2dw + 2

∫
S2
udw − ln

∫
S2
e2udw

is non-negative for any α ≥ 1
2 and u with zero center of mass

∫
S2 e

2u~xdw = 0. Feld-
man, Froese, Ghoussoub and the first author [13] demonstrated that the conjecture
is true for axially symmetric functions when α > 16

25 − ε, the first and the third
author in [18] confirmed that the conjecture is indeed true for axially symmetric
functions. Later Ghoussoub and Lin [14] showed that the conjecture holds true for
α > 2

3 − ε. Finally, the first author and Moradifam [15] proved the full conjecture.

For more general results on improved Moser-Trudinger-Onofri inequality on S2 and
its connections with the Szeg”o limit theorem, see [5, 6].

For the related problem on S4,

αP4u+ 6(1− e4u∫
S4 e

4udw
) = 0 on S4, (1.2)

various results have been achieved for axially symmetric solutions. Gui-Hu-Xie [16]
proved the existence of non-constant solutions for 1

5 < α < 1
2 using bifurcation

methods. They also demonstrated that for α ≥ 0.517, the above equation admits
only constant solutions with axially symmetric assumption. The precise bound α ≥
1
2 is obtained by Li-Wei-Ye [22] using refined estimates on Gegenbauer polynomials.

These settings can be extended to the Sn case for any n ≥ 3. Gui-Hu-Xie [17]
established the existence of non-constant solutions using bifurcation methods for

1
n+1 < α < 1

2 , while for α ≥ 0.6168 (n = 6) and α ≥ 0.8261 (n = 8), all critical
points are constants.

In this paper, we focus on axially symmetric solutions in the S6 case for α ∈ [ 1
2 , 1).

As we will see later, the problem is considerably difficult.
As in [17], (1.1) becomes:

− α[(1− x2)3u′](5) + 120− 128
e6u

γ
= 0, x ∈ (−1, 1), (1.3)

which is the critical point of the functional

Iα(u) = −α
2

∫ 1

−1

(1− x2)2[(1− x2)3u′](5)u+ 120

∫ 1

−1

(1− x2)2u

− 64

3
ln

(
15

16

∫ 1

−1

(1− x2)2e6u

)
(1.4)

restricted to the set

Lr = {u ∈ H2(S6) : u = u(x) and

∫ 1

−1

x(1− x2)2e6udx = 0}. (1.5)

The main result of this paper is:
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Theorem 1.1. If α ≥ 1
2 , then the only critical points of the functional Iα restricted

to Lr are constant functions. As a consequence, we have the following improved
Beckner’s inequality for axially symmetric functions on S6

inf
u∈Lr

Iα(u) = 0, α ≥ 1

2
.

In the work of Gui-Hu-Xie [17], the assumption α ≥ 1
2 is shown to be sharp,

and they proved Theorem 1.1 for α ≥ 0.6168 using a strategy similar to that in
[16, 18, 22]. Specifically, they expand G = (1 − x2)u′ in terms of Gegenbauer
polynomials and introduce a quantity D related to the Gegenbauer coefficients and
the estimate of bGc2 (see (3.2)). However, unlike the S4 case discussed in [16], they
are unable to obtain a bound on β and, consequently, on a = 6

7 (1 − αβ). As a
result, they cannot use D to generate a series of inequalities as in [16] and proceed
through the induction procedure.

In this paper, we provide a better estimate on bGc2 and work with a revised
quantity D. To render the induction procedure a ≤ d0

λn
feasible, we employ refined

point-wise estimates of Gegenbauer polynomials similar to those in S4 [22] to im-
prove the estimates of G’s Gegenbauer coefficients. More precisely, we refine the
decaying behavior of Gegenbauer polynomials near x = ±1. Additionally, we utilize
the cancellation properties of consecutive Gegenbauer polynomials to modify the
methods in the S4 case.

This paper is organized as follows. In Section 2, we gather some properties of
Gegenbauer polynomials, expand G in terms of Gegenbauer polynomials, and cite
some basic facts from [17]. In Section 3, we present improved estimates of bGc2
and Gegenbauer coefficients of G. In Section 4, we prove Theorem 1.1 using the
estimates above. Several Lemmas in Section 3 and Proposition 4.1 are proven in
the appendices.

2. Preliminaries and some basic estimates

In this section, we first introduce some properties of Gegenbauer polynomials
and some known facts about the equation.

The Gegenbauer polynomials of order ν and degree k ([24]) is given by

Cνk (x) =
(−1)k

2kk!

Γ(ν + 1
2 )Γ(k + 2ν)

Γ(2ν)Γ(ν + k + 1
2 )

(1− x2)−ν+ 1
2
dk

dxk
(1− x2)k+ν− 1

2 .

Cνk is an even function if k is even and it is odd if k is odd. The derivative of
Cνk satisfies

d

dx
Cνk (x) = 2νCν+1

k−1(x). (2.1)

Let F νk be the normalization of Cνk such that F νk (1) = 1, i.e.

F νk =
k!Γ(2ν)

Γ(k + 2ν)
Cνk , (2.2)

then F νk satisfies

(1− x2)(F νk )′′ − (2ν + 1)x(F νk )′ + k(k + 2ν)F νk = 0, (2.3)

and (2.1) becomes

(F νk )′ =
k(k + 2ν)

2ν + 1
F ν+1
k−1 . (2.4)
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It is also useful to introduce the following expressions using hypergeometric func-
tions

F ν2m+1(cos θ) = cos θ2F1(−m,m+ ν + 1; ν +
1

2
; sin2 θ), (2.5)

F ν+1
2m (cos θ) = 2F1(−m,m+ ν + 1; ν +

3

2
; sin2 θ), (2.6)

where we recall the hypergeometric function is defined for |x| < 1 by power series

2F1(a, b; c;x) =

∞∑
k=0

(a)k(b)k
(c)k

xk

k!
.

Here (a)k = Γ(a+k)
Γ(a) is the Pochhammer symbol.

On S6, the corresponding Gegenbauer polynomial is C
5
2

k . For notational sim-

plicity, in what follows we will write Fk for F
5
2

k , and there should be no danger of
confusion.

From (2.3) it turns out that Fk satisfies

(1− x2)F ′′k − 6xF ′k + λkFk = 0 (2.7)

and ∫ 1

−1

(1− x2)FkFl =
128

(2k + 5)(λk + 4)(λk + 6)
δkl, (2.8)

where λk = k(k + 5). As in [16, 18], we define the following key quantity

G(x) = (1− x2)u′, (2.9)

where u is a solution to (1.3). Then G satisfies the equation

α[(1− x2)2G](5) + 120− 128
e6u

γ
= 0, (2.10)

where

γ =

∫ 1

−1

(1− x2)2e6u. (2.11)

G can be expanded in terms of Gegenbauer polynomials

G = a0F0 + βx+ a2F2(x) +

∞∑
k=3

akFk(x). (2.12)

Denote

g = (1− x2)2 e
6u

γ
, a :=

∫ 1

−1

(1− x2)g. (2.13)

We recall some results from [17].

Lemma 2.1. For g = (1 − x2)2 e6u

γ and G = (1 − x2)u′ as above, we have a0 = 0

and ∫ 1

−1

(1− x2)F1G =
16

105
β, (2.14)

a =

∫ 1

−1

(1− x2)g =
6

7
(1− αβ), (2.15)∫ 1

−1

(1− x2)FkG = − 128

α(λk + 4)(λk + 6)

∫ 1

−1

(1− x2)gF ′k, k ≥ 2, (2.16)
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−1

|[(1− x2)2G]′′|2 =
256

35
(7− 1

α
)β. (2.17)

Lemma 2.2. For all x ∈ (−1, 1), we have

Gj := (−1)j [(1− x2)jG](2j+1) ≤ (2j + 1)!

α
, 0 ≤ j ≤ 2. (2.18)

3. Refined Estimates

In this section, we deduce two refined estimates on the semi-norm bGc2 and bk
defined later.

To get a rough estimate of β and a = 6
7 (1 − αβ), we need an estimate of the

following semi-norm bGc2. Let

bGc2 = −
∫ 1

−1

(1− x2)2[(1− x2)3G′](5)G. (3.1)

By integrating by parts (see Gui-Hu-Xie [17]), we have

bGc2 =− 15

∫ 1

−1

|[(1− x2)2G]′′|2 +
720

α

∫ 1

−1

(1− x2)2G2 + 30

∫ 1

−1

(1− x2)4G′(G′′)2

+ 160

∫ 1

−1

(1− x2)3(G′)3. (3.2)

With the help of Lemma 2.2, they applied G′ ≤ 1
α directly to the last two

integrals and obtained an estimate of bGc2

bGc2 ≤ (
30

α
− 15)

∫ 1

−1

|[(1− x2)2G]′′|2 − 320

α

∫ 1

−1

(1− x2)3(G′)2.

However, with this estimate, it is not enough to get a rough lower bound of
β, hence an upper bound of a. The main issue here is that the coefficient of∫ 1

−1
|[(1− x2)2G]′′|2 is too large. To solve this problem, we introduce the following

Proposition to drop the third integral in (3.2).

Proposition 3.1.

bGc2 ≤ −15

∫ 1

−1

|[(1− x2)2G]′′|2 +
720

α

∫ 1

−1

(1− x2)2G2 +
160

α

∫ 1

−1

(1− x2)3(G′)2,

(3.3)

Proof. Integrating (3.2) by parts, we get

bGc2 =− 15

∫ 1

−1

|[(1− x2)2G]′′|2 +
720

α

∫ 1

−1

(1− x2)2G2 +

∫ 1

−1

(1− x2)3G̃(G′)2,

where

G̃ = −15(1− x2)G′′′ + 120xG′′ + 160G′. (3.4)

Let

Ĝ = −15(1− x2)G′′′ + 120xG′′ + 150G′. (3.5)

Direct calculation yields that Ĝ satisfies

(1− x2)Ĝ′′ − 8xĜ′ − 12Ĝ = −15[(1− x2)2G](5) ≥ −1800

α
.

The last inequality follows from Lemma 2.2.
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Then we claim that

Ĝ ≤ 150

α
.

To prove the claim, denote M = max
−1≤x≤1

Ĝ(x).

If M is attained at some point x0 ∈ (−1, 1), then

Ĝ′(x0) = 0, Ĝ′′(x0) ≤ 0

and the desired esitmate follows.
If M is attained at 1 or −1, without loss of generality, suppose there exists a

sequence xk → 1 such that

M = lim
k→∞

Ĝ(xk).

Let r =
√

1− x2 and write

G(x) = Ḡ(r) and u(x) = ū(r) for r ∈ [0, 1), x ∈ (0, 1].

Then we can extend ū(r) to be a smooth even function on (− 1
2 ,

1
2 ).

Hence,

G(x) = Ḡ(r) = −r
√

1− r2ur

is a smooth function.
Direct calculation yields that

Ĝ(r) = −15(1− r2)2urrrr + 30(1− r2)(7r2 − 4)
urrr
r
− 15(48r4 − 50r2 + 5)

urr
r2

is an even function with respect to r. Moreover, since

lim
r→0

urrr(r)

r
= urrrr(0), lim

r→0

urr(r)

r2
=

1

2
urrrr(0),

Ĝ(r) is smooth on (− 1
2 ,

1
2 ). Now we can write

Ĝ(r) = c1 + c2r
2 + c3r

4 +O(r6),

xĜ′(x) = −2c2 +O(r2),

(1− x2)Ĝ′′(x) = (−2c2 + 8c3)r2 +O(r4)

near r = 0. Since Ĝ(r) attains its local maximum at r = 0, we have c2 ≤ 0 and
hence

lim
x→1

xĜ′(x) ≤ 0, lim
x→1

(1− x2)Ĝ′′(x) = 0.

Then we obtain M ≤ 150
α . Applying Lemma 2.2 again, we get

G̃ ≤ 160

α
.

and the Proposition follows. �

In the following part, we begin to estimate bk := ak

√∫ 1

−1
(1− x2)F 2

k , where ak

is the k-th coefficient in the expansion of G (see (2.12)). The estimates of bk play
a key role in the proofs of [16, 18]. In [16], they used (2.16) and the fact that

|F ′k(x)| ≤ |F ′k(1)| = λk
6

(3.6)
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to estimate bk as follows

b2k = a2
k

∫ 1

−1

(1− x2)F 2
k =

1∫ 1

−1
(1− x2)F 2

k

[
128

αλk

∫ 1

−1

(1− x2)gF ′k

]2

≤ (2k + 5)(λk + 4)(λk + 6)

128

[
128

αλk(λk + 2)

λk
6
a

]2

=
32(2k + 5)

9α2(λk + 4)(λk + 6)
a2.

However, as in the S4 case, this estimate is not strong enough to deduce the
induction

a =
6

7
(1− αβ) ≤ d0

λn
. (3.7)

Likewise, we need a refined estimate on bk, which follows from the following
refined estimate on Gegenbauer polynomials. For simplicity, in the rest of the
paper, we denote

F̃ ′k =
6

λk
F ′k =

720

λk(λk + 4)(λk + 6)
C

7
2

k−1 (3.8)

so that F̃ ′k(1) = 1. As in S4, we split the integral in the right hand side of bk into
two parts. To this end, we define

a+ :=

∫ 1

0

(1−x2)g, a− :=

∫ 0

−1

(1−x2)g, A+
k =

∫ 1

0

(1−x2)F̃ ′kg, A
−
k =

∫ 0

−1

(1−x2)F̃ ′kg,

(3.9)
Without loss of generality, we may assume a+ = λa with 1

2 ≤ λ ≤ 1.
Now we derive some estimates about g. Recalling the definition of g, we have∫ 1

−1

g = 1,

∫ 1

−1

xg = 0 and

∫ 1

−1

(1− x2)g = a.

From the second integral above, we have∫ 1

0

g −
∫ 1

0

(1− x)g =

∫ 1

0

xg = −
∫ 0

−1

xg =

∫ 0

−1

g −
∫ 0

−1

(1 + x)g. (3.10)

Since∣∣∣∣∫ 1

0

(1− x)g

∣∣∣∣ ≤ ∫ 1

0

(1− x2)g = a+,

∣∣∣∣∫ 0

−1

(1 + x)g

∣∣∣∣ ≤ ∫ 1

0

(1− x2)g = a−,

combining with (3.10), we have∣∣∣∣∫ 1

0

g −
∫ 0

−1

g

∣∣∣∣ ≤ a.
Hence

1− a
2
≤
∫ 1

0

g,

∫ 0

−1

g ≤ 1 + a

2
. (3.11)

Moreover, it follows directly from the definition of g that∫ 1

0

xg ≤ min{
∫ 1

0

g,

∫ 0

−1

g} ≤ 1

2
, (3.12)
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and ∫ 1

0

(1 + x)g = 1−
∫ 0

−1

(1 + x)g < 1. (3.13)

With the estimates on g above, the following Theorem gives a refined estimate
on A±k , hence on bk.

Theorem 3.2. Let d = 8, b = 0.33. Suppose a ≤ 16
λn

for some n ≥ 3. Then for all
k, we have

|A+
k | ≤ A

+
k :=

{
a+ − 1−b

d λka
2
+, if λk ≤ λn

4 ,

ba+ + (1− b) d
4λk

, if λn
4 < λk ≤ λn,

(3.14)

|A−k | ≤ A
−
k :=

{
a− − 1−b

d λka
2
−, if a− ≤ 4

λn
,

ba− + (1− b) d
4λk

χ{λ6=1}, if 4
λn

< a− ≤ 8
λn
.

(3.15)

In fact, for the toy cases in which k’s are small, better estimates can be obtained.
The proof is left to Appendix A.

Lemma 3.3. For Ak, 2 ≤ k ≤ 5,

|A2| ≤ a+ − a2
+, (3.16)

|A3| ≤ a− 9

4

a2

a+ 1
(2λ2 − 2λ+ 1), (3.17)

|A4| ≤ (a+ − a2
+)− 11

4
(a+ − a2

+)2 +
1

4
√

11
a−, (3.18)

|A5| ≤ a−
11(a2

+ + a2
−)

2(a+ 1)
+

143(a3
+ + a3

−)

10(a+ 1)2
. (3.19)

Before we prove Theorem 3.2 for general k’s, we first introduce some point-wise
estimates of Gegenbauer polynomials.

Lemma 3.4 (Corollary 5.3 of Nemes and Olde Daalhuis [25] ). Let 0 < ζ < π and
N ≥ 3 be an integer. Then

C
7
2

k−1(cos ζ) =
2

Γ( 7
2 )(2 sin ζ)

7
2

(
N−1∑
n=0

tn(3)
Γ(k + 6)

Γ(k + n+ 7
2 )

cos (δk−1,n)

sinn ζ
+RN (ζ, k − 1)

)
,

(3.20)

where δk,n = (k+n+ 7
2 )ζ − ( 7

2 −n)π2 , tn(µ) =
( 1
2−µ)n( 1

2 +µ)n
(−2)nn! , and (x)n = Γ(x+n)

Γ(x) is

the Pochhammer symbol. The remainder term R satisfies the estimate

|RN (ζ, k)| ≤ |tN (3)| Γ(k + 6)

Γ(k +N + 7
2 )

1

sinN ζ
·

{
| sec ζ| if 0 < ζ ≤ π

4 or 3π
4 ≤ ζ < π,

2 sin ζ if π
4 < ζ < 3π

4 .

(3.21)

Using the pointwise estimate (3.20), we can prove the following lower and upper

bounds for F̃ ′k. Recall that F̃ ′k is odd for k even and even for k odd. It suffices to

estimate F̃ ′k on [0, 1]. The proofs are left to Appendix B.

Lemma 3.5. Let m0 = 0.04, then for all k ≥ 8, we have

F̃ ′k ≥ −m0, 0 ≤ x ≤ 1.
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Lemma 3.6. Let d = 8 and b = 0.33. Then for all k ≥ 6,

F̃
′

k ≤


b, 0 ≤ x ≤ 1− d

λk
,

1− λk
d

(1− b)(1− x), 1− d

λk
≤ x ≤ 1.

With the help of the above two lemmas, we are able to derive Theoreo 3.2.

Proof of Theorem 3.2. By (4.4) below, we have β ≥ 113
88 , α < 0.578 and hence

a ≤ 0.221. It is straightforward to check the cases when 2 ≤ k ≤ 5 hold for
better estimate in the form of Lemma 3.6. In the following argument, we may
assume k ≥ 6. Define I = (0, 1 − d

λk
), II = (1 − d

λk
, 1), and aI =

∫
I
(1 − x2)g,

aII =
∫
II

(1− x2)g. Then by Lemma 3.6 and (3.13), we have∫ 1

0

(1− x2)F̃ ′kg =

∫
I

(1− x2)F̃ ′kg +

∫
II

(1− x2)F̃ ′kg

≤
∫
I

(1− x2)bg +

∫
II

(1− x2)(1− λk
d

(1− b)(1− x))g

= baI + aII −
λk
d

(1− b)
∫
II

(1− x2)(1− x)g

≤ baI + aII −
λk
d

(1− b)
(
∫
II

(1− x2)g)2∫
II

(1 + x)g

≤ baI + aII −
λk
d

(1− b)a2
II

= ba+ + (1− b)(aII −
λk
d
a2
II). (3.22)

If λk ≤ λn
4 , we have aII ≤ a+ ≤ a ≤ 16

λn
≤ d

2λk
. Hence,∫ 1

0

(1− x2)F̃ ′kg ≤ a+ + (1− b)(a+ −
λk
d
a2

+) = a+ −
λk
d

(1− b)a2
+.

For the case when λk >
λn
4 , we get directly∫ 1

0

(1− x2)F̃ ′kg ≤ ba+ + (1− b) d

4λk
.

On the other hand, Lemma 3.5 yields∫ 1

0

(1− x2)F̃ ′kg ≥ −0.04

∫ 1

0

(1− x2)g = −0.04a+.

Combining the above three estimates, we obtain the desired estimate on A+
k .

Similarly, on estimating A−k , just note that a− ≤ a
2 ≤

8
λn

. We can get an estimate

analogous to (3.22) and then (3.15) follows directly. We omit the details. �

Next we derive a uniform estimate of cancellation of consecutive Gegenbauer
polynomials. The estimate is based on the recursion formula and a useful inequality
of Gegenbauer polynomials. It is well known that for 0 < ν < 1, −1 ≤ x ≤ 1, one
has

(1− x2)
ν
2 |Cνn(x)| < 21−ν

Γ(ν)
nν−1, (3.23)
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where the constant 21−ν

Γ(ν) is optimal. (See Theorem 7.33.2 in [3]). We believe that

an analogous result of (3.23) exists for ν > 1, but now the following lemma, whose
proof is left to Appendix C, is enough for our use. We will use F νn instead of Cνn
for the sake of notational consistency.

Lemma 3.7. For ν ≥ 2 and −1 ≤ x ≤ 1, if n ≥ max{2ν + 2, 12}, then we have

|(1− x2)F νn (x)| ≤ C̃ν
n(n+ 2ν)

, (3.24)

where C̃ν is given in(C.6).

With the help of the above lemma, we can prove the following proposition.

Proposition 3.8. Let cνn = max
0≤x≤1

|F νn+1(x)− F νn (x)|. For ν ≥ 2, we have

cνn ≤
1

n

(
C̃ν

n+ 2ν + 1
+ C̃ν+1

)
if n ≥ max{2ν + 2, 12}.

Proof. Recall the recursion formula for Gegenbauer polynomials

(1− x2)2νCν+1
n = −(n+ 1)xCνn+1 + (n+ 2ν)Cνn,

which, in view of (2.2), can be rewritten as

(1− x2)(n+ 2ν + 1)F ν+1
n = −xF νn+1 + F νn .

Then by (3.24),

|F νn+1(x)− F νn (x)| = |(1− x)F νn+1(x)− (1− x2)(n+ 2ν + 1)F ν+1
n (x)|

≤ |(1− x2)F νn+1(x)|+ (n+ 2ν + 1)|(1− x2)F ν+1
n (x)|

≤ C̃ν
(n+ 1)(n+ 2ν + 1)

+
(n+ 2ν + 1)C̃ν+1

n(n+ 2ν + 2)

≤ 1

n

(
C̃ν

n+ 2ν + 1
+ C̃ν+1

)
.

�

Recall that F̃ ′n = F
7
2
n−1, so we have

Corollary 3.9. Let cn = max
0≤x≤1

|F̃ ′n+1 − F̃ ′n|, then cn ≤ 0.12 if 6 ≤ n ≤ 29 and

cn < 0.026 if n ≥ 30.

Proof. Direct computation by Matlab shows that the first assertion holds, and cn <
0.026 for 30 ≤ n ≤ 428 (the computational results are recorded in a supplemental

data file). For n > 428, by (C.6), we have C̃ 7
2
≤ 9.19 and C̃ 9

2
≤ 11.02, so we can

also deduce that

cn = c
7
2
n−1 ≤

11.1

n− 1
< 0.026.

�
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4. proof of main theorem for S6

In this section, we will prove Theorem 1.1 for S6 by induction argument, with
the help of refined estimates on bk’s.

We claim that β = 0, which yields that (1−x2)2G is a linear function by (2.17).
Since G is bounded on (−1, 1), we get G ≡ 0 and we are done.

So it suffices to show that β = 0. We will argue by contradiction. If β 6= 0, then

0 < β < 1
α since a =

∫ 1

−1
(1− x2)g = 6

7 (1− αβ) > 0. It then suffices to show a = 0.
We will achieve this by proving

a =
6

7
(1− αβ) ≤ d0

λn
, ∀n ≥ 5 with n ≡ 1 (mod 4), (4.1)

where d0 = 16.
As in [18] and [22], we will prove (4.1) by induction.
To begin with, we introduce the quantity

D =

∞∑
k=3

[
λk(λk + 4)(λk + 6)− (14− 74

9α
)(λk + 4)(λk + 6)− 160

α
λk −

720

α

]
b2k.

(4.2)
Then by (2.17) and (3.3), we get

D =bGc2 − (14− 74

9α
)

∫ 1

−1

|[(1− x2)2G]′′|2 − 160

α

∫ 1

−1

(1− x2)3(G′)2

− 720

α

∫ 1

−1

(1− x2)2G2 +
16

105
(
2080

3α
+ 960)β2

≤(
74

9α
− 29)

∫ 1

−1

|[(1− x2)2G]′′|2 +
16

105
(
2080

3α
+ 960)β2

=
256

35
(

74

9α
− 29)(7− 1

α
)β +

512

7
(

13

9α
+ 2)β2. (4.3)

Since D ≥ 0, α ≥ 1
2 and 0 < β < 1

α , we obtain

β ≥ 9

440
(29− 74

9α
)(7− 1

α
) ≥ 113

88
, (4.4)

and

256

35
(

74

9α
− 29)(7− 1

α
) +

512

7
(

13

9α
+ 2)

1

α
≥ 0, (4.5)

which implies that

α < 0.578. (4.6)



12 CHANGFENG GUI, TUOXIN LI, JUNCHENG WEI, AND ZIKAI YE

On the other hand, fix any integer n ≥ 3, we have

D =

∞∑
k=3

[
λk(λk + 4)(λk + 6)− (14− 74

9α
)(λk + 4)(λk + 6)− 160

α
λk −

720

α

]
b2k

≥
∞∑

k=n+1

[
λn+1 − 14 +

74

9α
− 160λn+1 + 720

(λn+1 + 4)(λn+1 + 6)α

]
(λk + 4)(λk + 6)b2k

+

n∑
k=3

[
λk − 14 +

74

9α
− 160λk + 720

(λk + 4)(λk + 6)α

]
(λk + 4)(λk + 6)b2k

≥(λn+1 − 14 +
275

63α
)

∞∑
k=n+1

(λk + 4)(λk + 6)b2k

+

n∑
k=3

(λk − 14 +
176

63
α)(λk + 4)(λk + 6)b2k

=

n∑
k=3

(λk − λn+1 −
11

7α
)(λk + 4)(λk + 6)b2k

+ (λn+1 − 14 +
275

63α
)

[
256

35
(7− 1

α
)β − 128

7
β2 − 360b22

]
. (4.7)

Combining (4.3) and (4.7), we get

0 ≤256

35
(7− 1

α
)(

27

7α
− 15− λn+1)β +

128

7
(λn+1 − 6 +

71

7α
)β2

+
176

63α
(λ2 + 4)(λ2 + 6)b22 +

n∑
k=2

(λn+1 − λk +
11

7α
)(λk + 4)(λk + 6)b2k. (4.8)

Then we can start the induction procedure to prove a ≤ 16
λn

, for all n ≥ 5 with

n ≡ 1 (mod 4). Note that from (4.4) and (4.6), we already have a ≤ 0.221 ≤ 16
λ5

.

By induction, now we assume a ≤ 16
λn

for some n ≥ 5 with n ≡ 1 (mod 4). Then

we will show that a ≤ 16
λn+4

. We argue by contradiction and suppose a > 16
λn+4

on

the contrary.

Let Bk = 9α2

32 (λn+1 − λk + 11
7α )(2k + 5), then for every even k, we have

9α2

32

[
(λn+1 − λk +

11

7α
)(λk + 4)(λk + 6)b2k + (λn+1 − λk+1 +

11

7α
)(λk+1 + 4)(λk+1 + 6)b2k+1

]
=Bk(

∫ 1

−1

(1− x2)F̃ ′kg)2 +Bk+1(

∫ 1

−1

(1− x2)F̃ ′k+1g)2

=Bk

[
(

∫ 1

0

(1− x2)F̃ ′kg)2 + (

∫ 0

−1

(1− x2)F̃ ′kg)2

]
+Bk+1

[
(

∫ 1

0

(1− x2)F̃ ′k+1g)2 + (

∫ 0

−1

(1− x2)F̃ ′k+1g)2

]
+2Bk

∫ 1

0

(1− x2)F̃ ′kg

∫ 0

−1

(1− x2)(F̃ ′k + F̃ ′k+1)g + 2Bk+1

∫ 1

0

(1− x2)(F̃ ′k+1 − F̃ ′k)g

∫ 0

−1

(1− x2)F̃ ′k+1g

+2(Bk+1 −Bk)

∫ 1

0

(1− x2)F̃ ′kg

∫ 0

−1

(1− x2)F̃ ′k+1g

:=Rk,1 +Rk,2 +Rk,3.
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Recall the definition of A±k from Theorem 3.2. By Theorem 3.2, we have

Rk,1 = Bk

[
(

∫ 1

0

(1− x2)F̃ ′kg)2 + (

∫ 0

−1

(1− x2)F̃ ′kg)2

]
+Bk+1

[
(

∫ 1

0

(1− x2)F̃ ′k+1g)2 + (

∫ 0

−1

(1− x2)F̃ ′k+1g)2

]
≤ Bk

(
|A+

k |
2 + |A−k |

2
)

+Bk+1

(
|A+

k+1|
2 + |A−k+1|

2
)
. (4.9)

Let ck be defined as in Corollary 3.9, then we have

|
∫ 0

−1

(1− x2)(F̃ ′k + F̃ ′k+1)g| ≤ cka− = ck(1− λ)a,

|
∫ 1

0

(1− x2)(F̃ ′k+1 − F̃ ′k)g| ≤ cka+ = ckλa.

So

Rk,2 = 2Bk

∫ 1

0

(1− x2)F̃ ′kg

∫ 0

−1

(1− x2)(F̃ ′k + F̃ ′k+1)g

+ 2Bk+1

∫ 1

0

(1− x2)(F̃ ′k+1 − F̃ ′k)g

∫ 0

−1

(1− x2)F̃ ′k+1g

≤ 2(Bk +Bk+1)ckλ(1− λ)a2. (4.10)

Finally by Lemma 3.5, we have

Rk,3 ≤

{
2(Bk+1 −Bk)λ(1− λ)a2, if Bk ≤ Bk+1,

2(Bk −Bk+1)m0(1− λ)a2, if Bk+1 < Bk.
(4.11)

Now from (4.9), (4.10) and (4.11), we can get the estimate of each term in the
summation in (4.7) for each even k.

9α2

32
[(λn+1 − λk +

11

7α
)(λk + 4)(λk + 6)b2k + (λn+1 − λk+1 +

11

7α
)(λk+1 + 4)(λk+1 + 6)b2k+1]

≤Bk
(
|A+

k |
2 + |A−k |

2
)

+Bk+1

(
|A+

k+1|
2 + |A−k+1|

2
)

+ 2(Bk +Bk+1)ckλ(1− λ)a2

+

{
2(Bk+1 −Bk)λ(1− λ)a2, if Bk ≤ Bk+1,

2(Bk −Bk+1)m0(1− λ)a2, if Bk+1 < Bk.
(4.12)

Remark 4.1. Note that this estimate is better than the one in S4 case. Cancellation
of consecutive Gegenbauer polynomials is used in the proof.

The right hand side above can be viewed as a function fk,a(λ) of λ = a+
a . The

following Proposition yields that the worst case is λ = 1. In particular, in this case,
we can drop the small terms Rk,2 and Rk,3. The proof is left to Appendix D.

Proposition 4.1. Suppose a satisfies d0
λn+4

≤ a ≤ d0
λn

for some n ≥ 5 with n ≡
1 (mod 4) where d0 = 16. Let fk,a(λ) be defined as above. Then for any k even, we
have for n ≥ 41,
(1) If λk ≤ 1

4λn, then

fk,a(λ) ≤ fk,a(1) = Bk(a− 1− b
d

λka
2)2 +Bk+1(a− 1− b

d
λk+1a

2)2. (4.13)
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(2) If 1
4λn < λk ≤ λn, then

fk,a(λ) ≤ fk,a(1) = Bk(ba+ (1− b) d

4λk
)2 +Bk+1(ba+ (1− b) d

4λk+1
)2. (4.14)

For 5 ≤ n ≤ 65, we have
(1) If λk ≤ 1

4λn, then

fk,a(λ) ≤ Bk(a−1− b
d

λka
2)2+Bk+1(a−1− b

d
λk+1a

2)2+
1

2
(Bk+Bk+1)cka

2. (4.15)

(2) If 1
4λn < λk ≤ λn, then

fk,a(λ) ≤ Bk(ba+ (1− b) d

4λk
)2 +Bk+1(ba+ (1− b) d

4λk+1
)2 +

1

2
(Bk +Bk+1)cka

2.

(4.16)

In the following, we will assume n > 10000. The case when n < 10000 is checked
by Matlab and is left to Appendix E .

With the help of Proposition 4.1 and by plugging it into (4.8), we obtain

0 ≤256

35
(7− 1

α
)(

27

7α
− 15− λn+1)

1

α
(1− 7

6
a) +

128

7
(λn+1 − 6 +

71

7α
)

1

α2
(1− 7

6
a)2

+
176

63
α(λ2 + 4)(λ2 + 6)b22

+
32

9α2

n−3
2∑

k=2

(λn+1 − λk +
11

7α
)(2k + 5)(1− 1− b

d
λk

16

λn+4
)2a2

+
32

9α2

n∑
k=n−1

2

(λn+1 − λk +
11

7α
)(2k + 5)(ba+ (1− b) d

4λk
)2.

≤− 512

7
(λn+1 +

51

7
)(1− 7

6
a) +

512

7
(λn+1 +

100

7
)(1− 7

6
a)2 +

22528

63α
a2

+
128

9

n−3
2∑

k=2

(λn+1 − λk +
22

7
)(2k + 5)(1− 1− b

d
λk

16

λn+4
)2a2

+
128

9

n∑
k=n−1

2

(λn+1 − λk +
22

7
)(2k + 5)(ba+ (1− b) d

4λk
)2.

=:gn,1(a) + gn,2(a) + gn,3(a) = gn(a) (4.17)

where gn,1, gn,2 and gn,3 are defined at the last equality.
For gn,2(a), we can decompose it into three summations

gn,2(a) =
128

9

[
S1 −

34(1− b)
dλn+4

S2 +
289(1− b)2

d2λ2
n+4

S3

]
a2, (4.18)

where

S1 =

n−3
2∑

k=2

(λn+1 − λk +
11

7α
)(2k + 5) =

7

32
n4 +

23

8
n3 − 115

112
n2 − 4265

56
n− 20075

224
,

(4.19)
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S2 =

n−3
2∑

k=2

(λn+1 − λk +
11

7α
)(2k + 5)λk

=
5

192
n6 +

1

2
n5 +

3611

1344
n4 − 9

28
n3 − 100207

5376
n2 − 1393237

896
n− 1040985

1024
,

(4.20)

S3 =

n−3
2∑

k=2

(λn+1 − λk +
11

7α
)(2k + 5)λ2

k

=
13

3072
n8 +

41

384
n7 +

1525

1792
n6 +

3011

2688
n5 − 48697

3584
n4 − 14917

384
n3

+
1000525

5376
n2 − 1393237

896
n− 1040985

1024
(4.21)

For gn,3(a), direct calculation yields that

n∑
k=n−1

2

(λn+1 − λk +
22

7
)(2k + 5)(ba+ (1− b) d

4λk
)2

=b2S4a
2 + 2b(1− b)(λn+1 +

22

7
)
d

4
S5a− 2b(1− b)d

4
S6a+ (1− b)2 d

2

16
(λn+1 +

22

7
)S7 − (1− b)2 d

2

16
S5,

(4.22)

where

S4 =

n∑
k=n−1

2

(λn+1 − λk +
22

7
)(2k + 5) =

9

32
n4 +

33

8
n3 +

2763

112
n2 +

3753

56
n+

15147

224
,

(4.23)

S5 =

n∑
k=n−1

2

2k + 5

λk
=

n∑
k=n−1

2

(
1

k
+

1

k + 5
) ≥ 1.3863, (4.24)

S6 =

n∑
k=n−1

2

(2k + 5) =
3

4
n2 +

9

2
n+

27

4
, (4.25)

S7 =

n∑
k=n−1

2

2k + 5

λ2
k

=
1

5

n∑
k=n−1

2

(
1

k2
− 1

(k + 5)2
)

=
1

5

(
3

(n+ 1)2
− 1

(n+ 2)2
+

3

(n+ 3)2
− 1

(n+ 4)2
+

3

(n+ 5)2
+

4

(n+ 7)2
+

4

(n− 1)2

)
≤ 3

n2
. (4.26)

To get a contradiction, we need to show that gn(a) is negative for 16
λn+4

< a < 16
λn

.

Direct computation gives that for n > 10000 with n ≡ 1 (mod 4), we have the
following three estimates
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gn,1(a) =− 512

7
(λn+1 +

51

7
)(1− 7

6
a) +

512

7
(λn+1 +

100

7
)(1− 7

6
a)2 +

22528

63α
a2

=
512

7

[
7− 7

6
aλn+1 −

149

6
a+

49

36
λn+1a

2 +
175

9
a2

]
+

22528

63α
a2

≤512

7

(
7− 56

3

λn+1

λn+4
− 1192

3λn+4
+

3136

9λn
+

44800

9λn2

)
+

91543

λ2
n

≤ −853.33,

gn,2(a) =
128

9

[
S1 −

67

25λn+4
S2 +

4489

2500λ2
n+4

S3

]
a2

≤128

9

[(
56n4

λ2
n

+
736n3

λ2
n

+
1840n2

λ2
n+4

− 136480n

7λ2
n+4

− 160600

7λ2
n+4

)
+

(
− 268n6

15λ3
n+4

− 343n5

λ3
n+4

− 1843n4

λ3
n+4

+
221n3

λ3
n

+
51154n2

λ3
n

+
231234n

λ3
n

+
40683

λ3
n

)
+

(
1.94524n8

λ4
n

+
49.0797n7

λ4
n

+
391.18n6

λ4
n

+
515n5

λ4
n+4

− 6245n4

λ4
n+4

− 17856n3

λ4
n+4

− 85550n2

λ4
n

− 714770n

λ4
n

− 467298

λ4
n+4

)]
≤571.123,

gn,3(a) =
128

9

[
0.1089S4a

2 +
2211

2500
(λn+1 +

22

7
)S5a−

2211

2500
S6a+

4489

2500
(λn+1 +

22

7
)S7 −

4489

2500
S5

]
≤128

9

[(
7.8408n4

λ2
n

+
115n3

λ2
n

+
688n2

λ2
n

+
1869n

λ2
n

+
1886

λ2
n

)
+ 19.6166

λn+1 + 22
7

λn
− 10.6128n2

λn+4

+
13467

2500

λn+1 + 22
7

n2
− 2.48923

]
≤280.95.

Combining three estimates above, we found

0 ≤ gn(a) ≤ −853.33 + 571.123 + 280.95 < −1.257 < 0,

for all n > 10000 with n ≡ 1 (mod 4) and 16
λn+4

< a ≤ 16
λn

, which is a contradiction.

Consequently, we finish the proof of Theorem 1.1.

Appendix A. proof of Lemma 3.3

In this appendix, we prove Lemma 3.3.

Proof of Lemma 3.3. Define A+
m,n =

∫ 1

0
xm(1− x2)ng, A−m,n =

∫ 0

−1
|x|m(1− x2)ng,

and Am,n = A+
m,n +A−m,n. We begin with the estimate of A2. By definition,

|A2| = |
∫ 1

−1

x(1− x2)g| ≤ max
{
A+

1,1, A
−
1,1

}
.
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By Cauchy-Schwartz inequality and (3.13),

a+ −A+
1,1 =

∫ 1

0

(1− x2)(1− x)g ≥
(
∫ 1

0
(1− x2)g)2∫ 1

0
(1 + x)g

≥ a2
+,

so

A+
1,1 ≤ a+ − a2

+.

Similarly,

A−1,1 ≤ a− − a2
−.

Since a < 1 and we have assumed λ ≥ 1
2 , we conclude that

|A2| ≤ a+ − a2
+.

The estimate of |A4| is similar to that of |A2|. By definition,

A4 =

∫ 1

−1

(1− x2)gF̃ ′4 =
1

8

∫ 1

−1

(1− x2)(11x2 − 3)xg = A1,1 −
11

8
A1,2.

By Cauchy-Schwartz inequality and (3.12),

A1,2 ≥
(A+

1,1)2∫ 1

0
xg
≥ 2(A+

1,1)2,

so

A+
4 ≤ A

+
1,1 −

11

4
(A+

1,1)2

On the other hand,

A+
4 ≥

1

8
min

0≤x≤1
{(11x2 − 3)x}

∫ 1

0

(1− x2)g = − 1

4
√

11
a+.

In the same way,

−(A−1,1 −
11

4
(A−1,1)2) ≤ A−4 ≤

1

4
√

11
a−.

Since λ ≥ 1
2 , we conclude that

|A4| ≤ A+
1,1 −

11

4
(A+

1,1)2 +
1

4
√

11
a− ≤ (a+ − a2

+)− 11

4
(a+ − a2

+)2 +
1

4
√

11
a−.

The estimates of A3 and A5 are slightly different. For A3, we write

A3 =

∫ 1

−1

(1− x2)gF̃ ′3 =
1

8

∫ 1

−1

(1− x2)(9x2 − 1)g =
1

8
(9A2,1 − a).

By Cauchy-Schwartz inequality and (3.11),

(A+
2,1)2 ≤

∫ 1

0

(1− x2)2g

∫ 1

0

x4g

≤ (a+ −A+
2,1)(

a+ 1

2
− a+ −A+

2,1),

so

A+
2,1 ≤ a+ −

2a2
+

a+ 1
. (A.1)

In the same way,

A−2,1 ≤ a− −
2a2
−

a+ 1
.
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Hence,

A2,1 ≤ a−
2a2

+ + 2a2
−

a+ 1
= a− 2a2

a+ 1
(2λ2 − 2λ+ 1).

Therefore

A3 ≤ a−
9

4

a2

a+ 1
(2λ2 − 2λ+ 1),

which, together with the definition of A3, implies

|A3| ≤ max

{
a− 9

4

a2

a+ 1
(2λ2 − 2λ+ 1),

a

8

}
= a− 9

4

a2

a+ 1
(2λ2 − 2λ+ 1).

Finally, for A5, we have

A5 =
1

80

∫ 1

−1

(1− x2)(3− 66x2 + 143x4)g =
1

80
(80a− 143A2,2 − 77A2,0).

By Cauchy-Schwartz inequality and (3.11),

A+
2,2 ≥

(A+
2,1)2∫ 1

0
x2g

≥
(A+

2,1)2

a+1
2 − a+

,

so by (A.1),

A+
5 ≤

1

80

(
80a+ −

143(A+
2,1)2

a+1
2 − a+

− 77(a+ −A+
2,1)
)

≤ 1

80

(
3a+ − 11(a+ −

2a2
+

a+ 1
)(

26a+

a+ 1
− 7)

)
= a+ −

11a2
+

2(a+ 1)
+

143a3
+

10(a+ 1)2
.

Therefore

A5 ≤ a−
11(a2

+ + a2
−)

2(a+ 1)
+

143(a3
+ + a3

−)

10(a+ 1)2
.

On the other hand,

A5 ≥
1

80
min
−1≤x≤1

{3− 66x2 + 143x4}
∫ 1

−1

(1− x2)g = − 3

52
a.

From (4.4) and the estimates of |A2| and |A3|, we can deduce that a < 0.125, so
now it is not hard to see that

|A5| ≤ a−
11(a2

+ + a2
−)

2(a+ 1)
+

143(a3
+ + a3

−)

10(a+ 1)2
.

Thus the proof of Lemma 3.3 is completed. �

Appendix B. proof of Lemma 3.5 and 3.6

In this appendix we prove Lemma 3.5 and Lemma 3.6. The proofs are technical
and make use of many quantitative properties of Gegenbauer polynomials.

Before we prove Lemma 3.5, we first state some general lemma about Gegenbauer
polynomials. Denote by xnk(ν), k = 1, · · · , n, the zeros of Cνn(x) enumerated in
decreasing order, that is, 1 > xn1(ν) > · · · > xnn(ν) > −1.
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Lemma B.1 (Corollary 2.3 in Area et al.[1]). For any n ≥ 2 and for every ν ≥ 1,
the inequality

xn1(ν) ≤

√
(n− 1)(n+ 2ν − 2)

(n+ ν − 2)(n+ ν − 1)
cos(

π

n+ 1
) (B.1)

holds.

The next lemma is well-known and it is valid for many other orthogonal poly-
nomials.

Lemma B.2 (Olver et al. [2]). Denote by ynk(ν), k = 0, 1, · · · , n− 1, n, the local
maxima of |Cνn(x)| enumerated in decreasing order, then yn0(ν) = 1, ynn(ν) = −1,
and we have

(a) ynk(ν) = xn−1,k(ν + 1), k = 1, · · · , n− 1.
(b) |Cνn(yn0(ν))| > |Cνn(yn1(ν))| > · · · > |Cνn(yn,[n+1

2 ](ν))|.
(c) (Cνn)(k)(x) > 0 on (xn1(ν), 1) for all k = 0, 1, · · · , n.

Proof of Lemma 3.5. Direct computation by Matlab shows that the lemma holds
for 8 ≤ k ≤ 200, so in what follows we may assume k > 200. . By Lemma B.1 and

(2.1), we know that the minimum of F̃ ′k on [0, 1] is achieved at the point

xk−2,1(
9

2
) ≤

√
(k − 3)(k + 5)

(k + 3
2 )(k + 1

2 )
cos(

π

k − 1
) < 1− 12.5

k2
. (B.2)

Taking N = 4 in Lemma 3.4, we obtain

F̃ ′k(cos ζ) = F
7
2

k−1(cos ζ) = 48

√
2

π

(
3∑

m=0

tm(3)
Γ(k)

Γ(k +m+ 7
2 )

cos (δk−1,m)

sinm+ 7
2 ζ

+ R̃

)
,

(B.3)

where R̃ satisfies

|R̃| ≤ t4(3)
Γ(k)

Γ(k + 15
2 )

(sin ζ)−
15
2 ·

{
sec ζ if 0 < ζ ≤ π

4 ,

2 sin ζ if π
4 < ζ < π

2 ,
(B.4)

the value of tm(3) for 0 ≤ m ≤ 3 are listed below:

t0(3) = 1, t1(3) =
35

8
, t2(3) =

945

128
, t3(3) =

3465

1024
, t4(3) = −45045

32768
.

Let sin ζ = l
k . Then by (B.2) we can assume l ≥ 5. From (B.4) we know that if

l ≤ k√
2
, then

|R̃| ≤ |t4(3)| k
15
2 Γ(k)

l
15
2 Γ(k + 15

2 )

1√
1− l2

k2

<
1.5

l
15
2

√
1− l2

k2

; (B.5)

while if l > k√
2
, then

|R̃| ≤ 2|t4(3)| k
15
2 Γ(k)

l
15
2 Γ(k + 9

2 )
<

3(
√

2)
15
2

k
15
2

. (B.6)

To get the desired lower bound, we shall use the following simple estimates.

cos(x+ δ) = cosx− δ sin(x+ hδ) ≥ cosx− |δ|. (B.7)
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ζ − sin ζ ≤ (
π

2
− 1) sin3 ζ ≤ sin3 ζ, 0 < ζ <

π

2
. (B.8)

With the help of (B.7) and (B.8), we have

cos (δk−1,m) = cos

(
(k +

5

2
+m)ζ − (

7

2
−m)

π

2

)
= cos

(
(k +

5

2
+m)

l

k
+ (k +

5

2
+m)(ζ − sin ζ)− (

7

2
−m)

π

2

)
≥ cos

(
l − (

7

2
−m)

π

2

)
−
(

(k +
5

2
+m)(ζ − sin ζ) + (

5

2
+m)

l

k

)
≥ cos

(
l − (

7

2
−m)

π

2

)
− (3 +m)

l

k
. (B.9)

Therefore we have
3∑

m=0

tm(3)
Γ(k)

Γ(k +m+ 7
2 )

cos (δk−1,m)

sinm+ 7
2 ζ

=

3∑
m=0

tm(3)
km+ 7

2 Γ(k)

Γ(k +m+ 7
2 )

cos (δk−1,m)

lm+ 7
2

≥ k
13
2 Γ(k)

Γ(k + 13
2 )

3∑
m=0

tm(3)
(k + 7

2 +m)3−m

k3−mlm+ 7
2

(
cos

(
l − (

7

2
−m)

π

2

)
− (3 +m)

l

k

)

≥min

{
(1− 16

k
)

3∑
m=0

tm(3)
(k + 7

2 +m)3−m

k3−mlm+ 7
2

(
cos

(
l − (

7

2
−m)

π

2

)
− (3 +m)

l

k

)
, 0

}
.

Write

(1− 16

k
)

3∑
m=0

tm(3)
(k + 7

2 +m)3−m

k3−mlm+ 7
2

(
cos

(
l − (

7

2
−m)

π

2

)
− (3 +m)

l

k

)
=

4∑
i=0

Ei,

where

E0 =
1024l3 cos

(
l + π

4

)
− 1920l2 cos

(
l − π

4

)
− 840l cos

(
l + π

4

)
− 315 cos

(
l − π

4

)
1024l13/2

,

E1 =
−3
(
512l3 + 1280l2 − 2304l2 cos

(
l + π

4

)
+ 700l − 1920l cos

(
l − π

4

)
+ 770 cos

(
l + π

4

)
− 315

)
512kl11/2

,

E2 =
−10368l2 + 11520l + 15296l cos

(
l + π

4

)
+ 64920 cos

(
l − π

4

)
− 5775

256k2l9/2
,

E3 =
−3
(
478l2 − 2705l − 231l cos

(
l + π

4

)
− 1980 cos

(
l − π

4

))
8k3l9/2

E4 =
297(−7l + 80)

8k4l7/2
.

If 5 ≤ l ≤ 6.5, then E0 ≥ −0.0002, E1 ≥ −0.00025, E2 ≥ −1.5 × 10−5, E3 ≥
−10−7, E4 ≥ 0. By (B.5), |R̃| ≤ 8× 10−6. Therefore from (B.3) we have

F̃ ′k(cos ζ) ≥ −48

√
2

π
× 0.005 ≥ −0.04.
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If l > 6.5, then E0 ≥ −0.00077, E1 ≥ −0.0002, E2 ≥ −10−5, E3 ≥ −10−7,

E4 ≥ −10−9. Either (B.5) or (B.6) implies |R̃| ≤ 3× 10−7, so we also have

F̃ ′k(cos ζ) ≥ −48

√
2

π
× 0.01 ≥ −0.04.

Thus the lemma is proved. �

Proof of Lemma 3.6. We first prove the following estimate at one point:

0.3 ≤ F̃ ′k(1− 8

λk
) ≤ 0.33, k ≥ 6. (B.10)

Direct computation by Matlab shows that (B.10) holds for 6 ≤ k ≤ 100, so in
what follows we may assume k > 100. The main tool we use is the hypergeometric
expansion (2.5) and (2.6). We will prove (B.10) only for even k, and the case for
odd k is similar.

Let k = 2m+ 2, then F̃ ′k = F
7
2

k−1, so by (2.5),

F̃ ′k(1− 8

λk
) = (1− 8

λk
)2F1(−m,m+

9

2
; 4; t),

where t = 1− (1− 8
λk

)2 = 8
λk

(2− 8
λk

). Now we write

2F1(−m,m+
9

2
; 4; t) =

m∑
i=0

(−1)iγit
i,

where γi =
(m−i+1)i(m+ 7

2 )i
i!(4)i

. It is easy to see that

min
1≤i<m

{ γi
γi+1
} =

γ1

γ2
=

10

(m− 1)(m+ 9
2 )

=
40

(k − 3)(k + 7)
> t.

Therefore

j1 is odd∑
i=0

(−1)iγit
i ≤ 2F1(−m,m+

9

2
; 4; t) ≤

j2 is even∑
i=0

(−1)iγit
i

Take j1 = 5, j2 = 6, then direct computation shows that (B.10) holds since m ≥ 50.

Now in view of Lemma 3.5, we see that F̃ ′k(1 − 8
λk

) > − min
0≤x≤1

F̃ ′k(x). Then by

Lemma B.2 (b), F̃ ′k(1− 8
λk

) ≥ F̃ ′k(x) for all 0 ≤ x ≤ 1− 8
λk

. Moreover, the convexity

of F̃ ′k(x) on [1− 8
λk
, 1] is guaranteed by Lemma B.2 (c). This completes the proof

of Lemma 3.6. �

Appendix C. proof of Lemma 3.7

We first prove a simple lemma, which enables us to focus on the region near
x = 1. By letting x = cos θ, we introduce the function v(θ) = (sin θ)2F νn (cos θ) in
this appendix.

Lemma C.1. For n ≥ 2 and ν > 0, let v(θ) be defined as above. If ν ≥ 2, then
the successive relative maxima of |v(θ)| form an increasing sequence as θ decreases
from π

2 to 0.
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Proof of Lemma C.1. By (2.3) it is straightforward to check that v satisfies the
equation

v′′(θ) + p(θ)v′(θ) + q(θ) = 0,

where p(θ) = (2ν−4) cos θ, and q(θ) = (n2 +2νn+4)− 2
sin2 θ

+(4ν−8)(sin θ− 1
sin θ ).

Since ν > 2, we know that p ≥ 0, q is increasing and q has a unique zero θ̃ in (0, π2 )
.

Since v(0) = 0, v′ > 0 near 0, and q(θ) < 0 in (0, θ̃), by the maximum principle,

it’s easy to see that |v(θ)| has no local maxima in (0, θ̃]. Now we consider the case

when θ ∈ (θ̃, π2 ]. Let q̃ = q−1, then q̃ > 0 is strictly decreasing in (θ̃, π2 ]. Introducing

f(θ) = v2(θ) + q̃(θ)(v′)2(θ),

we have
f ′ = q̃′(v′)2 + 2v′(q̃v′′ + v) = (q̃′ − 2pq̃)u′2 < 0.

But f(θ) = v2(θ) if v′(θ) = 0, so the lemma is proved. �

Proof of Lemma 3.7. In view of Lemma C.1, we need to find a bound for θ∗, the
smallest zero of v′(θ) in (0, π2 ). By definition of v and (2.4),

v′(θ) = sin θ
(
2 cos θF νn (cos θ)− sin2 θ(F νn )′(cos θ)

)
= sin θ

(
2 cos θF νn (cos θ)− n(n+ 2ν)

2ν + 1
sin2 θF ν+1

n−1 (cos θ)

)
.

We claim that when θ = θ = arcsin
√

4ν+2
n(n+2ν) ,

v′(θ) = 2 sin θ
(
cos θF νn (cos θ)− F ν+1

n−1 (cos θ)
)
< 0. (C.1)

We will use the hypergeometric function expansion for Gegenbauer polynomials
(2.5) and (2.6) to prove (C.1). We only give the proof for odd n, and the proof for
even n is similar.

Write n = 2m+ 1. By Lemma B.1, it is not difficult to show cos θ > x2m+1,1(ν),

hence F ν2m+1(cos θ) > 0, so we have

F ν+1
2m (cos θ)− cos θF ν2m+1(cos θ) ≥ 2F1(−m,m+ ν + 1; ν +

3

2
; sin2 θ)− 2F1(−m,m+ ν + 1; ν +

1

2
; sin2 θ)

=

m∑
k=1

(−1)k+1αk(sin2 θ)k,

where αk = (m−k+1)k(m+ν+1)k
(k−1)!(ν+ 1

2 )k+1
. We compute

αk
αk+1

=
k(k + ν + 3

2 )

(m− k)(m+ ν + k + 1)
.

It is then easy to see that

min
1≤k<m

{ αk
αk+1

} =
α1

α2
=

ν + 5
2

(m− 1)(m+ ν + 2)
.

Since sin2 θ = 4ν+2
n(n+2ν) = 4ν+2

(2m+1)(2m+2ν+1) <
ν+ 5

2

(m−1)(m+ν+2) , no matter m is even or

odd, we have

F ν+1
2m (cos θ)− cos θF ν2m+1(cos θ) ≥

∑
1≤k≤m
k is odd

(sin2 θ)k(αk − αk+1 sin2 θ) > 0,
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where αm+1 = 0 is understood, so (C.1) holds. Consequently, since v′(θ) > 0 when
θ is small, from (C.1) we know that θ∗ < θ.

Now we look for a lower bound of θ∗. Let θ = arcsin
√

4ν+2
n(n+2ν)δ, where 0 < δ < 1

is to be determined. We want to show that

v′(θ) = 2 sin θ
(
cos θF νn (cos θ)− δF ν+1

n−1 (cos θ)
)
> 0 (C.2)

for all 0 ≤ θ < θ. As before, we only consider the case n = 2m + 1, then we can
write

cos θF νn (cos θ)− δF ν+1
n−1 (cos θ) =

m∑
k=0

(−1)kβk(sin2 θ)k,

where

βk =
(m− k + 1)k(m+ ν + 1)k

k!(ν + 1
2 )k+1

(
(ν +

1

2
+ k) cos2 θ)− δ(ν +

1

2
)

)
.

We compute

βk
βk+1

=
(k + 1)(ν + 1

2 + k + 1)

(m− k)(m+ ν + k + 1)

(ν + 1
2 + k) cos2 θ − δ(ν + 1

2 )

(ν + 3
2 + k) cos2 θ − δ(ν + 1

2 )
,

so

min
0≤k<m

{ βk
βk+1

} =
β0

β1
=

ν + 3
2

m(m+ ν + 1)

(ν + 1
2 ) cos2 θ − δ(ν + 1

2 )

(ν + 3
2 ) cos2 θ − δ(ν + 1

2 )
.

Therefore to prove (C.2), it is enough to show β0

β1
> sin2 θ, or equivalently

(ν +
3

2
)(ν +

1

2
)(cos2 θ − δ) > m(m+ ν + 1)

(
(ν +

3

2
) cos2 θ − δ(ν +

1

2
)

)
sin2 θ.

This is a quadratic inequality about sin2 θ. If we choose

δ =
ν −
√
ν + 1

2

ν + 1
2

, (C.3)

then since we have assumed that n ≥ 2ν + 2, direct computation shows that it is
enough to prove the above inequality for θ = θ, which reduces to

(ν +
3

2
)(cos2 θ − δ) > m(m+ ν + 1)

(
(ν +

3

2
) cos2 θ − δ(ν +

1

2
)

)
4δ

n(n+ 2ν)
.

Since 4m(m+ν+1)
n(n+2ν) = (n−1)(n+2ν+1)

n(n+2ν) < 1, we only need to show

cos2 θ − δ > δ

(
cos2 θ −

ν + 1
2

ν + 3
2

δ

)
,

which is easy to verify, so we omit the details.
From (C.1) and (C.2), we have θ < θ∗ < θ, so

|v(θ∗)| = | sin2 θ∗F
ν
n (θ∗)| ≤ | sin2 θF νn (θ)| = 4ν + 2

n(n+ 2ν)
F νn (θ). (C.4)
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It remains to give an upper bound for F νn (θ). Let n = 2m+ 1, then

F νn (θ) = cos θ

m∑
k=0

(−1)k(m− k + 1)k(m+ ν + 1)k

k!(ν + 1
2 )k

sin2k θ

≤
l is even∑
k=0

(−1)k(m− k + 1)k(m+ ν + 1)k

k!(ν + 1
2 )k

sin2k θ.

For m ≥ 5, we can choose l = 4 to obtain

F νn (θ) ≤
4∑
k=0

(−1)k(m− k + 1)k(m+ ν + 1)k

k!(ν + 1
2 )k

(
4ν + 2

n(n+ 2ν)

)k
δk

=

4∑
k=0

(−1)k(m− k + 1)k(m+ ν + 1)k

k!(ν + 1
2 )k

(
ν −
√
ν + 1

2

(m+ 1
2 )(m+ ν + 1

2 )

)k
(C.5)

Direct computation shows that for fixed ν, then above expression, viewed as a
function of m > ν, is decreasing in m. Therefore if n ≥ max{2ν + 2, 12}, (C.4) and
(C.5) together imply that

|v(θ∗)| ≤
C̃ν

n(n+ 2ν)
,

where

C̃ν =


(4ν + 2)

4∑
k=0

(−1)k(6− k)k(6 + ν)k

k!(ν + 1
2 )k

(
ν −
√
ν + 1

2
11
2 (ν + 11

2 )

)k
, if ν < 5,

(4ν + 2)

4∑
k=0

(−1)k(ν − k + 1)k(2ν + 1)k

k!(ν + 1
2 )k

(
ν −
√
ν + 1

2

(ν + 1
2 )(2ν + 1

2 )

)k
, if ν ≥ 5.

(C.6)
We remark that same estimates holds for even n. Finally, since

|v(
π

2
)| = F νn (0) =


0, if n is odd,

Γ(n2 + ν)

Γ(ν)(n2 )!

/Γ(n+ 2ν)

Γ(2ν)n!
=

2Γ(ν + 1
2 )Γ(n+3

2 )

(n+ 1)
√
πΓ(n+1

2 + ν)
, if n is even,

we conclude that

|v(θ)| ≤ max{|v(θ∗)|, |v(
π

2
)|} ≤ C̃ν

n(n+ 2ν)
.

�

Appendix D. proof of Proposition 4.1

Proof of Proposition 4.1. If k = 2 or 4, then by Lemma 3.3, one can check the
proposition holds true for all n ≥ 6 directly, so in what follows we may assume
k ≥ 6.

We first consider the case when n ≥ 65. Recall that d = 8, b = 0.33 are given in

Theorem 3.2, d0 = 17 ,and Bk = 9α2

32 (λn+1 − λk + 11
7α )(2k + 5), so we have

Bk+1 −Bk
Bk+1 +Bk

=

(
n2 + 7n− 3k2 − 18k − 15

)
+ 11

7α

(k + 3)
(
(2n2 + 14n− 2k2 − 12k + 5) + 22

7α

) . (D.1)
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Case 1: λ7 ≤ λk+1 ≤ dλn
2d0

. In this case, 6 ≤ k ≤ n
2 − 1, hence Bk+1 > Bk, and by

(D.1), one can show that Bk+1−Bk
Bk+1+Bk

is decreasing in k, so we have

Bk+1 −Bk
Bk+1 +Bk

≤
(
n2 + 7n− 231

)
+ 11

7α

9
(
(2n2 + 14n− 139) + 22

7α

) < 0.054. (D.2)

Moreover, a ≤ d0
λn
≤ d

2λk
. so (4.9) becomes

Rk,1 ≤ Bk
(

(a+ −
λk
d

(1− b)a2
+)2 + (a− −

λk
d

(1− b)a2
−)2
)2

+Bk+1

(
(a+ −

λk+1

d
(1− b)a2

+)2 + (a− −
λk+1

d
(1− b)a2

−)2
)2

= Bk

(
(2λ2 − 2λ+ 1)a2 − 2λk

d
(1− b)(1− 3λ+ 3λ2)a3 + (

λk
d

(1− b))2(λ4 + (1− λ)4)a4
)

+Bk+1

(
(2λ2 − 2λ+ 1)a2 − 2λk+1

d
(1− b)(1− 3λ+ 3λ2)a3 + (

λk+1

d
(1− b))2(λ4 + (1− λ)4)a4

)
,

and (4.11) becomes

Rk,3 ≤ 2(Bk+1 −Bk)λ(1− λ)a2.

Combined with (4.10), we can write

fk,a(λ) = Bk

(
(2λ2 − 2λ+ 1)− 2λk

d
(1− b)(1− 3λ+ 3λ2)a+ (

λk
d

(1− b))2(λ4 + (1− λ)4)a2
)

+Bk+1

(
(2λ2 − 2λ+ 1)− 2λk+1

d
(1− b)(1− 3λ+ 3λ2)a+ (

λk+1

d
(1− b))2(λ4 + (1− λ)4)a2

)
+ (2ck(Bk +Bk+1) + 2(Bk+1 −Bk))λ(1− λ).

For 1
2 ≤ λ < 1, direct computation yields

fk,a(1)− fk,a(λ)

2(λ− λ2)
= Bk

(
1− 3λk

d
(1− b)a+ (

λk
d

(1− b))2a2(λ2 − λ+ 2)
)

+Bk+1

(
1− 3λk+1

d
(1− b)a+ (

λk+1

d
(1− b))2a2(λ2 − λ+ 2)

)
− ck(Bk+1 +Bk)− (Bk+1 −Bk)

≥ Bk(1− 3wk +
7

4
w2
k) +Bk+1(1− 3wk+1 +

7

4
w2
k+1)− ck(Bk+1 +Bk)− (Bk+1 −Bk),

where

wj =
λj
d

(1− b)a ≤ 1− b
2

<
6

7
, j = k, k + 1.

So by Corollary 3.9 and (D.2)

fk,a(1)− fk,a(λ)

2(λ− λ2)
≥ (

7b2 + 10b− 1

16
− ck)(Bk +Bk+1)− (Bk+1 −Bk)

≥ (Bk +Bk+1)(0.191− 0.12− 0.054) > 0.

Case 2: λn
4 = dλn

2d0
< λk+1 ≤ λn, but a− ≤ d

2λk+1
. In this case, n

2 − 2 ≤ k ≤ n− 1,

λ ≥ 1− d
2λka

, and we have

Rk,1 ≤ Bk
(

(ba+ +
d

4λk
(1− b))2 + (a− −

λk
d

(1− b)a2
−)2

)
+Bk+1

(
(ba+ +

d

4λk+1
(1− b))2 + (a− −

λk+1

d
(1− b)a2

−)2

)
.
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Since the sign of Bk+1 −Bk is unknown, we need to discuss both cases separately.
If Bk+1 ≤ Bk, then by (D.1),

Bk −Bk+1

Bk +Bk+1
≤ 7α(2n+ 5)− 11

(n+ 2)(21α(2n+ 5) + 22)
<

1

3
, (D.3)

and we have

Rk,3 ≤ 2(Bk −Bk+1)m0(1− λ)a2.

Combined with (4.10), for 1
2 ≤ λ < 1, we have

φ(λ) :=
fk,a(1)− fk,a(λ)

(1− λ)a2
= Bk

(
(1 + λ)b2 +

d

2λka
(1− b)b− (1− λ)(1− λk

d
(1− b)(1− λ)a)2

)
+Bk+1

(
(1 + λ)b2 +

d

2λk+1a
(1− b)b− (1− λ)(1− λk+1

d
(1− b)(1− λ)a)2

)
− 2ck(Bk +Bk+1)λ− 2(Bk −Bk+1)m0.

Then

φ′(λ) = Bk

(
b2 +

(
1− λk

d
(1− b)(1− λ)a

)(
1− 3λk

d
(1− b)(1− λ)a

))
+Bk+1

(
b2 +

(
1− λk+1

d
(1− b)(1− λ)a

)(
1− 3λk+1

d
(1− b)(1− λ)a

))
− 2ck(Bk +Bk+1).

By assumption λk
d (1− b)(1− λ)a ≤ λk+1

d (1− b)(1− λ)a = λk+1

d (1− b)a− ≤ 1−b
2 , so

by Corollary 3.9,

φ′(λ) ≥ (Bk +Bk+1)

(
b2 − 2ck +

(b+ 1)(3b− 1)

4

)
> (Bk +Bk+1) (0.105− 2ck) > 0.

Since λ ≥ 1− d
2λk+1a

, we need to discuss the following two cases:

If d
2λk+1a

≥ 1
2 , then the lower bound of λ is 1

2 . Moreover, λk+1 ≤ d
a ≤

λn+4d
d0

= λn+4

2 ,

so k ≤ n√
2

+ 2. Consequently, from (D.1) it’s easy to check that

Bk −Bk+1

Bk +Bk+1
< 0.008,

Therefore by Lemma 3.5 and Corollary 3.9, we have

φ(λ) ≥ φ(
1

2
) = Bk

(
3

2
b2 +

d

2λka
(1− b)b− 1

2

(
1− λk

2d
(1− b)a

)2
)

+Bk+1

(
3

2
b2 +

d

2λk+1a
(1− b)b− 1

2

(
1− λk+1

2d
(1− b)a

)2
)

− (Bk +Bk+1)ck − 2m0(Bk −Bk+1)

≥ (Bk +Bk+1)(0.02746− ck − 0.016m0)

> 0.
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If d
2λk+1a

≤ 1
2 , then the lower bound of λ is 1− d

2λk+1a
, so by (D.3), Lemma 3.5 and

Corollary 3.9, we have

φ(λ) ≥ φ(1− d

2λk+1
a) = Bk

(
(2− d

2λk+1a
)b2 +

d

2λka
(1− b)b− d

2λk+1a
(1− λk

λk+1

1− b
2

)2

)
+Bk+1

(
(2− d

2λk+1a
)b2 +

d

2λk+1a
(1− b)b− d

2λk+1a
(1− 1− b

2
)2

)
− (Bk +Bk+1)ck − 2m0(Bk −Bk+1)

≥ (Bk +Bk+1)

(
3

2
b2 +

(1− b)b
2

− 1

2
(1− λk

λk+1

1− b
2

)2 − ck − 2m0
Bk −Bk+1

Bk +Bk+1

)
≥ (Bk +Bk+1)(0.05− ck −

2

3
m0)

> 0.

If Bk < Bk+1, then n
2 − 2 ≤ k ≤ n√

3
, so

Bk+1 −Bk
Bk +Bk+1

≤
7α
(
n2 + 16n+ 36

)
+ 44

(n+ 2) (21α (n2 + 8n+ 14) + 44)
≤ 0.004. (D.4)

In this case, we have

Rk,3 ≤ 2(Bk+1 −Bk)λ(1− λ)a2.

Then one can go through the same argument as before to prove that fk,a(1) ≥
fk,a(λ) for 1

2 ≤ λ ≤ 1. The details are omitted.

Case 3: λn
4 = dλn

2d0
< λk+1 ≤ λn, and a− >

d
2λk+1

. In this case 4(1− λ)λk+1 > λn,

so 1
2 ≤ λ < 3

4 , and 2λk+1 > λn. Hence k ≥ n−2√
2

and Bk ≥ Bk+1. Now (4.9) and

(4.11) becomes

Rk,1 ≤ Bk
(

(ba+ +
d(1− b)

4λk
)2 + (ba− +

d(1− b)
4λk

)2

)
+Bk+1

(
(ba+ +

d(1− b)
4λk

)2 + (ba− +
d(1− b)

4λk
)2

)
= Bk

(
(2λ2 − 2λ+ 1)b2a2 +

4ab(1− b)
λk

+ 8(
1− b
λk

)2

)
+Bk+1

(
(2λ2 − 2λ+ 1)b2a2 +

4ab(1− b)
λk+1

+ 8(
1− b
λk+1

)2

)
and

Rk,3 ≤ 2(Bk −Bk+1)m0(1− λ)a2

respectively. With the help of (4.10), after some computations, we deduce that

fk,a(1)− fk,a(λ)

a2
= Bk

(
(2λ− 2λ2)b2 − 4(

1− b
λka

)2

)
+Bk+1

(
(2λ− 2λ2)b2 − 4(

1− b
λk+1a

)2

)
− 2(Bk +Bk+1)ckλ(1− λ)− 2(Bk −Bk+1)m0(1− λ).
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It’s easy to see that for fixed k, the above function is increasing in λ, so

fk,a(1)− fk,a(λ)

a2
≥ Bk

(
1

2
b2 − 4(

1− b
λka

)2

)
+Bk+1

(
1

2
b2 − 4(

1− b
λk+1a

)2

)
− 1

2
(Bk +Bk+1)ck − (Bk −Bk+1)m0

≥ (Bk +Bk+1)

(
b2 − ck

2
− 4(

1− b
λka

)2 −m0
Bk −Bk+1

Bk +Bk+1

)
≥ (Bk +Bk+1)

(
0.04− 1.7956

λ2
ka

2
− 0.04

Bk −Bk+1

Bk +Bk+1

)
≥ (Bk +Bk+1)

(
0.04−

(
0.0071(

λn+4

λk
)2 + 0.04

Bk −Bk+1

Bk +Bk+1

))
.

Direct computation shows that 0.0071λn+4

λk
+ 0.04Bk−Bk+1

Bk+Bk+1
is decreasing in k

when n−1√
2
≤ k ≤ n, therefore

fk,a(1)− fk,a(λ)

a2
≥ (Bk +Bk+1)(0.04− 0.035) > 0.

To sum up, by now we have proved Proposition 4.1 when n ≥ 65. When n < 65,
above arguments fail since ck (hence Rk,2) is no longer small enough. In this case,
we keep Rk,2 aside and consider only Rk,1 and Rk,3. Then the same argument as
above shows that Rk,3 can be absorbed, which completes the proof. The details are
omitted.

�

Appendix E. Proof for small n

In the proof of Corollary 3.9 and Theorem 1.1, we argue for n sufficiently large.
In this appendix, we give the numerical data to prove the corresponding cases when
n is small.

We first prove Corollary 3.9 for small n

Proof of Corollary 3.9 for 30 ≤ n ≤ 428. We can use Matlab to calculate the values
of cn’s, which are listed as scatter diagrams as follows.

Figure 1. cn for 6 ≤
n ≤ 30

Figure 2. cn for 30 ≤
n ≤ 428

�

Then we give the proof of Theorem 1.1 when n is small.
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Proof of Theorem 1.1 for n < 10000. We follow the argument in Section 4. We
only prove for n ≥ 65 (For the case when 5 ≤ n ≤ 61, we can use similar methods
to run the induction procedure).

Applying Proposition 4.1 and plugging it into (4.8), we have

0 ≤256

35
(7− 1

α
)(

27

7α
− 15− λn+1)

1

α
(1− 7

6
a) +

128

7
(λn+1 − 6 +

71

7α
)

1

α2
(1− 7

6
a)2

+
176

63
α(λ2 + 4)(λ2 + 6)b22

+
32

9α2

n−3
2∑

k=2

(λn+1 − λk +
11

7α
)(2k + 5)(1− 1− b

d
λka)2a2

+
32

9α2

n∑
k=n−1

2

(λn+1 − λk +
11

7α
)(2k + 5)(ba+ (1− b) d

4λk
)2.

≤− 512

7
(λn+1 +

51

7
)(1− 7

6
a) +

512

7
(λn+1 +

100

7
)(1− 7

6
a)2 +

22528

63α
a2

+
128

9

n−3
2∑

k=2

(λn+1 − λk +
22

7
)(2k + 5)[(1− 1− b

d
λka)2 +

1

2
ckχ{5≤n≤61}]a

2

+
128

9

n∑
k=n−1

2

(λn+1 − λk +
22

7
)(2k + 5)[(ba+ (1− b) d

4λk
)2 +

1

2
ckχ{5≤n≤61}]a

2

= : g̃n(a). (E.1)

To obtain a contradiction, it suffices to show that g̃n(a) is negative for 16
λn+4

<

a ≤ 16
λn

, for any n < 10000 with n ≡ 1 (mod 4). Note that g̃n(a) is a parabola of a

with positive constant term. It suffices to show g̃n( 16
λn+4

) and g̃n( 16
λn

) are negative.

Using Matlab, we obtain the following scatter diagrams for the above two quantities
and thus we are done.

Figure 3. g̃n( 16
λn+4

)

from n = 41 to 9997

Figure 4. g̃n( 16
λn

)
from n = 41 to 9997

�
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