38 CHAPTER 2 WAVES AND DIFFUSIONS

EXERCISES
1. Solve i, = Py, u(x,0)=e¢" u(x,0) = sin x.
2. Solve u,, = ¢y, ulx,0) =log(l + ), u(x,0) =4+ x.

3. The midpoint of a piano string of tension T, density p, and length /s hit
by a hammer whose head diameter is 2a. A flea is sitting at a distance .
1/4 from one end. (Assume that @ < 1/4; otherwise, poor flea!) How long ‘
does it take for the disturbance to reach the flea?

4. Justity the conclusion at the beginning of Section 2.1 that every solution
of the wave equation has the form f(x +ct) + gx —ct).

5. (The hammer blow) Let ¢(x) = 0 and ¥(x)=1 for |x] <a and

B

Y(x) =0 for |x| > a. Sketch the string profile (i versus x) at each of 4
the successive instants ¢ = a/2¢, a/c, 3a/2¢, 2a/c, and Sa/c. [Hint: v
4 Calculate
, Xl 1 %
u(x, t) = — Y(s)ds = T{length of (x—ct, x +ct) N (—a, a)}.
4 20 Ju 2c i
Then u(x, a/2¢) = (1/2¢) {length of (x — a2, x +a/2)yN(—a, a)}. * e
E This takes on different values for [x| < a/2, for a/2 < x < 3a/2, and SRR
for x > 3a/2. Continue in this manner for each case.] ; e
4 6. In Exercise 5, find the greatest displacement, max, u(x, 1), as a function .
of t. j: ‘ ::1 2
7. 1f both ¢ and ¥ are odd functions of x, show that the solution u(x, ) of :; SimAle
the wave equation is also odd inx for all ¢. A
:. 8. A spherical wave is a solution of the three-dimensional wave equation T
" . of the form u(r, 1), where r is the distance to the origin (the spherical DR
3 coordinate). The wave equation takes the form j T lEpen.
i;: ITSIOre

' 2 , 4 .
= ¢* (u,,,. + =l (“spherical wave equation”).
-

g e

(a) Change variables v = ru 10 get the equation for v: v, = AT
(b) Solve for v using (3) and thereby solve the spherical wave equat-
ion.
(¢) Use (8) to solve it with initial conditions u(r, 0) = ¢(r),
u,(r, 0) = (), taking both ¢(r) and ¥ (r) to be even functions
of r.
9. Solve uy, — iy — 4ty =0, u(x,0) = X%, u,(x,0) = e'. (Hint: Fac-
tor the operator as we did for the wave equation.)
10. Solve iy, + tty — 201, =0, u(x,0) = o(x), e (x, 0) = ().
11. Find the general solution of 3u;, + 10i ¢ + 3uyy = sin(x +1).
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« =~z cornerstone of the theory of relativity. It means that a signal located at
= ~asition xp at the instant fg cannot move faster than the speed of light. The
zinof influence of (x, fo) consists of all the points that can be reached by
: -« zmal of speed ¢ starting from the point xy at the time #o. It turns out that the
_=ons of the three-dimensional wave equation always travel at speeds ex-
2~ - 2qual to ¢ and never slower. Therefore, the causality principle is sharper
~ -=-ze dimensions than in one. This sharp form is called Huygens's principle
<= Chapter 9).

“iatland is an imaginary two-dimensional world. You can think of yourself
2 : ~aterbug confined to the surface of a pond. You wouldn’t want to live there
- 2se Huygens’s principle is not valid in two dimensions (see Section 9.2).
=+~ sound you make would automatically mix with the “echoes™ of your
== aus sounds. And each view would be mixed fuzzily with the previous
<. Three is the best of all possible dimensions.

EX=RCISES

"se the energy conservation of the wave equation to prove that the only
«olution with ¢ = 0 and ¥ = 0 is u = 0. (Hint: Use the first vanishing
‘meorem in Section A.1.)
Zarasolution u(x. £) of the wave equation with p = T'= ¢ = 1, the energy
zensity 1s defined as e = %(u% + u?) and the momentum density as p =
e
2 Show that de/0t = 9p/dx and dp/dt = de/dx.
~.  Show that both e(x, ) and p(x, ) also satisfy the wave equation.
Snow that the wave equation has the following invariance properties.
v Any translate u(x — y, £), where y is fixed, is also a solution.
=y Any derivative, say u,, of a solution is also a solution.
o+ The dilated function u(ax, ar) is also a solution, for any constant a.

- Fulx, 1) satisfies the wave equation i, = 1y, prove the identity

Cpd

vt du—h =k =ux+k D ulc =kt —h)

“orall x, ¢, A, and k. Sketch the quadrilateral Q whose vertices are the
stguments in the identity.
= For the damped string, equation (1.3.3), show that the energy decreases.
- Prove that, among all possible dimensions, only in three dimensions can
-2 have distortionless spherical wave propagation with attenuation. This
~zans the following. A spherical wave in n-dimensional space satisfies

=2 PDE
, ( n—1 )
Uy = C7 | Upp T iy |,
p

shere 7 is the spherical coordinate. Consider such a wave that has
ne special form u(r, 1) = a(r) f(t — B(r)), where a(r) is called the
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attenuation and B(r) the delay. The question is whether such solutions
exist for “arbitrary” functions f.

(a) Plug the special form into the PDE to get an ODE for f.

(b) Set the coefficients of f”, f', and f equal to zero.

(¢) Solve the ODEs to see thatn = 1 orn = 3 (unless u = 0).

(d) Ifn=1,show thata(r)isaconstant (so that “thereisno attenuation’).

(T. Morley, American Mathematical Monthly, Vol. 27, pp. 69-71, 1985)

2.3 THE DIFFUSION EQUATION

In this section we begin a study of the one-dimensional diffusion equation
u, = kit . o))

Diffusions are very different from waves, and this is reflected in the mathe-
matical properties of the equations. Because (1) is harder to solve than the
wave equation, we begin this section with a general discussion of some of the
properties of diffusions. We begin with the maximum principle, from which
we’ll deduce the uniqueness of an initial-boundary problem. We postpone un-
til the next section the derivation of the solution formula for (1) on the whole
real line.

Maximum Principle. If u(x, 1) satisfies the diffusion equation in a rectangle
(say,0 <x <[, 0<tr=<T)in space-time, then the maximum value of u(x, 7)
is assumed either initially ( = 0) or on the lateral sides (x = 0 or x = [) (see
Figure 1).

In fact, there is a stronger version of the maximum principle which asserts
that the maximum cannot be assumed anywhere inside the rectangle but only
on the bottom or the lateral sides (unless u is a constant). The corners are
allowed.

The minimum value has the same property; it too can be attained only on
the bottom or the lateral sides. To prove the minimum principle, just apply
the maximum principle to [—u(x, 0)].

These principles have a natural interpretation in terms of diffusion or heat
flow. If you have a rod with no internal heat source, the hottest spot and the

At

Y-

t=0

Figure 1

t
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Fova R

This is one of the few fortunate examples that can be integrated. The
exponent is .
x2 = 2xy + y? + 4kry %
4kt ' %
Completing the square in the y variable, it is fof
LS
s 2kt — x)° z
ke g;
4kt ¢
We let p = (y + 2kt — x)/~/4ki so thatdp = dy/~/4kt. Then .
. o _Ldp _ 5
u(x, T) — 01\14,\ / e T — €/al-—,\'
e v 5
By the maximum principle, a solution in a bounded interval can- g
not grow in time. However, this particular solution grows, rather than 4
decays, in time. The reason is that the left side of the rod is initially &
very hot [u(x, 0) — +00 as X — —00] and the heat gradually diffuses
throughout the rod. G
EXERCISES
1. Solve the diffusion equation with the initial condition f
oxy=1 forix| <! and d(xy=0 for|x| > [
3 Write your answer in terms of Erflx). ’f
L 2. Do the same for ¢(v) = I for x > 0 and ¢(x) = 3 forx < 0.
3. Use (8) to solve the diffusion equation if p(x) = e*. (You may also use g
Exercises 6 and 7 below.)
4. Solve the diffusion equation if ¢(x) = e~ for x > 0 and ¢(x) = 0 for
x <O i
5. Prove properties (a) to (e) of the diffusion equation (1).
Compute fooo e~ dx. (Hint: This is a function that cannot be integrated
i by formula. So use the following trick. Transform the double integral ,
> JO% e dx - fooU e~ dy into polar coordinates and you’ll end up with a

function that can be integrated easily.) )
T = . . ) ooyt _ .
7. Use Exexc_;ie 6 to show that f_ooc dp = /7. Then substitute
p = .\'/\ﬂlkf to show that

/ S, t)ydx = 1.

8. Show that for any fixed § > 0 (no matter how small),

R

max S(x,1) — 0 ast — 0.
§<|v]<oco
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This means that the tail of S(x, #) is “uniformly small”.]

<-ve the diffusion equation u, = ku, with the initial condition
) ¥? by the following special method. First show that i,
ines the diffusion equation with zero initial condition. There-
bv uniqueness, i, = 0. Integrating this result thrice, obtain
v = A(t)x? + B(r)x + C (). Finally, it’s easy to solve for A, B,
by plugging into the original problem.
Solve Exercise 9 using the general formula discussed in the
rext. This expresses u(x, f) as a certain integral. Substitute p =
x — y)/~/4kt in this integral.
Since the solution is unique, the resulting formula must agree with
the answer to Exercise 9. Deduce the value of

o 2
f pre " dp.
—

Consider the diffusion equation on the whole line with the usual
initial condition u(x, 0) = ¢(x). If ¢(x) is an odd function, show
-nat the solution u(x, 1) is also an odd function of x. (Hint: Consider
n—x, 1) u(x, t) and use the uniqueness.)

Show that the same is true if “odd” is replaced by “even.”

Show that the analogous statements are true for the wave equation.

e ”smpose of this exercise is to calculate Q(x,) approximately for
-z2 1. Recall that Q(x,1) is the tempelatme of an infinite rod that is
:;.wl_\ at temperature 1 for x > 0, and 0 for x < 0.
Express (Hx, £) in terms of érf.
Find the Taylor series of €rf(x) around x = 0. (Hint: Expand €7,
substitute z = —y?, and integrate term by term.)
Use the first two nonzero terms in this Taylor expansion to find an
.‘pp10x1mate formula for Q(x, 1).
Wy is this formula a good approximation for x fixed and 7 large?

~ = from first principles that Q(x. 1) must have the form (4), as follows.
Assuming uniqueness show that Q(x, ) = O(Ja x, at). This
identity is valid for all @ > 0, all 7 > 0, and all x.
Choose a = 1/(4kt).

=2 50x) be a continuous function such that [@(x)| < Ce®", Show that
--~nula (8) for the solution of the diffusion equation makes sense for O
- < 1/(4ak), but not necessarily for larger 7.

=~ e the uniqueness of the diffusion problem with Neumann boundary
coaditions:

=kt = fx, 1) forO<x<lt>0 ulx,0)= P(x)
(0, 0) = g(t) u,(l,r)=n(®

. the energy method.
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16. Solve the diffusion equation with constant dissipation:
u, — ki +bu=0 for —o0 < X < 00 with u(x, 0) = ¢(x),

where b > 0 is a constant. (Hint: Make the change of variables u(x, t) =
—~bt .
e PMu(x, 1))

17. Solve the diffusion equation with variable dissipation:
u, — kit + bt?u =0 for—o0 < x < 0 with u(x, 0) = ¢(x),

where b > 0 is a constant. (Hint: The solutions of the ODE
w, + bt?w =0 are Ce /3 So make the change of variables
u(x, t) = e"”3/3v(,\‘, t) and derive an equation for v.)

18. Solve the heat equation with convection:

U, — kit + Vi, =0 for—oo < x < 0 with u(x, 0) = ¢(x),

where V is a constant. (Hint: Go to a moving frame of reference by
substituting y = x — V1.
19. (a) Show that Sa(x, y, 1) = S(x, 1)S(y, t) satisfies the diffusion equa-
tion S; = k(S + Syv)-
(b) Deduce that Sa(x, y. 1) is the source function for two-dimensional
diffusions.

2.5 COMPARISON OF WAVES AND DIFFUSIONS

We have seen that the basic property of waves is that information gets trans-
ported in both directions at & finite speed. The basic property of diffusions
is that the initial disturbance gets spread out in a smooth fashion and grad-
ually disappears. The fundamental properties of these two equations can be
summarized in the following table.

Property Waves Diffusions
(i) Speed of propagation? Finite (<o) Infinite
(ii) Singularities for t > 07 Transported Lost immediately
along
characteristics
(speed = ¢)
(iii) Well-posed for ¢ > 07 Yes Yes (at least for bounded solutions)
(iv)  Well-posed for ¢ < 0?7  Yes No
(v} Maximum principle No Yes
(vi) Behaviorast — +00? Energy is Decays to zero (if ¢ integrable)

constant so does
not decay

(vit) Information Transported Lost gradually
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By the same reasoning as we used above, we end up with an explicit formula
for w(x, t). It is

—(x—y)? 4kt + e—(X+y)2/4kf] o(y)dy. )

1 o0
wix,t) = \/——4:71:15/0 [e

This is carried out in Exercise 3. Notice that the only difference between (6)
and (9) is a single minus sign!

Example 2.

Solve (7) with ¢(x) = 1. This is the same as Example 1 except for the
single sign. So we can copy from that example:

1 1 X 1 1 X
= | = —%rf - - '"% f = 1
ux. 1) [2 T3 (4kzﬂ + [2 2 (4kz>]
(That was stupid: We could have guessed it!) a

EXERCISES

1. Solve u, = kuy;, u(x,0) = ¢ u(0, 1) = 0 on the half-line 0 < x<00.

2 Solve u; = ki, u(x,0) = 0; u(0,t) = 1 onthe half-line 0 < x < 0.

3. Derive the solution formula for the half-line Neumann prob-
lemw, — KWy = O0for0 < x <00,0 <t <00 w,(0,1) = 0, w(x,0) =
B(x).

4. Consider the following problem with a Robin boundary condition:

DE: u, = kitw on the half-line 0 < x < o0 .
(and 0 < t < o) %
7 IC: Lt(x7 0) = X for t = 0 and 0 < x < 00 (*) %
BC: 1,(0,1)—2u(0,)=0 forx=0. }
{
] The purpose of this exercise is to verify the solution formula for (*). Let % -
f(x)=xforx >0, let f(x) = x + 1 — ¢ forx <0, and let . -
& -

L e 2
v(x, 1) = g~ xmy /A dy.
] wn=7=m, e

e E
. (a) What PDE and initial condition does v(x,1) satisfy for % =
4 —00 < X < 007 i
' (b) Letw = v, — 2v. What PDE and initial condition does w(x, 1) satisfy ;’;
. for —00 < x < 007 f;a

(¢) Show that f'(x) — 2 f(x) is an odd function (for x # 0). ¥
(d) Use Exercise 7'4.11 to show that w is an odd function of x. - -

s P e P LA
o S ok o AR
o
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licit iz . . .
P formui. Seduce that v(x, 1) satisfies (*) for x > 0. Assuming uniqueness,

:zduce that the solution of (*) is given by

1 ey
dy. | s 0= g [ T

““e the method of Exercise 4 to solve the Robin problem:
¢ between .~

DE:  u, = kit on the half-line 0 < x < 0
(and 0 < t < 00)

IC: ux,0)=x fort =0and 0 < x < 0
BC: 1, (0,t)— hu(0,t)=0 for x = 0,

wnare 1 1S a constant,
Geeneralize the method to the case of general initial data ¢(x).

REFLECTIONS OF WAVES

- += = the same kind of problem for the wave equation as we did in
for the diffusion equation. We again begin with the Dirichlet
e - the half-line (0, 0o). Thus the problem is

v, = Py =0 for 0 < x < o0 j
and —o0 <t < OO
rx, 0) = @o(x), u(x,0) = Y(x) fort =0
and 0 < x < 0
v(0,1) =0 for x =0

-1on method is carried out in the same way as in Section 3.1. Con-
_id extensions of both of the initial functions to the whole line,
w3 v aqa(x). Let u(x, 1) be the solution of the initial-value problem on
~ with the initial data ¢ogq and ¥ qd. Then u(x, 1) is once again an odd
<1 see Exercise 2.1.7). Therefore, u(0, £) = 0, so that the boundary
.« satisfied automatically. Define v(x, 1) = u(x,t) for0 < x < o0
—-1on of u to the half-line]. Then v(x, 1) is precisely the solution we
for. From the formula in Section 2.1, we have forx = 0,

1 1 x+ct
XL )= E[Cbodd(x + 1) + Poaa(x — 1) + -—/ Vodd(y)dy.

2¢

x—ct

- =5 “unwind” this formula, recalling the meaning of the odd extensions.
-~ w= -nrice that for x > c|t] only positive arguments occur in the formula,
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The solution formula at any other point (x, £) 1s characterized by the num-
ber of reflections at each end (x = 0, /). This divides the space-time picture
into diamond-shaped regions as illustrated in Figure 6. Within each diamond
the solution v(x, t) is given by a different formula. Further examples may be
found in the exercises.

The formulas explain in detail how the solution looks. However, the

method is impossible to generalize to two- of three-dimensional problems,
nor does it work for the diffusion equation at all. Also, it is very complicated!
Therefore, in Chapter 4 we shall introduce a completely different method
(Fourier’s) for solving problems on a finite interval.

EXERCISES
1. Solve the Neumann problem for the wave equation on the half-line 0<
X < 00.

2. The longitudinal vibrations of a semi-infinite flexible rod satisfy the
wave equation i, = c2u,, for x > 0. Assume that the end x = 0 is free
(1, = 0); it is initially at rest but has a constant initial velocity V for
a < x < 2a and has zero initial velocity elsewhere. Plot u versus x at the
times 1 =0, a/c, 3a/2c, 2a/c, and 3a/c.

3. A wave f(x + ct) travels along a semi-infinite string (0 < x < oo) for
¢ < 0. Find the vibrations u(x, t) of the string for ¢ > 0 if the end x = 0
is fixed.

. Repeat Exercise 3 if the end is free.

5. Solve u,, = 4u, for0 < x < oo, u(0,1) = 0,u(x,00)=1,u,(x,00=0
using the reflection method. This solution has a singularity; find its lo-
cation.

6. Solveu, = Cuyin0 < x < 00,0 =<1t <o00,ulx,0)=0ux 0=V,
u, (0, 1) + au,(0,t) =0,

where V, a, and ¢ are positive constants and a > ¢.

7. (a) Show that ¢odq(x) = (sign o (lx)).
(b) Show that ex (X) = Podalx — 2{[x/21]), where [-] denotes the greatest
integer function.
(¢) Show that

O
o (- [3]1-1) if =] odd.

8. For the wave equation in a finite interval (0, I) with Dirichlet conditions,
explain the solution formula within each diamond-shaped region.

Gext(x) =
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izedby thenum- S 3 & Find u(3,2) if wy=uy in 0<x<loux0)=x*1~-x),
»ace-time picture ’ u(x,0) = (1 — )%, u(0,¢) = u(l,1) = 0.
ineach diamond . .~ Find u(%, %).

X 1
xamples may be Salve g = iy, in 0 < x < 7/2, u(x, 0) = cosx, u,(x, 0) = 0,

5. However, the s 4:00.1) =0, u(r/2,1) = 0.

sional problems. © o Salveu,=ctun, in0 < x < Lu(x,0)=0,u(x,0)=x,u0,1) =
ery complicated! 4il.1)=0.

Jifferent method B

33 DIFFUSION WITH A SOURCE

425 section we solve the inhomogeneous diffusion equation on the whole

2 half-line 0 <

: rod satisfy the : Uy — ke = flx,t) (moo<x <00, 0<t<00) (1)
:d v = 015 free

e 0) =
& welocity V for " w0 = o)

¢ . versus x at the ) . . . . .
r < x.1) and ¢(x) arbitrary given functions. For instance, if u(x, f) represents
wmperature of a rod, then ¢(x) is the initial temperature distribution and

-1 a source (or sink) of heat provided to the rod at later times.
W2 will show that the solution of (1) is

< x < 00) for
Teendx =10

= . wx.0)=¢ ‘l M(X,f)=/ Sx =y, DHe(y)dy
e find dts lo- —oo

. +/f Sx —y, t —8)f(y,s)dyds. )
wox, ) =1, 0 J-o

= that there is the usual term involving the initial data ¢ and another term
.~.+ing the source f. Both terms involve the source function S.
i 21's begin by explaining where (2) comes from. Later we will actually
g = the validity of the formula. (If a strictly mathematical proof is satisfac-
mones the greatest s~ = vou, this paragraph and the next two can be skipped.) Our explanation
¢ &y analogy. The simplest analogy is the ODE

du
o Au(t) = f(1), u(0) = ¢,
4 is a constant. Using the integrating factor ¢, the solution is
t
ut) = e Mo + / e F(s)ds. 4
0

Buee oo » more elaborate analogy is the following. Let’s suppose that ¢ is an
Lo : mam=ior. 4i1) 1S an n-vector function of time, and A is a fixed n x n matrix.
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SOURCE ON A HALF-LINE 2. Solve th

4 For inhomogeneous diffusion on the half-line we can use the method of re- U
flection just as in Section 3.1 (see Exercise 1).
Now consider the more complicated problem of a boundary source h(t)

; on the half-line; that is, by carry
> Solve th
. v, — kv = fx, 1) forQ <x <o, 0<t <
v(0,£) = h(t) 9)
v(x, 0) = o(x).
1 ' . by the ¢
We may use the following subtraction device to reduce (9) to a simpler prob-
i lem. Let V(x, 1) = v(x, t) — h(1). Then V(x, t) will satisfy
3.4 WA

V,—k\/,\-_\.:f(x,t)—h/(r) for) < x < 00, D<t <
V(©0,0)=0 (10) The purpos:
Vix,0) =¢x)— h(0).

To verify (10), just subtract! This new problem has a homogeneous boundary
condition to which we can apply the method of reflection. Once we find V,
we recover v by v(x, ) = V(x, 1)+ h(r). This simple subtraction device is
often used to reduce one linear problem to another.

The domain of independent variables (x, ) in this case is a quarter-plane
with specified conditions on both of its half-lines. If they do not agree at
the corner [i.e., if ¢(0) # A(0)], then the solution is discontinuous there (but
continuous everywhere else). This is physically sensible. Think for instance,

= the whol

3.» of suddenly at ¢ = O sticking a hot iron bar into a cold bath. "'_‘ﬂfr_e .
- For the inhomogeneous Neumann problem on the half-line, <= external
Becaus

w, —kw, = f(x, 1) for 0 < x < 00, 0<t <o T ree ter

w(0,1) = D) (1) é:'jen alrea

“oowing f

w(x, 0) = o),

we would subtract off the function xk(r). That is, W(x, 1) = w(x, 1) — xh(). Theorem

Differentiation implies that W, (0, 1) = 0. Some of these problems are worked

out in the exercises.

AR

| EXERCISES
" | Solve the inhomogeneous diffusion equation on the half-line with Dirich- ':e.r; An
1 let boundary condition: The dc
z u, — kuy = f(x, 1) (0<x <00, 0<t<o00)
; u(0,6) =0 u(x,0) = ¢x)
E G owill @

using the method of reflection. anatthe I

it e b RSN
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3ive the completely inhomogeneous diffusion problem on the half-line
v — kv, = fix, 1) forO<x<oo, 0<t<o0
v(0, 1) = h(1) v(x, 0) = ¢(x),

=. carrving out the subtraction method begun in the text.
%2 the inhomogeneous Neumann diffusion problem on the half-line

he method of re-

wdary source hii:

*

et

w, —kw,, =0 for0<x <00, 0<t<o

w0, 1) = h(1) w(x, 0) = ¢(x),
. , = e subtraction method indicated in the text.
2 a simpler pros-
24 WAVES WITH A SOURCE

L <X

surpose of this section is to solve

U — iy = fx, 1) ’ (H

zn20us bounda~s

T W2 NG s

.role line, together with the usual initial conditions

v
U (x, = )

sl © T, 71 is a given function. For instance, f(x, 1) could be interpreted as

= 21 force acting on an infinitely long vibrating string.

Zeszose L = 82 — 207 is a linear operator, the solution will be the sum

:erms. one for ¢. one for v, and one for f. The first two terms are
zdv in Section 2.1 and we must find the third term. We’ll derive the

formula.

eorem 1. The unique solution of (1),(2) is

o1

tﬁ—’z—

1 x—+ct 1
[¢(x+ct)+d>(x—ct)]+7/ \/f+—/f 3
c 2c JJa

x—ct

» 1< the characteristic triangle (see Figure 1).

— 1N

e Znuble integral in (3) is equal to the iterated integral

t x+c(t—3)
/ f f(y,s)dyds.
0 x—c(r—s)

-ive three different derivations of this formula! But first, let’s note
“armula says. It says that the effect of a force f on u(x, #) is obtained
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=Py +xt, wlx,00=0, ux,0=0.

=y + e, ulx,0=0, ukx 0=0

= %y +cosx, wu(x,0)=sinx, u(x,0)= 1+ x.
Show that the solution of the inhomogeneous wave equation

i, = Cu+ £ oux,0) = ¢x), ulx,0) =),

< the sum of three terms, one each for f, ¢, and .
Let f(x, ) be any function and let u(x, 1) = (1/2c)ffAf, where A is the
—angle of dependence. Verify directly by differentiation that

Uy = iy + f and u(x,0)=u,(x,0=0.

Hint: Begin by writing the formula as the iterated integral

1 1 X+Ct—CS
M(X,f)=2—6/ f f(y,s)dyds
0

X-—ct+ces
:nd differentiate with care using the rule in the Appendix. This exercise
< not easy.)
Derive the formula for the inhomogeneous wave equation in yet another

EXCAN

a2+ Write it as the system
U, +city =v, v —Cv = f.

A, Solve the first equation for u in terms of v as

!
u(x,t) = / v(x —ct +cs,s)ds.
0

. Similarly, solve the second equation for v in terms of f.
‘& Substitute part (c) into part (b) and write as an iterated integral.

Let A be a positive-definite n x n matrix. Let

x (_ 1)m A2m[2m+1

so=2 2m + 1)

m=0

1) Show that this series of matrices converges uniformly for bounded
¢ and its sum S(¢) solves the problem S”(¢) + A%S(t) =0, S(0) =
0, §(0) = I, where [ is the identity matrix. Therefore, it makes
sense to denote S(¢) as A~ sin A and to denote its derivative S'(¢)
as cos(tA).

o1 Show that the solution of (13) s (14).

Show that the source operator for the wave equation solves the problem
S, -c*F, =0, F0)=0 0 =1,

where I 1s the identity operator.
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9, Letu()= j(; Pt — 5)f(s)ds. Using only Exercise 8, show that u solves

the inhomogeneous wave equation with zero initial data.

10. Use any method to show that u = 1/(2¢) [[,f solves the inhomoge-
neous wave equation on the half-line with zero initial and boundary
data, where D is the domain of dependence for the half-line.

11. Show by direct substitution that u(x, t) = h(t — x/c) for x < ct and
u(x, t) = 0forx = ct solves the wave equation on the half-line (0, 00)

with zero initial data and boundary condition u(0, £) = ().

12. Derive the solution of the fully inhomogencous wave equation on the

haif-line
vy — oy = flx, 1) in0<x <00
0, 0) = dl),  vi(x,0) = Yl
v(0, 1) = hit),

by means of the method using Green’s theoren. (Hint: Integrate over

the domain of dependence.)

13. Solve uy = cZuy for 0 < x < 0.
u(0, ) = 2, u(x,0)=x, u,(x,0)=0.

14. Solve the homogeneous wave equation on the half-line (0, o) with zero
initial data and with the Neumann boundary condition u, (0, 1) = k(t).

Use any method you wish.

15. Derive the solution of the wave equation in a finite interval with inho-
mogeneous boundary conditions v(0, 1) = h(1), u(l, t) = k(1), and with

3.5 DIFFUSION REVISITED

In this section we make a careful mathematical analysis of the solution of
the diffusion equation that we found in Section 2.4. (On the other hand, the
formula for the solution of the wave equation is so much simpler that it doesn’t

require a special justification.)

The solution formula for the diffusion equation is an example of a con-

volution, the convolution of ¢ with S (at a fixed 1). It is

u(x,t):/ SQA‘—)’J)M}’)C{)’:/

where S(z, 1) = 1/~/4mkt o~2 /%1 1f we introduce the variable
it takes the equivalent form

ulx, t) = \/——1-—__ e_l’z/4¢>(x - p«/?t) dp.

4 J—o0

Now we are prepared to state a precise theorem.

S(z, ) olx —z)dz, )

p =z/Vki,

2)

Theorem 1.
~c. Then the f
I0r —00 < X <
1im;\0 M(X, f)

Proof. Th

|u(

This inequalit
verges uniforr
9S/8x)(x —
zbsolutely. No

/OO BS(
oo 0X *

~here cisact
<niformly anc
formula. All d
-ecause each
+1th converge
srders. Since
It remain
~miting sense
ne integral o

u(x,t

zor fixed x w

i J1 small, t

small, p is lar
To carry




