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Abstract. We consider a Hamiltonian system of free boundary type, showing first uniform
bounds and existence of solutions and of the free boundary. Then, for any smooth and bounded
domain, we prove uniqueness of positive solutions in a suitable interval and show that the
associated energies and boundary values have a monotonic behavior. Some consequences are
discussed about the parametrization of the unbounded Rabinowitz continuum for a class of
superlinear strongly coupled elliptic systems.
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1. Introduction

Let Ω ⊂ RN , N ≥ 2, be an open and bounded domain of class C3, we are concerned with the
following constrained Hamiltonian system of free boundary type,

−∆v1 = λ(v2)
p2
+ in Ω

−∆v2 = λ(v1)
p1
+ in Ω

−
∫
∂Ω

∂v1
∂ν = 1 = −

∫
∂Ω

∂v2
∂ν

v1 = α1, v2 = α2 on ∂Ω

(F)λ
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for the unknowns αi ∈ R, and vi ∈ C2,r(Ω ), i = 1, 2, for some fixed r ∈ (0, 1). Here, (v)+ is the
positive part of v, ν is the exterior unit normal, λ > 0 and

1

p1 + 1
+

1

p2 + 1
>
N − 2

N − 1
, pi ∈ (0,+∞), i = 1, 2. (1.1)

The relevance of the limiting hyperbola in (1.1) for classical Hamiltonian elliptic systems of
Lane-Emden type was first noticed in [34], see [20] for more details. Putting,

pN =

{
+∞, N = 2

N
N−2 , N ≥ 3,

we remark that, as far as N ≥ 3, p1 = pN = p2 satisfy 1
p1+1 + 1

p2+1 = N−2
N−1 .

To simplify the exposition, by a suitable scaling of λ we assume that |Ω| = 1.

The system (F)λ is a vectorial generalization of the classical ([35, 36, 9]) ”scalar” free boundary
problem which is obtained in the particular case p1 = p2, α1 = α2, v1 = v2, whose study is
motivated by Tokamak’s plasma physics ([23, 39]). In the scalar case pN turns out to be a
natural critical exponent see [9, 28].
Another motivation to purse the analysis of (F)λ is to find a parametrization of solutions of the
Hamiltonian strongly coupled elliptic system,

−∆u1 = µ2(1 + u2)
p2 in Ω

−∆u2 = µ1(1 + u1)
p1 in Ω

u1 > 0, u2 > 0 in Ω
u1 = 0, u2 = 0 on ∂Ω.

(H)

For µ1 = µ2 the existence of an unbounded continuum of ”scalar” (u1 = u2) solutions of (H)
follows from the classical result in [31]. The analysis of Hamiltonian elliptic systems is a classical
subject and we refer to [20] for a comprehensive introduction about this topic, see also [33] and
references therein. Minimal solutions branches (in the sense of Crandall-Rabinowitz ([18])) and
multiplicity results for general systems including (H) has been described in [12, 13], see also [29]
and references therein.
However our main motivation comes from the fact that we are not aware of any result either
about uniqueness and qualitative behavior of branches of solutions of (F)λ or just about the
qualitative behavior of non minimal solutions of (H). Remark that if p1 ̸= p2 then (F)λ has no
scalar solutions. In particular concerning (H), inspired by recent results in [3], [4], [5], we look
for integral quantities naturally arising from (P)λ to describe the monotonic behavior of the
solutions.

First of all let us consider the auxiliary problem,

−∆ψ1 = (α2 + λψ2)
p2
+ in Ω

−∆ψ2 = (α1 + λψ1)
p1
+ in Ω∫

Ω

(α2 + λψ2)
p2
+ = 1 =

∫
Ω

(α1 + λψ1)
p1
+

ψi = 0 on ∂Ω, i = 1, 2,

αi ∈ R, i = 1, 2,

(P)λ

for the unknowns αi ∈ R and ψi ∈ C2,r
0 (Ω ), i = 1, 2. Here λ ≥ 0, (p1, p2) satisfy (1.1) and, for

some fixed r ∈ (0, 1), we set,

C2,r
0 (Ω ) = {ψ ∈ C2,r(Ω ) : ψ = 0 on ∂Ω}, C2,r

0,+(Ω ) = {ψ ∈ C2,r
0 (Ω ) : ψ > 0 in Ω}.
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Here and in the rest of this paper we refer to solutions of (P)λ of this sort as classical solutions.
Interestingly enough, problem (P)λ seems to be of independent interest as it defines the station-
ary solutions in the study of two species chemiotaxis models with nonlinear diffusion recently
pursued in [14], see also Remark 1.1 below.
For λ ≥ 0 fixed it is useful to denote a solution of (P)λ by αλ = (α1,λ, α2,λ), ψλ = (ψ1,λ, ψ2,λ),
and define positive/non negative solutions as follows,

Definition. We say that (αλ,ψλ) is a positive/non negative solution of (P)λ if αi,λ > 0/αi,λ ≥
0, i = 1, 2, respectively.

Clearly, if (αλ,ψλ) is a positive solution, then by the strong maximum principle ψi,λ > 0 in Ω, i =
1, 2. Remark that for λ > 0, (αλ,ψλ) is a solution of (P)λ if and only if ((α1,λ, α2,λ), (v1,λ, v2,λ))
solves (F)λ, with vi,λ = αi,λ + λψi,λ, i = 1, 2.

We point out that, since |Ω| = 1 and λ ≥ 0 by assumption, then if (αλ,ψλ) is a non negative
solution of (P)λ then necessarily,

αi,λ ≤ 1, i = 1, 2,

and the equality α1,λ = 1 = α2,λ holds if and only if λ = 0. We will frequently use this fact
without further comments. Actually, if λ = 0, then (P)λ takes the form

−∆ψ1,0 = 1 in Ω

−∆ψ2,0 = 1 in Ω

ψ1,0 = 0 = ψ1,0 on ∂Ω

and admits a unique (in fact scalar) solution (α0,ψ0) = ((1, 1), (G[1], G[1])), where we define,

G[ρ](x) =

∫
Ω
GΩ(x, y)ρ(y) dy, x ∈ Ω.

Here GΩ is the Green function of −∆ with Dirichlet boundary conditions on Ω. Obviously, to
say that (αλ,ψλ) is a solution of (P)λ is the same as to say that ψλ = (G[ρ

2,λ
], G[ρ

1,λ
]) and∫

Ω ρ1,λ = 1 =
∫
Ω ρ2,λ, where, unless otherwise specified, we set

ρ
i,λ

= (αi,λ + λψi,λ)
pi
+ , i = 1, 2.

By a standard fixed point argument (see Appendix A) it can be shown that, for any λ > 0 small
enough, there exists at least one solution of (P)λ and in particular that αi >

1
3 , i = 1, 2 for any

such solution of (P)λ. Also, by a well known argument in [9], one could prove the existence of
at least one solution for any λ > 0 as far as pi < pN , i = 1, 2.
By using the weak Young inequality ([25]), we refine here the variational argument in [9], see
section 4, to come up with at least one solution of (P)λ whenever (p1, p2) satisfy (1.1). Remark

that, still as far as (1.1) is satisfied, we can prove that if (ψ1,λ, ψ2,λ) ∈ W 2,p2
0 (Ω) ×W 2,p1

0 (Ω)

is just assumed to be a strong solution of (P)λ, then (ψ1,λ, ψ2,λ) ∈ C2,r0
0 (Ω) × C2,r0

0 (Ω) and
satisfy to some uniform bound for bounded λ, see Lemma 2.1 below. These uniform estimates
seems to be new and in particular are crucial for our purposes. Also, at least in the scalar case
p1 = p = p2, ψ1 = ψ2, they are sharp since in fact, if p ≥ pN , it is well known ([37],[38]) that
solutions may blow up for λ large enough. It is also not too difficult to prove that our variational
functional (see (4.3) below) is in fact not anymore coercive as far as p1 = p = p2 and p ≥ pN .

Remark 1.1. After the completion of this work, we came to learn about the recent reference
[14] where essentially the same variational functional is analyzed (see (4.3) below) on the whole
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space RN. It seems to be an interesting open problem to extend our uniform estimates (Lemma
2.1 below) to the larger region defined as follows,

p1

(
p2 −

2

N − 2

)
< pN or p2

(
p1 −

2

N − 2

)
< pN ,

as far as N ≥ 3. Although not explicitly used in [14], these inequalities follow just by considering
the range of parameters pursued therein. Also, we do not exclude that some arguments in [14]
could be used to come up with the existence of solutions of (P)λ in this larger region. Remark
that the intersection point of these two hyperbolas is the symmetric boundary point (pN , pN ) in
(1.1).
More in general, it could be interesting to investigate the relevance of the well known critical
hyperbolas pushed forward in [16] and [17] for problem (P)λ.

However, our main concern is about uniqueness and qualitative behavior of (αλ,ψλ) depending
on λ. This is not trivial for two reasons. First of all we have in principle four unknowns to control,
which are αi,λ and ψi,λ, i = 1, 2. On the other side, due to the constraints in (P)λ, as recently
proved in ([5]) in the scalar case ψλ = ψ1,λ = ψ2,λ, αλ = α1,λ = α2,λ, for λ > 0 small enough
αλ is strictly decreasing while, by standard arguments ([18]), for fixed αλ = α and disregarding
the constraints in (P)λ, then ψλ is strictly increasing for any λ small enough. Actually the same
monotonicity property holds, of course at fixed (α1, α2) and for λ small enough, for ψ1,λ and ψ2,λ,
due to well known results about the maximum principle for cooperative elliptic systems ([22]).
Therefore, unlike classical scalar problems ([18]) there is a competition between the monotonic
behavior of (αi,λ + λψi,λ) as a function of λ.
This is why we do not adopt classical maximum principles based argument but rather rely on
ideas recently pursued in [5, 7], see also [2, 4, 8] where different class of problems are considered.
We will prove existence, uniqueness and monotonicity via a refined dual spectral formulation
suitable to analyze positive solutions of the constrained problem (P)λ. The first eigenvalue in
this spectral setting is denoted by σ1(αλ,ψλ), see section 3. In particular, we will prove the
monotonicity of two naturally defined variational quantities associated to (P)λ (see section 4),
which are the energy,

Eλ :=

∫
Ω
ρ
1,λ
G[ρ

2,λ
] ≡

∫
Ω
ρ
i,λ
ψi,λ =

∫
Ω
(∇ψ1,λ,∇ψ2,λ), i = 1, 2,

and the free energy,

Fλ =
1

r1

∫
Ω
(ρ

1,λ
)r1 +

1

r2

∫
Ω
(ρ

2,λ
)r2 − λ

∫
Ω
ρ
1,λ
G[ρ

2,λ
],

where ri = 1+ 1
pi
, i = 1, 2. Furthermore, we can prove the monotonicity of the linear combination

p1α1,λ

p1 + 1
+
p2α2,λ

p2 + 1
.

Set p = (p1, p2) and

λ∗(Ω,p) = sup{λ > 0 : σ1(αλ,ψλ) > 0, αi,µ > 0, i = 1, 2, for any solution of (P)µ, ∀µ < λ}.

It can be shown, see Lemma A.1 in Appendix A and Proposition 3.4 in section 3, that λ∗(Ω,p)
is well defined and strictly positive and our first task is to prove that λ∗(Ω,p) < +∞. More
exactly our first result is about the existence of a free boundary in the interior of Ω for solutions
of (F)λ with (p1, p2) satisfying (1.1). The point here is that one would like to know whether
or not, for a fixed λ, min{α1,λ, α2,λ} is negative, which implies in particular that at least one
among Ωi,− := {x ∈ Ω : vi < 0}, i = 1, 2 is not empty. In the scalar case this problem for p = 1
is fully understood, see [9, 30, 36], while, for p > 1, the existence of a multiply connected free
boundary has been proved in [38] for λ large and under some assumptions about the existence
of non degenerate critical points of a suitably defined Kirchoff-Routh type functional. Still for
λ large, but only for N = 2 and for domains with non trivial topology, a similar result has been
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obtained in [27]. Other sufficient conditions for the existence of solutions with α < 0 has been
found in [1], which however assume the nonlinearity vp+ to be replaced by g+(x, v) satisfying
g(x, t) ≥ ct, for some c > 0, which therefore does not fit our scalar problem. More recently it
has been shown in [3] that there are no scalar solutions with αλ ≥ 0 for λ large. We generalize
that result here to the case of the cooperative and strongly coupled systems of free boundary
type (F)λ.

Theorem 1.2. Let (p1, p2) satisfy (1.1). Then we have:

(a) (Existence) For any λ > 0 there exists at least one solution of (F)λ.

(b) (Existence of free boundary) Suppose either N = 2 or N ≥ 3 and Ω convex. Then,
there exists λ = λ(Ω,p, N) > 0 depending only on p, N and Ω such that if (αλ,ψλ)
is a non negative solution of (P)λ, then λ ≤ λ. In particular, for any λ > λ we have
min{α1,λ, α2,λ} < 0 for any solution of (F)λ.

As mentioned above the existence part in (a) follows by a refinement of the variational argu-
ment for the scalar case about (P)λ provided in [9]. We prove (b) by a blow up argument, which
is a well known tool in the study of a priori estimates for Lane-Emden systems, see [20] and
references therein. However the situation here is slightly different from standard models, which
is why we provide a self contained proof.

We denote by G(Ω) the set of solutions of (P)λ for λ ∈ [0, λ∗(Ω,p)). Our next aim is to show
uniqueness of these solutions, see Theorem 1.3 below. Observe that, under the assumption of
Theorem 1.2-(b), we have λ∗(Ω,p) < +∞. Actually, since we do not expect uniqueness for any
λ ∈ (0,+∞), we believe Theorem 1.2-(b) holds true also for non-convex domains with N ≥ 3.
Let Br = {x ∈ RN : |x| < r} with volume |Br|, DN be the N -dimensional ball of unit volume
and let us denote by,

Λ(Ω, t) = inf
w∈H1

0 (Ω),w≡/ 0

∫
Ω |∇w|2(∫
Ω |w|t

) 2
t

, (1.2)

which provides the best constant in the Sobolev embedding ∥w∥p ≤ Sp(Ω)∥∇w∥2, Sp(Ω) =
Λ−2(Ω, p), p ∈ [1, 2pN ). Let us set

σ1,∗ = lim inf
λ→λ∗(Ω,p)−

σ1(αλ,ψλ), αi,∗ = lim inf
λ→λ∗(Ω,p)−

αi,λ, i = 1, 2.

For the sake of clarity, we point out that if a map M from an interval [a, b] ⊂ R to a Banach
space X is said to be real analytic, then it is understood that M can be extended in an open
neighborhood of a and b where it admits a power series expansion, totally convergent in the
X-norm.
Here ∥ · ∥i,λ stands for the weighted norms naturally associated to the problem, see section 3 for
definitions.

Theorem 1.3. Let (p1, p2) satisfy (1.1). Then we have:

1. (Uniqueness) For any λ ∈ [0, λ∗(Ω,p)) there exists a unique solution (αλ,ψλ) of (P)λ
and G(Ω) is a real analytic simple curve of positive solutions [0, λ∗(Ω,p)) ∋ λ 7→
(αλ,ψλ). As λ→ 0+ we have,
αλ = (1, 1) + O(λ), ψλ = (ψ1,0, ψ2,0) + O(λ), Eλ = E0(Ω) + O(λ), where,

E0(Ω) =

∫
Ω

∫
Ω
GΩ(x, y) dxdy ≤ E0(DN) =

|B1|−
2
N

2(N + 2)
.

2. (Monotonicity) For any λ ∈ [0, λ∗(Ω,p)) it holds,

dFλ

dλ
< 0,

dEλ

dλ
≥ 0,

d

dλ

(
p1α1,λ

p1 + 1
+
p2α2,λ

p2 + 1

)
< 0. (1.3)

Moreover,
dEλ

dλ
≥ p1∥[ψ1,λ]1,λ∥21,λ + p2∥[ψ2,λ]2,λ∥22,λ.
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3. (Spectral estimates) If either σ1,∗ = 0 or if αi,∗ = 0, i = 1, 2, then

λ∗(Ω,p) ≥ 1

p2
Λ(Ω, 2p2).

Clearly E0(Ω) is just the torsional rigidity of Ω. The above theorem holds for any smooth
and bounded domain, in any dimension and for any subcritical (in the sense of (1.1)) exponent.
Remark that the result is sharp in the scalar case p = p1 = p2, αλ = α1,λ = α2,λ, ψλ = ψ1,λ = ψ2,λ,
where we have that αλ > 0 and σ1(αλ, ψλ) > 0 for any λ < 1

pΛ(Ω, 2p), see [5]. In particular, it

has been shown in [5] that if p < pN there exists a positive solution for any λ < 1
pΛ(Ω, 2p), then

by Theorem 1.3 we immediately deduce the following corollary about the case 1 ≤ p1 = p2 < pN .

Corollary 1.4. Let 1 ≤ p1 = p2 < pN . For any λ ∈ [0, λ∗(Ω,p)) the unique solution of (P)λ is
the scalar solution αλ = α1,λ = α2,λ, ψλ = ψ1,λ = ψ2,λ.

We still do not know whether or not σ1,∗ = 0. However, as far as p1 ̸= p2, it seems that αi,∗ = 0,
i = 1, 2 is not a natural assumption, actually a more reasonable guess is that, in general, if
σ1,∗ > 0, then either α1,∗ = 0, α2,∗ > 0 or α1,∗ > 0, α2,∗ = 0. This is interesting since in this case
we come up with the parametrization of an unbounded branch of solutions of (H).
For any classical solution u = (u1, u2) of (H) for some µ = (µ1, µ2) ∈ ([0,+∞))2 we define,

γ(µ,u) =
p1

p1 + 1

1

∥1 + u1∥p1
+

p2
p2 + 1

1

∥1 + u2∥p2
,

E(µ,u) =
1

2µ1µ2

∫
Ω

µ1(1 + u1)
p1u1 + µ2(1 + u2)

p2u2
∥1 + u1∥p1p1∥1 + u2∥p2p2

,

F (µ,u) = γ(µ,u) +
p1p2 − 1

(p2 + 1)(p1 + 1)
E(µ,u).

Then we have,

Theorem 1.5. Let (p1, p2) satisfy (1.1) and G(Ω) be the set of unique solutions (αλ,ψλ) of
(P)λ for λ ∈ [0, λ∗(Ω,p)). Then

uλ = (u1,λ, u2,λ) =

(
λ

α1,λ
ψ1,λ,

λ

α2,λ
ψ2,λ

)
,

is a solution of (H) with,

µλ = (µ1,λ, µ2,λ) =

(
λ
αp11,λ
α2,λ

, λ
αp22,λ
α1,λ

)
,

and for any λ ∈ [0, λ∗(Ω,p)) it holds,

dF

dλ
(µλ,uλ) < 0,

dE

dλ
(µλ,uλ) ≥ 0,

dγ

dλ
(µλ,uλ) < 0. (1.4)

In particular, if α1,∗ = 0, α2,∗ > 0 then (µλ,uλ) is a real analytic and unbounded curve and,
possibly along a subsequence, we have that

µ1,λ → 0, µ2,λ → +∞, ∥1 + u1,λ∥p1 → +∞.

Moreover, under the assumption of Theorem 1.2-(b), we have
u1,λ

∥1+u1,λ∥p1
→ λ∗ψ1,∗,

u2,λ
∥1+u2,λ∥p2

→
λ∗ψ2,∗, with convergence in C2(Ω) where (ψ1,∗, ψ2,∗) is a solution of (P)λ with λ = λ∗ = λ∗(Ω,p),
α1 = 0 for some α2 > 0. The conclusion is analogous in the case α1,∗ > 0, α2,∗ = 0.
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Concerning Theorem 1.3, due to the competition between the monotonic behavior of αi,λ and
ψi,λ, it seems difficult to attack the problem by arguments based on the standard maximum
principle. On the other side, the fact that Eλ, Fλ are monotonic increasing could be deduced
for variational solutions of (P)λ once we know the uniqueness of solutions. However this is not

enough to claim the smoothness of Eλ or the monotonicity/smoothness of
(
p1α1,λ

p1+1 +
p2α2,λ

p2+1

)
.

The problem is more subtle for Eλ since it seems that variational arguments do not yield any
information in this case.

Therefore, the proof of Theorem 1.3 relies on the interplay between a refined bifurcation analysis
and the variational formulation of (P)λ.
The crucial point is the set up of a sort of dual ”Hamiltonian” spectral theory for the linearized
operator of (P)λ, see the definition (3.9) of Lλ = (L1,λ, L2,λ) and the related eigenvalues equation
(3.10) in section 3. Remark that the eigenvalue equation is a non standard one, which is why we
refer to it as an ”Hamiltonian” eigenvalue problem. The use of the operator Lλ is rather delicate
also because it arises as the linearization of a vectorial constrained problem (

∫
Ω ρi,λ = 1, i = 1, 2)

with respect to (αλ,ψλ), which yields a non-local problem. As a consequence it is not true in
general, neither for scalar solutions, that its first eigenvalue, which we denote by σ1(αλ,ψλ), is
simple and neither that if σ1(αλ,ψλ) is positive then the maximum principle holds. For example
this is exactly what happens in the scalar case for λ = 0 on D2, where σ1(α0, ψ0) can be evaluated

explicitly (see [4]) and one finds that σ1(α0, ψ0) = λ(2,0)(D2) ≃ π(3, 83)2 has three eigenfunctions,

two of which indeed change sign. Here λ(2,0)(Ω) is the first non vanishing eigenvalue of −∆ on
Ω on the space of H1(Ω) vanishing mean functions with constant boundary trace. See also [6]
for a related results.

However, if for a positive solution (αλ,ψλ) with λ ≥ 0 it holds 0 /∈ σ(Lλ), where σ(Lλ) stands for
the spectrum of Lλ, then by the real analytic implicit function theorem ([10]) the set of solutions
of (P)λ is locally a real analytic curve of positive solutions. In particular a real analytic curve
of positive solutions exists around (α0,ψ0). Since solutions of (P)λ are uniformly bounded (see
Lemma 2.1) then for any λ < λ∗(Ω,p) there exists a unique solution and these solutions form
a real analytic curve which we denoted by G(Ω). An a priori bound from below far away from
zero for σ1(αλ,ψλ) for positive solutions can be derived at this stage, see Proposition 3.4. An
estimate about the range where the αi,λ, i = 1, 2 may possibly vanish at the same time follows
as well, see Proposition 3.5. At this point, since we know that Fλ, Eλ and αi,λ are real analytic
as functions of λ as far as λ < λ∗(Ω,p), then, by the variational characterization of (αλ,ψλ), we
deduce the monotonicity properties of Fλ, Eλ and αi,λ. The estimate about the derivative of Eλ

requires a more careful analysis of the Fourier expansion of dEλ
dλ in terms of the ”Hamiltonian”

Fourier basis, see section 4.
It would be interesting to find a fourth monotonic quantity naturally associated to the problem,
for example the self-interaction energy

Eλ,s :=
1

2

∫
Ω
ρ
2,λ
G[ρ

2,λ
] +

1

2

∫
Ω
ρ
1,λ
G[ρ

1,λ
].

However, it seems not easy to catch the qualitative behavior of Eλ,s and we postpone this problem
to a future work.

This paper is organized as follows. In section 2 we discuss about the existence of the free boundary
and prove Theorem 1.2. In section 3 we set up the spectral and bifurcation analysis with the
needed spectral estimates. In section 4 we prove existence of variational solutions, uniqueness
and monotonicity, which yield the proof of Theorem 1.3 and, as a corollary, that of Theorem
1.5. The proof of the existence of solutions and of the positivity of αi,λ for λ small is discussed
in Appendix A.
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2. Existence of the free boundary

For later purposes, see either Theorem 4.2 below, we prove a regularity result of independent
interest, showing that if (αλ,ψλ) is a solution of (P)λ such that (ψ1,λ, ψ2,λ) ∈ W 2,p2

0 (Ω) ×
W 2,p1

0 (Ω) is just assumed to be a strong solution of (P)λ, then (ψ1,λ, ψ2,λ) ∈ C2,r0
0 (Ω)×C2,r0

0 (Ω)

and is uniformly bounded in C2,r0
0 (Ω)×C2,r0

0 (Ω), as far as λ is bounded as well. Indeed we have,

Lemma 2.1. Let p = (p1, p2) satisfy (1.1). For any λ > 0 there exists a positive constant
C1 = C1(r,Ω, λ,p, N) depending only on Ω, λ, p, N and r ∈ (0, 1) such that ∥ψi,λ∥C2,r0

0 (Ω)
≤ C1,

i = 1, 2 for any strong solution (αλ,ψλ) of (P)λ with λ ∈ [0, λ ], where r0 = min{p1, p2, r}.

Proof. To simplify the notations we set (αi, ψi) = (αi,λ, ψi,λ). Since Ω is of class C3, by standard
elliptic estimates and a bootstrap argument it is enough to prove that either ψ1 or ψ2 is bounded.
We prove only the case N ≥ 3 which is more delicate.

Let (p1, p2) satisfy(1.1) and assume w.l.o.g. that p1 < pN . Since
∫
Ω(αi + λψi)

pi
+ = 1, i = 1, 2,

then it is well known ([26]) that for any t ∈ [1, N
N−1) there exists C = C(t,N,Ω) such that

∥ψi∥W 1,t
0 (Ω)

≤ C(t,N,Ω), i = 1, 2 for any solution of (P)λ. Thus, by the Sobolev inequality,

for any 1 ≤ s < N
N−2 we have ∥ψi∥Ls(Ω) ≤ C(s,N,Ω), i = 1, 2 for some C(s,N,Ω). By the

maximum principle ψi ≥ 0, i = 1, 2. Thus, either αi > 0 and then
∫
Ω(αi + λψi) = 1 and (recall

|Ω| = 1) αi ≤ 1, or αi < 0 and then (αi + ψi)+ ≤ ψi. Since p1 < pN , then for any 1 < m < pN
p1

,

∥(α1 + λψ1)
p1∥Lm(Ω) ≤ C(p1, N, λ, s,Ω).

From now on we suppress the indications of the properties of the various constants involved in
the estimates, being understood that C is just a suitable uniform constant which do not depend
by the solutions.

By standard elliptic theory we have that ∥ψ2∥W 2,m
0 (Ω)

≤ C, for any m < pN
p1

and by the Sobolev

embedding either p1 ≤ 2
N−2 and then ∥ψ2∥Lr(Ω) ≤ C for any r ≥ 1 and then the desired

conclusion follows in a standard way by a bootstrap argument, or 2
N−2 < p1 < pN and then

∥ψ2∥Lr(Ω) ≤ C for any r < N
p1− 2

N−2

. By (1.1) we have

p2 <
p1 +N

p1(N − 2)− 1
,

and observe that, putting p1 =
x

N−2 , x ∈ (2, N),

mN,p1 :=

N
p1− 2

N−2

p1+N
p1(N−2)−1

=
N(N − 2)

p1 +N

p1(N − 2)− 1

p1(N − 2)− 2
= (N − 2)fN (x),

where fN (x) =
x−1

(x−2)(1+a
N
x) , aN = 1

N(N−2) . Therefore, since fN is decreasing, we see thatmN,p1 is

monotonic decreasing, withmN,p1 → +∞ as p1 →
(

2
N−2

)+
,mN,p1 → (N−2)+ as p1 →

(
N
N−2

)−
.

In particular ∥(α2 + λψ2)
p2∥Ln(Ω) ≤ C for any n < mN,p1 , whence by standard elliptic theory

∥ψ1∥W 2,n
0 (Ω)

≤ C, for any n < mN,p1 and either mN,p1 ≥ N
2 and then ∥ψ1∥Lr(Ω) ≤ C for any

r ≥ 1 and then the desired conclusion follows in a standard way by a bootstrap argument, or
mN,p1 <

N
2 and then ∥ψ1∥Lr(Ω) ≤ C for any r < N

N−2mN,p1
. On the other side, as deduced above,

we have that mN,p1 ≥ (N − 2) whence in particular mN,p1 ≥ N
2 , as far N ≥ 4 and we are just

left with the case N = 3 which requires a different argument.

With the notations adopted above, we have that ∥(α2 + λψ2)
p2∥Ln(Ω) ≤ C for any n < m

(1)
3,p1

,
where

m
(1)
3,p1

=
1

1 + p1
3

p1 − 1

p1 − 2
and 1 < m

(1)
3,p1

<
3

2
.
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Here the assumption about p1 is that p1 ∈ (p, 3) where m
(1)
3,p = 3

2 (actually p > 5
2), where we

recall thatm
(1)
3,p1

is decreasing in p1 andm3,3 = 1. In particular, as mentioned above, by standard

elliptic theory ∥ψ1∥W 2,n
0 (Ω)

≤ C for any n < m
(1)
3,p1

and by the Sobolev embedding ∥ψ1∥Ls(Ω) ≤ C

for any s < s2 :=
3

3−2m
(1)
3,p1

. We define

σ1 :=
s2
3

=
1

3− 2m
(1)
3,p1

> 1, δ := σ1 − 1,

whence ∥(α2 + λψ1)
p1∥Lm(Ω) ≤ C for any m < s2

p1
= 3

p1
σ1. Therefore, assuming w.l.o.g. that

σ1 <
p1
2
,

by standard elliptic theory ∥ψ2∥W 2,m
0 (Ω)

≤ C for any m < 3
p1
σ1 and by the Sobolev embedding

∥ψ2∥Lr(Ω) ≤ C for any r < 3σ1
p1−2σ1

. As a consequence ∥(α2+λψ2)
p2∥Ln(Ω) ≤ C for any n < m

(2)
3,p1

where, by using (1.1) once more, we define,

m
(2)
3,p1

=
3σ1

p1 − 2σ1

p1 − 1

p1 + 3
= σ1

p1 − 2

p1 − 2σ1
m

(1)
3,p1

> σ1m
(1)
3,p1

=
m

(1)
3,p1

3− 2m
(1)
3,p1

.

Obviously we can assume w.l.o.g. that m
(2)
3,p1

< 3
2 , that is, using the last equality,

1 < m
(1)
3,p1

<
9

8
and consequently 1 < σ1 <

4

3
.

Therefore, as above ∥ψ1∥Ls(Ω) ≤ C for any s < s3 :=
3

3−2m
(2)
3,p1

and we define

σ2 :=
s3
s2

=
3− 2m

(1)
3,p1

3− 2m
(2)
3,p1

.

At this point, since m
(2)
3,p1

> σ1m
(1)
3,p1

, elementary arguments show that

σ2 >
3− 2m

(1)
3,p1

3− 2σ1m
(1)
3,p1

= 1 +
2m

(1)
3,p1

(σ1 − 1)

3− 2σ1m
(1)
3,p1

> 1 + δ = σ1.

Consequently ∥(α2+λψ1)
p1∥Lm(Ω) ≤ C for anym < s3

p1
= 3

p1
σ1σ2 >

3
p1
σ21 and by standard elliptic

theory and the Sobolev embedding we have that ∥(α2 + λψ2)
p2∥Ln(Ω) ≤ C for any n < m

(3)
3,p1

where, by using (1.1) once more, we define,

m
(3)
3,p1

:=
3σ21

p1 − 2σ21

p1 − 1

p1 + 3
= σ1

3σ1
p1 − 2σ21

p1 − 1

p1 + 3
> σ1m

(2)
3,p1

,

where we can assume w.l.o.g. that,

σ21 <
p1
2
.

At this point, by induction, it is not too difficult to prove that after a finite number of iterations,

either p1 − 2σk−1
1 ≤ 0 or m

(k)
3,p1

=
3σk−1

1

p1−2σk−1
1

p1−1
p1+3 will become larger than 3

2 and the desired

conclusion follows, in this case as well. □

Next we present the proof of Theorem 1.2 about a priori estimates and the existence of a free
boundary.
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Proof. We postpone the proof of (a), i.e. the existence of at least one solution of (P)λ for any
λ > 0, to Theorem 4.2 in section 4.
Therefore we are going to prove (b). We argue by contradiction and assume that there exists a
sequence of non negative solutions ((α1,n, α2,n), (ψ1,n, ψ2,n)) of (P)λ|λ=λn such that λn → +∞.

By Lemma 2.1, for any fixed n it holds ∥ψi,n∥∞ ≤ Cn, i = 1, 2. Let mi,n = sup
Ω

(αi,n + λnψi,n),

i = 1, 2. We split the proof in various steps.

STEP 1. Along a subsequence we have max{m1,n,m2,n} → +∞, as n→ +∞.
We will need the following lemma whose proof can be found in [3].

Lemma 2.2. Let ψ be any solution of{
−∆ψ = f in Ω
ψ = 0 on ∂Ω

where
∫
Ω f = 1 and

∫
Ω |f |N ≤ C. Then,∫

Ω
|∇ψ|2 ≥ c > 0,

for some positive constant c > 0 depending only by C, N and Ω.

At this point we argue by contradiction and assume that there exists C > 0 such that

sup
n

max{m1,n,m2,n} ≤ C,

so that sup
n

max{∥ψ1,n∥∞, ∥ψ2,n∥∞} ≤ C
λn

. Therefore, along a subsequence we have,∫
Ω
|∇ψ1,n|2 =

∫
Ω
(α2,n + λnψ2,n)

p2ψ1,n ≤ C

λn
→ 0, as n→ +∞,

which contradicts Lemma 2.2 since fi,n = (αi,n + λnψi,n)
pi obviously satisfies the needed as-

sumptions for any i = 1, 2.
Therefore, along a subsequence we have max{m1,n,m2,n} → +∞, as n→ +∞.

STEP 2. Let xi,n be any maximum point of ψi,n, i = 1, 2, we prove that

dist(xi,n, ∂Ω) ≥ d0,

for some positive constant d0 > 0.
Suppose first N = 2. We argue as in [24] p.223. Let x0 ∈ ∂Ω, ν0 be the outer unit normal at x0
and Br(x1) ⊂ RN \Ω such that Br(x1)∩∂Ω = {x0}. This is always possible since Ω is of class C3.
After a translation and a rotation we can assume w.l.o.g. that x1 = 0, ν0 = (−1, 0, · · · , 0). Also,
after a dilation and a suitable scaling of λn, we can assume that r = 1, whence x0 = (1, 0, · · · , 0).
At this point if N = 2 we define (see [24] p.223) y = x

|x|2 and ui,n(y) = ψi,n(x), i = 1, 2. The

image of Ω under this Kelvin transform, say Ω̃, lies inside B1(0) and its closure touches the
boundary only at x0. Also (u1,n(y), u2,n(y)) satisfies

−∆u1,n = h(y)(α2,n + λnu2,n)
p2 in Ω̃

−∆u2,n = h(y)(α1,n + λnu1,n)
p1 in Ω̃

ui,n = 0 on ∂Ω̃, i = 1, 2,

αi,n ≥ 0, i = 1, 2,

where h(y) = 1
|y|4 . Let y = (y1, y2), clearly

∂
∂y1

h(y) < 0 as far as y1 > 0, whence we can apply

the argument of Theorem 2.1
′
in [24], just replacing the classical strong maximum principle and

Hopf lemma used there (see Lemma H in [24]) with the corresponding results for cooperative
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and strongly coupled linear elliptic systems, see Theorem 2.2 in [19]. Therefore, if N = 2, as in
[24] p.223 we deduce that in a neighborhood of x0 depending only by the geometry of Ω there
are no critical points of ψi,n, i = 1, 2. Since ∂Ω is compact the desired conclusion follows by a
covering argument.
Suppose now N ≥ 3 and Ω convex. As above, using the results for cooperative and strongly
coupled linear elliptic systems we can exploit the argument of Theorem 2.1

′
in [24]. It is well

known that the convexity condition ensures then that there are no critical points of ψi,n, i = 1, 2
in a sufficiently small uniform neighborhood of the boundary, see [21] for further details in the
scalar case.

STEP 3. We obtain a contradiction assuming that m2,n ≤ m1,n → +∞, as n → +∞. We will
never use the fact that p1 ≤ p2, whence a contradiction arises in the same way in the case where,
along a subsequence, m1,n ≤ m2,n → +∞, as n→ +∞.
Let x1,n be such that ψ1,n(x1,n) = m1,n. Then by step 2 we have xi,n → x ∈ Ω and after a
translation we can assume w.l.o.g. that x1,n = 0, ∀n ∈ N. There are only two possibilities:
either,

(j) sup
n

m
p2+1
2,n

m
p1+1
1,n

≤ C, or, passing to a further subsequence if necessary,

(jj)
m

p1+1
1,n

m
p2+1
2,n

→ 0, as n→ +∞.

We discuss (j) first and define δ2n =
m2,n

λm
p1
1,n

and, for i = 1, 2,

vi,n(y) =
1

mi,n
(αi,n + λψi,n(δny)), y ∈ Ωn = {y ∈ RN : δny ∈ Ω}

which satisfy 

−∆v1,n =
m

p2+1
2,n

m
p1+1
1,n

vp22,n in Ωn

−∆v2,n = vp11,n in Ωn

vi,n(y) ≤ v1,n(0) = 1 in Ωn, i = 1, 2,

vi,n(y) ≥ αi,n

mi,n
≥ 0 in Ωn, i = 1, 2.

Since 0 ∈ Ω, then for any R ≥ 1 we have that for any n large enough it holds BR(0) ⊂ Ωn.

Along a subsequence we can assume that
m

p2+1
2,n

m
p1+1
1,n

→ µ ∈ [0,+∞). Since ∥vi,n∥L∞(Ωn) ≤ C, then

by standard elliptic estimates there exists a subsequence such that vi,n, i = 1, 2 converge in
C2
loc(RN ) to vi, i = 1, 2 which are classical solutions of

−∆v1 = µ vp22 in RN

−∆v2 = vp11 in RN

0 ≤ vi(y) ≤ v1(0) = 1 in RN , i = 1, 2,

(2.1)

At this point observe that if µ = 0 then necessarily v1 ≡ 1 in RN and then v2 would solve, −∆v2 = 1 in RN

0 ≤ v2(y) ≤ 1 in RN , i = 1, 2.

By the maximum principle we would have v2(y) ≥ 1
2N (R2−|y|2), for any R > 0 and in particular

v2(0) ≥ 1
2NR

2, for any R > 0, which is impossible. Therefore µ ∈ (0,+∞) which however is also
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impossible since it is well known by the result in [34] that (1.1) implies that the unique solution
of (2.1) is vi ≡ 0, i = 1, 2.
Therefore (jj) holds and in this case we choose δ2n =

m1,n

λm
p2
2,n

so that (v1,n, v2,n) satisfies

−∆v1,n = vp22,n in Ωn

−∆v2,n =
m

p1+1
1,n

m
p2+1
2,n

vp11,n in Ωn

vi,n(y) ≤ v1,n(0) = 1 in Ωn, i = 1, 2,

vi,n(y) ≥ αi,n

mi,n
≥ 0 in Ωn, i = 1, 2.

This case is easily seen to lead to the same situation described above for µ = 0, whence a
contradiction arise in this case as well.
As mentioned above, by symmetry, the discussion of the case in which along a subsequence
m1,n ≤ m2,n → +∞, as n→ +∞, is exactly the same. □

3. Spectral and bifurcation analysis

In this section we develop the spectral and bifurcation analysis for positive solutions of (P)λ
with λ ≥ 0 and (p1, p2) satisfying (1.1). From now on and unless otherwise specified, (αλ,ψλ)
is assumed to be a positive solution of (P)λ.

By the maximum principle ψi,λ ≥ 0, i = 1, 2 in Ω for any solution, whence for non negative
solutions (αi,λ ≥ 0) we have αi,λ + ψi,λ ≡ (αi,λ + ψi,λ)+. Therefore from now on and unless
otherwise specified we will denote by,

τi,λ = λpi, ρi,λ,αi
(ψi) = (αi + λψi)

pi , ρ
i,λ

= (αi,λ + λψi,λ)
pi , i = 1, 2,

Vi,λ,αi
(ψi) = (αi + λψi)

pi−1 and Vi,λ = (αi,λ + λψi,λ)
pi−1,

where αi,λ, ψi,λ, i = 1, 2 denote the components of a non negative solution (αλ,ψλ) of (P)λ and
qi denotes the conjugate exponent of pi, that is,

1

p i
+

1

q i
= 1, i = 1, 2.

For (αλ,ψλ) a non negative solution of (P)λ we denote,

< η >i,λ=

∫
Ω Vi,λη∫
Ω Vi,λ

and [η]i,λ = η− < η >i,λ, i = 1, 2,

and define,

< η, ϕ >i,λ:=

∫
Ω
Vi,ληϕ and ∥ϕ∥2i,λ :=< ϕ, ϕ >i,λ=

∫
Ω
Vi,λϕ

2 , i = 1, 2,

where {η, ϕ} ⊂ L2(Ω). For non negative solutions (αλ,ψλ) of (P)λ, by the strong maximum
principle we have that ρ

i,λ
, i = 1, 2, is strictly positive in Ω, whence < ·, · >i,λ, i = 1, 2 define

scalar products on L2(Ω) whose norms are denoted by ∥ · ∥i,λ, i = 1, 2. We will also adopt the
useful shorthand notation,

mi,λ =

∫
Ω
Vi,λ, i = 1, 2.

In the sequel we aim to describe possible branches of solutions of (P)λ around a positive solution,
i.e. with αi,λ > 0, i = 1, 2. To this end, it is not difficult to construct an open subset AΩ of
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the Banach space of triples (λ,α,ψ) ∈ R × R2 × (C2,r0
0 (Ω ))2 such that, on AΩ, the densities

ρ
i,λ,αi

= ρ
i,λ,αi

(ψi) = (αi + λψi)
pi are well defined and

αi,λ + λψi,λ ≥ αi,λ
2

in Ω, i = 1, 2, (3.1)

in a sufficiently small open neighborhood in AΩ of any triple of the form (λ,αλ,ψλ) whenever
(αλ,ψλ) is a positive (αi,λ > 0) solution of (P)λ. At this point we introduce the maps,

F : AΩ → (Cr(Ω ))2, F(λ,α,ψ) :=

 −∆ψ1 − ρ2,λ,α2
(ψ2)

−∆ψ2 − ρ1,λ,α1
(ψ1)

 (3.2)

and

Φ : AΩ → R2 × (Cr(Ω ))2, Φ(λ,α,ψ) :=

 F(λ,α,ψ)
−1 +

∫
Ω ρ1,λ,α1

(ψ1)

−1 +
∫
Ω ρ2,λ,α2

(ψ2)

 , (3.3)

and, for positive solutions and for a fixed (λ,α,ψ) ∈ AΩ, their differentials with respect to
(α,ψ), that is the linear operators,

Dα,ψΦ(λ,α,ψ) : R2 × (C2,r
0 (Ω ))2 → R2 × (Cr(Ω ))2,

which acts as follows on (s,ϕ) = (s1, s2, ϕ1, ϕ2) ∈ R2 × (C2,r
0 (Ω ))2,

Dα,ψΦ(λ,α,ψ)[s,ϕ] =


DψF(λ,α,ψ)[ϕ] + dαF(λ,α,ψ)[s]∫

Ω

(
Dψ1ρ1,λ,α1

(ψ1)[ϕ1] + dα1ρ1,λ,α1
(ψ1)[s1]

)
∫
Ω

(
Dψ2ρ2,λ,α2

(ψ2)[ϕ2] + dα2ρ2,λ,α2
(ψ2)[s2]

)

 , (3.4)

where we have introduced the differential operators,

DψF(λ,α,ψ)[ϕ] =

 −∆ϕ1 − τ2,λV2,λ,α2
(ψ2)ϕ2

−∆ϕ2 − τ1,λV1,λ,α1
(ψ1)ϕ1

 , ϕ = (ϕ1, ϕ2) ∈ (C2,r
0 (Ω ))2, (3.5)

Dψi
ρ
i,λ,αi

[ϕi] = τi,λVi,λ,αi
(ψi)ϕi, ϕi ∈ C2,r

0 (Ω ), i = 1, 2, (3.6)

and

dαF(λ,α,ψ)[s] =

 −p2V2,λ,α2
(ψ2)s2

−p1V1,λ,α1
(ψ1)s1

 s = (s1, s2) ∈ R2, (3.7)

dαiρi,λ,αi
[si] = piVi,λ,αi

(ψi)si, si ∈ R, i = 1, 2, (3.8)

where we recall τi,λ = λpi.
By the construction of AΩ, see in particular (3.1), relying on known techniques about real ana-
lytic functions on Banach spaces ([10]), it can be shown that Φ(λ,α,ψ) is jointly real analytic
in an open neighborhood of AΩ around any triple of the form (λ,αλ,ψλ) whenever (αλ,ψλ) is
a positive solution of (P)λ.

For fixed λ > 0 the pair (αλ,ψλ) is a non negative solution of (P)λ in the classical sense as
defined in the introduction if and only if Φ(λ,αλ,ψλ) = (0, 0, 0, 0), and, for positive solutions,
we define the linearized operator,

Lλ[ϕ] =

 L1,λ[ϕ]

L2,λ[ϕ]

 =

 −∆ϕ1 − τ2,λV2,λ[ϕ2]2,λ,

−∆ϕ2 − τ1,λV1,λ[ϕ1]1,λ

 . (3.9)
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We say that σ = σ(αλ,ψλ) ∈ R is an eigenvalue of Lλ if the ”Hamiltonian” eigenvalue equation,{
−∆ϕ1 − τ2,λV2,λ[ϕ2]2,λ = σp2V2,λ[ϕ2]2,λ,
−∆ϕ2 − τ1,λV1,λ[ϕ1]1,λ = σp1V1,λ[ϕ1]1,λ,

(3.10)

admits a non-trivial weak solution (ϕ1, ϕ2) ∈ H1
0 (Ω) ×H1

0 (Ω), which is by definition an eigen-
function of σ.
We show that, with this particular definition, the eigenvalues of Lλ share the usual properties
of a general self-adjoint elliptic operator.
Let us define the Hilbert space,

Y0 :=
{
φ = (φ1, φ2) ∈ {(L2(Ω))2, < ·, · >λ} :< φi >i,λ= 0, i = 1, 2

}
, (3.11)

where

< φ,η >λ:= p1 < φ1, η1 >1,λ +p2 < φ2, η2 >2,λ, ∀ (φ,η) ∈ (Y0)
2

and the linear operator T0 : Y0 → Y0, which acts on φ = (φ1, φ2) ∈ Y0 as follows

T0(φ) :=

 τ2,λG[V2,λφ2]− < τ2,λG[V2,λφ2] >1,λ

τ1,λG[V1,λφ1]− < τ1,λG[V1,λφ1] >2,λ

 ≡

 τ2,λ[G[V2,λφ2]]1,λ

τ1,λ[G[V1,λφ1]]2,λ

 . (3.12)

By standard elliptic theory G[Vi,λφi] ⊂W 2,2(Ω), i = 1, 2, whence T0 is compact by the Sobolev
embedding. Also for any (φ,η) ∈ (Y0)

2, we have,

< η,T0(φ) >λ= p1 < η1, [τ2,λG[V2,λφ2]]1,λ >1,λ +p2 < η2, [τ1,λG[V1,λφ1]]2,λ >2,λ=

λp1p2

∫
Ω
V1,λη1[G[V2,λφ2]]1,λ + λp2p1

∫
Ω
V2,λη2[G[V1,λφ1]2,λ =

λp1p2

∫
Ω
V1,λη1G[V2,λφ2] + λp1p2

∫
Ω
V2,λη2G[V1,λφ1] =

λp1p2

∫
Ω
G[V1,λη1]V2,λφ2 + λp1p2

∫
Ω
G[V2,λη2]V1,λφ1 =

p2

∫
Ω
[τ1,λG[V1,λη1]]2,λV2,λφ2 + p1

∫
Ω
[τ2,λG[V2,λη2]]1,λV1,λφ1 =

p1 < [τ2,λG[V2,λη2]]1,λ, φ1 >1,λ +p2 < [τ1,λG[V1,λη1]]2,λ, φ2 >2,λ=< T0(η),φ >λ,

which shows that T0 is also self-adjoint. Remark also that < φ,T0(φ) >λ> 0 if φ ̸= (0, 0), as is
readily verified observing that ψi = G[Vi,λφi] satisfies

∫
Ω |∇ψi|2 =< φi, G[Vi,λφi] >i,λ, i = 1, 2.

As a consequence, by the spectral Theorem for self-adjoint, compact, linear operators on Hilbert
spaces, we have that Y0 is the Hilbertian direct sum of the eigenfunctions of T0, which can be
represented as follows,

φk = (φ1,k, φ2,k), φi,k = [ϕi,k]i,λ, i = 1, 2, k ∈ N = {1, 2, · · · },

Y0 = Span {([ϕ1,k]1,λ, [ϕ2,k]2,λ), k ∈ N},
for some (ϕ1,k, ϕ2,k) ∈ (H1

0 (Ω))
2, k ∈ N = {1, 2, · · · }. In fact, any eigenfunction φk, whose

eigenvalue is µk ∈ R \ {0}, satisfies, µkφk = T0(φk) and, by defining,

λ

λ+ σk
= µk ∈ (0,+∞), 0 > µ1 ≥ µ2 ≥ .... ≥ µk → 0,

ϕ1,k := (τ2,λ + p2σk)G[V2,λφ2,k], ϕ2,k := (τ1,λ + p1σk)G[V1,λφ1,k],

it is easy to see that φk is an eigenfunction of T0 with eigenvalue µk if and only if ϕk =
(ϕ1,k, ϕ2,k) ∈ (H1

0 (Ω))
2 weakly solves,{

−∆ϕ1,k = (τ2,λ + σkp2)V2,λ[ϕ2,k]2,λ,
−∆ϕ2,k = (τ1,λ + σkp1)V1,λ[ϕ1,k]1,λ.

(3.13)
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In particular the first eigenvalue σ1 = σ1(αλ,ψλ) is uniquely defined by the spectral radius of
T0, r(T0) ≡ µ1 =

λ
λ+σ1

where

µ1 = r(T0) = sup
φ∈Y0\{0}

< φ, T0(φ) >λ

< φ,φ >λ

.

Since σ1 + λ = λ
µ1

and since µ1 is positive, then

λ+ σ1 > 0. (3.14)

By the Fredholm alternative, if 0 /∈ {σj}j∈N, then I − T0 is an isomorphism of Y0 onto itself.
Clearly, we can construct an orthonormal base of eigenfunctions {ϕk}k∈N with respect to the
scalar product < ·, · >λ. However we need a refined property which is the following,

Lemma 3.1. There exists a complete orthonormal base {φk}k∈N of Y 0, with the property that
φk = ([ϕ1,k]1,λ, [ϕ2,k]2,λ) satisfies,

< [ϕ1,k]1,λ, [ϕ1,j ]1,λ >1,λ= 0 =< [ϕ2,k]2,λ, [ϕ2,j ]2,λ >2,λ, ∀k ̸= j. (3.15)

In particular {[ϕi,k]}k∈N, i = 1, 2 is a complete orthonormal base of

Yi,0 :=
{
φi ∈ {L2(Ω), < ·, · >i,λ} :< φi >i,λ= 0

}
, i = 1, 2.

Proof. If σk, σj denote the eigenvalues of ϕk, ϕj respectively, and if σk ̸= σj , then for fixed k
we can multiply the first equation in (3.13) by ϕ2,j , the second by ϕ1,j and integrate by parts to
conclude that{

(τ1,λ + σjp1)
∫
Ω V1,λ[ϕ1,j ]1,λ[ϕ1,k]1,λ = (τ2,λ + σkp2)

∫
Ω V2,λ[ϕ2,k]2,λ[ϕ2,j ]2,λ,

(τ2,λ + σjp2)
∫
Ω V2,λ[ϕ2,j ]2,λ[ϕ2,k]2,λ = (τ1,λ + σkp1)

∫
Ω V1,λ[ϕ1,k]1,λ[ϕ1,j ]1,λ.

Putting

x = p1

∫
Ω
V1,λ[ϕ1,j ]1,λ[ϕ1,k]1,λ, y = p2

∫
Ω
V2,λ[ϕ2,k]2,λ[ϕ2,j ]2,λ,

this is equivalent to the system{
(λ+ σj)x− (λ+ σk)y = 0
−(λ+ σk)x+ (λ+ σj)y = 0

,

whose determinant is not zero as far as σk ̸= σj . Therefore in particular

< [ϕi,j ]i,λ[ϕi,k]i,λ >i,λ=

∫
Ω
Vi,λ[ϕi,j ]1,λ[ϕi,k]i,λ = 0, i = 1, 2,

whenever σj ̸= σk. If σk = σj , since the eigenspace is of finite dimension, a standard componen-
twise orthonormalization argument shows that in fact the basis can be chosen to satisfy (3.15).
At this point, since {φk}k∈N is a complete orthonormal base then also {[ϕi,k]i,λ}k∈N must be a
complete orthonormal base of Yi,0 for any i = 1, 2. □

Concerning Dα,ψΦ(λ,α,ψ) we have,

Proposition 3.2. For any positive solution (αλ,ψλ) of (P)λ with λ ≥ 0, the kernel of Dα,ψΦ(λ,αλ,ψλ)
is empty if and only if the system,{

−∆ϕ1 − τ2,λV2,λ[ϕ2]2,λ = 0,
−∆ϕ2 − τ1,λV1,λ[ϕ1]1,λ = 0,

(ϕ1, ϕ2) ∈ (C2,r
0 (Ω ))2 (3.16)

admits only the trivial solution, or equivalently, if and only if 0 is not an eigenvalue of Lλ.

Proof. If (ϕ1, ϕ2) ∈ (H1
0 (Ω))

2 solves (3.16) and since Ω is of class C3, then by standard elliptic

regularity theory and a bootstrap argument we have (ϕ1, ϕ2) ∈ (C2,r
0 (Ω ))2. Therefore, in partic-

ular 0 is not an eigenvalue of Lλ if and only if (3.16) admits only the trivial solution.

Suppose first that there exists a non-vanishing pair (s,ϕ) ∈ R2 × (C2,r
0 (Ω ))2 such that

Dα,ψΦ(λ,αλ,ψλ)[s,ϕ] = (0,0).
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Then the second pair of equations in (3.4), that is
∫
Ω

(
Dψρi,λ[ϕi] + dαiρi,λ[si]

)∣∣∣
(α,ψ)=(αλ,ψλ)

= 0,

take the form,

pi

∫
Ω
(λVi,λϕi + Vi,λsi) = 0, i = 1, 2

which is equivalent to

si = si,λ = −λ < ϕi >i,λ .

Substituting this relations into the first pair of equations,

Lλ[ϕ] = DψF (λ,αλ,ψλ)[ϕ] + dαF (λ,αλ,ψλ)[sλ] = 0,

we conclude that ϕ = (ϕ1, ϕ2) is a non-trivial, classical solution of (3.16).
This shows one part of the claim, while on the other side, if a non-trivial, classical solution of
(3.16) exists, then by arguing the other way around, obviously we can find some (s,ϕ) ̸= (0,0)
such that Dα,ψΦ(λ,αλ,ψλ)[s,ϕ] = (0,0), as claimed. □

We state now the result needed to describe branches of solutions of (P)λ at regular points.

Lemma 3.3. Let (αλ0
,ψλ0

) be a positive solution of (P)λ with λ = λ0 ≥ 0.
If 0 is not an eigenvalue of Lλ0

, then:
(i) Dα,ψΦ(λ0,αλ0

,ψλ0
) is an isomorphism;

(ii) There exists an open neighborhood U ⊂ AΩ of (λ0,αλ0
,ψλ0

) such that the set of solutions
of (P)λ in U is a real analytic curve of positive solutions J ∋ λ 7→ (αλ,ψλ) ∈ B, for suitable

neighborhoods J of λ0 and B of (αλ0
,ψλ0

) in (0,+∞)2 × (C2,r
0,+(Ω ))2.

(iii) In particular if (αλ0
,ψλ0

) = (α0,ψ0), then (αλ,ψλ) = (α0,ψ0) + O(λ) as λ→ 0.

Proof. By the construction of AΩ, the map F as defined in (3.2) is jointly analytic in a suitable
neighborhood of (λ,αλ,ψλ). As a consequence, whenever (i) holds, then (ii) is an immediate
consequence of the real analytic implicit function theorem, see for example Theorem 4.5.4 in
[10]. In particular (iii) is a straightforward consequence of (ii). Therefore, we are just left with
the proof of (i).
Concerning (i) we observe that, although the differential of the constrained equations (which
are the last two differentials in (3.4)), do not define a Fredholm operator (since obviously the
dimension of their kernel is not finite dimensional), however a simple inspection shows that
in fact Dα,ψΦ(λ0,αλ0

,ψλ0
) is a Fredholm operator, see for example Lemma 2.4 in [5]. As a

consequence (i) follows from Proposition 3.2 and the Fredholm alternative. □

We conclude this section with some spectral estimates about σ1(αλ,ψλ) and λ
∗(Ω,p).

Proposition 3.4. Let (p1, p2) satisfy (1.1), assume without loss of generality p1 ≤ p2 and
suppose that (αλ,ψλ) is a positive solution of (P)λ with λ ≤ 1

p2
Λ(Ω, 2p2). Then σ1(αλ,ψλ) > 0.

Proof. For k = 1 and to ease the notations, in this proof we set (ϕ1, ϕ2) = (ϕ1,1, ϕ2,1), where
(ϕ1,1, ϕ2,1) is any eigenvector of σ1. Clearly we can just consider λ > 0. We multiply the first
equation in (3.13) by ϕ1, the second by ϕ2 and deduce that∫

Ω
|∇ϕ1|2 = (λ+ σ1)p2

∫
Ω
V2,λ[ϕ2]2,λ[ϕ1]1,λ,

and, ∫
Ω
|∇ϕ2|2 = (λ+ σ1)p1

∫
Ω
V1,λ[ϕ1]1,λ[ϕ2]2,λ,

which in view of (3.14) shows that∫
Ω
V2,λ[ϕ2]2,λ[ϕ1]1,λ > 0,

∫
Ω
V1,λ[ϕ1]1,λ[ϕ2]2,λ > 0. (3.17)
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In particular we readily deduce that

σ1 =
N(ϕ1, ϕ2)∫

Ω(p1V1,λ + p2V2,λ)[ϕ1]1,λ[ϕ2]2,λ
,

where

N(ϕ1, ϕ2) =

∫
Ω
|∇ϕ1|2 +

∫
Ω
|∇ϕ2|2 − λp2

∫
Ω
V2,λ[ϕ2]2,λ[ϕ1]1,λ − λp1

∫
Ω
V1,λ[ϕ2]2,λ[ϕ1]1,λ.

By using ab ≤ 1
2(a

2 + b2) we see that,

N(ϕ1, ϕ2) ≥
1

2

2∑
i=1

(∫
Ω
|∇ϕi|2 − λp1

∫
Ω
V1,λ[ϕi]

2
i,λ

)
+ (3.18)

1

2

2∑
i=1

(∫
Ω
|∇ϕi|2 − λp2

∫
Ω
V2,λ[ϕi]

2
i,λ

)
≥

1

2

2∑
i=1

(∫
Ω
|∇ϕi|2 − λp1

∫
Ω
V1,λϕi

)
+

1

2

2∑
i=1

(∫
Ω
|∇ϕi|2 − λp2

∫
Ω
V2,λϕi

)
,

where the last inequality is an equality if and only if < ϕ1 >1,λ= 0 =< ϕ2 >2,λ.
Next observe that for any ϕ ∈ H1

0 (Ω) \ {0} and for any {i, j} ∈ {1, 2}, by the Holder inequality
and (1.2) we have,∫

Ω
|∇ϕ|2 − λpi

∫
Ω
Vi,λϕ

2 ≥
∫
Ω
|∇ϕ|2 − λpi

(∫
Ω
ρ
i,λ

) 1
qi

(∫
Ω
ϕ2pi

) 1
pi

= (3.19)

∫
Ω
|∇ϕ|2 − λpi

(∫
Ω
ϕ2pi

) 1
pi

≥
(∫

Ω
ϕ2pi

) 1
pi

(Λ(Ω, 2pi)− λpi) , i = 1, 2. (3.20)

Since |Ω| = 1 and p1 ≤ p2, it is well known (see Theorem 3 in [15]) that Λ(Ω, 2p2) ≤ Λ(Ω, 2p1) and
that the inequality is strict as far as p1 < p2. Therefore we have proved that if λ ≤ 1

p2
Λ(Ω, 2p2)

then σ1 ≥ 0.
At this point we argue by contradiction and assume that σ1 = 0 for some λ ≤ 1

p2
Λ(Ω, 2p2).

Following the equality sign in all the inequalities used so far we see that if σ1 = 0 then we would
necessarily have λ = 1

p2
Λ(Ω, 2p2), p1 = p2, < ϕ1 >1,λ= 0 =< ϕ2 >2,λ, and in particular ϕ1 = ϕ2

a.e. in Ω. By (3.16) this implies also V1,λ = V2,λ a.e. in Ω. As a consequence we would also have,

0 = p1σ1 =

∫
Ω |∇ϕ1|2 − λp1

∫
Ω V1,λϕ

2
1∫

Ω V1,λϕ
2
1

> ν1 := inf
ϕ∈H1

0 (Ω)

∫
Ω |∇ϕ|2 − λp1

∫
Ω V1,λϕ

2∫
Ω V1,λϕ

2
,

where the strict inequality is due to the fact that any function which attains the inf is a first
eigenfunction and consequently does not change sign. On the other side if ϕ ∈ C1

0 (Ω ), ϕ ≡/ 0,
then, once more by the Holder inequality and (1.2), we have,∫

Ω |∇ϕ|2∫
Ω V2,λϕ

2
≥ 1(∫

Ω ρ2,λ

) 1
q2

∫
Ω |∇ϕ|2(∫
Ω ϕ

2p2
) 1

p2

=

∫
Ω |∇ϕ|2(∫
Ω ϕ

2p1
) 1

p1

≥ Λ(Ω, 2p1)

which immediately implies that,

ν1 ≥ Λ(Ω, 2p1)− λp1 ≥ 0, ∀λp1 ≤ Λ(Ω, 2p1),

which is a contradiction to ν1 < 0. □

Proposition 3.5. Let (p1, p2) satisfy (1.1), assume without loss of generality p1 ≤ p2 and
suppose that αi,∗ = 0, i = 1, 2. Then λ∗(Ω,p) ≥ 1

p2
Λ(Ω, 2p2).



18 D. BARTOLUCCI, Y. HU, A. JEVNIKAR, J. WEI, AND W. YANG

Proof. We can assume w.l.o.g. λ∗(Ω,p) ∈ (0,+∞). By definition there exists a sequence λn →
(λ∗(Ω,p))−, such that αi,λn → 0+. By Lemma 2.1 and passing to a further subsequence if
necessary we can assume that ui,n = λnψi,λn , i = 1, 2, converge smoothly to ui, i = 1, 2, which
are classical solutions of 

−∆u1 = λ∗up22 in Ω

−∆u2 = λ∗up11 in Ω

ui ≥ 0 in Ω, i = 1, 2

ui = 0 on ∂Ω, i = 1, 2.

By the monotonicity of the energy Eλ we have Eλ∗ ≥ E0(Ω), whence both u1 and u2 cannot

vanish identically. Let us set Vi = upi−1
i , ϕi = ui, i = 1, 2, then we have,

−∆ϕ1 = λ∗V2ϕ2 in Ω

−∆ϕ2 = λ∗V1ϕ1 in Ω

ϕi ≥ 0 on Ω, i = 1, 2

ϕi = 0 on ∂Ω, i = 1, 2.

By the strong maximum principle for cooperative and strongly coupled linear elliptic systems
(see Theorem 2.2 in [19]) we have ϕi > 0 in Ω, i = 1, 2 and we deduce that,

−∆ϕ1 ≤ λ∗p2V2ϕ2 in Ω

−∆ϕ2 ≤ λ∗p1V1ϕ1 in Ω

ϕi = 0 on ∂Ω, i = 1, 2,

where the equality holds if and only if p1 = 1 = p2. Multiplying the first equation by ϕ1, the
second by ϕ2 and integrating by parts we deduce that

0 ≥ Q(ϕ1, ϕ2) :=

∫
Ω
|∇ϕ1|2 +

∫
Ω
|∇ϕ2|2 − λ∗p2

∫
Ω
V2ϕ2ϕ1 − λ∗p1

∫
Ω
V1ϕ2ϕ1. (3.21)

By using ab ≤ 1
2(a

2 + b2) we see that,

Q(ϕ1, ϕ2) ≥
1

2

2∑
i=1

(∫
Ω
|∇ϕi|2 − λ∗p1

∫
Ω
V1ϕ

2
i

)
+

1

2

2∑
i=1

(∫
Ω
|∇ϕi|2 − λ∗p2

∫
Ω
V2ϕ

2
i

)
,

and then by using (3.19), (3.20), |Ω| = 1, p1 ≤ p2 and Λ(Ω, 2p2) ≤ Λ(Ω, 2p1) (this is well known,
see for example [15]) as above we deduce that that

Q(ϕ1, ϕ2) ≥

(
1

2

2∑
i=1

∫
Ω

∫
Ω
V1ϕ

2
i +

1

2

2∑
i=1

∫
Ω

∫
Ω
V2ϕ

2
i

)
(Λ(Ω, 2p2)− λ∗p2),

and we see from (3.21) that λ∗p2 ≥ Λ(Ω, 2p2), as claimed. □
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4. Existence, uniqueness and monotonicity

Let G(Ω) denote the set of solutions of (P)λ for λ ∈ [0, λ∗(Ω,p)).

Lemma 4.1. Let (p1, p2) satisfy (1.1). For any λ ∈ [0, λ∗(Ω,p)) there exists one and only one
solution (αλ,ψλ) of (P)λ. In particular G(Ω) is a real analytic simple curve of positive solutions
[0, λ∗(Ω,p)) ∋ λ 7→ (αλ,ψλ).

Proof. By Lemma A.1 and Proposition 3.4 we have that λ∗(Ω,p) > 0 and there exists a unique
solution of (P)λ for λ ≤ λ0 for some λ0 small enough. In particular these unique solutions
are positive and we can assume, possibly taking a smaller λ0, that λ

∗(Ω,p) > λ0. However by
definition we have σ1(αλ, ψλ) > 0 for any λ ∈ [0, λ∗(Ω,p)) and then by Lemma 2.1 and Lemma
3.3 any solution whose λ is less than λ0 generates a real analytic curve of positive solutions
which can be continued to a real analytic curve of positive solutions defined in [(−δ, λ∗(Ω,p))
for some small δ > 0.
If at any point in (λ0, λ

∗(Ω,p)) there exist two solutions, then by definition of λ∗(Ω,p) they
would be both positive and each one would generate in the same way another curve of positive
solutions in (−δ, λ∗(Ω,p)), for some small δ > 0. Obviously for both curves at λ = 0 we have
(αλ, ψλ) = (α0, ψ0) which is the unique solution of (P)λ for λ = 0. This is obviously impossible
since then (α0, ψ0) would be a bifurcation point, in contradiction with Lemma 3.3. □

Problem (P)λ is the Euler-Lagrange equation of the constrained minimization principle (VP)
below for the densities (ρ

1
,ρ

2
). As far as 1 ≤ p1 ≤ p2 < pN , existence of solutions could be

proved by an adaptation of an argument in [9], worked out there for a more general ”scalar”
problem, based on the theory of conjugate convex function. We adopt here a different argument
based on the weak Young inequality ([25]), which yields existence for (p1, p2) satisfying (1.1),
that is,

1

p1 + 1
+

1

p2 + 1
>
N − 2

N − 1
, pi ∈ (0,+∞), i = 1, 2, (4.1)

whose relevance for elliptic systems of Lane-Emden type was first noticed in [34].

Theorem 4.2. Let (p1, p2) satisfy (1.1). For any λ > 0 there exists a solution (αλ,ψλ) of (P)λ.

Proof. We discuss only the case N ≥ 3, the case N = 2 is easier. Here ∥ρ∥p denotes the stan-
dard Lp(Ω) norm. We will denote with C various constants depending only by (p1, p2), Ω and N .

Let us define ri = 1 + 1
pi
, i = 1, 2 and

PΩ,i :=

{
ρ ∈ Lri(Ω) |ρ ≥ 0 a.e. in Ω,

∫
Ω
ρ = 1

}
, i = 1, 2.

It is readily seen that (1.1) is equivalent to

1

r1
+

1

r2
<

N

N − 1
, ri ∈ (1,+∞), i = 1, 2, (4.2)

and for any (r1, r2) satisfying (4.2), for any λ > 0 and

(ρ
1
,ρ

2
) ∈ PΩ ≡ PΩ,1 × PΩ,2,

we define the free energy,

Jλ(ρ1,ρ2) =
1
r1

∫
Ω
(ρ

1
)r1 + 1

r2

∫
Ω
(ρ

2
)r2 − λ

∫
Ω
ρ
1
G[ρ

2
]. (4.3)

We split the proof in several steps.
STEP 1. We prove that if (r1, r2) satisfies (4.2), then Jλ is coercive for any λ > 0, that is, if λ > 0
and (ρ

1,n
,ρ

2,n
) ∈ PΩ,1 × PΩ,2 and max{∥ρ

1,n
∥r1 , ∥ρ2,n∥r2} → +∞, then Jλ(ρ1,n,ρ2,n) → +∞,
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as n→ +∞.
Let us recall the weak Young inequality ([25]),∫

Ω
ρ
1
G[ρ

2
] ≤ C∥ρ

1
∥s1∥ρ2∥s2 ,

1

s1
+

1

s2
=
N + 2

N
, si ∈ (0,+∞). (4.4)

Assume for the time being that for any (r1, r2) which satisfies (4.2), there exists (s1, s2) which
satisfies (4.4) and

si ∈ (1, ri), i = 1, 2. (4.5)

Then by the (4.4) and standard interpolation inequalities (recall
∫
Ω ρi = 1, i = 1.2) we would

have that, ∫
Ω
ρ
1
G[ρ

2
] ≤ C∥ρ

1
∥s1∥ρ2∥s2 ≤ C∥ρ

1
∥γ1r1r1 ∥ρ

2
∥γ2r2r2 , (4.6)

where

γi = (1− 1

si
)

1

ri − 1
, i = 1, 2.

Based on (4.6), elementary arguments show that Jλ is coercive for any λ > 0 as far as γ1+γ2 < 1.
Therefore we are left with showing that for any (r1, r2) which satisfies (4.2), there exists (s1, s2)
which satisfies (4.4), (4.5) and in particular,

(1− 1

s1
)

1

r1 − 1
+ (1− 1

s2
)

1

r2 − 1
< 1. (4.7)

Obviously there is no loss of generality in assuming

r2 ≥ r1.

Observe that, as far as,

(r1, r2) ∈ (1,
N

2
]× [

N

2
,+∞)

⋃
{r2 ≥ r1 : [

N

2
,+∞)× [

N

2
,+∞)},

then putting 1
s2

= 2
N + ε for some small enough ε > 0, from (4.4) we would have 1

s1
= 1− ε and

then

1 < s2 <
N

2
≤ r2, 1 < s1 =

1

1− ε
< r1.

Thus (4.5) is satisfied. On the other side, since here r2 ≥ N
2 , we also have that,

(1− 1

s1
)

1

r1 − 1
+ (1− 1

s2
)

1

r2 − 1
=

ε

r1 − 1
+ (1− 2

N
− ε)

1

r2 − 1
=

ε(
1

r1 − 1
− 1

r2 − 1
) +

N − 2

N

1

r2 − 1
≤ ε(

1

r1 − 1
− 1

r2 − 1
) +

2

N
< 1,

for any ε > 0 small enough, showing that (4.7) is satisfied as well.
Therefore we are left with showing that (s1, s2) which satisfies (4.4), (4.5) and (4.7) exists in the
region

1

r1
+

1

r2
<

N

N − 1
, r1 ∈ (r∗

N
,
N

2
), r1 ≤ r2 ≤

N

2
, (4.8)

where r∗
N
= N(N−1)

N2−N+2
is the intersection of 1

r1
+ 1

r2
< N

N−1 with the line r2 =
N
2 . Remark that the

lowest possible value of r2 in this region is the one at the corner point where r2 = r1 = 2N−1
N .

Put
1

s1
=

1

r1
+ ε,

which in view of (4.4) implies that

1− 1

s2
=

1

r1
− 2

N
+ ε.
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Then, in view of (4.2), and since r2 − 1 ≥ r1 − 1 ≥ 2N−1
N − 1 = N−2

N , concerning (4.7) we have,

(1− 1

s1
)

1

r1 − 1
+ (1− 1

s2
)

1

r2 − 1
=

ε(
1

r2 − 1
− 1

r1 − 1
) +

1

r1
+ (

1

r1
− 2

N
)

1

r2 − 1
≤

1

r1
+ (

1

r1
+

1

r2
− 1− 2

N
)

1

r2 − 1
+ (1− 1

r2
)

1

r2 − 1
=

1

r1
+

1

r2
+ (

1

r1
+

1

r2
− 1− 2

N
)

1

r2 − 1
<

1

r1
+

1

r2
+ (

1

N − 1
− 2

N
)

1

r2 − 1
≤

1

r1
+

1

r2
+

2−N

N(N − 1)

N

N − 2
=

1

r1
+

1

r2
− 1

N − 1
< 1.

Therefore we are left with showing that if (r1, r2) satisfies (4.8), then we can find (s1, s2) which
satisfies (4.5) as well as 1

s1
= 1

r1
+ ε, 1− 1

s2
= 1

r1
− 2

N + ε for some ε > 0. We split the discussion
in three regions which could be possibly empty for some N ≥ 3.
We recall that the symmetric point of the critical hyperbola in (4.4) is just s1 = 2N

N+2 = s2 and
that

1

r1
+

1

r2
<

N

N − 1
<
N + 2

N
. (4.9)

We start with the domain,

Ω1 = { r1 ∈ [2
N − 1

N
,
N

2
], r1 ≤ r2 ≤

N

2
}.

If (r1, r2) ∈ Ω1, since r1 ∈ [2N−1
N , N2 ], then for some σε → 0, as ε → 0+, we have that if

1
s1

= 1
r1

+ ε then r1 > s1 > 2N−1
N − σε >

2N
N+2 , whence in particular

s2 <
2N

N + 2
< 2

N − 1

N
≤ r2,

where we use (4.9). Therefore (4.5) is satisfied and then we are done with Ω1. Next we consider
the case,

Ω2 = { 1

r1
+

1

r2
<

N

N − 1
, r1 ∈ [

2N

N + 2
, 2
N − 1

N
), r2 ≤

N

2
}.

If (r1, r2) ∈ Ω2, since r1 ∈ [ 2N
N+2 , 2

N−1
N ), then for some σε → 0, hε → 0, as ε→ 0+, we have that

if 1
s1

= 1
r1

+ ε then r1 > s1 ≥ r1 − σε2
2N
N+2 − σε, whence in particular

s2 <
2N

N + 2
+ hε < 2

N − 1

N
≤ r2,

where we use again (4.9). Therefore (4.5) is satisfied and then we are done with Ω2 as well. At
last we discuss the case,

Ω3 = { 1

r1
+

1

r2
<

N

N − 1
, r1 ∈ [r∗

N
,

2N

N + 2
), r2 ≤

N

2
}.

If (r1, r2) ∈ Ω3, since r1 ∈ [r∗
N
, 2N
N+2), then for some σε → 0, hε → 0, as ε→ 0+, we have that if

1
s1

= 1
r1

+ ε then r1 > s1 > 2 2N
N+2 − σε, whence in particular

s2 < 2
N − 1

N
+ hε < r∗∗

N
≤ r2,

where r∗∗
N

is the intersection of 1
r1

+ 1
r2
< N

N−1 with the line r1 =
N
2 . Therefore (4.5) is satisfied

in this case as well, which concludes the proof of the claim of STEP 1.
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STEP 2. We prove the existence of the minimum of Jλ by the direct method.
Let (ρ

1,n
,ρ

2,n
) be a minimizing sequence, by STEP 1 ∥ρ

1,n
∥r1 and ∥ρ

2,n
∥r2 are bounded and

we assume that ρ
2,n

weakly converges in Lr2(Ω) and ρ
1,n

weakly converges in Lr1(Ω) to some

(ρ
1,λ
,ρ

2,λ
). Clearly 1

r1

∫
Ω(ρ1)

r1 + 1
r2

∫
Ω(ρ2)

r2 is convex whence lowersemicontinuous with respect

to the weak topology in Lr1(Ω) × Lr2(Ω). We will conclude the proof showing that, possibly
along a subsequence, we have

lim
n→+∞

∫
Ω
ρ
1,n
G[ρ

2,n
] =

∫
Ω
ρ
1,λ
G[ρ

2,λ
].

Indeed, writing∫
Ω
ρ
1,n
G[ρ

2,n
]− ρ

1,λ
G[ρ

2,λ
] =

∫
Ω
ρ
1,n

(G[ρ
2,n

− ρ
2,λ

]) +

∫
Ω
(ρ

1,n
− ρ

1,λ
)G[ρ

2,λ
] =

∫
Ω
ρ
1,n

(G[ρ
2,n

− ρ
2,λ

]) +

∫
Ω
ρ
2,λ

(G[ρ
1,n

− ρ
1,λ

]),

it is enough to prove that the embeddings of W 2,r2(Ω) in Lr
′
1(Ω) and of W 2,r1(Ω) in Lr

′
2(Ω) are

compact, where r
′
i is the exponent conjugate to ri. Clearly it is just enough to prove the former.

By (1.1) we readily deduce that,

r2 >
N − r1 − 1

N(r1 − 1) + 1
,

whence by the Sobolev embedding we find that W 2,r2(Ω) is compactly embedded in W 1,t(Ω) for
any

t < t2 = r
′
1

N2 −N

N2 −N + r
′
1

= r
′
1 −

r
′
1

N2 −N + r
′
1

,

where we remark that N2 −N + r
′
1 > r

′
1 > 0. Thus, again by the Sobolev embedding, we find

that W 2,r2(Ω) is compactly embedded in Lk(Ω) for any

k < k2 =

Nr
′
1

(
1− 1

N2−N+r
′
1

)
N − r

′
1

(
1− 1

N2−N+r
′
1

) ,
where we assume without loss of generality that N − r

′
1

(
1− 1

N2−N+r
′
1

)
> 0. Therefore it is

enough to prove that,

Nr
′
1

(
1− 1

N2−N+r
′
1

)
N − r

′
1

(
1− 1

N2−N+r
′
1

) > r
′
1,

which, after a straightforward evaluation, takes the form,

N2 − 1

r1
N +

1

r1 − 1
> 0.

The determinant of this polynomial is 1
r21

− 4
r1−1 which is readily seen to be always negative.

Thus we have proved the existence of at least one minimizer of Jλ.

STEP 3 We prove that any minimizer (ρ
1,λ
,ρ

2,λ
) defines a solution of (P)λ.

Let Ω+ = {x ∈ Ω : ρ
2,λ

> 0, a.e.} and Ω0 = {x ∈ Ω : ρ
2,λ

= 0, a.e.}. Since
∫
Ω ρ2,λ = 1,

then 0 < |Ω+| ≤ |Ω|. For any n ∈ N and for any variation of the form (ρ
1,λ
,ρ

2,λ
+ εη), with
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supp(η) ⊆ {x ∈ Ω+ : ρ
2,λ

> 1
n , a.e.}, η ∈ L∞(Ω) and

∫
Ω η = 0, by using the minimality of

(ρ
1,λ
,ρ

2,λ
) we have, ∫

{x∈Ω+:ρ
2,λ
> 1

n
}

(
(ρ

2,λ
)

1
p2 − λG[ρ

1,λ
]
)
η ≥ o(1), as ε→ 0.

Since this is true for any such η with
∫
Ω η = 0 and any n ∈ N, then we have that,

(ρ
2,λ

(x))
1
p2 − λG[ρ

1,λ
](x) = α2 a.e. in Ω+, (4.10)

for a suitable constant α2 ∈ R. Next, let χA denote the characteristic function of the set A, and
assume that |Ω0| > 0. For any variation of the form (ρ

1,λ
,ρ

2,λ
+ εη), with

η = φχΩ0 −

∫
Ω0

φ

 χΩ+

|χΩ+ |
, η ∈ L∞(Ω), φ ≥ 0,

we have, ∫
Ω0

(
−α2 − λG[ρ

1,λ
]
)
φ ≥ o(1), as ε→ 0.

Therefore we conclude that,

α2 + λG[ρ
1,λ

](x) ≤ 0 a.e. in Ω0, (4.11)

and in particular that ψ2,λ = G[ρ
1,λ

] ∈ W 2,r1
0 (Ω) is a strong solution of the first equation in

(P)λ with ψ1,λ = G[ρ
2,λ

] ∈ W 2,r2
0 (Ω), where (α2 + λψ2,λ)

p2
+ ≡ (α2 + λψ2,λ)

p2 as far as |Ω0| = 0.

The same argument shows that ψ1,λ is a strong solution of the second equation in (P)λ.

At last, by Lemma 2.1 any strong solution determined in STEP 3 is a classical solution. This
fact concludes the proof. □

Theorem 4.3. For any λ ∈ [0, λ∗(Ω,p)) Fλ is real analytic, decreasing with dFλ
dλ < 0, and

concave and we have F
′
λ = −Eλ. In particular dEλ

dλ ≥ 0 and d
dλ

(
p1α1,λ

p1+1 +
p2α2,λ

p2+1

)
< 0 for any

λ ∈ [0, λ∗(Ω,p)).

Proof. We first observe that, by the uniqueness in Lemma 4.1, we have that Fλ is the same as
F (λ) in (VP). It is useful at this stage to introduce the vectorial density,

ρ = (ρ
1
,ρ

2
)

and the corresponding entropy,

S(ρ ) = 1
r1

∫
Ω
(ρ

1
)r1 + 1

r2

∫
Ω
(ρ

2
)r2 ,

and energy

E(ρ ) =
∫
Ω
ρ
1
G[ρ

2
],

whence Jλ(ρ ) = S(ρ )− λE(ρ ).
By Lemma 4.1 Fλ is real analytic. If λ2 > λ1 ≥ 0, then Jλ2

(ρ ) < Jλ1
(ρ ), whence Fλ2

≤ Fλ1
.

Thus Fλ is decreasing for λ > 0. Moreover, setting λ = tλ1 + (1− t)λ2, t ∈ [0, 1], and letting ρ
λ

be any minimizer of Jλ, we find that,

Fλ = S(ρ
λ
)− λE(ρ

λ
) = −S(ρ

λ
)(t+ (1− t))− (tλ1 + (1− t)λ2)E(ρ

λ
) =

tJλ1
(ρ

λ
) + (1− t)Jλ2

(ρ
λ
) ≥ tF λ1 + (1− t)F λ2.
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Therefore Fλ is concave with d2Fλ
dλ2

≤ 0.

At this point we use a well known trick about canonical variational principles (see for example
[11]). Let λ1 ̸= λ2 in [0, λ∗(Ω,p)) and let ρ

1
, ρ

2
be the minimizers of Jλ1

, Jλ2
respectively. Clearly

we have

Fλ1
≤ S(ρ

2
)− λ1E(ρ2 ) = Fλ2

− (λ1 − λ2)E(ρ2 ), (4.12)

Fλ2
≤ S(ρ

1
)− λ2E(ρ1 ) = Fλ1

− (λ2 − λ1)E(ρ1 ). (4.13)

and we deduce from (4.12), (4.13) that

−E(ρ
1
) ≤

Fλ1
− Fλ2

λ1 − λ2
≤ −E(ρ

2
) if λ1 > λ2,

−E(ρ
2
) ≤

Fλ2
− Fλ1

λ2 − λ1
≤ −E(ρ

1
) if λ2 > λ1.

By Lemma 4.1, as λ2 → λ1 we have ρ
2
→ ρ

1
smoothly, whence

dFλ1

dλ
= −E(ρ

1
) ≡ − Eλ|λ=λ1 .

Remark that Eλ > 0 in [0, λ∗(Ω,p)), whence dFλ
dλ < 0. In particular, since Fλ is real analytic and

concave, then dEλ
dλ = −d2Fλ

dλ2
≥ 0, for any λ ∈ [0, λ∗(Ω,p)).

At this point observe that,

Fλ =
1

r1

∫
Ω
(ρ

1,λ
)r1 +

1

r2

∫
Ω
(ρ

2,λ
)r2 − λ

∫
Ω
ρ
1,λ
G[ρ

2,λ
] =

1

r1

∫
Ω
ρ
1,λ

(α1,λ + λ1ψ1,λ) +
1

r2

∫
Ω
ρ
2,λ

(α2 + λ2ψ2,λ)− λ

∫
Ω
ρ
1,λ
G[ρ

2,λ
] =

α1,λ

r1
+
λ

r1

∫
Ω
ρ
1,λ
G[ρ

2,λ
] +

α2,λ

r2
+
λ

r2

∫
Ω
ρ
2,λ
G[ρ

1,λ
]− λ

∫
Ω
ρ
1,λ
G[ρ

2,λ
] =

p1α1,λ

p1 + 1
+
p2α2,λ

p2 + 1
+

p1p2 − 1

(p2 + 1)(p1 + 1)
Eλ.

By Lemma 4.1, αi,λ, i = 1, 2 are real analytic, and then we deduce that,

d

dλ

(
p1α1,λ

p1 + 1
+
p2α2,λ

p2 + 1

)
=
dFλ

dλ
− p1p2 − 1

(p2 + 1)(p1 + 1)

dEλ

dλ
< 0,

where the strict inequality follows from dFλ
dλ < 0. □

Finally we prove the estimate about the derivative of Eλ.

Proposition 4.4. Let (αλ,ψλ) ∈ G(Ω) be the unique positive solutions of (P)λ for λ ∈
[0, λ∗(Ω,p)). Then,

dEλ

dλ
≥ p1∥[ψ1,λ]1,λ∥21,λ + p2∥[ψ2,λ]2,λ∥22,λ. (4.14)

Proof. By Lemma 4.1 (αλ,ψλ) is a real analytic function of λ and then, by standard elliptic
estimates, we have that ηλ ∈ (C2

0 (Ω ))2 where

ηλ = (η1,λ, η2,λ) =
dψλ

dλ
=

(
dψ1,λ

dλ
,
dψ2,λ

dλ

)
,

is a classical solution of,{
−∆η1,λ = τ2,λV2,λη2,λ + p2V2,λψ2,λ + p2V2,λ

dα2,λ

dλ ,

−∆η2,λ = τ1,λV1,λη1,λ + p1V1,λψ1,λ + p1V1,λ
dα1,λ

dλ ,
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and
dαi,λ

dλ can be computed by the unit mass constraints in (P)λ, that is

p2
dα2,λ

dλ
= −τ2,λ < η2,λ >2,λ −p2 < ψ2,λ >2,λ, p1

dα1,λ

dλ
= −τ1,λ < η1,λ >1,λ −p1 < ψ1,λ >1,λ .

Therefore, we conclude that ηλ is a solution of,{
−∆η1,λ = τ2,λV2,λ[η2,λ]2,λ + p2V2,λ[ψ2,λ]2,λ,
−∆η2,λ = τ1,λV1,λ[η1,λ]1,λ + p1V1,λ[ψ1,λ]1,λ.

(4.15)

Since Eλ =
∫
Ω(∇ψ1,λ,∇ψ2,λ), then by using (P)λ and (4.15) we also have,

d

dλ
Eλ =

∫
Ω
(∇η1,λ,∇ψ2,λ) +

∫
Ω
(∇ψ1,λ,∇η2,λ) =

2∑
i=1

τi,λ < [ηi,λ]i,λ[ψi,λ]i,λ >i,λ +
2∑
i=1

pi∥[ψi,λ]2i,λ∥2i,λ.

Let us denote, for i = 1, 2,

[ψi,λ]i,λ =
+∞∑
k=1

ξi,k[ϕi,k]i,λ, [ηi,λ]i,λ =

+∞∑
k=1

βi,k[ϕi,k]i,λ,

ξi,k =< [ϕi,k]i,λ[ψi,λ]i,λ >i,λ, βi,k =< [ϕi,k]i,λ[ηi,λ]i,λ >i,λ,

the Fourier expansions of [ψi,λ]i,λ and [ηi,λ]i,λ in Yi,0 (see Lemma 3.1), with respect to the
normalized eigenfunctions [ϕi,k]i,λ, satisfying ∥[ϕi,k]i,λ∥i,λ = 1, i = 1, 2. Then, by Lemma 3.1, we
have,

d

dλ
Eλ = τ2,λ

+∞∑
k=1

β2,kξ2,k + τ1,λ

+∞∑
k=1

β1,kξ1,k + p2

+∞∑
k=1

ξ22,k + p1

+∞∑
k=1

ξ21,k. (4.16)

We can now consider λ > 0. On the other side, multiplying the first equation in (4.15) by ϕ2,k,
the second by ϕ1,k, using (3.13) and integrating by parts, we have,{

(τ1,λ + p1σk)β1,k = τ2,λβ2,k + p2ξ2,k,
(τ2,λ + p2σk)β2,k = τ1,λβ1,k + p1ξ1,k,

(4.17)

where σk = σk(αλ,ψλ). Since by (3.14) we also have 2λ+σk > λ, then (4.17) admits the unique
solution,

β1,k =
λ(p1ξ1,k + p2ξ2,k) + σkp2ξ2,k

p1σk(2λ+ σk)
, β2,k =

λ(p1ξ1,k + p2ξ2,k) + σkp1ξ1,k
p2σk(2λ+ σk)

,

which we can substitute in (4.16) to deduce that

d

dλ
Eλ = λ

+∞∑
k=1

λ(p1ξ1,k + p2ξ2,k)(ξ1,k + ξ2,k) + 2σkξ1,kξ2,k
σk(2λ+ σk)

+ p2

+∞∑
k=1

ξ22,k + p1

+∞∑
k=1

ξ21,k. (4.18)

At this point observe that the equations in (P)λ can be written in the following form,

−∆ψ1,λ = V2,λ(α2,λ + λψ2,λ) in Ω

−∆ψ2,λ = V1,λ(α1,λ + λψ1,λ) in Ω∫
Ω

Vi,λ(αi,λ + λψi,λ) = 1 i = 1, 2.

Therefore we can evaluate

αi,λ =
1

mi,λ
− λ < ψi,λ >i,λ, i = 1, 2,

and deduce that
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
−∆ψ1,λ = (m2,λ)

−1V2,λ + λV2,λ[ψ2,λ]2,λ in Ω

−∆ψ2,λ = (m1,λ)
−1V1,λ + λV1,λ[ψ1,λ]1,λ in Ω

ψi,λ = 0 on ∂Ω, i = 1, 2.

(4.19)

Multiplying the first equation in (4.19) by ϕ2,k, the second by ϕ1,k, using (3.13) and integrating
by parts, we have, {

(τ1,λ + p1σk)ξ1,k =< ϕ2,k >2,λ +λξ2,k,
(τ2,λ + p2σk)ξ2,k =< ϕ1,k >1,λ +λξ1,k.

(4.20)

Since pi ≥ 1, i = 1, 2 and since by (3.14) we also have 2λ + σk > λ, then (4.20) admits the
unique solution,

ξ1,k =
(τ2,λ + p2σk) < ϕ2,k >2,λ +λ < ϕ1,k >1,λ

p1p2(λ+ σk)2 − λ2
,

ξ2,k =
(τ1,λ + p1σk) < ϕ1,k >1,λ +λ < ϕ2,k >2,λ

p1p2(λ+ σk)2 − λ2
,

and since of course we can assume that < ϕi,k >i,λ≥ 0, i = 1, 2, for any k ∈ N, then we deduce
that

ξi,k ≥ 0, i = 1, 2,∀ k ∈ N. (4.21)

Remark that all the relations above, including (4.18), (4.21), hold just by assuming that 0 /∈
σ(Lλ). However at this point we use the fact that for any λ < λ∗(Ω,p) it holds σk ≥ σ1 > 0,
∀ k ∈ N, which, together with (4.18) and (4.21) implies that

d

dλ
Eλ ≥ p2

+∞∑
k=1

ξ22,k + p1

+∞∑
k=1

ξ21,k = p2∥[ψ2,λ]2,λ∥22,λ + p1∥[ψ1,λ]1,λ∥21,λ.

which is (4.14). □

At last we present the proofs of Theorems 1.3 and 1.5.
The proof of Theorem 1.3. Uniqueness and regularity follow immediately from Lemma 4.1 and
then a straightforward evaluation yields the behavior in the claim as λ → 0. The inequality
about the energy for λ = 0 is a well known torsional inequality, see [15]. The monotonicity in
the claim follows from Theorem 4.3 and Proposition 4.4. Finally, if either σ1,∗ = 0 or if αi,∗ = 0,
i = 1, 2, it follows from Propositions 3.4 and 3.5 that λ∗(Ω,p) ≥ 1

p2
Λ(Ω, 2p2). □

The proof of Theorem 1.5. For (µλ,uλ) as defined in the claim, from the constrains in (P)λ we
have

αi,λ = ∥1 + ui,λ∥−1
pi , i = 1, 2, (4.22)

which immediately shows that
p1α1,λ

p1 + 1
+
p2α2,λ

p2 + 1
= γ(µ,uλ).

Next observe that

Eλ =
1

2

∫
Ω
ρ
1,λ
ψ1,λ +

1

2

∫
Ω
ρ
2,λ
ψ2,λ =

αp1+1
1,λ

2λ

∫
Ω
(1 + u1)

p1u1 +
αp2+1
2,λ

2λ

∫
Ω
(1 + u2)

p2u2,

which together with (4.22) and

λ = µ1,λ
α2,λ

αp11,λ
, λ = µ2,λ

α1,λ

αp22,λ
, (4.23)

yields

Eλ =
αp11,λα

p2
2,λ

2µ2,λ

∫
Ω
(1 + u1)

p1u1 +
αp22,λα

p1
1,λ

2µ1,λ

∫
Ω
(1 + u2)

p2u2 = E(µλ,uλ).
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Moreover, we immediately have F (µλ,uλ) = Fλ as well.
Therefore, as far as λ < λ∗(Ω,p) the monotonicity properties in the claim follow immediately
from Theorem 1.3.
Clearly, as far as λ < λ∗(Ω,p), by definition we also have σ1(αλ,ψλ) > 0 and αi,λ > 0, i = 1, 2,
whence by Lemma 4.1 we see that (µλ,uλ) is a continuous real analytic curve.
Finally, assume that α1,∗ = 0 and α2,∗ > 0. By definition there exists a sequence λn →
(λ∗(Ω,p))−, such that α1,λn → 0+, α2,λn → α2 > 0. The curve is obviously unbounded since by
(4.23) we have µ2,λ → +∞.
Now, under the assumption of Theorem 1.2-(b), we have λ∗(Ω,p) < +∞ and then by Lemma
2.1 and passing to a further subsequence if necessary we can assume that ψi,λn , i = 1, 2 converge
smoothly to ψi,∗, i = 1, 2, which are classical solutions of (P)λ for λ = λ∗(Ω,p) and α1 = 0,
α2 > 0. Since by definition αi,λnui,λn = λnψi,λn , i = 1, 2, then the convergence in the claim
follows from (4.22).
The conclusion in case α2,∗ = 0 and α1,∗ > 0 follows in the same way. □

Appendix A. Uniqueness of solutions for λ small

The following lemma is proved by a standard application of the contraction mapping principle
and we prove it here just for reader’s convenience. We will denote by C1 the constant in Lemma
2.1 and by C2, C3 other positive constants depending only by r0,Ω,p, N .

Lemma A.1. There exists λ0 > 0 such that:
(j) for any λ ∈ [0, λ0] there exist at least one solution (αλ,ψλ) of (P)λ.

(jj) for any solution of (P)λ we have αi,λ >
1
3 , i = 1, 2 for any λ ∈ [0, λ0].

Proof. (j)
Putting u1 = λψ1, u2 = λψ2 the proof is an immediate consequence of the following lemmas.
Let α = (α1, α2), u = (u1, u2) and let us define,

B∞ =

{
u ∈ (L∞(Ω))2 | ∥u∥L∞(Ω) := max

i=1,2
∥ui∥L∞(Ω) ≤ C1, ui ≥ 0, a.e. in Ω, i = 1, 2

}
where C1(r,Ω, 1,p, N) is the constant obtained in Lemma 2.1 evaluated with λ = 1.

Lemma A.2. Let (p1, p2) satisfy (1.1). There exists λ0 ∈ (0, 1] such that for any λ ∈ [0, λ0] and

for any αi ∈ (−∞, 1] there exists one and only one solution u = (u1,λ,α, u2,λ,α) ∈ (C2,r
0 (Ω ))2 of

the problem 

−∆u1 = λ(α2 + u2)
p2
+ in Ω

−∆u2 = λ(α1 + u1)
p1
+ in Ω

u1 = 0 = u2 on ∂Ω

ui ∈ B∞, i = 1, 2.

(A.1)

Moreover, for fixed λ ∈ [0, λ0], the maps (−∞, 1] ∋ α1 → u2,λ[α1] = u2,λ,α ∈ B∞, (−∞, 1] ∋
α2 → u1,λ[α2] = u1,λ,α ∈ B∞, are continuous and u1,λ,α ≡ 0 ≡ u2,λ,α if either λ = 0 or if
αi ≤ 0, i = 1, 2.

Proof. First of all, if either λ = 0 or if αi ≤ 0, i = 1, 2, then (u1, u2) ≡ (0, 0) is a solution,
whence the last part of the statement will follow immediately from the uniqueness.
For λ0 ∈ (0, 1] to be fixed later on and for fixed λ ∈ [0, λ0] and αi ∈ (−∞, 1], i = 1, 2, we define

Tλ,α(u) = λ(G[(α2 + u2)
p2
+ ], G[(α1 + u1)

p1
+ ]), ui ∈ B∞, i = 1, 2.

Recall that if αi > 0 then αi ≤ 1, while if αi < 0 then (αi + ui)+ ≤ (ui)+, whence we have,

∥Tλ,α(u)∥L∞(Ω) := λmax
i=1,2

∥G[(αi + ui)
pi
+ ]∥L∞(Ω) ≤ λC2,



28 D. BARTOLUCCI, Y. HU, A. JEVNIKAR, J. WEI, AND W. YANG

and we readily see that Tλ,α : B∞ → B∞ for any λ ≤ C1
C2

. Also,

∥Tλ,α(u)−Tλ,α(v)∥L∞(Ω) ≤ λmax
i=1,2

∥piG[(αi + wi)
pi−1
+ |ui − vi|]∥L∞(Ω) ≤

λmax
i=1,2

∥piG[(αi + wi)
pi−1
+ ∥L∞(Ω)∥ui − vi∥L∞(Ω) ≤ λC3∥u− v∥L∞(Ω)

where wi ∈ B∞ satisfies ui ≤ wi ≤ vi, i = 1, 2.
Therefore, we also have ∥Tλ,α(u) − Tλ,α(v)∥L∞(Ω) ≤ 1

2∥u − v∥L∞(Ω), for any λ ≤ 1
2C3

. As a

consequence putting λ0 = min{1, C1
C2
, 1
2C3

}, we have that Tλ,α is a contraction in B∞ for any

λ ≤ λ0. Whence, in particular, for any fixed α ∈ ((−∞, 1])2, we have that for any λ ∈ [0, λ0 ]
there exists a unique solution of u = Tλ,α(u). The existence and uniqueness claim follows since,

by standard elliptic estimates, (u1,λ,α, u2,λ,α) ∈ (C2,r
0 (Ω))2 solves the problem in the statement

of the lemma if and only if u ∈ B∞ satisfies u = Tλ,α(u).
Concerning the continuity of (u1,λ[α2], u2,λ[α1]) = (u1,λ,α, u2,λ,α) for αi ∈ (−∞, 1], i = 1, 2, we
observe that if αn = (α1,n, α1,n) → α = (α1, α2), then

∥u2,λ[α1,n]− u2,λ[α1]∥L∞(Ω) = ∥G[(α1,n + u1,λ,αn)
p1
+ ]−G[(α1 + u1,λ,α)

p1
+ ]∥L∞(Ω) ≤

∥G[(α1,n + u1,λ,αn)
p1
+ ]−G[(α1,n + u1,λ,α)

p1
+ ]∥L∞(Ω)+

∥G[(α1,n + u1,λ,α)
p1
+ ]−G[(α1 + u1,λ,α)

p1
+ ]∥L∞(Ω) ≤

λC3∥u1,λ[α2,n]− u1,λ[α2]∥L∞(Ω) + p1λ∥G[(s+ u1,λ,α)
p1−1
+ ]∥L∞(Ω)|α1,n − α1| ≤

1

2
∥u1,λ[α2,n]− u1,λ[α2]∥L∞(Ω) + λ0C3|α1,n − α1|.

Clearly the same argument applies to the other component and then we deduce that

∥u2,λ[α1,n]− u2,λ[α1]∥L∞(Ω) + ∥u1,λ[α2,n]− u1,λ[α2]∥L∞(Ω) ≤ 4λ0C3(|α1,n − α1|+ |α2,n − α2|),
which readily implies the claim. □

For fixed λ ∈ [0, λ0] we consider the continuous map

((−∞, 1])2 ∋ α = (α1, α2) → uα = (u1,λ[α2], u2,λ[α1]) ∈ (B∞)2,

where u1,λ[α2] = u1,λ,α, u2,λ[α1] = u2,λ,α. Then we have,

Lemma A.3. By taking a smaller λ0 if necessary, for any fixed λ ∈ [0, λ0] we have:
(i) The maps u1,λ[α2], u2,λ[α1] are monotonic increasing,

u1,λ[α2] ≤ u1,λ[β2], ∀ 0 < α2 < β2 ≤ 1, u2,λ[α1] ≤ u2,λ[β1], ∀ 0 < α1 < β1 ≤ 1.

(ii) There exists at least one αλ = (α1,λ, α2,λ) ∈ ((13 , 1])
2 such that,∫

Ω
(α1,λ + u1,λ[α2,λ])

p1 = 1 =

∫
Ω
(α2,λ + u2,λ[α1,λ])

p2 .

Proof. (i) If λ = 0 we have u1,0,α = 0 for any α and the conclusion is trivial. For any fixed
−∞ < α2 < β2 ≤ 1 let us set,

(w1, w2) = (u1,λ[β2]− u1,λ[α2], u2,λ[β1]− u2,λ[α1]) ∈ (C2,r
0 (Ω ))2,

then

−∆w1 = λ(β2 + u2,λ[β1])
p2
+ − λ(α2 + u2,λ[α1])

p2
+ ≥ λ(α2 + u2,λ[β1])

p2
+ − λ(α2 + u2,λ[α1])

p2
+ ≥

λp2(α2 + u2,λ[α1])
p2−1
+ (u2,λ[β1]− u2,λ[α1]) = λp2(α2 + u2,λ[α1])

p2−1
+ w2,

by the convexity of f(t) = (α+ t)p+ for t ∈ R. By applying the same argument to w2 we deduce
that {

−∆w1 ≥ V2w2

−∆w2 ≥ V1w1
, V1 = λp1(α1 + u1,λ[α2])

p1−1
+ , V2 = λp2(α2 + u2,λ[α1])

p2−1
+ .
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and then, in view of Lemma 2.1 and possibly taking a smaller λ0, well known results for coop-
erative elliptic systems ([22]) show that wi ≥ 0, i = 1, 2, as claimed.

(ii) For λ = 0 we have ui,0,α = 0, i = 1, 2 and then necessarily αi,λ = 1, i = 1, 2. For fixed
λ ∈ (0, λ0], by Lemma A.2 and (i) the functions

g1(α) =

∫
Ω
(α1 + u1,λ[α2])

p1
+ , g2(α) =

∫
Ω
(α2 + u2,λ[α1])

p2
+ , α ∈ ((−∞, 1])2,

are continuous as a function of (α1, α2) and increasing in α1 and α2. Clearly ∥u1,λ[α2]∥∞ ≤ λC2,
∥u1,λ[α2]∥∞ ≤ λC2 for any λ ≤ λ0, and then, possibly taking λ0 small enough to guarantee that

(2λ0C2)
pi ≤ 1

4
, i = 1, 2, (A.2)

we have,

g1((0, α2)) =

∫
Ω
(u1,λ[α2])

p1 ≤ 1

4
, ∀λ ∈ (0, λ0], ∀α2 ∈ (−∞, 1],

g2((α1, 0)) ≤
∫
Ω
(u2,λ[α1])

p2 ≤ 1

4
, ∀λ ∈ (0, λ0], ∀α1 ∈ (−∞, 1],

while we also have,

g1((1, α2)) =

∫
Ω
(1 + u1,λ[α2])

p1 > 1, ∀λ ∈ (0, λ0], ∀α2 ∈ (−∞, 1],

g2((α1, 1)) =

∫
Ω
(1 + u2,λ[α1])

p2 > 1, ∀λ ∈ (0, λ0], ∀α1 ∈ (−∞, 1].

As a consequence, for any λ ∈ (0, λ0] there exists at least one αλ = (α1,λ, α2,λ) such that
gi(αλ) = 1, i = 1, 2 which, by the monotonicity of gi, must necessarily satisfy

αi,λ ∈ (0, 1), i = 1, 2. (A.3)

This concludes the proof of Lemma A.1-(j).

Proof of (jj)
Let (αλ,ψλ) be any solution of (P)λ for λ ∈ [0, λ0]. If λ = 0 then necessarily αλ = (1, 1).
Otherwise let λ ∈ (0, λ0] and observe that λψλ = uλ where uλ is the unique solution of (A.1)
found in (j). As a consequence, by (A.2) and (A.3) we have that,

1 =

∫
Ω
(α1,λ + u1,λ[α2,λ])

p1
+ ≤ 2p1(α1,λ)

p1
+ + (2λC2 )

p1 ≤ 2p1αp11,λ +
1

4
,

whence α1,λ ≥ (34)
1
p1

1
2 >

1
3 . □
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