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Abstract. We classify the singular limits relative to a free boundary problem arising in plasma physics

in dimension d = 2, under suitable natural integral bounds. It turns out that one of the asymptotic

behaviors allowed corresponds to the Dancer-Yan spikes (J. London Math. Soc. (78) 2008, 639–662).
Interestingly enough, roughly speaking and unlike the higher dimensional case, it is not true that any

solution in the limit is a Dancer-Yan spike. Indeed, the spiking structure is more rich and we succeed

in a detailed description of the singular behavior by a careful analysis, from local to global, of the
tiny difference between the maximum value of the spikes and their “vanishing level” defining the free

boundary.
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1. Introduction

Let Ω ⊂ R2 be a bounded domain of class C2,β for some β ∈ (0, 1), and let p ∈ (1,+∞). For any
fixed I > 0, we consider the pairs (v, γ) ∈ C2,β(Ω) ∩ C0(Ω)× R solving the free boundary problem:

−∆v = [v]p+, in Ω,

v = γ, on ∂Ω,´
Ω

[v]p+ = I

(FI)

This system is a simplified model of the Grad-Shafranov equation, describing plasma equilibria in a
section of a Tokamak. The interest about this equation has been recently renewed (see [26, 28, 40, 41]
and references quoted therein), due to its relevance to the seek of cold fusion ([22, 48]). The so called
“plasma region”, is by definition the set Ω+ = {v > 0} which is the region of the Tokamak occupied by
the plasma. The major issue of cold fusion is to confine the hot plasma far away from the boundary of
the Tokamak, which is why it is interesting to try to describe the set of solutions such that Ω+ ⋐ Ω, in
which case the boundary of Ω+ is by definition the “free boundary” of the plasma. A lot of work has been
done to understand existence, uniqueness, multiplicity of solutions and existence/non-existence/structure
of the free boundary of (FI) either for p = 1 ([13, 14, 19, 21, 23, 24, 29, 30, 31, 42, 51, 52]) or in higher
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dimension ([1, 10, 33, 39, 46, 47, 50], [53]-[56] and more recently [5]). As far as we are concerned exactly
with the equation (FI), that is the “plasma problem” in dimension 2 and p ∈ (1,+∞), we have the well
known results in [1], [6]-[9], [10], [20], [35, 37] and more recently [2], [3], [4]. Due to the fundamental
results of Beresticky-Brezis ([10]), it is well known that for any I > 0 there exists at least one solution
of (FI).

We wish to make a first step in the classification of the singular limits allowed for solutions of (FI)
as I → +∞, a situation in which one expects to find a non trivial free boundary structure. Indeed,
among other results cited above, in dimension d ≥ 3 and 1 < p < d

d−2 , the existence and qualitative

properties of solutions of (FI) in the limit I → +∞, sharing a nice free boundary structure (sometimes
called “spikes”) was proved in [21, 53]. In a recent paper [5], it has been shown that, under suitable
natural integral bounds, in the limit I → +∞ any solution is the glueing of finitely many spikes in the
sense of [21, 53]. We would like to obtain a similar result in dimension d = 2 but we face a genuinely new
difficulty. In fact, the construction in [21, 53] as well as the results in [5] crucially rely on the classification
of solutions of −∆w = [w − 1]p+ in Rd,

´
Rd

[w − 1]p+ < +∞, w > 0, w → 0, |x| → +∞. However, as first

noticed in [20], there is no solution of this problem in dimension d = 2, which prevents one to adopt the
argument in [21] and [53]. This is why the results in [21] has been extended somehow to the case d = 2
in [20] in a different way, based on a careful choice of the solution of the limiting global problem and a
simultaneous rescaling and blow up of the solutions. The corresponding model solutions, which we refer to
as the “Dancer-Yan spikes”, are described in subsection 3.1 below. First of all we classify the finite mass
solutions of the corresponding planar equations, see Proposition 2.2 about problem (2.4). Surprisingly
enough, it turns out that, unlike the case d ≥ 3, in dimension d = 2 it is not true that, under suitable
natural integral bounds, in the limit I → +∞ any solution is the glueing of finitely many Dancer-Yan
spikes ([20]). We illustrate this point below in terms of more natural variables as in [5].

For any fixed p > 1 and I > 0 let us set I = λq, where q = p
p−1 is the Hölder conjugate to p. We consider

the new variables (α,ψ) ∈ R× C2,β(Ω) defined as follows

γ = λ
1

p−1α,

v = λ
1

p−1 (α+ λψ).

Thus, as far as p > 1, for fixed I > 0, (FI) is equivalent to the following problem for fixed λ = I
1
q ,



−∆ψ = [α+ λψ]p+, in Ω,

ψ = 0, on ∂Ω,´
Ω

[α+ λψ]p+ = 1.

Besides the equivalence with (FI), problems of the form (Pλ) arise in other contexts but with different
boundary conditions ([27]). Actually, (Pλ) is closely related to the well known class of singularly perturbed
problems ([20, 21, 53]) as it is readily seen putting

v =
λ

|α|
ψ and ε := (|α|p−1λ)−1/2,
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which, in the limit α→ −∞, satisfy (see [5] for a proof) λ→ +∞, ε→ 0 and

−ε2∆v = [v − 1]p+, in Ω,

v = 0, on ∂Ω,´
Ω

[v − 1]p+ = 1
|α|p → 0.

(1.1)

In order to classify the asymptotic behavior of solutions, we drop at first boundary conditions in (Pλ)
and consider a sequence of solutions of−ε2n∆vn = [vn − 1]p+, in Ω

vn ≥ 0, in Ω
(1.2)

with εn ↘ 0, which satisfy: ˆ

Ω

1

ε2n
[vn − 1]p−1

+ dx ≤ Hp−1,(H1)

for some fixed Hp−1 > 0. It can be shown, see Proposition 4.1 below, that a sequence of solutions of
(1.2) satisfying (H1) also satisfies [vn − 1]+ → 0 locally uniformly in Ω. It is worth to remark that this
is a major difference with the higher dimensional case (see [21], [53] and [5]) where local maxima stay
bounded below far away from 1. As a consequence, in particular a subtle problem arise which is to analyze
the fine properties of the vanishing quantity [vn − 1]+ around a local maximizer. To this aim we also
assume that vn satisfies,

ˆ

Ω

θn
ε2n

[vn − 1]p+ dx ≤ Hp,(H2)

for some Hp > 0, where, here and in the rest of this work, θn is defined as in [20]: first define sn by(
εn
sn

) 2
p−1

ϕ′(1) ln(
√
πsn) = 1,(1.3)

where ϕ is the unique solution of the Emden equation (2.1); and then put

θn := ϕ′(1) ln(
√
πsn).

Remark that for εn sufficiently small sn is uniquely defined and sn → 0+ as εn → 0+. We assume w.l.o.g.
that sn ≤ 1√

π
. Note that since ϕ′(1) < 0, we have lim

n→+∞
θn = +∞.

Here and in the rest of this notes we will often pass to subsequences which will not be relabelled. In the
following statement Ip−1, Ip, are defined in (2.2), (2.3), sn → 0 is defined in (1.3) and w∗ is defined in
(2.7). Then we have,

Theorem 1.1. Let vn be a sequence of solutions of (1.2) satisfying (H1),(H2). Then:

either (A) [Vanishing] For any Ω0 ⋐ Ω there exists n0 ∈ N and C0 > 0, both depending by Ω0, such
that,

[vn − 1]+ = 0, in Ω0, ∀n ≥ n0,

in which case, for any Ω1 satisfying Ω0 ⋐ Ω1 ⋐ Ω, there exists C(Ω0,Ω1) > 0 such that

∥vn∥L∞(Ω0) ≤ C(Ω0,Ω1)

ˆ

Ω1

vn dx, ∀n ≥ n0,(1.4)
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or (B) There exists an open subdomain Ω0 ⋐ Ω and sequence of points xn in Ω0 such that
xn → x∗ ∈ Ω0 and

vn(xn) = sup
Ω
vn > 1,

in which case, setting

tn :=

{
ϕ(0)

θn(vn(xn)− 1)

} p−1
2

and ṽn as follows,

ṽn(y) := ϕ′(1) ln(
√
πsn) (vn(xn + sny)− 1) = θn (vn(xn + sny)− 1)(1.5)

the sequence of normalized functions,

un(z) = Rtn ṽn(z) := t
2

p−1
n ṽn(tnz)(1.6)

satisfies un(0) = ϕ(0) and

−∆un(z) = [un(z)]
p
+, ∀z ∈ R2, |z| < dist(x∗, ∂Ω)

4sntn
.(1.7)

Then either sntn → 0+, which means that there exists a spike, or else sntn ≥ C > 0, which means
that the spike is fading out. More exactly, we have the following alternatives:

either (B-i) [Type I spikes] tn → t∞ ∈ (T0,+∞), where T
2

p−1

0 = 1
2
Hp

Ip
> 0,

and then there exists a sequence Rn → +∞ such that Rnsntn → 0+, and

∥un − w∗∥C2(B2Rn (0)) → 0, as n→ +∞.

Furthermore,

lim
n→+∞

1

ε2n

ˆ

B2Rnsntn (xn)

[vn − 1]p−1
+ dx = Ip−1, lim

n→+∞

θn
ε2n

ˆ

B2Rnsntn (xn)

[vn − 1]p+ dx =
Ip

t
2

p−1
∞

,

or (B-ii) [Type II spikes] tn → +∞ ≡ t∞ but sntn → 0+,
and then there exists a sequence Rn → +∞ such that Rnsntn → 0+,

∥un − w∗∥C2(B2Rn (0)) → 0, as n→ +∞,

and

lim
n→+∞

1

ε2n

ˆ

B2Rnsn (xn)

[vn − 1]p−1
+ dx = Ip−1, lim

n→+∞

θn
ε2n

ˆ

B2Rnsn (xn)

[vn − 1]p+ dx = 0,

or (B-iii) [Fading spikes] tn → +∞ and sntn ≥ C > 0, (which includes the case sntn → +∞,

that is vn(xn) → 1 super fast), and then vn(x) − 1 decays at least as fast as ε
2

p−1
n in a

full disk around x∗. More exactly for any δ ≤ 1
4 dist(x

∗, ∂Ω) there exists a bounded function
f ∈ L∞(Bδ(x

∗)) such that f(x) ≤ ϕ(0) and

vn(x) = 1 +
ε

2
p−1
n

(sntn)
2

p−1

(f(x) + o(1)), ∀x : |x− x∗| < δ,

and

1

ε2n

ˆ
Bδ(xn)

[vn(x)− 1]p−1
+ dx ≤ πδ2

ϕp−1(0)

(sntn)2
(1 + o(1)),

θn
ε2n

ˆ

Bδ(xn)

[vn − 1]p+ dx ≤ πδ2
ϕp(0)

(sntn)
2p

p−1

s
2

p−1
n (1 + o(1)).(1.8)
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Although Theorem 1.1 describes the singular behavior just around one sequence of maximum points, due
to the richness of the picture it seems worth to present it in this form. A naive graphical representation of
the spikes is provided in Figure 1 at the end of section 4. We refer to Remark 4.6 below for an equivalent
formulation of the alternatives in terms of the ṽn variables. In any case, as mentioned above, the spikes
of Type I are the Dancer-Yan spikes, while the result shows that we could have in principle other two
singular behaviors, at least as far as (H1), (H2) are satisfied. The crux of the argument is to realize
that the ṽn variables in (1.5) are not well suited to describe all the profiles allowed by the singular limit,
a new rescaling being needed (i.e. (1.6)) which uses in a careful way the invariance of the equation, see
(2.10)-(2.11).

Remark that (H1) is crucial as it prevents in the limit “infinite mass” solutions of the planar problem (2.4)

in case (B-ii), in particular providing a control on the (p− 1)-mass, i.e. the quantity 1
ε2n

´
Ω

[vn − 1]p−1
+ dx.

Far from being a technical point, infinite mass solutions of (2.4) exist, see subsection 3.2. The assumption
(H2) ensures the same property in case (B-i), in particular providing a control on the (p)-mass, i.e. the
quantity θn

ε2n

´
Ω

[vn − 1]p+ dx.

It is natural to wonder whether or not we can drop (H2), which in fact in some situations seems to be
redundant. However, we still don’t know the answer to this natural question.

It is worth to remark that only the (p − 1)-mass seems to be well suited to satisfy a quantization
phenomenon in the same spirit of critical equations (Yamabe d ≥ 3, Liouville d ≥ 2), while this is clearly
not the case for the p-mass which is not quantized in general, see Theorem 1.2 below.

At this point a major problem arise in the description of the singular limit in case of multiple-spiking at
some point, that is, whenever many spikes of different type are found to be clustering at the same interior
point, say xn,j → x∗ ∈ Ω. Remark that solutions of this sort exist (see [20]). However, a full description of
this phenomenon would require the analysis of the local interaction of the three different spikes, i.e. Type
I, Type II and Fading, which is rather hard in general. Unfortunately we still miss a full description of this
singular limit, which would play in this context the same role say of the local concentration-compactness
theory for Liouville type equations ([12, 34]). Nevertheless we succeed in obtaining a full classification of
the clustering at an interior point adding back Dirichlet boundary conditions. In fact, in this situation,
by a suitable non-vanishing assumption, we are able to rule out both Vanishing and Fading. To this aim,
let us associate to the sequence vn the following sets:

ΣI := {x ∈ Ω | ∃xn → x s.t. the sequence vn(xn) yields a spike of Type I } ,

ΣII := {x ∈ Ω | ∃xn → x s.t. the sequence vn(xn) yields a spike of Type II } ,

and finally define the singular set,

Σ := ΣI ∪ ΣII.

For any r > 0, let

(Σ)r := {x ∈ Ω | dist(x,Σ) < r}

be the r-neighborhood of Σ and N denote the set of non negative integers. Then we have,

Theorem 1.2. Let vn be a sequence of solutions of (1.2) satisfying vn|∂Ω = 0 and (H1), (H2). Assume
that the following non-vanishing condition is satisfied, for some C0 > 0:

θn
ε2n

ˆ

Ω

[vn(x)− 1]p+ dx ≥ C0, ∀n ∈ N.(NVp)
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Then the singular set Σ is not empty, it consists of finitely many points, and for any r > 0, there
exists nr ∈ N such that

[vn(x)− 1]+ = 0, ∀x ∈ Ω \ (Σ)r, ∀n > nr.

In particular there exist NI ∈ N, NII ∈ N with NI ≥ 1 such that, defining

XI = {x∗n,i}i∈{1,··· ,NI},n∈N

to be the sequences of local maximizers yielding Type I spikes and

XII = {x∗∗n,i}i∈{1,··· ,NII},n∈N

to be the sequences of local maximizers yielding Type II spikes, the following facts hold true:

(a)

vn(x) = 1 +
1

t
2

p−1

n,j θn

w∗(
x− xn,j
sntn,j

) + o(
1

t
2

p−1

n,j θn

), |x− xn,j | ≤ Rnsntn,j , j = 1, · · · , NI +NII ,

where

tn,j → t∞,j ∈ (T0,+∞] as n→ +∞, T
2

p−1

0 =
1

2

Hp

Ip
> 0, and

t∞,j ∈ (T0,+∞), if xn,j = x∗n,i, for some i ∈ {1, · · · , NI}

t∞,j = +∞, if xn,j = x∗∗n,i, for some i ∈ {1, · · · , NII}

(b)

vn(x) =
1

θn

 NI∑
i=1

Ip

t
2

p−1

n,i

G(x, x∗∞,i) + or(1)

 , ∀x ∈ Ω \ (Σ)r

where or(1) uniformly converges to 0 for any fixed r small enough;
(c)

lim
n→+∞

1

ε2n

ˆ

Ω

[vn(x)− 1]p−1
+ dx = (NI +NII)Ip−1(1.9)

lim
n→+∞

θn
ε2n

ˆ

Ω

[vn(x)− 1]p+ dx→ 1

γ∞
:=

∑
j∈{1,··· ,NI}

Ip

t
2

p−1

∞,j

.(1.10)

(d) the plasma region, that is the subset

Ωn,+ := {x ∈ Ω | vn(x) > 1}

consists of asymptotically round points in the sense of Caffarelli–Friedman ([13]),
namely, for any 0 < θ < 1

NI+NII⋃
j=1

B(1−θ)sntn,j
(xn,j) ⋐ Ωn,+ ⋐

NI+NII⋃
j=1

B(1+θ)sntn,j
(xn,j)(1.11)

for any n sufficiently large;
(e) let us define,

ΣI =
{
x∗∞,1, · · · , x∗∞,m1

}
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to be the set of spike points of Type I, and for each ℓ = 1, 2, · · · ,m1, denote

Mℓ :=
∑

i=1,··· ,NI : x∗
n,i→x∗

∞,ℓ

1

t
2

p−1

∞,i

.(1.12)

Consider the following Kirchhoff-Routh Hamiltonian

H(q1, · · · , qm1
) :=

m1∑
i=1

M2
i H(qi, qi) +

∑
i ̸=l

MiMlG(qi, ql),(1.13)

then the vector (x∗∞,1, · · · , x∗∞,m1
) is a critical point of H.

Remark that (d) is a generalization of the well known result for p = 1 by Caffarelli-Friedman ([13]). Also,
we point out that Σ is a set of interior points. The statement does not exclude that ΣI ∩ ΣII ̸= ∅. In
principle there could be several sequences of local maximizers clustering at a fixed point x ∈ ΣI∩ΣII, each
one yielding a spike of Type I or II. Recall that we already know that spikes of Type I are not “simple” in
general ([20]). A naive graphical representation of the global behavior of the spikes is provided in Figure
2 in section 6.
We did our best to simplify the exposition of the proof by splitting the first part of the argument into
three subsections. It is easy to prove that any two spikes (Type I, Type II or Fading) converging at the
same point (say x∗) cannot be too close each other (see subsection 5.1). On the other side, it is more
delicate to prove that if one already has a spike of Type I or of Type II at x∗, then there can be no Fading
spikes at x∗, which is done in subsection 5.2. At last, the formation of two spikes either of Type I or of
Type II clustering at the same point is handled in subsection 5.3. These are the building blocks of the
proof which is then completed in section 6.

Our last result is concerned with the non trivial consequences of Theorem 1.2 about (Pλ).

Theorem 1.3. Let ψn be sequence of solutions of (Pλ) for λ = λn → +∞, α = αn ≤ −1 and assume
that

(1.14)
1

Cp
≤ λn

|αn|
log(|αn|p−1λn) ≤ Cp,

and

(1.15) λn

ˆ

Ω

[αn + λnψn]
p−1 ≤ Cp−1

for some Cp > 1, Cp−1 > 0. Then the conclusions of Theorem 1.2 hold true for vn = λn

|αn|ψn and in

particular, recalling γ∞ in (1.10), we have that:

(i)

|αn| = (1 + o(1))γ∞|ϕ
′
(1)|p− 1

2
λn log(λn),

θn = (1 + o(1))|ϕ
′
(1)|p− 1

2
log(|αn|)

and

λn

ˆ

Ω

[αn + λnψn]
p−1 → (NI +NII)Ip,

ˆ

Ω

θn
ε2n

[vn − 1]p+ dx =

ˆ

Ω

λn
|αn|

θn[αn + λnψn]
p
+ =

λn
|αn|

θn → 1

γ∞
;
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(ii) with the notations of Theorem 1.2, (1.11) holds true in the plasma region

Ωn,+ = {αn + λnψn > 0}
and

ψn(x) =
|αn|
λn

+ (1 + o(1))
γ∞

t
2

p−1

n,j

w∗(
x− xn,j
sntn,j

) ∀ |x− xn,j | ≤ Rnsntn,j , j = 1, · · · , NI +NII ,

where tn,j , j = 1, · · · , NI +NII satisfy (a) of Theorem 1.2 and in particular,

|αn|
λn

≤ ψn(x) ≤
|αn|
λn

+
γ∞

T
2

p−1

0

ϕ(0), ∀x ∈ Ωn,+

and

ψn(x) = (1 + o(1))γ∞

 NI∑
i=1

Ip

t
2

p−1

n,i

G(x, x∗∞,i) + or(1)

 , ∀x ∈ Ω \ (Σ)r(1.16)

where or(1) uniformly converges to 0 for any fixed r small enough;

(iii) (e) of Theorem 1.2 holds, that is, the vector of spike points of Type I is a critical point of the
Kirchhoff-Routh Hamiltonian (1.13).

It is easy to see by the proof that the assumption αn ≤ −1 could be replaced by any other bound of the
form αn ≤ α, for some fixed α < 0.

1.1. Open problems and conjectures.
We list hereafter some natural open problems about the results discussed so far.

Property (e) in Theorem 1.2 is at hand since, after a suitable rescaling, Type I spikes converge to a sum
of Green functions, essentially by the same mechanism occurring for Liouville-type equations ([32],[36])
or either in dimension d ≥ 3 ([5]). On the other side, in sharp contrast with the higher dimensional case,
the (p)-mass (1.12) is not quantized (see also (1.10)), while the (p− 1)-mass does, see (1.9). Remark that
(1.16) in principle contains terms due to Type II spikes as well, but [vn − 1]+ is in that case so small
that the contribution to the solution is of minor order, see also (6.1) below. Therefore Type II spikes are
more difficult to analyze. This is why it seems an interesting open problem to describe the singular limit
in case NVp fails, that is θn

ε2n

´
Ω

[vn(x) − 1]p+ dx → 0, while the (p − 1)-mass (1.9) stays bounded below

away from zero. Remark that the (p− 1)-mass does not vanish in general for Fading spikes, which makes
the problem rather intriguing. However, in view of the uniqueness result in [9], it is readily seen from the
model solutions in section 3.1 that on a disk only Type I spikes exist. In other words, if NVp fails, for εn
small there are no solutions at all of (1.2) satisfying vn|∂Ω = 0 and (H1) on a disk. This fact suggests that
the existence of Type II spikes could depend by the geometry of the domain, which motivates the following:

Conjecture. Let vn be a sequence of solutions of (1.2) satisfying vn|∂Ω = 0 and (H1) on a convex do-
main. If θn

ε2n

´
Ω

[vn(x)− 1]p+ dx→ 0, then for εn small enough there is no solution of (1.2), that is, no Type

II spikes exist in this case.

These facts will be discussed in other works.

Another interesting open problem is to understand whether or not we could really have multiple spikes
of Type I - Type II clustering at the same point. In fact multiple spikes of Type I can cluster at the
same point as shown in [20]. This is in sharp contrast with the higher dimensional case where it has been
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recently proved (see [17]) that spikes in the sense of [21] and [53] are always simple, i.e. one and only one
locally maximizing sequence is attached to each spike point.

It could be also interesting describe the set of solutions of the planar equation in problem (2.4) which
do not satisfy the integral bound therein. A class of “infinite mass”, one dimensional solutions of this
sort is defined in subsection 3.2.

A last comment is needed about the physical meaning of (1.14), (1.15). The assumption (1.14) comes out
directly from (H2) and (NVp) and is just constraining the asymptotic behavior of the total current in
the Tokamak, which is proportional to

´
Ω

[vn(x)− 1]p+ dx. It would be rather natural to expect some non

trivial spike structure arising from the control of the corresponding energy, which would require some as-
sumption about

´
Ω

[vn(x)− 1]p+1
+ dx. It is rather surprising that instead the seemingly natural assumption

at this stage is (H1), which yields a control about
´
Ω

[vn(x)−1]p−1
+ dx whose physical interpretation seems

to be unclear. Since I(v) = [v − 1]p+ is proportional the current density, we just know that [v − 1]p−1
+ is

proportional to the variation of I(v) with respect to v.

This paper is organized as follows. In section 2 we discuss some preliminary results together with the
classification of solutions of (2.4) (see Proposition 2.2). In section 3 we discuss the model profiles of
Dancer and Yan and the one dimensional solutions of (2.4). In section 4 we prove Theorem 1.1, while
sections 5 and 6 are devoted to the proof of Theorem 1.2. In section 7 we prove Theorem 1.3.

2. Preliminaries

Here we collect some useful facts which will be frequently used later on.

2.1. Emden solution. Let B1(0) ⊂ R2 denote the unit disk and p ∈ (1,+∞). There exists a unique
solution ([25]) to the Emden equation−∆ϕ = ϕp, in B1(0),

ϕ = 0, on ∂B1(0),
(2.1)

which is well known ([25]) to be radial and radially decreasing. Throughout this paper this unique solution
we will be just denoted by ϕ. Furthermore, we denote

Ip−1 :=

ˆ
B1(0)

ϕp−1 dx,(2.2)

Ip :=

ˆ
B1(0)

ϕp dx =

ˆ
B1(0)

−∆ϕdx = −2πϕ′(1),(2.3)

Ip+1 :=

ˆ
B1(0)

ϕp+1 dx =

ˆ
B1(0)

|∇ϕ|2 dx,

and call them the (p + k)-integrals, for k = −1, 0,+1 respectively. We list below few useful relations
among these quantities:

(a) By a Pohozaev argument, namely, testing the equation against x · ∇ϕ, we see that

2

p+ 1
Ip+1 = π(ϕ′(1))2,
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which, combined with (2.3) gives that,

Ip+1 =
p+ 1

8π
I2p .

(b) The algebraic relation between Ip−1 and Ip is unclear, but using that maxϕ = ϕ(0) and ϕ > 0
we have that,

Ip
ϕ(0)

< Ip−1 < ϕ(0)p−1π.

By using the Hölder inequality, we get another relation:

Ip−1 ≤ I
1− 1

p
p π

1
p = (−2ϕ′(1))1−

1
pπ.

Remark 2.1. Observe that
(i) Ip+1 is equivalent to the Dirichlet energy of the solution;
(ii) Ip−1 controls both Ip and Ip+1 up to multiplication by suitable powers of ϕ(0).

We will see later that these hold also for general solutions.

2.2. A rigidity result for entire solutions. Type I spikes are modeled on the solutions used in [20].
Concerning this point, we will need the following classification result about entire solutions of (2.4). We
could not find a proof of this classification result, which is why we provide a sketchy proof, based however
on well known ideas first pushed forward in [12] and [16].

Proposition 2.2. Let w ∈ L1
loc(R2) be a distributional solution of

−∆w = [w]p+ in R2,
´
R2

[w]p+ dx ≤ C0 < +∞.
(2.4)

Then w ∈ C2(R2) and [w]+ ∈ L∞(R2). Moreover, denoting

βp ≡ βp(w) :=
1

2π

ˆ

R2

[w]p+ dx,

we have that:

• either βp = 0, and then w is a non-positive constant,
• or βp > 0, and then w is, up to a translation, radial and takes the form,

w(x) =


1

R
2

p−1
p

ϕ
(

x
Rp

)
, 0 ≤ |x| ≤ Rp,

1

R
2

p−1
p

ϕ′(1) log
(

|x|
Rp

)
, |x| > Rp,

(2.5)

where Rp > 0 is uniquely defined in terms of βp as follows,

βp =
1

2π

Ip

R
2

p−1
p

=
−ϕ′(1)

R
2

p−1
p

.(2.6)

The solution with Rp = 1 will be denoted as w∗, namely,

w∗(x) =

{
ϕ(x), 0 ≤ |x| ≤ 1,

ϕ′(1) log(|x|), |x| ≥ 1.
(2.7)

Proof of Proposition 2.2. Step 1: Regularity of weak solutions. We have the following

Lemma 2.3. Let w ∈ L1
loc(R2) be a distributional solution of (2.4). Then w ∈ C2(R2) and [w]+ ∈

L∞(R2).
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Proof of Lemma 2.3. We argue as in [12] by a suitable decomposition of w. Let x0 ∈ R2, r > 0 and write
w = w1 + w2 in B2r(x0) where,{

−∆w1 = [w]p+ in B2r(x0),

w1 = 0 on ∂B2r(x0),
and

{
−∆w2 = 0 in B2r(x0),

w1 = w on ∂B2r(x0).

Since [w]p+ ∈ L1(R2), then according to [49] we have that w1 ∈W 1,t
0 (B2r(x0)) for any t ∈ [1, 2), with

∥w1∥W 1,t(B2r(x0)) ≤ C(t, C0).

Since we are in dimension d = 2, by the Sobolev embedding we have w1 ∈ Lq(B2r(x0)) for any 1 ≤ q < +∞
with

∥w1∥Lq(B2r(x0)) ≤ C(q, C0).

Moreover, by the maximum principle w1 ≥ 0 in B2r(x0). By applying the mean value theorem to the
harmonic part w2 = w − w1(≤ w), for any x1 ∈ Br(x0) we have that,

[w2(x1)]+ ≤
 

Br(x1)

[w]+ dx ≤ 1

πr2

 ˆ

Br(x1)

[w]p+ dx


1
p

|Br(x1)|1−
1
p ≤ C

1/p
0

πr1+
1
p

.

Thus ∥[w2]+∥L∞(Br(x0)) ≤ C
1/p
0 (πr1+

1
p )−1.

As a consequence, [w]+ ≤ [w1]+ + [w2]+ ∈ Lq(Br(x0)) for any q ∈ [1,+∞), with

∥[w]+∥Lq(Br(x0)) ≤ C(q, C0, r).

Now −∆w1 = [w]p+ has better integrability properties. An iteration of the splitting argument shows that
w1 ∈ L∞(Br/2(x0)) and so is [w]+, with

∥[w]+∥L∞(Br/2(x0)) ≤ C(C0, r, p).

Noting that t 7→ [t]p+ is a C1 function (recall p > 1), by a bootstrap argument we conclude that w ∈
C2,γ(R2) for any γ ∈ (0, 1). □

Consequently, all the distributional solutions are actually classical solutions.

Step 2: The case βp = 0. If βp = 0, then w is non-positive and harmonic, which is necessarily constant
by Liouville theorem.

Step 3. The case of βp > 0. We first use the argument, based on a Green representation formula,
adopted in [16] to come up with the following decay estimate: there exists a constant C > 0 such that

−βp ln(1 + |x|)− C ≤ w(x) ≤ −βp ln(1 + |x|) + C, ∀x ∈ R2.

In particular, as in [16] we have that,

w(x)

ln |x|
→ −βp, uniformly as |x| → +∞,(2.8)

and, in polar coordinates (r, θ) for R2,

r
∂w

∂w
→ −βp,

∂w

∂θ
→ 0, as r → +∞.

At this point, by using a moving plane argument as in [16] we conclude that w is radial with respect to
some point and is radially decreasing. Thus, after a translation if necessary, we may assume that w is
radial with respect to the origin and that there exists a unique R > 0 such that{

x ∈ R2 | w(x) > 0
}
= BR(0) ⊂ R2.
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By the uniqueness of the positive solutions in a ball of the Emden equation, we conclude that

w(x) =
1

R
2

p−1

ϕ(
x

R
), for |x| ≤ R,

where we recall that ϕ is the unique solution of (2.1). In the outer domain R2 \ BR(0), w is harmonic
with the decay shown in (2.8), whence, by standard ODE theory, it necessarily takes the form,

w(x) =
1

R
2

p−1

ϕ′(1) ln
|x|
R
, ∀|x| ≥ R,

the coefficients being uniquely defined by the C1 continuity at the free boundary {w = 0}.
Since all the argument adopted along the proof work exactly as they stand in [16], we will not provide
the details here to avoid repetitions. □

Remark 2.4. For the non-constant entire solution defined in (2.5), we have seen that to each w there
correspond a unique Rp > 0, so that we may write,

βp(Rp) =
1

2π

ˆ

R2

[w]p+ dx =
1

2π

Ip

R
2

p−1
p

=
−ϕ′(1)

R
2

p−1
p

.

Moreover, by an evaluation based on Pohozaev identity we have that,

βp+1(Rp) ≡
1

2π

ˆ

R2

[w]p+1
+ dx =

(p+ 1)

4
β2
p .

Another relevant quantity is,

βp−1(Rp) :=
1

2π

ˆ

R2

[w]p−1
+ dx

for which we again have no algebraic evaluation but only the direct estimate

βp
supw

< βp−1 <
1

2π
(supw)p−1|Ω|, βp−1 ≤ β

1− 1
p

p

(
|Ω|
2π

) 1
p

.

Note also that βp−1, βp, βp+1 are either simultaneously positive or vanishing. They have different roles in
the analysis of the solutions: βp describes the decaying rate at infinity as the above result shows, βp+1 is
equivalent to the Dirichlet energy while βp−1, according to (2.5), satisfies,

βp−1(Rp) =
1

2π
Ip−1,(2.9)

which is a constant independent of Rp.

For later purposes we remark that the equation,

−∆w = [w]p+(2.10)

is invariant under the following transformations:

Rtw(x) := t
2

p−1w(tx)

for any t > 0. The masses in different scales transform in the following way:

βp−1(Rtw) = βp−1(w), βp(Rtw) = t
2

p−1 βp(w), βp+1(Rtw) = t
4

p−1 βp+1(w).(2.11)

In particular, the decaying rate βp(w) (see (2.5) and (2.6)) in Proposition 2.2 is not quantized and can
be any positive number, unlike βp−1 which always assume the value shown in (2.9).
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3. Model solutions

We collect some facts about (1.1) and discuss the relation with the Dancer-Yan profiles.

Remark 3.1. Note that in case λ ≤ C|α| for some C < +∞, thenˆ
Ω

[v − 1]p+ =
1

|α|p
≤ C

|α|p−1λ
= Cε2.

In particular, since we are in dimension d = 2, problem (1.1) admits the following symmetry property:
for each t > 0 and x0 ∈ R2, the function

Stv(y) := t
2

p−1 (v(x0 + ty)− 1) + 1, ∀y ∈ Ω(x0, t) :=
Ω− x0
t

,

satisfies the equation

−ε2∆(Stv) = [Stv − 1]p+ in Ω(x0, t)

and the corresponding integral for Stv becomes
ˆ

Ω(x0,t)

[Stv − 1]p+k
+ dy = t

2(k+1)
p−1

ˆ

Ω

[v − 1]p+k
+ dx =

t
2(k+1)
p−1

|α|p
, k = −1, 0, 1.

In particular, note that for k = −1, the (p− 1)-mass is invariant under the St-transform.

3.1. The Dancer-Yan model profiles. Recall that ϕ denotes the unique solution of the Emden equa-
tion (2.1). Let R2 = 1√

π
and Ω = BR2

(0) so that |Ω| = 1, and let b ≤ a. Then the function

Uε,a,b(x) :=

a+
(

ε
sε

) 2
p−1

ϕ
(

x
sε

)
, 0 ≤ |x| ≤ sε,

a+ (a− b) ln(|x|/sε)
ln(

√
πsε)

, sε ≤ |x| ≤ R2 = 1√
π

satisfies −∆Uε,a,b =
1
ε2 [Uε,a − a]p+, in BR2 ,

Uε,a,b = b, on ∂BR2
(0).

Here the sε is uniquely defined by imposing the C1 continuity of the solution:(
ε

sε

) 2
p−1

ϕ
′
(1) =

a− b

ln(
√
πsε)

.(3.1)

These solutions was first used in the context of singularly perturbed problems by Dancer and Yan in [20].
Note that lim

ε→0
sε = 0. Of course, we are interested in the case a = 1 and b = 0. In particular, [Uε,a,b−a]+ →

0 uniformly as ε→ 0, while

lim
ε→0+0

Uε,a,b(x) =

a, x = 0,

b, x ̸= 0.

Observe that,

ˆ

BR2

1

ε2
[Uε,a,b − a]p+ =

s2ε
ε2

ˆ
Bsε

(
ε

sε

) 2p
p−1

ϕ

(
y

sε

)p
dy

s2ε
=

(
ε

sε

) 2
p−1

ˆ
B1

ϕp dx


=

a− b

ϕ′(1) ln(
√
πsε)

Ip → 0 as ε→ 0.
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Meanwhile for any t > 1,
ˆ

BR2

(
1

ε2
[Uε,a,b − a]p+

)t

dy =
s2ε
ε2t

ˆ
Bsε

(
ε

sε

) 2p
p−1 t

ϕ

(
y

sε

)pt
dy

s2ε

=

(
ε

sε

) 2
p−1 t 1

s
2(t−1)
ε

ˆ
B1

ϕpt dx


=

(
a− b

ϕ′(1) ln(
√
πsε)

)t
1

s
2(t−1)
ε

Ipt → +∞ as ε→ 0,

and ˆ

BR2

1

ε2
(
[Uε,a,b − a]p+

)t
dy =

s2ε
ε2

ˆ
Bsε

(
ε

sε

) 2p
p−1 t

ϕ

(
y

sε

)pt
dy

s2ε

=

(
ε

sε

) 2pt
p−1−2 ˆ

B1

ϕpt dx

=

(
a− b

ϕ′(1) ln(
√
πsε)

)p(t−1)+1

Ipt.

Note that for t = p−1
p , we have thatˆ

BR2

1

ε2
[Uε,a,b − 1]p−1

+ dy = Ip−1 > 0

which is a universal constant for any ε > 0. This will be relevant for later developments. On the other
side, if t > p−1

p , then

ˆ

BR2

1

ε2
(
[Uε,a,b − a]p+

)t
dy =

(
a− b

ϕ′(1) ln(
√
πsε)

)p(t− p−1
p )

Ipt → 0, as ε→ 0.

Concerning the integral constraint,

1

|α|p
=

ˆ

BR2

[Uε,a,b − a]p+ =ε2
(
ε

sε

) 2
p−1

Ip(3.2)

=

(
ε

sε

) 2
p−1p

s2εIp

=

(
a− b

ϕ′(1) ln(
√
πsε)

)p

s2εIp,

which uniquely defines as well the value of ε and hence also of sε.
Combining (3.1) and (3.2), we see that,(

ε

sε

) 2
p−1

=
a− b

ϕ′(1) ln(
√
πsε)

=

(
1

|α|pIps2ε

) 1
p

,

and consequently,

sε = εp|α|
p(p−1)

2 I
p−1
2

p = λ−
p
2 Ip−1

p .
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In this model case, to recover a Dancer-Yan spike at the origin, we should make the following rescaling:
as εn → 0 and λn → +∞, taking xn = 0, and vn = Uεn,1,0 as a sequence of solutions in BR2

(0), then

ṽn(y) := ϕ′(1) ln(
√
πsεn) (vn(xn + sεny)− 1) ,

are defined in the domains

Ωn :=
Ω− xn
sεn

= B√
π/sεn

↗ R2.

In particular ṽn → w∗ locally uniformly, where w∗ is defined in (2.7).

3.2. 1D solutions. In this section we construct solutions of the equation in (2.4) which do not satisfy
the integral bound, that is, a class of “infinite mass” solutions of that equation. For any fixed a > 0,
let u(t) be the unique solution of −u′′(t) = [u(t)]p+, for t ≥ 0,

u(0) = a, u′(0) = 0.
(3.3)

Thus u(t) is non-increasing and consequently there exists a unique t0 ∈ (0,+∞] such that u(t) > 0
for t ∈ [0, t0). Therefore we have,

−u′′ = up, in (0, t0).

Multiplying both sides of the equation by u′ and integrating from 0 to t(< t0), we have that,

u′(t)2 =
2

p+ 1
(ap+1 − u(t)p+1).

Since u′ < 0, we also have that

du√
ap+1 − up+1

= −
√

2

p+ 1
dt,

that is, u(t) is implicitly defined for t ∈ [0, t0] as follows,ˆ a

u

ds√
ap+1 − sp+1

=

√
2

p+ 1
· t .

In particular, t0 satisfies ˆ a

0

ds√
ap+1 − sp+1

=

√
2

p+ 1
· t0

and t0 is finite since p > 1. For t ≥ t0, u(t) is linear and since u′(t0) = −
√

2
p+1a

p+1
2 , we see that

u(t) = −
√

2

p+ 1
a

p+1
2 (t− t0), ∀t ≥ t0.

Next we extend u to the whole real line by even reflection: u(−t) := u(t) for any t ≥ 0. This extended u
is C2 and solves (3.3).
Finally, set w(1D)(x1, x2) := u(x1). Then w(1D) solves (2.4) and has infinite (p+ k)-mass, for k = −1, 0, 1
and the plasma region of such solution is unbounded. We rule out these solutions by assuming (H1) in
Theorem 1.1.
Actually, for any fixed α ∈ [0, 2π],

w(1D)
α (x1, x2) := u(x1 cosα+ x2 sinα),

is a family of one-dimensional infinite mass solutions.
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4. Blow up analysis along interior maximum

First of all we prove that, unlike the case d ≥ 3 ([5]), the natural integral bound (H1) implies that
[vn − 1]+ → 0 locally uniformly in Ω.

Proposition 4.1. Let vn be a sequence of solutions of (1.2) satisfying (H1). Then [vn − 1]+ → 0 locally
uniformly in Ω.

Proof. Argue by contradiction and assume that there exists a sequence xn ∈ Ω0 ⋐ Ω such that vn(xn) ≥
1 + σ for some σ > 0. Along a subsequence we may assume that xn → x0 ∈ Ω0 ⋐ Ω. For each n ≥ 1, set

v̂n(y) := vn(xn + εny), ∀y ∈ Ω̂n :=
Ω− x0
εn

,

which satisfies −∆v̂n = [v̂n − 1]p+, in Ω̂n,

v̂n ≥ 0, in Ω̂n.

According to (H1), we have that,ˆ

Ω̂n

[v̂n − 1]p−1
+ dy =

1

ε2n

ˆ

Ω

[vn − 1]p−1
+ dx ≤ Hp−1.(4.1)

By [5, Theorem 6.1] we have that, possibly along a subsequence, v̂n → v̂ in C2
loc(R2), for some v̂ ∈ C2(R2)

which solves, −∆v̂ = [v̂ − 1]p+, in R2,

v̂ ≥ 0, in R2.

By a well known argument (see [38]) we see that v̂ is constant whence, in view of (4.1), we have that
∆v̂ ≡ 0. On the other side by assumption we have v̂n(0) = vn(xn) ≥ 1 + σ > 1, so that v̂(0) ≥ 1 + σ and
−∆v̂(0) = [v̂(0)− 1]p+ > 0, which is contradiction. □

As a consequence, for any Ω0 ⋐ Ω, we have

lim sup
n→+∞

(
sup
Ω0

vn

)
≤ 1,

and we assume w.l.o.g that,

sup
Ω0

vn ≤ 2, ∀n ≥ 1.

Thus (H1) implies that, ˆ

Ω0

1

ε2n
[vn − 1]p+ dx ≤

ˆ

Ω0

1

ε2n
[vn − 1]p−1

+ dx ≤ Hp−1.

Definition 4.2 (Regular points). A point x ∈ Ω is said to be regular w.r.t. a sequence of solutions vn of
(1.2) if there exists r > 0 such that

vn|Br(y) ≤ 1, ∀y ∈ Br(x), ∀n ≥ 1.

Remark 4.3. If x is regular w.r.t. to vn then the sequence {vn|Br(x)}n≥1 is a sequence of bounded (from

below by 0 and from above by 1) harmonic functions. Thus it sub-converges in Ck(Br/2(x)) to a harmonic
function which takes values in [0, 1] as well.
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As mentioned in the introduction, the subtle point is to deal with those interior points around which
[vn − 1]+ is positive along a subsequence. Therefore we assume w.l.o.g. that there exist xn ∈ Ω, xn →
x∗ ∈ Ω such that

vn(xn) = max
Ω

vn > 1.

From Proposition 4.1 we know that vn(xn) → 1 and we study these vanishing spikes by using a refined
rescaling. Motivated by the Dancer-Yan solutions (see subsection 3.1), we introduce a new parameter sn >
0 defined as in (1.3), (

εn
sn

) 2
p−1

ϕ′(1) ln(
√
πsn) = 1.

Remark that for εn sufficiently small, sn is uniquely defined and sn → 0+, as εn → 0+. We assume
w.l.o.g. that sn ≤ 1√

π
. For later convenience, we also denote

θn := ϕ′(1) ln(
√
πsn),

which, since ϕ′(1) < 0, satisfies lim
n→+∞

θn = +∞. Note that

ε2n =
s2n

θp−1
n

or either
ε2n
θn

=
s2n
θpn
.(4.2)

We will analyse the rescaled functions,

ṽn(y) := ϕ′(1) ln(
√
πsn) (vn(xn + sny)− 1) = θn (vn(xn + sny)− 1)(4.3)

which satisfy

−∆ṽn = [ṽn]
p
+, in Ω̃n :=

Ω− xn
sn

.

Note that the ṽn’s are sign changing function in general. However, we have the following integral bounds:ˆ

Ω̃n

[ṽn(y)]
p−1
+ dy = θp−1

n s−2
n

ˆ

Ω

[vn(x)− 1]p−1
+ dx =

1

ε2n

ˆ

Ω

[vn(x)− 1]p−1
+ dx ≤ Hp−1

due to the Hypothesis (H1). Moreover, for any Ω0 ⋐ Ω, we have that sup
Ω0

vn ∈ [0, 2] for any n large, and

then, by setting,

Ω̃0 :=
Ω0 − xn
sn

,

we see that (recall (4.2)),ˆ

Ω̃0

[ṽn(y)]
p
+ dy = θpns

−2
n

ˆ

Ω0

[vn(x)− 1]p+ dx =
θn
ε2n

ˆ

Ω0

[vn(x)− 1]p+ dx ≤ Hp

where we used (H2).

Remark 4.4. It is evident from (4.3) that we are scaling the domain variable while blowing up the
function with asymptotically different rates. This is a characteristic feature of the d = 2 refined rescaling
([20]) which allows one to catch these “microscopic” spikes, in striking contrast with the case d ≥ 3 (see
[21, 53] and [5]).

We are ready to prove Theorem 1.1.
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Proof of Theorem 1.1. If all interior points are regular according to Definition 4.2, then in view of Remark
4.3 we are in case (A). The estimate (1.4) is then just a consequence of the mean value property of
harmonic functions.
Therefore we assume without loss of generality that there exists xn ∈ Ω0 ⋐ Ω such that

xn → x∗ ∈ Ω0

and

v(xn) = sup
Ω0

vn > 1,(4.4)

implying that we are in case (B).

Fix δ < 1
4 dist(x

∗, ∂Ω), then B4δ(x∗) ⊂ Ω as well as Bδ(x
∗) ⊂ B2δ(xn) ⊂ Ω for n large which we assume

w.l.o.g. for every n ≥ 1.

At this point we consider the sequences tn ≡ (ϕ(0)/θn(vn(xn)− 1))
p−1
2 and un defined in (1.6). The

sequence un satisfies (1.7) together with the integral bounds,ˆ

B 2δ
sntn

(0)

[un]
p−1
+ dz =

ˆ

B2δ(xn)

1

εpn
[vn − 1]p−1

+ dx ≤ Hp−1,

and ˆ

B 2δ
sntn

(0)

[un]
p
+ dz = t

2
p−1
n

ˆ

B2δ(xn)

θn
ε2n

[vn − 1]p+ dx ≤

t
2

p−1
n θn[vn(xn)− 1]+ ·

ˆ

B2δ(xn)

1

ε2n
[vn − 1]p−1

+ dx ≤ ϕ(0)Hp−1.(4.5)

If sntn → 0+, then 2δ
sntn

↗ +∞ and the disks B 2δ
sntn

(0) exhaust the plane in the limit. In this case, the

functions un subconverge locally in R2, due to the following Lemma.

Lemma 4.5. Let fn be a sequence of solutions of
−∆fn = [fn]

p
+, in ω,

´
ω

[fn]
p
+ dx ≤ C1 < +∞,

where ω ⊂ R2 is open and bounded with smooth boundary. Then

either (i) there exists a subsequence fnk
which converges in C2

loc(ω),
or (ii) fn → −∞ locally uniformly in ω.

Proof of Lemma 4.5. Consider the decomposition fn = fn,1 + fn,2, where−∆fn,1 = [fn]
p
+ in ω,

fn,1 = 0, on ∂ω,

−∆fn,2 = 0, in ω,

fn,2 = fn, on ∂ω.

By the maximum principle fn,1 is nonnegative and, due to the classical estimates in [49], since [fn]
p
+ is

uniformly bounded in L1, we have that,

∥fn,1∥W 1,t(ω) ≤ C(t), ∀t ∈ (1, 2).

Since we are in dimension two, by Sobolev embedding we see that for any q ≥ 1,

∥fn,1∥Lq(ω) ≤ C(q).
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Observe that fn,2 is harmonic and bounded from above, fn,2 = fn − fn,1 ≤ fn ≤ [fn]+. Thus for
any x ∈ ω′ ⋐ ω, the mean value property implies that,

fn,2(x) =

 

BR(x)

fn,2 dy ≤
 

BR(x)

[fn]+ dy ≤
( 

[fn]
p
+ dy

) 1
p

≤
(
C1

πR2

) 1
p

, ∀BR(x) ⊂ ω.

We deduce that [fn,2]+ is bounded in L∞
loc(ω). Moreover, for ω′ ⋐ ω as above, let C(ω, ω′)−1 be a uniform

upper bound for [fn,2]+ in ω′, which is also the uniform upper bound for fn,2 in ω
′. Thus (C(ω, ω′)−fn,2) is

a sequence a strictly positive (bounded from below by 1) harmonic functions in ω′. The Harnack inequality
implies that either there is a uniformly bounded subsequence, or they are uniformly divergent 1 on ω′.
Note that [fn]+ ≤ [fn,1]+ + [fn,2]+ where the right hand side is now in Lq

loc(ω) for any q > 1. Another
bootstrap argument then implies fn,1 is also bounded in L∞

loc(ω).

Therefore we conclude that

either (i) there exists a subsequence fnk
which is bounded in L∞

loc(ω): in this case we can use bootstrap
argument to conclude that a subsequence fnkj

actually converges in C2
loc(ω);

or (ii) fn → −∞ locally uniformly in ω,

as claimed. □

We can apply Lemma 4.5 to un in any BR(0) for any R > 0, and noting that un cannot diverge to −∞
locally uniformly since un(0) = ϕ(0) > 0, we conclude that there is a subsequence which converges
in C2

loc(R2) to a limit function u∞ ∈ C2
loc(R2). In view of (4.5), we have that u∞ is an entire solution

of (2.4) with u∞(0) = ϕ(0), hence, in view of Proposition 2.2, we deduce that u∞ = w∗ in R2. Furthermore,
by using a diagonal argument, we obtain a sequence Rn ↗ +∞ such that Rnsntn < 2δ and ∥un −
w∗∥C2(B2Rn ) → 0. Thus we haveˆ

B2Rnsntn (xn)

1

εpn
[vn − 1]p−1

+ dx =

ˆ

B2Rn (0)

[un]
p−1
+ dz = Ip−1 + o(1),

and ˆ

B2Rnsntn (xn)

θn
ε2n

[vn − 1]p+ dx =
1

t
2

p−1
n

ˆ

B2Rn (0)

[un]
p−1
+ dz =

Ip + o(1)

t
2

p−1
n

,

as n → +∞. This corresponds to the Type I spike if tn → t∞ < +∞, to the Type II spike if tn → +∞
but sntn → 0+, and we see that a Type II spike is characterized by the fact that the (p)-mass of the
sequence ṽn vanishes. Note that, again in view of (4.5), as a byproduct of this argument we see that tn

has a positive lower bound, say tn ≥
(

Ip
2Hp

) p−1
2

> 0.

Next we consider the case where sntn has a positive lower bound, which means that, up to subsequence,
either sntn → 1

r0
> 0 or sntn → +∞. In this case, the rescaled disks B2δ/sntn(0) are uniformly bounded

sets and we don’t have a planar problem to attach to the limiting function. Instead, we can consider the
functions,

vn(x)− 1

ε
2

p−1
n

1This can be seen in the following way. Consider the sequence an := inf
k≥n

(
inf

x∈ω′
(C(ω, ω′)− fk(x))

)
. If (an) is bounded

from above, then we get a convergent subsequence (ank ), which corresponds to a bounded subsequence of harmonic functions;
then we can get a convergent sub-subsequence. If not, then (an) diverges to +∞, so is the sequence C(ω, ω′)− fn, hence fn
diverges to −∞ uniformly on ω′.
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which satisfy

−∆

(
vn(x)− 1

ε
2

p−1
n

)
=

[
vn(x)− 1

ε
2

p−1
n

]p
+

in B2δ(xn),

whose maximum values are,

vn(xn)− 1

ε
2

p−1
n

=
θn

s
2

p−1
n

ṽn(0)

θn
=

ϕ(0)

(sntn)
2

p−1

.

Therefore by Lemma 4.5 we have that,

vn(x)− 1 =
ε

2
p−1
n

(sntn)
2

p−1

(f(x) + o(1)), ∀x ∈ Bδ(x
∗),

for some bounded function f satisfying f(x) ≤ ϕ(0). This corresponds to the Fading spike in (B-iii). Note
that in this case the (p− 1)-mass satisfies,ˆ

Bδ(x∗)

1

ε2n
[vn − 1]p−1

+ dx ≤ πδ2
ϕp−1(0)

(sntn)2
(1 + o(1)),

which of course need not converge to some integer multiple of Ip−1. Actually it would converge to zero
whenever sntn → +∞. However, the (p)-mass will vanish in the limit as from (4.2) we have that,ˆ

Bδ(x∗)

θn
ε2n

[vn − 1]p+ dx ≤ πδ2
θn
ε2n

ϕp(0)

(sntn)
2p

p−1

ε
2p

p−1
n ≤

πδ2
ϕp(0)

(sntn)
2p

p−1

θnε
2

p−1
n = πδ2

ϕp(0)

(sntn)
2p

p−1

s
2

p−1
n (1 + o(1)).

□

The local spikes arising from Theorem 1.1 are shown in Figuer 1.

Remark 4.6. In terms of the sequence vn satisfying (1.2) and the interior maximum points xn (which
converge to x∗ ∈ Ω0 ⋐ Ω) we have the following local picture corresponding to the above alternatives: for
all x ∈ Bδ(z) and up to a subsequence:

either (A) [Vanishing] vn(x) ≤ 1, ∀n ≥ 1,
or (B-i or ii) [Type I or II spikes] vn(x) = 1 + 1

t
2

p−1
n θn

w∗(x−xn

sntn
) + o( 1

θnt
2

p−1
n

), with

|x− xn| ≤ Rnsntn, tn → t∞ ≤ +∞ as n→ +∞.

Moreover, for any R > 1,

1

ε2n

ˆ

BRsntn (xn)

[vn(x)− 1]p−1
+ dx = Ip−1 + o(1),

θn
ε2n

ˆ

BRsntn (xn)

[vn(x)− 1]p+ dx =
Ip

t
2

p−1
n

+ o(1),

as n→ +∞,

or (B-iii) [Fading spikes] vn(x) = 1 + ϕ(0)ε
2

p−1
n (sntn)

− 2
p−1 + o

(
ε

2
p−1
n

)
with (sntn)

−1 → ρ ≥ 0. In

particular, for any r < δ,

1

ε2n

ˆ
Br(xn)

[vn(x)− 1]p−1
+ dx = ϕ(0)p−1πr2((sntn)

−2 + o(1)),

θn
ε2n

ˆ
Br(xn)

[vn(x)− 1]p+ dx = ϕ(0)pπr2s
2

p−1
n ((sntn)

− 2p
p−1 + o(1)),
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Figure 1. Spikes arising from Theorem 1.1

as n→ +∞.

5. Extraction of a second spike sequence

We prove various partial results which at last will be used to prove Theorem 1.2. We split the discussion
into three subsections, whose titles are meant to clarify which is the aim therein.

We keep the notations in (4.4) and let xn,1 ≡ xn → x∗ ∈ Ω be the interior maxima of vn such that

max
Ω0

vn = vn(xn,1).

If x∗ is regular, whence vn(xn)−1 ≤ 0, or either if this is a Fading sequence, i.e. vn(xn)−1 ≤ ϕ(0)ε
2

p−1
n (An+

o(1)), then we see that there are no interior spikes at all in any Ω0 ⋐ Ω.
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Therefore, in this section we consider the case where

(5.1) vn(xn,1) yields a spike at x∗ ∈ Ω0 either of Type I or of Type II.

We wonder whether or not there is another sequence of points yielding another spike at the same point x∗,
which makes x∗ a multiple-spike point and, whenever this were the case, how to describe the second spike.

Let Rn,1 = Rn and tn,1 = tn be the quantities defined in Theorem 1.1 and let

xn,2 ∈ Ω \B2Rn,1sntn,1(xn,1)

be defined as follows,

vn(xn,2) = sup
Ω\B2Rn,1sntn,1

(xn,1)

vn,

where we assume w.l.o.g. that, possibly along a subsequence,

xn,2 → x∗ and vn(xn,2)− 1 > 0.(5.2)

Note that |xn,2 − xn,1| ≥ 2Rn,1sntn,1 by definition while 0 < vn(xn,2)− 1 → 0+ by Proposition 4.1.

Let us define tn,2 := (ϕ(0)/θn(vn(xn,2 − 1)))
p−1
2 (≥ tn,1 ≥ T0) and rescale vn as follows,

un,2(z) := t
2

p−1

n,2 θn (vn(xn,2 + sntn,2z)− 1) , z ∈ B2δ/sntn,2
(0).(5.3)

Then un,2(0) = ϕ(0), and un,2 satisfies,

−∆un,2 = [un,2]
p
+, in B2δ/sntn,2

(0),

as well as the integral bounds,ˆ

B2δ/sntn,2
(0)

[un,2(z)]
p−1
+ dz =

ˆ

B2δ(xn,2)

1

ε2n
[vn − 1]p−1

+ dx ≤ Hp−1,

ˆ

B2δ/sntn,2
(0)

[un,2(z)]
p
+ dz = t

2
p−1

n,2

ˆ

B2δ(xn,2)

θn
ε2n

[vn(x)− 1]p+ dx ≤ ϕ(0)Hp−1.

Remark 5.1. The fact that sntn,2 ≥ sntn,1 implies that, if vn(xn,1) yields a spike of Type I, then vn(xn,2)
could be either a of Type I or of Type II or Fading. On the other side, if vn(xn,1) is of Type II, then vn(xn,2)
cannot be of Type I.

5.1. Two local maximizers cannot be too close each other. We are forced to compare the relative
distance between xn,2 and xn,1 with the rescaling rate sntn,2. The following Lemma says that |xn,1−xn,2|
is much larger than sntn,2.

Lemma 5.2. Let xn,2, xn,1 and sntn,2 be defined as above, then we have,

|xn,1 − xn,2|
sntn,2

→ +∞.(5.4)

Proof. By contradiction assume that there exists C > 0 such that,

Rn,1tn,1
tn,2

≤ |xn,1 − xn,2|
sntn,2

≤ C,

implying in particular that,

2Rn,1 ≤ |xn,1 − xn,2|
sn

≤ Ctn,2,

and
|xn,1−xn,2|

sn
→ +∞ and tn,2 → +∞ as n→ +∞.
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Recall the functions un,1 and un,2 defined by (1.6) and (5.3). Putting

zn,1,2 :=
xn,1 − xn,2
sntn,2

,

which is uniformly bounded, possibly along a subsequence we have zn,1,2 → z∞,1,2, and then

un,2(zn,1,2) = t
2

p−1

n,2 θn (vn(xn,1)− 1) =

(
tn,2
tn,1

) 2
p−1

un,1(0) → +∞

since un,1(0) = ϕ(0) > 0 and
tn,2

tn,1
→ +∞. This is a contradiction to the fact that un,2 is bounded from

above by ϕ(0). □

5.2. No Fading spike if there is already a spike of Type I/II. Next we wish to rule out the Fading
alternative in presence of a spike of Type I or II. Therefore we consider the case where sntn,2 has a
positive lower bound, which means tn,2 diverges to +∞ very fast, so that vn(xn,2) is a Fading sequence
with xn,2 converging at x∗. We will see that this is impossible as far as (5.1) is satisfied.

Without loss of generality we may assume that

1

sntn,2
→ ρ ≥ 0.

Recall that vn(xn,2) = sup
{
vn(x) | x ∈ Ω \BRn,1sntn,1

(xn,1)
}
and

θn(vn(xn,2)− 1) = ϕ(0)t
− 2

p−1

n,2 = ϕ(0)
s

2
p−1
n

(sntn,2)
2

p−1

= ϕ(0)(ρ+ o(1))s
2

p−1
n ,

thus

sup
Ω\BRn,1sntn,1

(xn,1)

vn ≤ vn(xn,2) = 1 + ϕ(0)(ρ+ o(1))
s

2
p−1
n

θn
= 1 + ϕ(0)(ρ+ o(1))ε

2
p−1
n .(5.5)

LetG(x, x′) be the Green function for the domain Ω with Dirichlet boundary condition, and assume vn = 0
on ∂Ω. Then for any x ∈ Ω we have

vn(x) =
1

ε2n

ˆ

Ω

G(x, x′)[vn(x
′)− 1]p+ dx′.

To estimate the value at a point x ∈ Ω \ Br(x1) where r > 0 is small, we split the domain Ω into two
parts: Ω = BRnsntn,1

(xn,1) ∪ (Ω \BRnsntn,1
(xn,1)). Therefore, near x1 we have:

1

ε2n

ˆ

BRn,1sntn,1
(xn,1)

G(x, x′)[vn(x
′)− 1]p+ dx′ =

1

ε2n

(sntn,1)
2

θpnt
2p

p−1

n,1

ˆ

BRn,1
(0)

G(x, xn,1 + sntn,1z)[un,1(z)]
p
+ dz

=
1

θnt
2

p−1

n,1

ˆ

BRn,1
(0)

G(x, xn,1 + sntn,1z)[un,1(z)]
p
+ dz.

Since Rn,1 → +∞, the balls BRnsntn,1
(xn,1) exhaust the plane and un,1 → w∗ in C2

loc(R2), thus [un,1]
p
+ →

[w∗]p+ in C0
loc(R2) and they have uniformly bounded support. Observing that sntn,1 → 0+, we deduce
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that,

θn
ε2n

ˆ

BRn,1sntn,1
(xn,1)

G(x, x′)[vn(x
′)− 1]p+ dx′ =

1

t
2

p−1

n,1

ˆ

B1(0)

G(x, x1)[w
∗(z)]p+ dz + o(1)

=
Ip

t
2

p−1

n,1

G(x, x1) + o(1).

The integral on Ω \BRnsntn,1(xn,1) takes the form,

0 ≤θn
ε2n

ˆ

Ω\BRn,1sntn,1
(xn,1)

G(x, x′)[vn(x
′)− 1]p+ dx′

≤θn
ε2n

ˆ

Ω\BRn,1sntn,1
(xn,1)

G(x, x′)(ϕ(0)(ρ+ o(1))ε
2

p−1
n )p dx′

≤s
2

p−1
n ϕ(0)p(ρ+ o(1))p

ˆ
Ω

G(x, x′) dx′

 .

Thus for x ∈ Ω \Br(x
∗),

θnvn(x) =
Ip

t
2

p−1

n,1

G(x, x∗) + o(1), as n→ +∞.

Since the right hand side is bounded while θn → +∞ and tn,1 are bounded from below, we conclude that
for any r > 0 and any x ∈ Ω\Br(x

∗), vn(x) → 0 locally uniformly. In particular, fix r ∈ (0, 12 dist(x
∗, ∂Ω)),

there exists nr ∈ N such that

[vn(x)− 1]+ = 0, ∀x ∈ Ω \Br(x
∗), ∀n > nr.(5.6)

Remark that this estimates holds true under the assumption that xn,2 is a Fading sequence. By no means
we can assume it to hold in general. In particular we cannot claim that there is only one spike in Ω.

Next we apply again the Green representation argument to see that, in view of (5.5) and (5.6), then vn(xn,2) ≤
1 which contradicts the assumption (5.2).

Indeed, because of (5.6), the Green representation formula above reduces to an integration over Br(x
∗)

for n > nr: for any x ∈ Ω,

vn(x) =
1

ε2n

ˆ

Ω

G(x, x′)[vn(x
′)− 1]p+ dx′ =

1

ε2n

ˆ

Br(x∗)

G(x, x′)[vn(x
′)− 1]p+ dx′.

Combining this identity with t
2

p−1

n,1 θn(vn(xn,1)− 1) = un,1(0) = ϕ(0), we have

θnvn(xn,1) =
θn
ε2n

ˆ

Br(x∗)

G(xn,1, x
′)[vn(x

′)− 1]p+ dx′ = un,1(0)t
− 2

p−1

n,1 + θn.
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Therefore, by using the classical decomposition G(x, x′) = − 1
2π ln |x − x′| + H(x, x′) where H(x, x′) is

the regular part (hence locally bounded), we have

θn(vn(x)− 1) =
θn
ε2n

ˆ

Br(x∗)

(G(x, x′)−G(xn,1, x
′)) [vn(x

′)− 1]p+ dx′ + un,1(0)t
− 2

p−1

n,1

=
θn
ε2n

ˆ

Br(x∗)

(H(x, x′)−H(xn,1, x
′)) [vn(x

′)− 1]p+ dx′ + un,1(0)t
− 2

p−1

n,1

+
θn
ε2n

ˆ

Br(x∗)

1

2π
ln

|xn,1 − x′|
|x− x′|

[vn(x
′)− 1]p+ dx′.

Let tn,1 → t∞,1 ∈ [T0,+∞], then the term un,1(0)t
− 2

p−1

n,1 → ϕ(0)t
− 2

p−1

∞,1 ≥ 0, which is in particular bounded.

The integration involving H(x, x′)−H(xn,1, x
′) is also bounded because of (H2). For the remaining part

involving the fundamental solutions, we have that

θn
ε2n

ˆ

BRn,1sntn,1
(xn,1)

1

2π
ln

|xn,1 − x′|
|x− x′|

[vn(x
′)− 1]p+ dx′

=
1

2π

ˆ

BRn,1tn,1
(0)

ln
|y|

|x−xn,1

sn
− y|

[ṽn(y)]
p
+ dy

=
t
− 2

p−1

n,1

2π

ˆ

BRn,1/tn,1
(0)

ln
|z|

|x−xn,1

sntn,1
− z|

[un,1(z)]
p
+ dz

=
t
− 2

p−1

n,1

2π

ˆ

B2(0)

ln
|z|

|x−xn,1

sntn,1
− z|

[un,1(z)]
p
+ dz

meanwhile, in view of (5.5),∣∣∣∣∣∣∣
θn
ε2n

ˆ

Br(x1)\BRn,1sntn,1
(xn,1)

1

2π
ln

|xn,1 − x′|
|x− x′|

[vn(x
′)− 1]p+ dx′

∣∣∣∣∣∣∣
≤ϕ(0)

p(ρ+ o(1))p

2π
s

2
p−1
n

ˆ

Ω\BRn,1sntn,1
(xn,1)

∣∣∣∣ln |xn,1 − x′|
|x− x′|

∣∣∣∣dx′ ≤ Cs
2

p−1
n .

Thus, putting x = xn,1 + sntn,1z, and 2Rn,1 ≤ |z| ≤ dist(x1,∂Ω)/2
sntn,1

, we have that,

un,1(z) = t
2

p−1

n,1 θn(vn(xn,1 + sntn,1z)− 1) = O(1) +
1

2π

ˆ

B2(0)

ln
|z′|

|z − z′|
[un,1(z

′)]p+ dz′ =

O(1) +
1

2π
ln

1

|z|

ˆ

B1(0)

ln |z′|[w∗(z′)]p+ dz′.

This fact immediately implies that,

[vn(x)− 1]p+ ≤ 0, in Br(x
∗) \B2Rnsntn,1(xn,1),
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which contradicts the assumption (5.2), that is, for some xn,2 ∈ Br(x1) \ B2Rnsn(xn,1), vn(xn,2) − 1 > 0
for any n. Therefore, as far as (5.1) is satisfied, there cannot be a Fading spike at x∗, as claimed.

5.3. Formation of another spike. Because of (5.1) and since we have ruled out the Fading spike at
x∗, we necessarily have sntn,2 → 0+ together with (5.4). Therefore, for any R ≥ 1 and for n large,

BRsntn,2
(xn,2) ∩BRsntn,1

(xn,1) = ∅.(5.7)

In particular the rescaled functions un,2 defined in (1.6) assume their global maximum at the ori-
gin: sup

BR(0)

un,2 = un,2(0) = ϕ(0) for any R > 0 and for n large. Moreover we have the following uniform

bound about the (p)-mass:

ˆ

BR(0)

[un,2]
p
+ dz =

t
2p

p−1

n,2 θ
p
n

s2nt
2
n,2

ˆ

BRsntn,2
(xn,2)

[vn(x)− 1]p+ dx =

t
2

p−1

n,2 θ
p
n

s2n

ˆ

BRsntn,2
(xn,2)

[vn(x)− 1]p+ dx =
t

2
p−1

n,2 θn

ε2n

ˆ

BRsntn,2
(xn,2)

[vn(x)− 1]p+ dx ≤ ϕ(0)Hp−1,

where we used (4.2) and the last inequality follows as in (4.5).
At this point, according to Lemma 4.5, up to a subsequence un,2 converges to an entire solution u∞,2 of
the form (2.5) with Rp = 1 (since un,2(0) = ϕ(0)), i.e. u∞,2 = w∗. Thus the sequence vn(xn,2) yields a
second spike either of Type I or of Type II.
Remark that vn(xn,2)− 1 ≤ vn(xn,1)− 1, whence we surely have that tn,2 ≥ tn,1, but this is not enough
to determine the Type of the second spike arising from vn(xn,2). Indeed, if vn(xn,1) yields a spike of Type
I, then in principle the second spike could be either of Type I or of Type II, while if vn(xn,1) is already
of Type II, then the second spike must be of Type II as well.

6. The proof of Theorem 1.2

In this section we prove Theorem 1.2.

The Proof of Theorem 1.2.
First of all we have the following

Lemma 6.1. Let vn be a sequence of solutions of (1.2). There exists d∗ > 0 such that there are no critical
points of vn in Ω∗ = {x ∈ Ω : dist(x, ∂Ω) < d∗}.

The Proof of Lemma 6.1.
Since we are in dimension d = 2 and since by the regularity assumption about the the domain we have
that ∂Ω satisfies a uniform exterior ball condition, then the proof is a well known consequence of a moving
plane argument ([25]) to be combined with a Kelvin transform. We refer the reader to Proposition 4 in
[36] for further details. □

Proof of (a)-(b)-(c)-(d).
Let vn be a sequence of solutions of (1.2) and let

vn(xn,1) = sup
Ω
vn,

then, possibly along a subsequence, we have xn,1 → x1 ∈ Ω, where we used Lemma 6.1. According to
Theorem 1.1 in principle we could have the Vanishing alternative, which is easily ruled out. Indeed, if this
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was the case, we could peak any open and relatively compact set Ω1 ⋐ Ω such that x1 ∈ Ω1 to deduce
that,

sup
Ω

[vn − 1]+ = [vn(xn,1)− 1]+ = sup
Ω1

[vn − 1]+ = 0,

for any n large enough, which obviously contradicts (NVp). Thus the Vanishing alternative cannot happen
and the next step will be to rule out the Fading spike alternative.
If by contradiction this was the case, by Theorem 1.1 we would have that,

vn(x)− 1 ≤ ε
2

p−1
n

(sntn)
2

p−1

(ϕ(0) + o(1)), ∀|x− x∗| ≤ δ,

for some δ small, but since vn is the maximum in Ω, then this local estimate would hold for any in x ∈ Ω,
and the estimate (1.8) would take the form,

θn
ε2n

ˆ

Ω

[vn − 1]p+ dx ≤ Cs
2

p−1
n → 0,

which contradicts (NVp). Therefore we infer again from Theorem 1.1 that we have either a spike of Type
I or of Type II.

Inductively, let us assume that for somem ≥ 2 we have already chosenm−1 sequences of local maximizers
xn,j with vn(xn,j) > 1 and xn,j → x∞,j ∈ Ω as n → +∞ for j = 1, 2, · · · ,m − 1, which yield either a
spike of Type I or of Type II each. Remark that, in view of Lemma 6.1, for each j we have x∞,j ∈ Ω.
Thus, according to Theorem 1.1, we also have well defined sequences Rn,j and tn,j , for j = 1, 2, · · · ,m−1
satisfying the properties listed either in (B-i) or in (B-ii).
At this point, let us define,

xn,m ∈ Ω \
m−1⋃
j=1

BRn,jsntn,j
(xn,j)

such that,

vn(xn,m) = sup

vn(x) | x ∈ Ω \
m−1⋃
j=1

BRn,jsntn,j (xn,j)


If vn(xn,m) ≤ 1 for infinitely many n, then passing to a subsequence, we are done with the spike analysis
for this subsequence. In fact we define,

Rn := min
j∈{1,··· ,m−1}

Rn,j ,

which obviously satisfies Rnsntn,j → +∞, for any j. Then, observing that, in view of (NVp), at least
one sequence xn,j must yield a Spike of Type I, we can set NI +NII = m− 1, with NI ≥ 1 and define,
as in the statement of the Theorem, XI = {x∗n,i}i∈{1,··· ,NI},n∈N to be the sequences of local maximizers
yielding Type I spikes and XII = {x∗∗n,i}i∈{1,··· ,NII},n∈N to be the sequences of local maximizers yielding
Type II spikes. As a consequence, according to Remark 4.6, we have that,

vn(x) = 1 +
1

t
2

p−1

n,j θn

w∗(
x− xn,j
sntn,j

) + o(
1

t
2

p−1

n,j θn

), |x− xn,j | ≤ Rnsntn,j ,

where

tn,j → t∞,j ∈ (T0,+∞] as n→ +∞ and


t∞,j ∈ (T0,+∞), if xn,j = x∗n,i, i ∈ {1, · · · , NI}

t∞,j = +∞, if xn,j = x∗∗n,i, i ∈ {1, · · · , NII}
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so that, putting,

D∗
n :=

{
NI⋃
i=1

BRnsntn,i
(x∗n,i)

}
, D∗∗

n :=

{
NII⋃
i=1

BRnsntn,i
(x∗∗n,i)

}

Dn := D∗
n

⋃
D∗∗

n

we also have that,

1

ε2n

ˆ

Ω

[vn(x)− 1]p−1
+ dx =

1

ε2n

ˆ

Dn

[vn(x)− 1]p−1
+ dx = (NI +NII)Ip−1 + o(1)

θn
ε2n

ˆ

Ω

[vn(x)− 1]p+ dx =
θn
ε2n

ˆ

D∗
n

[vn(x)− 1]p+ dx =
∑

i∈{1,··· ,NI}

Ip

t
2

p−1

∞,i

+ o(1),

as n→ +∞. It is worth to remark that the singular set Σ = ΣI ∪ ΣII in the statement is just the set of
cluster points of XI and XII , implying in particular that

Dn ⋐ (Σ)r for any r small enough.

Moreover, since vn is harmonic in Ω \Dn, by the maximum principle we have that,

t
2

p−1

n,j θn(vn(x)− 1) ≤ ϕ
′
(1) log(Rn), ∀x ∈ Ω \Dn,∀ j ∈ {1, · · · , NI +NII},

implying that [vn − 1]+ = 0 in Ω \Dn. Therefore, recalling (B-i) and (B-ii), by the Green representation
formula we see that,

θnvn(x) =
θn
ε2n

ˆ

Dn

G(x, x′)[vn(x
′)− 1]p+ dx′

=

ˆ

D∗
n

G(x, x′)
θn
ε2n

[vn(x
′)− 1]p+ dx′ +

ˆ

D∗∗
n

G(x, x′)[vn(x
′)− 1]p+ dx′

=

NI∑
i=1

θn
ε2n

(sntn,i)
2

θpnt
2p

p−1

n,i

ˆ

BRn

G(x, x∗n,i + sntn,iz)[un(z)]
p
+ dz

+

NII∑
i=1

θn
ε2n

(sntn,i)
2

θpnt
2p

p−1

n,i

ˆ

BRn

G(x, x∗∗n,i + sntn,iz)[un(z)]
p
+ dz

=

NI∑
i=1

1

t
2

p−1

n,i

ˆ

B2

G(x, x∗n,i + sntn,iz)[un(z)]
p
+ dz +

NII∑
i=1

1

t
2

p−1

n,i

ˆ

B2

G(x, x∗∗n,i + sntn,iz)[un(z)]
p
+ dz

=

NI∑
i=1

Ip

t
2

p−1

n,i

G(x, x∗n,i) + or(1) =

NI∑
i=1

Ip

t
2

p−1

n,i

G(x, x∗∞,i) + or(1), ∀x ∈ Ω \ (Σ)r(6.1)

where or(1) is some quantity which uniformly converges to 0 for any fixed r small enough. Therefore the
properties (a)-(b)-(c) in the claim would be proved as far as vn(xn,m) ≤ 1 along a subsequence, whence
we assume w.l.o.g. that vn(xn,m) > 1 for all n ≥ 1 and let

tn,m :=

(
ϕ(0)

θn(vn(xn,m)− 1)

) p−1
2

.
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We can assume that xn,m → x∞,j for some j ∈ {1, · · · ,m−1} otherwise the proof is easier. By the result
in subsection 5.2, xn,m cannot be a Fading spike while by the results in subsections 5.1 and 5.3 we have
that,

|xn,j − xn,m|
sntn,m

→ +∞, for each j = 1, 2, · · · ,m− 1,

and xn,m yields a Type I or a Type II spike, whence according to (B-i), (B-ii), tn,m > T0, and in particular
as in (5.7),

BRsntn,m
(xn,m) ∩BRn,jsntn,j

(xn,j) = ∅ ∀ j = 1, · · · ,m− 1.

Possibly along a subsequence, we can find Rn,m → +∞ and tn,m ∈ (T0,+∞] such that

Rn,msntn,m → 0+.

Thus the rescaled functions un,m, defined as in 1.6, satisfy,

−∆un,m(z) = [un,m(z)]p+, ∀z ∈ BRn,m
(0)

again with uniformly bounded (p−1) and (p)-masses. Therefore un,m converges in C2
loc(R2) to some u∞,m

which is an entire solution of (2.4) with u∞,m(0) = ϕ(0), hence u∞,m = w∗ and this gives us the m-th
spike. Remark that putting, putting

Dn :=


m⋃
j=1

BRn,jsntn,j (xn,j)

 ,

we have that

1

ε2n

ˆ

Ω

[vn(x)− 1]p−1
+ dx =

1

ε2n

ˆ

Dn

[vn(x)− 1]p−1
+ dx = mIp−1 + o(1),

implying that, due to (H1), the induction argument has to stop after a finite number of steps. In particular
if m were the total number of spikes of Type I or II, then we would have,

#(Σ) ≤ Hp−1

mIp−1
.

Let m the total number of spikes of Type I or II, then it is readily seen that (a)-(b)-(c) follow as above
with NI +NII = m and NI ≥ 1. We skip the details to avoid repetitions.

At last, observe that, according to (B-i) and (B-ii) in Theorem 1.1, the plasma region, that is the subset

Ωn,+ := {x ∈ Ω | vn(x) > 1}

consists of asymptotically round points in the sense of Caffarelli–Friedman ([13]), namely, for any 0 <
θ < 1

m⋃
j=1

B(1−θ)sntn,j
(xn,j) ⋐ Ωn,+ ⋐

m⋃
j=1

B(1+θ)sntn,j
(xn,j)

for any n sufficiently large. This fact concludes the proof of (a)-(b)-(c)-(d).

The global behavior of the possible spikes are sketched in the Figure 2.
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Figure 2. Global behavior of the spikes

We are just left with the proof of (e).
Proof of (e).
We recall (6.1), which we write as follows,

lim
n→+∞

θnvn(x) =

NI∑
i=1

Ip

t
2

p−1

∞,i

G(x, x∗∞,i) = Ip

m1∑
ℓ=1

MℓG(x, x
∗
∞,ℓ) =: IpG(x),

whereMℓ was defined in (1.12). This convergence is uniform in Ω\ (Σ)r, where (see (b)), vn(x) is of order
O( 1

θn
). However it is well known (see for example [36] or either [5]) that in this situation a careful analysis

of the Pohozaev identity yields a constraint about (x∗∞,1, · · · , x∗∞,m1
). Indeed, let H be the regular part

of the Green’s function:

G(x′, x′′) =
1

2π
ln

1

|x′ − x′′|
+H(x′, x′′), ∀x′, x′′ ∈ Ω, x′ ̸= x′′,

The functions θnvn ∈ C2,β(Ω) satisfy the equations

−∆(θnvn) =
1

s2n
[θnvn − θn]

p
+.

By using ∇(θnvn) as test functions in Ω′ ⋐ Ω (with ∂Ω′ smooth), we obtain the vectorial Pohozaev
identity: ˆ

∂Ω′

−∂ν(θnvn)∇(θnvn) +
1

2
|∇(θnvn)|2ν ds =

ˆ

∂Ω′

1

p+ 1

1

s2n
[θnvn − θn]

p+1
+ ν ds.

Now let a1 := x∗∞,1 and peak and r > 0 small enough such that Ω′ = B2r(a1) does not contain any
other spike point of Type I. Passing to the limit n → +∞, the right hand side is readily seen to vanish,
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meanwhile the left hand side will converge to the corresponding integral with θnvn replaced by IpG,
whence we have that, ˆ

∂Br(a1)

−∂νG∇G +
1

2
|∇G|2ν ds = 0.(6.2)

At this point observe that,

G(x) =
∑

i=1,···NI : x∗
∞,i=a1

1

t
2

p−1

∞,i

G(x, x∞,i) +
∑

i=1,···NI : x∗
∞,i ̸=a1

1

t
2

p−1

∞,i

G(x, x∞,i)

=
∑

i=1,···NI : x∗
∞,i=a1

 1

2π

1

t
2

p−1

∞,i

ln
1

|x− a1|
+

1

t
2

p−1

∞,i

H(x, a1)

+
∑

i=1,···NI : x∗
∞,i ̸=a1

1

t
2

p−1

∞,i

G(x, x∞,i)

=
M1

2π
ln

1

|x− a1|
+

M1H(x, a1) +
∑

i=1,···NI : x∗
∞,i ̸=a1

1

t
2

p−1

∞,i

G(x, x∞,i)


=
M1

2π
ln

1

|x− a1|
+ F1(x)

where

F1(x) ≡M1H(x, a1) +

m1∑
i=2

MiG(x, ai).

Inserting these expression of G(x) into (6.2) and letting r → 0+, exactly the same computations in either
[36] (see also [5]) show that,

∇F1(a1) = 0,

which is the same as to say that,

∇1H(x∗∞,1, x
∗
∞,2, · · · , x∗∞,m1

) = 0.

The vanishing of the other derivatives readily follows by a permutation of the variables. □

7. The Proof of Theorem 1.3

In this section we prove Theorem 1.3.

The Proof of Theorem 1.3. Putting vn = λn

|αn|ψn and ε2n = (|αn|p−1λn)
−1, because of λn → +∞ and

|αn| ≥ 1, it is readily seen that εn → 0 and vn is a solution of (1.2) where, in view of (1.15),ˆ

Ω

1

ε2n
[vn − 1]p−1

+ dx = λn

ˆ

Ω

[αn + λnψn]
p−1
+ ≤ Cp−1,

whence (H1) is satisfied. Because of (1.14) and λn → +∞, |αn| ≥ 1 we have that |αn| → +∞ andˆ

Ω

θn
ε2n

[vn − 1]p+ dx =

ˆ

Ω

λn
|αn|

θn[αn + λnψn]
p
+ =

λn
|αn|

θn,(7.1)

where we recall that (
εn
sn

) 2
p−1

θn ≡
(
εn
sn

) 2
p−1

ϕ′(1) ln(
√
πsn) = 1,

and in particular that sn → 0 as εn → 0. Elementary arguments show that

s
2

p−1
n = (1 + o(1))ϕ

′
(1)ε

2
p−1
n log(εn)
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and consequently that

θn = ϕ
′
(1) ln(

√
πsn) = (1 + o(1))ϕ

′
(1) log(εn) =

(1 + o(1))

2
|ϕ

′
(1)| log(|αn|p−1λn).(7.2)

Therefore we deduce from (7.1) and (1.15) that,

ˆ

Ω

θn
ε2n

[vn − 1]p+ dx =
λn
|αn|

θn =
(1 + o(1))

2

λn
|αn|

|ϕ
′
(1)|| log(|αn|p−1λn)

{
≤ |ϕ′

(1)|Cp,

≥ |ϕ
′
(1)|

2Cp

,

implying that (H2) and (NVp) are both satisfied as well. As a consequence all the conclusions of Theorem
1.2 hold true for vn and in particular we deduce from (1.10) that,

λn
|αn|

θn =
θn
ε2n

ˆ

Ω

[vn(x)− 1]p+ dx→ (c∞)−1 :=
∑

j∈{1,··· ,NI}

Ip

t
2

p−1

∞,j

.(7.3)

Therefore from (7.2) we have,

|αn|
λn

=
(1 + o(1))

2
|ϕ

′
(1)| log(|αn|p−1λn)(1 + o(1))c∞ =

(1 + o(1))c∞|ϕ
′
(1)|p− 1

2
(log(|αn|) + log(λn)) ,

which readily implies that

|αn| = (1 + o(1))c∞|ϕ
′
(1)|p− 1

2
λn log(λn)

and consequently, again by (7.2)

θn = (1 + o(1))c∞|ϕ
′
(1)|p− 1

2
log(|αn|).

This fact together with (1.9) concludes the proof of (i). The remaining part of the statement is just a
rewriting of (a)-(b) and (d)-(e) of Theorem 1.2 in terms of ψn, where in particular one uses (7.3). □
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