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=XERCISES

(a) Use the Fourier expansion to explain why the note produced by a
violin string rises sharply by one octave when the string is clamped
exactly at its midpoint.

(b) Explain why the note rises when the string is tightened.

. Consider a metal rod (0 < x < 1), insulated along its sides but not at its
ends, which is initially at temperature = 1. Suddenly both ends are plunged
into a bath of temperature = 0. Write the differential equation, boundary
conditions, and initial condition. Write the formula for the temperature
u(x, t) at later times. In this problem, assume the infinite series expansion

| 4 ,n,r+l_3nx+1_57r,\‘+
= —{sin— + -sin — + —sin —— +---
T [ 3 [ 5 [

A quantum-mechanical particle on the line with an infinite potential out-

side the interval (0, [) (“particle in a box™) is given by Schrodinger’s

equation u, = iu,, on (0, /) with Dirichlet conditions at the ends. Separate
the variables and use (8) to find its representation as a series.

- Consider waves in a resistant medium that satisfy the problem
Uy = iy —ru, for0 <y </
u =0 atbothends
u(x, 0) = @) 1, (x, 0) = Yrx),

where 7 is a constant, 0 < r < 2m¢/{. Write down the series expansion
of the solution.

* Do the same for 2re/l < r < dmce/l.

- Separate the variables for the equation ru, = u,, + 2u with the boundary
conditions u(0, 1) = u(rr. t) = 0. Show that there are an infinite number
of solutions that satisfy the initial condition «(x, () = 0. So uniqueness
is false for this equation!

4.2 THE NEUMANN CONDITION

~~ 2 same method works for both the Neumann and Robin boundary conditions
3Cs). In the former case, (4.1.2) is replaced by u, (0, 1) = u,(/, 1) = 0. Then
-2 eigenfunctions are the solutions X(x) of

v S vt __4-1
[ _x" =X, X0 =X=0| (1)

¢

-:=er than the trivial solution X (x) = 0. .
As before, let’s first search for the positive eigenvalues A = = > 0. As
- 4.1.0), X(x) = C cos Bx + D sin Bx, so that

X'(x) = —CBsinBx + DB cos Bx.
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so that T(t) = ¢~ and X(x) satisfies exactly the same problem (1) as before.
Therefore, the solution 1s
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The initial condition requires the cosine expansion (6).

EXERCISES

1. Solve the diffusion problem 1, = Kkityy in0 < x </, with the mixed
boundary conditions (0. 1) = w )y =0.

2. Consider the equation i, = ¢2u . for 0 < x < [, with the boundary con-
ditions (0, 1) = 0, u(l. 1) = 0 (Neumann at the left, Dirichlet at the
right).

(a) Show that the eigenfunctions are cos[(n + %)ﬂ,\‘/l].
(b) Write the series expansion for a solution u(x, ).

3. Solve the Schrodinger equation u, = ikiy, for real k in the interval
0 < x < [ with the boundary conditions u,(0, 1) = 0,u{l,t) =0.

4. Consider diffusion inside an enclosed circular tube. Letits length (circum-
ference) be 2/. Let x denote the arc length parameter where —[ < x <L .
Then the concentration of the diffusing substance satisfies 5o that

#

POSITIVE EIC

Our task now is
(1), (2). First let’

e

As usual, the sol

i, = kiy, for =1 <x =l X' )+

u(—l. 1)y =u(l,t) and u (=1, 0) = u (1), At the leftend v

These are called periodic boundary conditions.

« 2
(a) Show that the eigenvalues are A = (nm/D forn=0,1,2,3.....
(b) Show that the concentration is

So we can solve

\ : 0-
1 o N x NIt X 222 3
. _ : . ,—nemekt]l o
u(x, )= 514() + Z (A” cos —— + B, sin o ) e™" : Messy as they m
n=1 equivalent to the
3
4.3 THE ROBIN CONDITION <U/ cos f
We continue the method of separation of variables for the case of the Robin ¢ Theretore. subst
condition. The Robin condition means that we are solving —X" = AX with %
the boundary conditions i 0=
] X e
X —aX =0 atx=0 | (1) ;Ne ;ion twant t
X ax =0 atx=l | 2) # ypoget
l { - C X

i

The two constants ag and ¢; should be considered as given.
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contain the term

(Ape™ + Bye "N Xp (x).

This term comes from the usual equation — 7" = Ac’T = —(ypc)*T for the
temporal part of a separated solution (see Exercise 10).

EXERCISES

1.

Find the eigenvalues graphically for the boundary conditions
X(0) =0, X'(h+aX()=0.

Assume that a # 0.
Consider the eigenvalue problem with Robin BCs at both ends:

_X// — )»X
X'0)—aX(O) =0, XO+aXl=0.

(a) Show that A = 0 is an eigenvalue if and only if ag + @j = —agay!.
(b) Findthe eigenfunctions corresponding to the zero eigenvalue. (Hint:
First solve the ODE for X(x). The solutions are not sines or cosines.)

Derive the eigenvalue equation (16) for the negative eigenvalues
A= ~y2 and the formula (17) for the eigenfunctions.

Consider the Robin eigenvalue problem. If
ays < 0. ¢ <0 and —ayg—a < apal,

show that there are rwo negative eigenvalues. This case may be called

“substantial absorption at both ends.” (Hint: Show that the rational curve

y = —(ay + @)y /(y? + apa;) has a single maximum and crosses the

line y = 1 in two places. Deduce that it crosses the tanh curve in two

places.)

In Exercise 4 (substantial absorption at both ends) show graphically that

there are an infinite number of positive eigenvalues. Show graphically

that they satisty (11) and (12).

If @y = «; = @ in the Robin problem, show that:

(a) There are no negative eigenvalues if « > 0, there is one if
-2/ < a < 0, and there are rwo if a < =2/1.

(b) Zerois an eigenvalue if and only if a = Oora = —=2/1.

Ifay = a; = a, show thatas a — 400, the eigenvalues tend to the eigen-

values of the Dirichlet problem. That is,

+ 1)
Iim,‘ Bala) — u =0,

(10 /

where X, (a) = [/“3”((1)']2 is the (n + Dst eigenvalue.

AR B

SRR e A

by

Y.

Co
(a)

(b)

(ab
(a)
(b)

(c)

(d)
So

SU1

(a)

{b)
(c)

Cc




~(yoe)* T for th:

litions

th ends:

a4 = -G
genvalue. (H; -
NeS Or Cosine-

e eigenval

4.3 THE ROBIN CONDITION 101

% Consider again Robin BCs at both ends for arbitrary ag and a;.

a1 In the aoa; plane sketch the hyperbola ag + a; = —apayl. Indicate
the asymptotes. For («, ¢;) on this hyperbola, zero is an eigenvalue,
according to Exercise 2(a).

=1 Show that the hyperbola separates the whole plane into three re-
gions, depending on whether there are two, one, or no negative
eigenvalues.

51 Label the directions of increasing absorption and radiation on each
axis. Label the point corresponding to Neumann BCs.

3 Where in the plane do the Dirichlet BCs belong?

Ontheinterval 0 < v < 1 of length one, consider the eigenvalue problem
. s — )\.X
X(OH+X0=0 and X(H=0

shsorption at one end and zero at the other).
.. Find an eigenfunction with eigenvalue zero. Call it Xo(x).
- Find an equation for the positive eigenvalues A = B2
Show graphically from part (b) that there are an infinite number of
positive eigenvalues.
i+ Is there a negative eigenvalue?
<aive the wave equation with Robin boundary conditions under the as-
amption that (18) holds.
Prove that the (total) energy is conserved for the wave equation with
Dirichlet BCs, where the energy is defined to be

/
/ (('7211:‘ + uf) dx.
0

(Compare this definition with Section 2.2.)
~ Do the same for the Neumann BCs.
For the Robin BCs, show that

3

E =

ol—

Ep=

o=

{
/ ((‘—21,{'{2 + u%) dy + %(I/[l,{(/. I‘/‘)]2 + l%,at)[”((), 0]2
) Y 2 2

is conserved. Thus. while the total energy Ep is still a constant,
some of the internal energy is “lost™ to the boundary if ¢ and ¢; are
positive and “gained” from the boundary if ¢ and «¢; are negative. 3

~sider the unusual eigenvalue problem 3

— Uy = AU for 0 < x </

v(l) — v(0)

v (0) = v () = /

Show that A = 0 is a double eigenvalue.
Get an equation for the positive eigenvalues A > 0.
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(¢c) Lettingy = %/\/7 reduce the equation in part (b) to the equation

y siny cosy = sin’ V.

o sl

(d) Use part (¢) to find half of the eigenvalues explicitly and half of
them graphically.

(e) Assuming that all the eigenvalues are nonnegative, make a list of
all the eigenfunctions.

(f) Solve the problem u, = ki, for0 < x </, with the BCs given
above, and with u(x, 0) = ¢(x).

(g) Show that, as t — oo, limu(x, 1) = A + Bx for some constants

A, B, assuming that you can take limits term by term.

13. Consider a string that is fixed at the end x = 0 and is free at the end x =/
except that a load (weight) of given mass is attached to the right end.
(a) Show that it satisfies the problem

SN

a ¢

A
Uy = CUyy forO < x </

u(@,)=20 (L, )y = —ku(l, t)

for some constant k.
(b) What is the eigenvalue problem in this case?
(¢) Find the equation for the positive eigenvalues and find the eigen-
functions.
14. Solve the eigenvalue problem x?u” + 3xu’ +du =0forl < x <e,
with u(1) = u(e) = 0. Assume that A > 1. (Hint: Look for solutions
of the form # = 1" for complex m.)

15. Find the equation for the eigenvalues 4 of the problem
(KXY +2p(0)X =0 for 0 <x </ withX(©0) = X({) =0,

wherex(x) = Kf forx <a,k(x) = Kzz forx > u, px)= ,012 forx < a,
and p(x) = /)23’ for.v > a. All these constants are positive and 0 < a < /.

16. Find the positive eigenvalues and the corresponding eigenfunctions of
the fourth-order operator +d*/dx” with the four boundary conditions

X(0) = X()=X"(0)=X"() = 0.

17. Solve the fourth-order eigenvalue problem X" = A X in 0 < x < /[, with
the four boundary conditions

X(0)=X'"0)=X=X"(=0,

where % > 0. (Hint: First solve the fourth-order ODE.)

18. A tuning fork may be regarded as a pair of vibrating flexible bars with
a certain degree of stiffness. Each such bar is clamped at one end and
is approximately modeled by the fourth-order PDE u,, + Uy = 0.
It has initial conditions as for the wave equation. Let’s say that
on the end x = 0 it is clamped (fixed), meaning that it satisfies

1

-~
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0.1) = u, (0, 1) = 0. On the other end v = /it is free, meaning that it
wasfies u(l, 1) = Uy (1, 1) = 0. Thus there are a total of four boundary
- ~nditions, two at each end.

.+ Separate the time and space variables to get the el
X//// — )\‘X.

zative, make a list o- S - Show tbat zero is not an eigenvalue. N ' \
e - Assuming that all the eigenvalues are positive, write themas A = B

and find the equation for 8.

Find the frequencies of vibration.
- for some constar:- Co.mpare your answer in part gd) \;\/ith the overtones of the vibrating
string by looking at the ratio By /7. Explain why you hear an almost

>vterm.
pure tone when you listen to a tuning fork.
<-aw that in Case 1 (radiation at both ends)

nim? 2
lim {k” — } =7 (ap + ar).

‘1 (b) to the equatior.

:xplicitly and half ¢ genvalue problem

with the BCs give-

~reeattheend v =
=4 10 the right end.

> O 2

-=2 find the eige--

= forl <1 < .
-« for soluti:-
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conditions still hold for both ¥ and Z because the eight constants in (4) are real
numbers. So the real eigenvalue x has the real eigenfunctions ¥ and Z. We
could therefore say that X and X are replaceable by the ¥ and Z. The linear
combinations ¢ X + X arc the same as the linear combinations ¢¥ +dZ,
where a and b are somehow related to ¢ and d. This completes the proof of
Theorem 2. -

NEGATIVE EIGENVALUES

We have seen that most of the eigenvalues turn out to be positive. An important
question is whether !l of them are positive. Here is a sufficient condition.

Theorem 3. Assume the same conditions as in Theorem 1. If
x=h
fofol =0 (10)
‘ V=
for all (real-valued) functions f(x) satistying the BCs, then there is no negative
eigenvalue.

This theorem is proved in Exercise 13. It is easy to verify that (10) is
valid for Dirichlet, Neumann, and periodic boundary conditions, so that in
these cases there are no negative cigenvalues (see Exercise 11). However, as
we have already seen in Section 4.3, it could not be valid for certain Robin
boundary conditions.

We have already noticed the close analogy of our analysis with linear
algebra. Not only are functions acting as if they were vectors, but the operator
~dz/a’x2 is acting like a matrix; in fact, it is a linear transformation. Theorems
I and 2 are like the corresponding theorems about real symmetric matrices.
For instance, if A is a real symmetric matrix and f and g are vectors, then
(Af,g)=(f,Ag). Inour presentcase, A is a differential operator with symmetric
BCsand f and g are functions. The same identity (Af, g) = (f, Ag) holds in our
case [see (3)]. The two main ditferences from matrix theory are, first, that our
vector space is infinite dimensional, and second, that the boundary conditions
must comprise part of the definition of our linear transformation.

EXERCISES

1. (a) Find the real vectors that are orthogonal to the given vectors [ 1, 1, 1]
and [1, —1, 0}
(b) Choosing an answer to (a), expand the vector [2, =3, 5] as a linear

combination of these three mutually orthogonal vectors.

2. (a)

On the interval [—1, 1], show that the function x is orthogonal to
the constant functions.

(b) Find a quadratic polynomial that is orthogonal to both 1 and x.

(¢) Find a cubic polynomial that is orthogonal to all quadratics. (These
are the first few Legendre polynomials.)
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Consider u,; = ¢ty for0 <x <1, with the boundary conditions u(0, 1)
— 0. u,(,1) = 0 and the initial conditions u(x. 0) = x, u(x.0)=0.
Find the solution explicitly in series form.
- Consider the problem u; = ku, for 0 < x < [, with the boundary con-
ditions u(0, 1) = U, u(l,1) = 0. and the initial condition u(x,0) =0,
where U 1s a constant.
(a) Find the solution in series form. (Hinr: Consider u(x. 1) — U.)
'b) Using a direct argument, show that the series converges for ¢ > 0.
() If ¢ is a given margin of error, estimate how long a time is required
for the value u(/, 1) at the endpoint to be approximated by the con-
stant U within the ervor €. (Hint: Itis an alternating series with first
term U, so that the error is less than the next term.)
a)  Show that the boundary conditions u(0, 1) = 0, u (L. 1) = 0 lead to
the eigenfunctions (sin(mx /20). sin(37x/210), sin(Smx /2D, ...
by If ¢(x) is any function on (0. 1), derive the expansion

> | X
P(x) = ZC,ﬁ'm{(n + —2—> 1]\—} (0 <x <)

n=0
by the following method. Extend ¢(x) to the function ¢ defined by
P(x) = ¢(x)for 0 < x < land d(x) = ¢ —x)forl =x =2l
(This means that you are extending it evenly across x = 1) Write
the Fourier sine series for $(x) on the interval (0, 20) and write the
formula for the coefficients.
-y Show that every second coefficient vanishes.
1) Rewrite the formula for €, as an integral of the original function
¢(x) on the interval (0, ).
“ind the complex eigenvalues of the frst-derivative operator d/dx subject
-~ the single boundary condition X(0) = X(1). Are the eigenfunctions
arthogonal on the interval (0, 1)?
~ Show by direct integration that the eigenfunctions associated with the
Qobin BCs, namely,

2

a
¢n(x) = cos B,x + l sin B,x  where An = By

H
sre mutually orthogonal on 0 < x = I. where B, are the positive roots of

+.3.8).
Show directly that (=X X2 + X X"z)i}(j — 0 if both X, and X, satisfy the
<ame Robin boundary condition atx = d and the same Robin boundary
~ondition at x = b.
Show that the boundary conditions
X(b) =aX(a)+ BX'(¢) and X'(h) =y X(a)+ 5X'(a)

snan interval a < x < b are symmetric if and only if @6 — By = 1.
The Gram—=Schmidr orthogonalization procedure) If X, Xo., ... isany
<2quence (finite or infinite) of linearly independent vectors in any vector
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space with an inner product, it can be replaced by a sequence of linear
combinations that are mutually orthogonal. The idea is that at each step
one subtracts oft the components parallel to the previous vectors. The
procedure is as follows. First, we let Z; = X /]| X ||. Second, we define

1%
Ys = Xo — (X2, Z)Z, and Zp = ——.
1Yl
Third, we define
Y
Yy = Xz — (Xa. Z2)7Zs — (X5, Z))Z, and  Zs = m
t 3

and so on,

(a) Show that all the vectors Z, Z;. Z3, . .. are orthogonal to each other.

(b) Apply the procedure to the pair of functions cos x + cos 2x and
3 cos x — 4 cos 2x in the interval (0, ) to get an orthogonal pair.

(@) Show that the condition f(.x)f"(x)|: < 0 is valid for any function
f(x) that satisties Dirichlet, Neumann, or periodic boundary condi-
tions.

(b) Show that itis also valid for Robin BCs provided that the constants
ay and ¢y are positive.

Prove Green's first identity. For every pair of functions f(x), g(x) on

(a, b),

b b 'b

f(xgx)dx = ~/ Fgods + f'g

o

ad ‘(1

Use Green'’s first identity to prove Theorem 3. (Hint: Substitute f(x) =
X(x) = g(x), a real eigenfunction.)

What do the terms in the series

s

] 1
Z:sinl+§8ill3+gsin5+--.

look like? Make agraphof'sinnforn=1,2,3,4,...,20 withoutdrawing
the intervening curve; that is, just plot the 20 points. Use a calculator;
remember that we are using radians. In some sense the numbers sin n
are randomly located in the interval (=1, 1). There is a great deal of
“random cancellation™ in the series.

Use the same idea as in Exercises 12 and 13 to show that none of the
eigenvalues of the fourth-order operator +d*/dx* with the boundary
conditions X(0) = X(/) = X"(0) = X"(I) = 0 are negative. i

5.4 COMPLETENESS

In this section we state the basic theorems about the convergence of Fourier se-
ries. We discuss three senses of convergence of functions. The basic theorems
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obviously satisfies the BCs. 1f we let
v, ) = ulx. ) — WUlx, 1),

then v(x, 1) satisties the same problem but with zero boundary data, with
initial data ¢(x) — Ux, 0) and Y (x) — L (x, 0), and with right-hand side f
replaced by f — 9l,,.

The boundary condition and the differential equation can simultaneously
be made homogeneous by subtracting any known function that satisfies them.
One case when this can surely be accomplished is the case of “stationary
data” when h, k. and f(x) all are independent of time. Then it is easy to find
a solution of

= f WO =h wd) =k

Then v(x, 1) = u(x, t) — WU(x) solves the problem with zero boundary data,
zero right-hand side, and initial data ¢(x) — U(x) and ¥ (x).
For another example, take problem (11) for a simple periodic case:

flx. )= F(x)coswt h(r) = H coswt k(t) = K coswt,

that is. with the same time behavior in all the data. We wish to subtract a
solution of

Oun — ('Zou,\‘,\‘ - F(X) CcOs wi
W0, t) = H coswt AUl, 1) = K coswt.

A good guess is that A should have the form U(x, 1) = g (x) cos wt. This
will happen if ,(x) satisfies
oty =l = Fly)y W) =H  Uy) = K.

There is also the method of Laplace transforms, which can be found in
Section 12.5.

EXERCISES

1. (a) Solve as a series the equation u, = uy, in (0, 1) with u,(0, ) = 0.
u(l.ry=1, andu(x,0) = x2 Compute the tirst two coefficients
explicitly.

(b) What is the equilibrium state (the term that does not tend to zero)?

2. For problem (1), complete the calculation of the series in case j(1) = 0

and h(1) = €.

3. Repeat problem (1) for the case of Neumann BCs.

4. Solve u, = c*uy +ktfor0 < x <{, with the boundary conditions
w(0, 1) =0, u(l,r)=0 and the initial conditions u(x, 0)=0.
1u,(x,0) = V. Here k and V are constants.

5. Solve 1, =c’uy + e'sindx for 0 <x < m, with u(0, 1) = u(r, 1) = 0
and the initial conditions u(x, 0) = 0, wu,{x,0) = sin3x.
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= Solve uy = c?u,, + g(x)sinwt for0 < x <[, withy = 0 at both ends

andu = u, = 0 when t = 0. For which values of w can resonance occur?
(Resonance means growth in time.)

/ data, witr

Repeat Exercise 6 for the damped wave equation u,, = ¢, — ru,+
‘hand side -

¢(x)sinwt, where rig a positive constant.

: * Solve u; = ku,, in (0,0, with (0, r) = 0. ull, 1) = Ar, u(x,0) =0,
L{/f(.IIIGOL’j"-“ where A is a constant.
‘isfies then: Use th thod of sub ) | 9 for0 < v <1 —
v - \ I ~ \ 7\ o= - i 3 - =
“stationar- se the method of subtraction to solve iy, uy for ) < x < ,

with u(0, 1) = h, u(l, ) =k, where h and k are given constants, and
1(x,0) =0, u,(x, 0) =0,

Find the temperature of a metal rod that is in the shape of a solid circular
cone with cross-sectional area Alx) = b(l — .\'//)2 for 0 < x </ where

2asy to fine

ndary dai: b is a constant. Assume that the rod is made of a uniform material, is
) insulated on its sides, is maintained at zero temperature on its flatend (x =
case: ), and has an unspecified initial temperature distribution ¢(x). Assume ¢
) that the temperature is indeg)endent of y and z. [Hint: Derive the PDE -
8wt (1 — ,\‘/Z)%u, =k{(1 —x/D u,},.. Separate variables i = T ()X (x)and ]
then substitute v(x) = (1 — xX/DX(x).] 3
ubtract . Write out the solution of problem (11) explicitly, starting from the dis- :
cussion in Section 5.6.
- Carry out the solution of (I11) in the case that =
S ) = F(x)coswr h(t) = Hcoswt k(1) = K cosawr. ‘
swt. Tr: o _
If friction is present, the wave equation takes the form ‘
2 3
U — CUyy = ~ru,, 4
 found - where the resistance » > 0 is a constant. Consider a periodic source at j
i oneend: u(0,1) = 0. u(l, 1) = Ae'®" ]
(a) Show that the PDE and the BC are satisfied by 3
. 8in Bx .
Ulx, 1) = Ae"”’J—. where 8%¢? = w? — irw.
V1) = sin B/
efficier-. (b) No matter what the IC, u(x, 0) and i, (x, 0), are, show that U(x, ¢)
is the asymptotic form of the solution u(x,t)ast — oc.
to zere t¢) Show that you can get resonance as r — () if w = mmc/l for some
2 i) = integer m.

(d)  Show that friction can prevent resonance from occurring.

nditic -




