THE EXISTENCE AND STABILITY OF SPIKE SOLUTIONS FOR A
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ABSTRACT. This paper is a continuation of the paper Berestycki, Wei and Winter [3]. In [3], the
existence of multiple symmetric and asymmetric spike solutions of a chemotaxis system modeling
crime pattern formation, suggested by Short, Bertozzi, and Brantingham [16], has been proved
in the one-dimensional case. The problem of stability of these spike solutions has been left
open. In this paper, we establish the existence of a single radial symmetric spike solution for
the system in the one and two-dimensional cases. The main difficulty is to deal with quasilinear
elliptic problems whose diffusion coefficients vary largely near the core. We also study the linear
stability of the spike solutions in both one-dimensional and two-dimensional cases which show
complete different behaviors. In the one-dimensional case, we show that when the reaction time
ratio 7 > 0 is small enough, or large enough, the spike solution is linearly stable. In the two-
dimensional case, when 7 is small enough, the spike solution is linearly stable; while when 7 is
large enough, the spike solution is linearly unstable and Hopf bifurcation occurs from the spike
solution at some 7 = 7.

1. INTRODUCTION

Pattern forming reaction-diffusion systems have been and are applied to many phenomena in the
natural sciences. Recent works have also started to use such systems to describe macroscopic social
phenomena. In this direction, Short, Bertozzi and Brantingham [16] have proposed a system of
nonlinear parabolic partial differential equations to describe the formation of hotspots of criminal
activity. Their equations are derived from an agent-based lattice model which incorporates the
movement of criminals and a given scalar field representing the attractiveness of crime in a given
location. Let © be a bounded smooth domain in RV (N = 1,2). Then the system in €2 reads

Ay = 2AA — A4 PA+ og(x), reN, t>0,

P
TP = D(e)V(VP 27 VA) — PA+0(x), z€Q, t>0, (1.1)
OnA =0,P =0, e d, t>0.

Here A = A(x,t) is the criminal activity at the place z and the time ¢, and P = P(x,t) denotes the
density of criminals at (z,t). The field A(x,t) represents a variable incorporating the perceived
criminal opportunities. The rate at which crimes occur is given by PA. When this rate increases,
the number of criminals is reduced while the attractiveness increases. The latter feature corre-
sponds to repeated offences. The positive function ag(x) is the intrinsic attractiveness which is
static in time but possibly variable in space. The positive function vo(z) is the introduction rate of
the offenders. For the precise meanings of the functions ag(z) and o (z), we refer to [13, 16, 17] and
the references therein. The small parameter € > 0 is assumed to be independent of = and ¢. The
parameter £2 represents nearest neighbor interactions in the lattice model for the attractiveness.
We assume that it is very small which corresponds to the temporal dependence of attractiveness
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dominating its spatial dependence. This is related to the slow propagation of the attractiveness, as
compared to the propagation rate of the criminals D(g) > 0. Here D(e) is a large positive constant
that does not depend on x and ¢ and tends to +oo at a suitable speed, as ¢ — 0.

The parameter 7 > 0 describes the ratio of the reaction times of the two equations. We assume
that 7 > 0 depends on &: 7 = 7(¢). As it turns out the natural scaling for 7(g) is 7(¢) ~ e~ V. (In
other cases one gets 0 or +oo as limits.) Therefore in this paper we assume

m(e)e = 0(1). (1.2)
Clearly if

ap(z) = ag, Yo (z) = 70, (1.3)
then

0
A, P)=|ay+ 0, ) 14
(4.7) = (a0 #0220 (1.4

is the only constant steady state solution, which does not depend on €.
We are interested in the steady state solutions of (1.1) with hotspot (spike) pattern, and its
linear stability, when D(g) — oo at a suitable speed as e — 0.

Before going into this, let us mention some related mathematical works. Short, Bertozzi and
Brantingham [16] proposed the model (1.1) on mean field considerations. They also performed a
weakly nonlinear analysis around the constant solution, assuming that (1.3) holds. Cantrell, Cosner
and Manasevich [1] considered rigorously the global bifurcation of steady states emanating from
the unique constant steady state (1.4). Rodriguez and Winkler [15] and Winkler [22] established
the existence of globally defined solutions to the system (1.1) in a one dimensional interval or two-
dimensional ball respectively, assuming radially symmetric initial conditions. Kolokolnikov, Ward
and Wei [8], and Ward and Tse [18] studied the existence and stability of multiple symmetric spikes
for the steady states of (1.1) via matched asymptotics. See also Lloyd and O’Farrell [11, 12] by
geometric singular perturbations. Furthermore, Berestycki, Wei and Winter [3] gave a rigorous
proof of the existence of symmetric and asymmetric multi-spike steady state solutions in a one
dimensional interval by reducing the problem to a Schnakenberg type system. But they left open
the stability of the spike solutions.

We would like to mention that Zipkin, Short and Bertozzi [23] and Ward and Tse [19] studied
crime models along the same line but with police intervention. Chaturapruek et al. [5] analyzed
a crime model with Levy flights. Berestycki and Nadal [1] proposed and analyzed another model
of criminality with hotspot phenomena. Finally, Berestycki, Rodriguez, and Ryzhik [2] proved the
existence of traveling wave solutions in a crime model.

Before stating our main results, let us make the change of variable

V = P/A?, (1.5)
and transform (1.1) into an equivalent form:
Ay =2AA - A+ VA + ap(x), req, t>0,
T(A?V); = D(e)V(A’VV) = VA  + yo(z), z€Q,t>0, (1.6)
OnA =0,V =0, x €08, t>0.
By the rescaling
Az, t) = e Nu(x,t), V(x,t) =eNo(z,t), (1.7)
(1.6) becomes
uy = e2Au — u + vud + ag(x)e?, rEeEN t>o0
T(u?v); = D(e)V(u?Vv) — e Noud +y0(z), x€Q, t>0 (1.8)

Optt = Opv = 0, r e i, t>0.



We would like to construct spiky positive steady states of (1.8) concentrating at some chosen
finite spots in 2. The core profile of the spiky solution is governed by the radially symmetric
solution to the problem

Aw—w+uw?=0 in RV, (1.9)
It is well-known [7, 9] that for N < 3 (1.9) has a unique solution satisfying
w>0 in RY, w(0) = max w(y), lim w(y) =0. (1.10)
yERN lyl=+o0

For solutions concentrating at the single spot zy € {2, we expect them to have the profile

ue(z) ~ ap(x)e + [ve(x)] " ?w ( ) , Ve () ~ ve(e), (1.11)

where z. — zg as € — 0, and w is the unique positive solution of (1.9) satisfying (1.10).

T — X,
€

Assuming (1.11) and integrating the steady state equations of (1.8) over {2 we obtain

ve(z) ~ (WW/)Q. (1.12)

Jo v0(x)dz
Actually, we will construct a solution with the profile
wela) = 0 + on(o)] 20 (T2 ) 4 (0 (1.13)
with ¢(z) satisfying
|6(z)] < OV max(e™ F, VE), (1.14)

where C' > 0 is some constant, independent of v and € > 0, to be properly chosen. In this case v,
has the profile (1.12).

If Q is a generic bounded domain in RY, the construction of spiky positive solutions seems
rather difficult, due to the quasilinear nature of the problem. As a model problem we consider the
case when 2 is a ball in R and construct radial spike solutions concentrating at the center of the
ball. In doing so, we always assume that «g(z) and ~o(z) are positive constant functions, namely
(1.3) that holds.

The main findings of this paper can be summarized in the following three theorems.
Theorem 1.1. Let N = 1,2. Assume Q = Br C RY and (1.3) holds. Assume that D(¢) satisfies

D(e) = 250

with  Dg(e) > 00 as € = 0. (1.15)

Then, as e — 0, problem (1.6) has a radial symmetric steady state (A, V:) satisfying the following
properties

Au(x) :aﬁjv\%w (£) + 06, (1.16)
N
Vo(z) = voe + 0 (Do(s)) , (1.17)
where
_(Jer )y’
Vo = ( Y ) . (1.18)

Theorem 1.2. Let N = 2. Assume the conditions in Theorem 1.1 hold. Then, for all small
€ > 0, there exists 0 < 71 < To . < 00 such that for all 0 < 7 < %1,55_N, the spike solution of
Theorem 1.1 is stable, while for T > %Q,EE_N, the spike solution of Theorem 1.1 is unstable, and
Hopf bifurcation occurs at some Ty ¢ € (7:1’65_N,7~'2,55_N).

Theorem 1.3. Let N = 1. Assume the conditions in Theorem 1.1 hold. Then, for all smalle > 0,
there exists 0 < 71 < To. < 00 such that for all 0 < 7 < 7~'17€€7N and T > ?Q,EE’N the spike
solution of Theorem 1.1 is stable.
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Theorem 1.3 suggests that in the one dimensional case, the spike solution of Theorem 1.1 is
stable for all 7 > 0. This is in sharp contrast to the two dimensional case, as depicted by theorem
1.2, when Hopf bifurcation occurs at some 7 = 15, . € (0, 00).

It is appropriate here to compare our stability result for the one dimensional case with that of
Kolokolnikov, Ward and Wei [3]. In [3], the case T ~ £72 was considered in the one dimensional
case, and Hopf bifurcation in the range A\ ~ ¢!/ was found. While in this paper, we consider
eigenvalues of order O(1) and an appropriate assumption 7 ~ e =1 is assumed. It is suitable to say
that the case considered in this paper is more realistic.

The rest of the paper is organized as follows. In Section 2, we first collect some preliminary facts,
which play important roles in the rest of the paper. Then we reduce the system for the steady state
(ue,ve) to a single equation by showing that v, is almost flat. Section 3 is used to derive a nonlocal
eigenvalue problem, which provides the basis for the stability (and nondegeneracy) analysis for the
spike solution we are going to construct. In Section 4 we prove Theorem 1.1. Section 5 and 6 are
devoted to the proof of Theorem 1.2 and Theorem 1.3, respectively.

Throughout this paper we always assume that N =1, 2.

2. REDUCTION TO A SINGLE EQUATION

Let N = 1,2 and w be the unique solution satisfying (1.9)-(1.10). We also recall that w’(|y|) <0
for |y| > 0, and there is a constant Ay > 0 such that

w(r) = Anr— "7 e" (1+0(r ) as r = |y| = +oo, (2.1)
w’(r) = —AN'r_%e_r (1 +0 (7“_1)) as r = |y| = +oo. (2.2)
From the energy identity
/ |Vw|2+/ wz—/ wt =0,
RN RN RN
and the Pohozaev identity
2—N 5 1 5 1 4
[R— —_— = 2.
el 2/szw+4/ww 0, (2.3)

we have

4 N
4_ 2 2_ 7 2, 2.4
/RN“) 4—N/RNw’ /RNW“" 4—N/RN“’ (24)

Direct integration of equation (1.9) yields

/RNw:/RNw?’. (2.5)

Lo[¢] = Ap — 6 +3uw’s, ¢ € H'(RY). (2.6)
Then we have the following well-known results (Theorem 2.1 of [10] and Lemma C of [14]).

Let us denote

Lemma 2.1. The eigenvalue problem
Lol¢] = no, ¢ € H'(RY), (2.7)
admits the following sets of eigenvalues
o >0, pr=pe=--=un=0, pnyy1<0,---. (2.8)

The eigenfunction ¢g corresponding to ug is simple and can be made positive and radial symmetric;
the space of eigenfunctions corresponding to the eigenvalue 0 is

Xo = Kernel(Ly) := Span{g;u‘j:17~-~ ,N}. (2.9)
J
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Denote
1 1
wo = W + §va'

Direct calculation yields
Lo[w] = 2w, Lolwo] = w, (2.10)

fowrat= [ owo=(5-7) [0 (211)
/RN w Ly w] = /RN wiwy = %/RN w?. (2.12)

In this paper we use B, to denote the open ball in RV centred at the origin and with radius
r € (0,00). Let us assume Q = Bp for some fixed R € (0,00). We also assume that the diffusion
coefficient of the equation for v. is suitably large, that is (1.15) holds. Then the steady state of
(1.8) satisfies the system

and

e2Au — u+ vu? + age™N =0, T € Bp,
Dy (e _ ;
EZEV)V(UQVU) —e Mt 449 =0, z€Bpg, (2.13)
Opu = Opv =0, r € 0Bg.
We only consider radial solutions. Under this assumption, (2.13) is equivalent to
2V, (rN V) = vV (u — v — ape?), 0<r<R,
D
gg\f) YV, (rN1u2V,0) = vV e Nou® — ), 0<r<R, (2.14)
€

V,u(0) = V,u(R) = V,v(0) = V,.v(R) = 0,

where r = |z| and V,. denotes differentiation with respect to r. Here and in the rest of the paper,
for a radial function f(x), we abuse the notation a bit and use f(|z|) to denote the same function.
Given u. > 0, let v. be the unique solution of the following linear problem

Dy(e _ 1 -
EgSV)VT(TN YiV,v) = rN e Noaud — ), 0<r <R, (2.15)
V,0:(0) = Vv (R) = 0.
By the maximum principle, v, > 0.
Integrating the equation (2.15) over [0,r] for r € (0, R] we obtain
v _ ey 1 C N N1 3 N-114 2.16
(1) = Do) r12(r) J, [e7Vs ve(s)uz(s) — vos |ds. (2.16)
Let us assume ||ve||oo is bounded away from 0 and oo as € — 0, and
e (r) = ape™ + [0(0)] 2w (g) +¢:(r) (2.17)
with ¢.(r) satisfying ‘
6-()] < C=M* max(e™ %, V&), (2.18)

where C' > 0 is some large constant.
A key observation about v, is the following estimate.

Lemma 2.2. For any v. € [c1, c2] with constants ¢c; > 0 and ca > 0, if uc has the form (2.17) and

(2.18), then
V,0.(r)] = O (D[)l()) 5 (2.19)

for all r € [0, R], and as a consequence,

1

|ve(r) —ve(0)] = O (DO(E)) 2, (2.20)
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for allr € [0, R].
Proof. We show (2.19) first. By the formula (2.16) we have

N

_ Y0e*Nr < TsN’lv s)u(s)ds
Vrver) = = D@zt +Do<e>rN—1uz<r>/o e(s)u(s)ds. 2:21)

Since u.(r) > Sage™, the first term on the right-hand side of (2.21) is easy to estimate:

o2y 4vor 1
= 7.
NDy(e)uZ(r) = NagDo(e) Dy(e)
To estimate the second term on the right-hand side of (2.21), we divide the interval into several
subintervals.

e For r € [0,e|loge|/4), we have

u(r) Zeettand  uc(r)] = 0(1), (2.22)
and hence
eN r N—1 3 ||'Ue|| ||u€||3 N
Do(e)rN=1u2(r) - ds < L=l 7elloo” N_ld
Do(g)erug(r)/o s e (s)u(s)ds < Do(s)erug(r)/O . .
_ Ivellsollell3ee™ - lvelloollue 8™~
NDy(e)u2(r) — NDo(e)c2

N—1
£ 2
=0 =—— |
<D0(5)>
e For r € [e|loge|/4,e|loge|/2), we have

c1e'/? <u(r) < cpet/? (2.23)

for some constants ¢; > 0 and ¢ > 0, and hence

L Tstlv s)u3(s)ds
Do Jy

||vs||oo€N /T 3_3/4 N—1
_— c5e’ s ds
= Do(e)rN-1c2e J, 2

N Cg””é“oofN_i N eN-d
== 71=0 "+ |
NeiDy(e) Do(e)
e For r € [¢|loge|/2,3¢e|loge|/4), we have
183t <ug(r) < epet/?, (2.24)

for some constants ¢; > 0 and ¢ > 0, and hence

L 70sN_1v s)u(s)ds
Do Jy

HUE||006N " 3.3/2 N*ld (2 25)
= Do(e)rN-1eied2 [ e ’ .

_ C‘EHvsllooENT:O eV r
Nc2Do(e) Do(e) )

6




e For r € [3¢|loge|/4,e]loge|), we have
c1e < ue(r) < epe?/, (2.26)

for some constants ¢; > 0 and ¢ > 0, and hence

eV " oNo1 3
Do(a)r]\’_lug(r)/o s T v (s)u(s)ds

||U5H005N T0359/48N_1ds
~ Do(e)rN-1c2e? |, 2 (2.27)

_ vl (N0
NeiDole) Do(e)

e For r € [¢|logel, 5e|loge|/4), we have
c189* <u(r) < ege, (2.28)

for some constants ¢; > 0 and ¢ > 0, and hence

L Tstlv s)u(s)ds
Do Jy e

HUEHOOEN Tc?’s?’sN_lds
—DO(E)TNAC%EE)/Q 0 2 (2.29)

= CgHvsnoosNJr%r =0 et T,
Nc2Dy(e) Dy(e)

e For r € [5¢|logel|/4, R], we have

c16? < ug(r) < eped4, (2.30)

for some constants ¢; > 0 and ¢ > 0, and hence

L Tstlv s)u(s)ds
Do Jy

HUE||oo€N Tc3e3sN_1ds
_DO(E)TN—lc%EE’/? 0 2 (2.31)

_1 _1
— 763“05”005]\, 4r:O et r
NeciDo(e) Do(e) )

This finishes the proof of (2.19). The estimate (2.20) then follows from (2.19) immediately by
integrating equation (2.15) over the interval [0, r], for any r € [0, R]. O

As a consequence of Lemma 2.2, we can obtain the approximate value of v.. Indeed, integrating
the equation (2.15) over Br we obtain

/ (10 — & Nveud)dz = 0. (2.32)
Br
Let us set
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Then, using (1.14), we obtain

olBal == [ o foue® + [0.0)7 2w (2) + 0u(0)] o

= [1+ O(8?)] ([vg(O)]_l/Qs_N/B w? (g) d +1€>
:0@M+h+ow%wam*”4 P (y)dy

R/e

= [1 + 0 (52)] [’UE(O)]_I/Q/ w?(y)dy + O(EN)7

RN

where

I. = /B {vg(O)agezN + SQSEN[UE(O)]%w (g) + 3agw? (g)} dx

_ 3N 2N w N ’11}2
—0) x (1Bal + Y [ wlay+e [ wthay )
=0(N).
As a consequence we have
 (far v ()dy)” 1
0i0) = St +0 (5 (239
and
 (fen P (@)dy)’ 1
o) = St +0 (5i) (239)

for all r € [0, R].
For the convenience, in the rest of the paper, we denote

(Jouw w?(y)dy)”

Vo= e (2.36)
75| Br/?
3. A NONLOCAL EIGENVALUE PROBLEM

As a first step to study the linear stability of spike steady states of (1.8) as e — 0, we derive a
nonlocal linear eigenvalue problem (NLEP for short). As is well-known that, for small e > 0, the
stability of the spike steady states of (1.8) is determined by this NLEP. We would like to note that
the methods in this section, as those in Section 2, only work for the radial case.

For a ball B ¢ RV, we set

Hy(B) = {p € H'(B)|g(z) = o(|z)},

LY(B) == {¢ € L*(B)|¢(x) = ¢(|z[)}.
Linearizing the system (1.8) around the steady state (u.,v.) with
A

u(x,t) = ue(r) + ¢ (r)e Et, 0<r<R,

oat) = 0a) 4 (), 0<r <R o)
V,¢:(0) = V¢ (R) = 0,
rwe(o) = rws(R) 0,
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where A\, € C is some complex number and ¢. € H}(Bg),v. € H}(Bg), we deduce the following
eigenvalue problem

€2A¢E — ¢ + 3Uaug¢8 + ugws = Aee,

D
gg\f) \Y% [UQV'(/)E + 2U€¢EV'UE]
€
3.2
=& (3U6 2¢8 + u3¢a) + T( )/\E[Zuavaﬁba + Ugi/)e}, ( )
¢<(0) = Vr¢e(R) =0,
\Y 1/15(0) Ve (R) = 0.
If eN7(e)Re()\:) < —c for some (small) positive constant ¢ > 0, then A, is a stable eigenvalue.
So we only consider the case eV 7(g)Re(\.) > —c. We shall derive the limiting eigenvalue problem

as ¢ — 0, which turns out to be a nonlocal eigenvalue problem (NLEP). Using the method in [6]
and similar arguments in Sections 5 and 6, it is not difficult to show that the set {A € C|\; >
—ce~N[r(¢)]71} is bounded. Hence we can assume, up to a subsequence, A — A € C.

From the second equation of (3.2) we obtain

Ve (r) = —W
L TSN,1 v.(s u2 S s u3 s ds
T Do@r Tuz(r) /0 [Bve(s)uZ (s)¢e (5) + ul (s) e (5)]d (3.3)

e2Nr(e)A

€ " N-1 2
B [, R )60 + s o).

We may assume that there exists some constant C' > 0 such that

ol <Cw(Z), R <C  forall rel0,R) (3.4)
Thus the first term in the right-hand side of (3.3) has the estimate
20 (r)V, v (r) < 1 )
e L TN O V()] =0 . 3.5
-2 < o9l =0 (5o (35)

The second term in the right-hand side of (3.3) can be estimated as in the estimation of V,v.(r):

N

° Tstl ve(s)u?(s S u(s s)|as
5 | B0 0) + ud(s)o )

CEN " N—-1 3
= Do@r™ 20 ) 3.6
= Do(s)erug(r)/o S Ue(S)UE(S)dm ( )

-0 <D01<a>) "

For the third term in the right-hand side of (3.3) we have

2N - . r 1 2
: W()/o sV 2uc(5)ve (5) e (5) + uZ(5) e (5)]ds

' DO(E)TN*1UE T

N7 ()]
Do(e)u(r) )i 37
(
)

2N - E) | elloge]| r )
(5 ug( ) </ +/6| logs|> ua(S)dS

=1+ Is.

<C



On the interval [0,e|loge|) we have cie < u. < ¢z and hence

2NT€ )\ a|10ge\
e

O(E u

2N 2 |>\ |/510g€|

=0 <D01(5)> x e N1 loge|7 ()| \c|.

On the interval [¢|logel|,r) we have ¢1e? < u. < coe and hence
52N7(5 )| Ae |/
I =
DO(E)U \10ga|
2NT(€ ) Ae I/
D0(5 \logs|

_0 (Dol(g)> « 2N =20(2) A,

The above estimate on V,1 is very rough. In fact, if we divides the interval [0, 7] into finite
sufficiently small subintervals and make estimates on these subintervals, we can obtain the following
more refined estimate

V,e(r) =0 ( ! > x e2N =07 (g)|Acjr for any small § > 0. (3.8)
Do(e)

As a consequence of (3.8) we obtain

Ye(r) —9:(0) = O ( ! ) x e2N =07 (g)[\Jr? for all r € [0, R]. (3.9)
Dy(e)
In view of (1.2), we have
€N—6 )

() —1:(0) = O Ae|r for all r € [0, R]. 3.10
0ur) =00 =0 (5 ) 0.7 (3.10)

This estimate will enable us to derive an NLEP as a limiting problem of the eigenvalue problem
(3.2). As mentioned before, we can prove that the set {\ € C|\. > —ce~N[r(e)]71} is bounded.
Hence we can assume, up to a subsequence, \. — A € C.

We rescale ¢.(z) = ¢ (y) with 2 = ey and assume that

HQgE”H?(BR/g) =1 (3.11)

By a standard procedure, we can extend the definition of ¢A55( ) to the whole of RY | still radial,
denoted by ¢., with C~! < ||¢5||H2(RN < C. So, up to a subsequence, we can assume ¢, — ¢ in
HY(RYM), as e — 0.

Integrating the second equation of (3.2) over Bp, taking the limit ¢ — 0, and taking note of the
exponential decay of w, we obtain as € — 0 that

/ Bw?d + vy 2wPh(0) + eV (e)Ae (208 2w + vy w?ep(0))]dy = o(1). (3.12)
RN

where vy is defined by (2.36).
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From (3.12) we obtain

-1
P(0) ~ — {%—3/2 /RN w? 4+ eNr(e)Aevy ! /RN wQ}

X {3 /RN w2q£+ 2€NT(E)>\5U01/2 /RN wq@}

78 |Br|? +7§|BR|2 eN7(e)Ae fRNwQ]

(fRN w3)2 ]RN ws)?

. [3/]@“’2‘5” 70|BR| =L /RNW]

Letting € — 0 in the first equation of (3.2) we obtain the following NLEP:

. ~ 3 26.d
£ = Lo — fR”EfVU (f)/\y W
3 T 2
e S ] -
B 2eN7 ()N [wo dy W =\
Yo|Br| +eNT(e)A [pn w? dy R
where ¢ € H,(RY) and
Lod := Ap — ¢ + 3w’ . (3.14)
Put N
. evr(e) 9
= dy. 3.15
g A (3.15)
Then the NLEP has the form
- - 3 2¢d 27\ d
L= Lod— Jox w?ody o 2PN Jpwwody — A\, (3.16)

L+7X [on widy Y fRNuﬂdy

where ¢ € H}(RN). In particular, letting A\ = 0 in (3.16), we deduce that the nonlocal linear
problem

- w? 5 d .
Lop — SwSM =0, ¢ € H'RYN) (3.17)
Jpn w? dy
has a nontrivial solution [|@|| 2@~y > 0. However, according to [20, 21], (3.17) has only the trivial

solution qB = 0. The contradiction implies that the solution (u.,v.) we are trying to construct is
nondegenerate.
We will give a more detailed discussion of the NLEP (3.16) in Sections 5 and 6.

4. THE EXISTENCE OF RADIAL SPIKE SOLUTIONS

In this section, we prove the existence of radial spike solutions of (2.13) concentrating at the
center of the ball Bg as ¢ — 0. We divide the proof into two steps. First we construct radial
approximate solutions to (2.13) which concentrate at the center of the ball Br. Then we use the
contraction mapping principle to show that there exists exact spike solutions of (2.13) as a small
perturbation of the approximate solutions constructed in the first step.

4.1. Approximate solutions. Let x : R — [0, 1] be a smooth cut-off function such that x(s) =1
for |s| <1 and x(s) =0 for |s| > 2. Set Ry = R and

@e(r) —w(r) (1;0) (4.1)

2 AW, — . + w2 = e.sit. (4.2)
11

It is easy to see that . satisfies



in L?(BRr), where e.s.t denotes an exponentially small term.
Set

where v, = T[w,] is defined by

Dy(e
E‘;SV) V(e + we )2 VT w,])
— e NTTw.] (e +w.)® +7 =0, =€ Bg, (44)
0,Twe] =0, x € 0Bpg.

We let r = egp and find that for all p > 0

Tlwe](ep) — Tw:](0)
2N

c Ef’ 1 ’ N—-1[.—N N 3
B — yoldrd
D0(5)/0 sN=Hape +ws)2/o T T ve () (0e™ + we)” — yoldrds
N

€ Ep 1 s N . i
- drd
Do(f)/o sN—l(aosN+w€)2/0 ™ (1) (ape™ + w.)Pdrds

2N ep 1 s
_ ¢ / / N ldrds.
Do(e) Jo sV apeN +w:)? Jo

Setting
W.(s) := apeN + [UE(O)]_l/Zw(s),

and using the inequalities (a + b)? < 2371(a® + b3) for a,b > 0, we estimate that

EN /Ep 1 /5 TNflvs (T) (aOEN + ’ws)ngdS
Do(e) sV ape™ +we)? Jy
0)e 1 °
UE( )6 / / FN-1 (aogN + wa)?’ drds + h.o.t.
Do(e) Jo  sN=1(ageN +w.)? Jo
e (0)eN+2 / 1 / N—17173
_ W2 (s)drds + h.o.t.
Do(e)  Jo sNTIW2(s) Jo (=)
v:(0)eN 2 / 1 /S 3 3N_N—1
< dape T drds
= Dy(e) o sNTIW3(s) Jo 0

v5(0)5N+2/ 1 /s et
Y o ), s J, AT (r)drds + heo.t.

dadv (0)64N+2/ s
NDo(e) 0 (e + [v:(0)] 712w (s
]

ve(0)eN+2

/ 1
Do(e) Jo (e + [v:(0)] 12w (3))2
1

- c2N+2 ) eN+2, P s
=0(1) x <D0(5>” " Do(e)/o EE )

12

ds
)’
/5 4[ve(0)) 32w (1)drds + h.o.t.
0




and

2N ep 1 s
Jo# / / Nldrds
Do(e) Jo sV (e +w.:)? J

Yoe2N /Ep S d
p— S
NDy(e) Jo (e +we)?
Yoe2NF2 [P s
~ NDyle) /0 (apeN + [v2(0)]~1/2w(s))?

B €2N+2p P 1
=00 5 || e rag®

For the estimate of the integral fop mds, we have the following three different ways. Using

the inequality (¥ 4+ w(s))? > w?(s), we have

ds

14 1 p
—  ds < N-1,2s 3, _ N—1,2p '
/0 e r gzt =0 X/O sMle?ds = O(1) x p" e (4.5)

Using the inequality (¥ 4+ w(s))? > 2eNw(s), we have

N-—1 N—-1

/O" mds <0(=N) x /0”326st —0(e M) xp T e (4.6)

Using the inequality (¥ 4+ w(s))? > 2V, we have

P 1 9
/0 mds =0@E") x p. (4.7)

Hence we have the estimate

N+2 N 20

pre’, or
ﬂ%wm—ﬂ%mpxwakﬂx 2y o (18)
827Np2.

Therefore we have the following estimates that for all p € [0, R/e]:
[we] () w? < CeN¥2p™ e,
[we] (0)|eNw? < CeNF2p T e, (4.9)

J(0))|e2Nw, < CeNT2p TP,

=)
&
o
>
!
S

= H
§E
o o
S
(.
NN
S

Now if we define the norm

1fllew = 128y +  sup  [max(e™22,v/E)] M f(p)], (4.10)
0<p<R/e

they by the decay of w. and the definition of the norm, we infer that

[(T(w:)(ep) — T[we] (0))wd|lwn = O(NT3/2), (4.11)
I(T[w:)(ep) — T[we)(0))eN w?|lon = OENT3/2), (4.12)
I(Tw:)(ep) — T[w:](0))e*N we || = O(NF/2). (4.13)
Let us now define
S [we] := 2 Aw, — we + Tw](cpe™ + w.)?, (4.14)

13



where T'[w,] is defined in (2.15). Then
S.[w.] = e?Aw. —w, + T[wg](ozogN +w,)?

= 2 Aw. — w. + T[w:](0)w?

€

+ Twe] (o33 + 3a2e* M w, + 3ape™Nw?) (4.15)
+ (Twe)(ep) — T[we](0))w?
=: By + Ey + Es.
We have .
Ey = o=(0) (Ayibe — 0. +02) = e.s.t.,
and

E2 = O(SN) in LQ(BR/E),
since T'[w,] is bounded in L*(Bp/.) and w, is bounded in L?*(Bg/.).
By = [v:(0)] (T [w](ep) — TTwe](0))@? = O("*?)
in L*(Bp/.) by the first inequality of (4.9).
Combining these estimates we conclude that
IS [we] | = OE™). (4.16)
The estimate (4.16) shows that our choice of approximate solutions is suitable. This will enable

us to rigorously construct a steady state which is very close to the approximate solution.

4.2. The existence of exact solutions. In this subsection, we use the contraction mapping
principle to prove the existence of a spike solution close to the approximate solution. To this end,
we need to study the linearized operator

Le : H(Bgye) = L2(Bgy:)
given by
Ld = Slfwclo = Ad— ¢+ 3T{we](a0e™ +w2)?6 + (a0e™ + o) T [we] o,
where for a given function ¢ € H?(Bg/.) we define T"[w.]¢ to be the unique solution of

Vy [(aoe™ 4+ we)*(T'[we] V)]

€N+2

~ Do(e)
Or(T'[we]) =0, on OBpy..

(3T [we](cwe™ +we)?¢ + (ae™ + w.)*T'[we]¢) =0, in Bgy.,

The norm of the error function ¢ is defined as

|1« = 6l a2(B,,) +  sup  [max(e /2, /)] é(p)]. (4.17)
p€E[0,R/¢€]

We recall the nonlocal linear problem (3.17):

IRN w2¢ dy .

Lo =Ap— ¢+ 3w — 3w [t dy =0, ¢ € HA(RY). (4.18)
RN

By [20] we know that
L: H>(RY) —» L2(RY)
is invertible and its inverse is bounded.
We will show that L. is a small perturbation of £ in that L. is also invertible with a uni-
formly bounded inverse for sufficiently small € > 0. This statement is contained in the following

proposition.
14



Proposition 4.1. There exist positive constants €1 and §1 such that for all € € (0,e1), there holds
[ Lellx = 01|l (4.19)

Moreover, the map
L, : Hrz’(BR/e) — La(BR/E)

s surjective.

Proof. Suppose that (4.19) is false. Then there exist sequences {er} and {¢} with ¢, — 0 and
ok = ¢, such that

lplls =1 for k=1,2,---, (4.20)
and
| Le, dkllx — 0 as k — oo. (4.21)
We define
¢=(y) = d(y)x (%‘Z') (4.22)
with Ry = R/3.

By a standard procedure (ik can be extended to be defined on RY such that their norm in
H?(RY) is still bounded by a constant independent of e for £ small enough. In the following we
will deal with this extension. Since {¢} is bounded in H? ,(RY) it converges weakly to a limit ¢ in
H2_(RYN), and also strongly in L2 (RY) and Li°,(RY). Then ¢ solves the equation £¢ = 0, which
implies that ¢ = 0. By elliptic regularity we have ||Q~Sk||H2(RN) — 0 as k — oo, which implies that
Pkl zr2(By,.) — 0 as k — oco. The maximum principle then implies that [¢x[[. — 0 as k — oc.
This contradicts the assumption that ||¢g|. = 1.

To complete the proof of the proposition, we need to show that the conjugate operator of L.
(denoted by L) is injective from H?(Bg.) to L*(Bg/.). The injectivity of L} is essentially the
nondegeneracy condition we discussed in the end of Section 3 and therefore omitted here. O

Now we are in a position to solve the equation

Se[we + ¢] = 0. (4.23)
Since L. is invertible (with its inverse L-!), we can rewrite this equation as
¢ =—(L:" o Sc[we]) — (LT o Ne[g]) = Mg, (4.24)
where
N[¢] = Se[we + @] — Se[we] — S‘; [we] 9, (4.25)

and the operator M. is defined for ¢ € HQ(BR/E). We will show that the operator M. is a
contraction on

B.s ={¢ € H*(Bgye) : l|¢|l. < 6}
if £ is small enough and § is suitably chosen.
By (4.16) and Proposition 4.1 we have that

1Ml < 07" (ISewelllex + [INe[@)]l) < 67 Co(e™ + e(8)d),
where §; > 0 is independent of § > 0,¢ > 0, and ¢(§) — 0 as § — 0. Similarly we can show that
1M (6] = M 9] < 61 ' Co(e™ + e(6)0) |6 — ol

where ¢(§) — 0 as § — 0. Choosing 6 = C1e! for §;'Cy < C; and taking & small enough, then

M, maps B. s into B, s, so that it is a contraction mapping in B, 5. The existence of a fixed point

¢ now follows from the standard contraction mapping principle and ¢, is a solution of (4.24).
We have thus proved the following.

Theorem 4.2. There exists eg > 0,C7 > 0 such that for every € € (0,ep), there is a unique
oe € HQ(BR/E) satisfying
Slwe + ¢pe] =0 with ||¢e|« < Cre™.

15



5. THE STABILITY OF THE SPIKE SOLUTIONS IN THE TWO-DIMENSIONAL CASE

In this section, we consider the linear stability of the spike solution we obtained from the precious
sections. For e small enough, it is sufficient to study the spectrum of the NLEP:

3 fanwPedy o 27N fpnwédy g

£ = Lo¢ = L+7A [on w?dy YT A Jen~ deyw (5.1)
=\, ¢ € H, (R?),
where
Lo¢ := Ap — ¢ + 3w?o, (5.2)
and ,
7= ;'Té‘:' 5 w? dy. (5.3)

We begin our discussion of the NLEP by citing a result from [21].

Lemma 5.1 (Theorem 1 of [21]). Suppose v > 2. There exists a constant co > 0 such that all the
eigenvalues of the eigenvalue problem

. fRZ w’¢ 3 _
L0¢ Y fRz w3 w- = )‘(b7 (54)
\eC, ¢ € H'(R?),

satisfies Re(\) < —cp.
Consider the following nonlocal eigenvalue problem

P -
LOd)_ 3~ fRQw ¢U/3— 27—): fRQw(bw?):)\d)’
L+7A fpo w? L+ 7N [p. w? (5.5)

\eC, ¢ € H'(R?),

where
Lod = Ap — ¢+ 3w’e.
If 7 = 0, by the remark of Theorem 1 of [21], any eigenvalue must satisfy Re(A) < 0. Hence for
7 small problem (5.5) is stable.
For large 7 we have the following result.
Theorem 5.2. Let (7,\) be a pair satisfying (5.5) with a nontrivial eigenfunction ¢. Then
(i) There exists 7o > 0 such that for T > 7y, any eigenvalue of (5.5) with Re(X) > 0 must be

of the order c(l)/sq”-*l/%i%i with ¢ = % > 0. Conversely for 7 large there exist a
R

pair of eigenvalues on the right half plane with A ~ c(l)
(ii) There exists a Hopf bifurcation at some 75, > 0.

[3z=1/3,%%i

We prove the result with a series of claims.
From now on we may assume that A = Agr +¢A; with A\g € R, A\; € R and Ar > 0.

Claim 1: If A > 0, then |A| < C where C is independent of 7.

Proof. Multiplying (5.5) by ¢ (the complex conjugate of ¢), and integrating over R? we obtain

/ (v¢|2+|¢2—3w2|¢|2+A / W)
R2 R2

_ 3~ fR2w2¢ w3d — 2%): fR2w¢ w3
L+ 7A fpowd Jpe L4+ 7N [pow? Jpe

16
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Let pp > 0 be the first eigenvalue of L given in Lemma 2.1. We have by the variational represen-
tation of pg that

0962 + 1o = 3uo) =~ [ 161
R2 R?
The integrals on the right-hand side of (5.6) can be estimated using the Holder inequalities:

[ ute| < (/wk)/ (/. ¢|2)1/2, T
LoA=(LA” (L)

3 27
<
A _MO+C(‘1+%)\’+ 1+%>\D’
which together with Ag > 0 implies |\ < C.
The claim is proved. O

and

It follows that

Claim 2: If 7 — +oo then A — 0.

Proof. Suppose the clann is not true. Then up to a subsequence, we have 7 — +00 A = A, # 0.
Then -0 — 1, and we obtain the following limiting problem

A¢f¢+3w2¢72fR2 wé w? = Moo . (5.7)
Jrz w?
The rest of the proof follows the line of the proof of Case 2 of Theorem 1.4 of [20] (for the case
p=3=1+ %)7 with a few necessary modifications.

Let the linear operator L; : H'(R?) — L2(R2) be defined by

fR2 we w? — f]RQ w+ 2fR2 w? f]Rz wo
f]R? w2 fR2 (fR2 w2)2

1+'r)\ ) 1+'r)\

Li¢:=Lop—2 w, ¢ € H'(R?).

Then L is self-adjoint.
According to Lemma 5.2 of [20], we have
e The kernel of L, is given by X; = span{w, wy, g—;,j = 1,2}, where
1 1
w = W + iva'
e There exists a positive constant a; > 0 such that for all ¢ € H*(R?)

_ fRi’ w¢ fR2 U)3g25 fR'z w 2
La(66) = Lolo.0) + 405 S 0 B ([ wo)

> ardiz e (¢, X1),

where
Lo(@,9) = [ (VF +6° - 3u°6?)
and dpz2g2)(¢, X1) is the distance of ¢ to X7 in the space of L?(R?).

Now we are ready to prove the claim. Let A\oo = Ag +iA; and ¢ = ¢ + i¢;. Then we have the
system of equations

Loor — QIT wer w? = Ardr — A\1¢1, (5.8)
Rz

Lo¢r — QI}p lj;i[ w® = Apdr + Mor. (5.9)
]RQ

17



Multiplying (5.8) by ¢r, (5.9) by ¢;, integrating over R?, and summing up, we obtain

Lo(or,6m) + Lalor. 1)+ An | (Gh-+63)
-2 3 5
(Lo o o).

Li(én, 6r) + Lu(é1,61) + Ar / (62 + 62)

fRz wWoR fRQ w ¢R + fRz wor f]R2 w ¢I
T w? (5.11)

e (L voe) (L)

Multiplying (5.8) and (5.9) by w respectively, and integrating over R?, we obtain

Jgo w?
2/R2w3¢R—2f§2w2 /sz(bR:)\R/R2w¢R_)\I/RQw¢I7 (512)

2/sz3¢1 ﬁ:wz /Rme:AR/ wmmsz wor. (5.13)

Multiplying (5.12) by [g, wér, (5.13) by [p. wér, and summing up, we obtain

/RZW?R/ 3¢R+/sz¢z/w

(5.10)

or in the form

5.14)
E) (L) (L) |
( I]Rg / U)QSR /]RZ UJQS[ .
Plugging (5.14) into (5.11) we obtain
Li(¢r,or) + L1(¢1, 1) + AR /R2(¢2R +67)
e ) ) (5.15)
= T [(/Ww@z) + (/sz(b]) 1 .
We decompose
¢r = brw + crwo + Zngg +om, or L X1,
Jj=1
ow 1 N
¢r = brw + crwp + Zdeaiy_ +o7, o7 L Xy,
i=1 !
and put them into (5.15) and calculate
2 2 2
(/ w¢R> + </ wqﬁ;) = (0% +b7) (/ w2> ;
R2 2 R2
/ (¢R+¢I +b2 / w? + gbebRw (¢17b1w)2}.
R? R?
Therefore we deduce from (5.15) that
Li(¢7 07) + L1(97,67) + An /]R [(9r = brw)? + (61 = brw)’] = 0, (5.16)
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and so
A /R [(@r = brw)® + (81 = brw)*] + ar (97 lIZ2 ey + 167 (172 (ge)) < 0. (5:17)

If Ag > 0, then we have ¢r = brw and ¢; = byw. Putting ¢r and ¢; into equations (5.8) and
(5.9) we get the linear system of (bg, bs):
Arbr — Arbr =0,
{)\RbI — Arbr =0.
Clearly bgp = by = 0 and so ¢ = 0. We have a contradiction.
If Agr = 0, then we have ¢% = ¢+ = 0. Putting ¢ and ¢; into equations (5.8) and (5.9), using
the facts w,;, € Kernal(Lo) and Lo[wo] = w, we get

2
cRW = —A1 | byw + cywo + E d]jwyj ,
=1

2
crw = A1 bRw+CRw0+Zdewyj
j=1
Suppose A; # 0, we must have by = by = cg = ¢; = dry = dra = dj1 = dj2 = 0, contradicting to
the assumption that ¢ is nontrivial. Therefore Ao, = Ag +iA; = 0, a contradiction.
The claim is proved. O

Next we discuss possible limits of 7.
Claim 3: |7A| — +00 as T — +o0.

Proof. Suppose the claim is not true. Then along a subsequence 7TA — o € C as 7 — co. By
Claim 1 we arrive at the following equation

3 Jew?® 52U [rowd

Ap— ¢+ 3w’p — w® = 0. 5.18
R o AT Al w oy e (5.18)
Hence foau? I
3 wie 2ftoo we
¢ = = 3 LOl[wg] + = QLOl[w3]'
L+ froo fR2w 1+Noof]R2w
Using Ly ' [w®] = 2w we obtain
3 w? 2floo w
26 = i jw oo Jys (fw (5.19)
1+ oo fsz ]-+,LLoofR2w
Set
A= | wo, B= [ w?o.
R2 R2
Multiplying (5.19) by w and integrating over R? we obtain
2) 2
oo o\ g4 3 Jmw g (5.20)
1+Noc 1+,U/oof]R2w3
Multiplying (5.19) by w? and integrating over R? we obtain
9 3
Hoo fszA+( 5 —2)3:0. (5.21)
L4 oo [ w? 1+ poo

For the linear system (5.20), (5) to have a solution (4, B) # (0,0), we must have
2:“00 9 3 92 3 f]RZ w’ 2/100 fRZ w? -0
1+ foo 1+ pioo Lt oo Jpo w3 14 poo fpow?

and so fieo = —1, which is impossible since Re(po) > 0.
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Therefore A = B = 0. By (5.19) we have ¢ = 0, a contradiction.

Therefore |[7A| — +00, A — 0. We see that ¢ — ¢o in H!(R?) which satisfies

Ao — ¢o + 3w o — 2fR2 weo w? =0
g2 w?
and hence
b0 = 2ng quo Lal[w?’] = fR2 U)Q;ow = Cw.
Jp2w Jp2w

Without loss of generality, we may assume that C = 1.
Let us decompose

b=w+ ¢t

/quﬁl:O.

In this way, ¢+ — 0 in H'(R?) as 7 — +oc.
We then have

with

3 fRQ ’LUQ(bL

AdL — ot + 302t —
o7 9T FIWST - [ 1+ 7\

Proof. Multiplying (5.24) by wo = Ly w] = %w + %wa and using (5.23) we get

= / wiwy = —A ¢rwy — 3~ W/ wwy,
147X Jge R2 L+7X [pow?

where we have used the identities
/ wwy = O7 / U)()Lo[(bL] = (ﬁLLO[U}Q] = / qﬁLw = 0.
R2 R2 R2 R2

¢ || £2r2) = o(1),
1 1
/ wiwy = f/ w? (w + yVw) = f/ w* > 0.
R2 2 R2 4 R2

Putting the last two identities into (5.25) we obtain

1+ 0(1) 4
1+7X /RQw = o(A)-

Note

The claim is proved.

Claim 5: ¢ = A1+ o(1))wp.
Proof. Since ﬁ = o(\), we set ¢~ = A\¢y, then

3 Jpwidr g 1 3
JR2 7 7R A - -
[ W T B St ey T

=o()w® +o(1)¢y +w

Lopy =

Since L ! exists we have
¢1 = Ly [w] + o(1)(Lg H[w®] + Ly H¢n]) = (1 + o(1))wo.

The claim is proved.
20
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Finally we derive the equation for A: from (5.25) we get

1+0(1) / 4 2/ 2 3\ Jge w2w0/ 3
— TR — - Jrz @ 0 .
A1+ 7N S MG ey Jezw? Jg O

/wwo (/w+/waw):/w3.
R2 R? R2 R?

Together with the two already known identities

1
foom-tfoe foeaf
R2 4 R2 R2 2

1 2 _ (=~ 2 2
—glo] [ = @30 [ ()

Therefore, since A2 = o(1), A must satisfy the following algebraic equation

We calculate

we obtain

¢
X= 1+ o(1)] 7
where ¢y = 2ffm2w > > 0.
Since Re(A) > 0, we obtain two conjugate solutions
A~ 713 1/363Z or =713 /36_%i.
We see that

1
Re(\) = Ag ~ 5%—1/%3/3 > 0.

. . . ~_1/3 1/3 £m;
Conversely we can also easily construct eigenvalues with A ~ 71/ dcO/ es?

Claim 6: There exists a Hopf bifurcation at some 75, > 0.

Proof. This claim can be proved by using a continuation argument of Dancer [(]. As in Dancer
[6], we may only consider radial eigenfunctions. Then 0 is not an eigenvalue of (5.1). If 7 = 0, by
the remark of Theorem 1 of [21], all the eigenvalues of (5.1) has negative real parts. By Claim 5,

there exists some 7, > 0 large enough such that (5.1) has an eigenvalue with positive real part.
Therefore there is some 7, € (0,7,), (5.1) has a pair of conjugate pure imaginary eigenvalues. [

Remark 5.3. The argument in this section does not restrict to radial eigenfunctions.

6. THE STABILITY OF THE SPIKE SOLUTIONS IN THE ONE-DIMENSIONAL CASE

When the space dimension N = 1. In the near shadow case, as in the two-dimensional case, the
stability of the original system is determined by the following nonlocal eigenvalue problem

3 fR w’$ w? — 27X wa¢ w?

1
LO¢ 1+ ~>\ wa:g 1+7_)\ J‘sz )\¢7 ¢€H (R), (61)
where
Lop == A¢p — ¢ + 3uw?o, (6.2)
and o
- et(e 9
= dy. 6.3
T Bl Y (6:3)

If 7 = 0, by the remark of Theorem 1 of [21], any eigenvalue of (6.1) must satisfy Re(\) < 0.
Hence for 7 small problem (6.1) is stable.
On the other hand we have the following result for the large 7 case.

Theorem 6.1. There exists 7o > 0 such that for T > 7y, any eigenvalue of (6.1) must satisfy
Re(M\) <0
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We prove this theorem through a series of claims. From now on we may assume that 7 > 0 is
large and A = A + iA; with Ag > 0.
We first claim:

Claim 1: If A > 0, then |A] < C for some positive constant independent of 7.

Proof. Multiplying (6.1) by ¢ (the complex conjugate of ¢), and integrating the resultant equation
over R we obtain

/<|V¢\2 16 - 3u?|6) +A/ 6P
R R

3 [pw?e - 27N fpwo 6,

(6.4)

=— w

1+7:A fR’LU3 R 1+7:>\wa2 R
Let pg > 0 be the first eigenvalue of L( given in Lemma 2.1. We have by the variational represen-
tation of g that

/(|V¢|2 16 - Bu?|6?) > —Mo/ o
R R

The integrals on the right-hand side of (6.4) can be estimated using the Holder inequalities:

o= ()" (o) 0
o= ()" (fo)”

|A|§“O+C(‘1+3%A’+ 12+TiAD

and

It follows that

which together with Ag > 0 implies || < C.
The claim is proved.

O
Claim 2: If 7 — 400 then A — 0.
Proof. Suppose the claim is false. We have, along a subsequence,
T =00, A=A #0.
Then
! —0
1+7A ’
and we obtain the following limiting problem
A¢—¢+3w2¢—2wa¢w3 = Ao ®. (6.5)

Jpw?
A contradiction can then be derived by following the same line of the proof of Case 1 of Theorem
1.4 in [20], with a few modifications.
Let the linear operator Ly : H'(R) — L?(R) be defined by

Li¢ = Lo — 2f]R wfw?’ - 2f]R wsj)w + 2fR W' Je ngéw, ¢ € H'(R).
Jrv Jrw (e w?)
Then L is self-adjoint.
According to Lemma 5.1 of [20], we have
o The kernel of L, is given by X; = span{w, w,}.
22



e There exists a positive constant a; > 0 such that for all ¢ € H*(R?)

L1(606) = Ln(e,¢) + 412 IMR ‘ﬂﬁfz} (/RW>2

Z afldL2(]R) (¢7 Xl)a

(6.6)

where
Lo(é,6) = /R (VP + & — 3u6),

and dp2g) (¢, X1) is the distance of ¢ to X in the space of L?(R).

Now we are ready to prove the claim. Let Ao = Ar +iA; and ¢ = ¢pr +i¢;. Then we have the
system of equations

Lodr — LT = Arbr — \id1, (6.7)
fR

Logr —2 f? e w® = Apor + \rér. (6.8)
R

Multiplying (6.7) by ¢r, (6.8) by ¢, integrating over R, and summing up, we obtain
Lo(ér: 0m) + Lo(ér, 1) + An [ (6 +63)
R

(o oo o).

Li(ér, Or) + L1(é1,61) + AR / (6% + 1)

f]R woR wa Or + [pwor [pw 3or
ow? (6.10)

2B o) (o)

Multiplying (5.8) and (5.9) by w respectively, and integrating over R, we obtain

2/Rw3¢ —2ﬁ /w¢R=AR4w¢R—AIAw¢,, (6.11)
2/Rw3¢1_2ﬁ1wuz/Rw¢I=)\R/Rw¢1+)\1/Rw¢R. (6.12)

Multiplying (6.11) by [, wér, (6.12) by [; wér, and summing up, we obtain

/wcbzz/ 3¢R+/w¢1/w¢>z

or in the form

() (L) ([o)]
Plugging (6.13) into (6.10) we obtain
L1(6r0m) + Li(ér,61) + An [ (6 +03)
. (6.14)

= (o) = (foor)

d)R:ch‘i’dey‘F(rb#a d)]J%J—Xla
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¢1 = crw +drwy + é7,  ¢r L X,
and then put them into (6.14) and calculate

([re (o) o ([

[+ =chech [wvdhrd) [wi+ [ (002 + 6P
R R R R
We therefore deduce from (6.14)

Li(é5, ¢r) + L1 (o1, 67)

(6.15)
+ Ar(ch + C?)/RWQ +Ar([05172) + 197 1 72@) = 0,

and so by (6.6)
)\R(C% + c?) / w? + )\R(d%{ + d%) / wz
R R
+(Ar + al)(Wﬁ”QLz’(R) + H(bIL”%Q(R)) < 0.
If/\R>O,thenwehave(bﬁ:qﬁ-:Oanch:cI:dR:DI:OsogbR:gb[:O. We have a
contradiction.
If A\g = 0, then we have ¢3 = ¢7 = 0. Putting ¢r and ¢; into equations (6.7) and (6.8) and
using the identities
Low, =0 and Low = 2uw3
we get
/\1(01w + djwy) =0,
/\](CR’LU + dey) =0.
If A; # 0 we then have cg = ¢; = dr = dy = 0 and hence ¢r = ¢; = 0, a contraction.
Therefore Ao, = 0. The claim is proved. O

Next we discuss possible limits of 7.
Claim 3: |TA| — +00 as T — +00.

Proof. Suppose for contradiction the claim is false. Then we may assume that along a subsequence
TA = oo € C. Then by Claim 1 we arrive at the following equation

2
o f
3 wa d)w?’— M wad}uﬁzO.

Ap — ¢+ 3w?p — 6.16
¢ d) w d) 1+,LLOO wag 1+//40Q waQ ( )
Hence f ) f
3 rRW ) —1; 3 2o ]Rw¢ —17, 3
= L
¢ 1+ fioe wag 0 [w]+1+,uoof]Rw2 o [w?l,
and so )

2% 3 kw0, 2w i) (6.17)

N L+ pos wa3 1+/‘00wa2
Let A= [, wp, B = [ w?¢. Multiplying (6.17) by w and integrating over R we obtain

2
2
L+ foo [ w3 1+ ploo

)

Multiplying (6.17) by w? and integrating over R we obtain
QUtos [ w?
B3 py = vy,
I+ poo 1+ pieo f]R w?

It follows that
2B = 3B,
24



which is impossible. Hence A = B = 0 and ¢ = 0. The contradiction finishes the proof of the

claim.
Therefore 7A — 400, A — 0. We see that ¢ — ¢ in H'(R) which satisfies

wa¢0 3:0

Jew?

Agoy — ¢o + 3w — 2

and hence ¢g = Cw. (We may assume that C' = 1).
Let us decompose

b=w+ ¢t

fo-

In this way, ¢~ — 0 in L?(R) as ¥ — +oc.
We then obtain from (6.1)

with

3 f w2¢L 1
A L a1 3 2,1 R 3 _ A 1 A
R T N A e
Claim 4: 1_3%)\ + A =o0(N).
Proof. Multiplying (5.24) by wo = Ly * [w] = 3w + tyw, and using (6.19) we get

On the one hand since HﬁbLHLQ(R) = o(1), we have

f]R 2¢J_

fR w?

4 1
[t [ur-l[u
R 3 R R 3 R

— o(1), / ot = o(1)

On the other hand, since

we have
fortm =5 (oot o)
wwoff w” + YWy w
2 R R
1 1 4
=5 (L3 )
1
:—/w2’
2 Jr
and

o= ([ [ 1

Therefore from (6.21) we have

2
1+T)\+/\ o(A)-

As a result,

A= +£V27 V2 O(F Y.

2,1
1+17~_)\< fR (b >/Rw3wo+)\</wao+/R¢iwo>:0,
1),

3

w-.

O

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)

(6.24)



The estimate (6.24) is not sufficient to determine the sign of Re(X). We proceed to find the next
order of Re(A).

Claim 5: ¢ = A(1 + o(1))po where ¢, satisfies

1
L0¢O = w — 571]3.

and hence

$o = wo — Zw-

=5 ~ —A, we set ¢ = A¢y, plug into (6.20), and get

Proof. Since 7%

3 w2y . 1 .
Lol¢n] = 1+%)\f]1} w31w‘3+>\¢1 +w—§wd+0(1).
R
Since f ,
3 Jpwor 5 _
1+7:>\ wa?, w _0(]‘)7 )\¢1 _0(1)7

and Ly exists we obtain that
¢1 = (]' + 0(1))¢07
where ¢q is defined by
3

1
L0¢0=w—§w .

So )
¢o = Ly '[w] — §L51[w3] =wo — —w.

/w(bo:/wwofl/uﬁzo.
R R 4 Jr

Finally we derive the equation for A: from (6.21) we get

1 3
A
1+%>\/Rw wo + /wao

3\ Jpw?do
=-\? — R / 3 A%).
/R%wo =7 [ v wo + 0(A\?)

The claim is proved.
We note that

(6.25)

Note that from (6.22) and (6.23) we have

1 1
/’LUS’LU() = */11)27 /U}’LUO = — / ’LU2.
R 2 R R 4 R

On the other hand we have )
Powg = /(w0)2 - — / w?,
/]R R 16 Jgr

1
/w2¢0:/w2(w0—1w)
R R
1 1
:Z/Rw?’—ki/Rywyw2

1 3
= E Rw .
Substituting the above into (6.25), we get
A= V2712 4 771,
26
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where

A2~ =277 — ~ 37

Therefore we have the equation for b:

b+1 1
+ 7/ +b><f/w f2/¢0w073><—><7/w2+0(1),
2 2 Ja

From here we obtain

Jz dowo 3
R
b=4 [ ~1 o(1)
Using the expression wy = %(w + yw,) we have
Jg dowo 3

b= T —Z—&—o(l):/R(wo) —14o0(1)

= f;wa </R y2(wy)? + Z/Rywyw + /Rw2> —1+40(1) (6.26)

_ fR y2(wy)2
Jpw?

To further simplify the form of b we note that in the one dimensional case

w(y) = V2sechy.

/w2:4.
R

We can also compute (see the Appendix) that

—1+0(1),

It is clear that

8 72
2 2
y2(w,)? = o+
A I
Therefore )
T =12
b= 1 .
36 +0(1) <0

The proof of Theorem 6.1 is now complete.

Remark 6.2. The argument in this section does not restrict to even eigenfunctions.

7. APPENDIX: THE COMPUTATION OF [, y*wZdy

Since
w(y) = V2 sech Y,
we have
w, = 2\/§ > L—eyw
| (& + )
and so

[ee] [ee] 7y_€y)2
2(w 2:16/ 27V =€)
[my (wy) . Y (ey+e*y)4 Y

—Y _ g¥)2 1
/7(6 ¢ )4dy =3 /(ey —e Y)d(e¥ +e7Y)3

We compute

(e +e )
1 _ a1 oy

= e e L (e ey
1 )

:—g(ey—e y)(ey—ke*y)*d—fe YV +eY) Ly ¢



Therefore

oo -y _ ,Y\2 2 ] 1 [e’e]
/ Gl 3 / y(e? —e™V)(eV +e7V) Py + 2 / ye V(e +e7V) T dy.
0

(e¥ +e-v)! 0 0
We have X
Jer—enier ey ay =5+ et e,
and )
/e_y(ey + e_y)_ldy =—3 log (1 + e_2y) +C.
So
/ y(e? —e V) (e’ +e7¥) Pdy = f/ (¥ +e¥)2dy = —.
0 2 0 4
While
o0 1 o0
/ ye Y(e¥ +e V) tdy = 3 / log (1+e7%¥) dy
0 0
1 [ 1 [*log(1+1t)
= - log(l+e ™ ¥)dy=- [ ———=dt
4A Og( +€ ) y 4A t 9
where ) ) )
log(1+t t 1
/L(+):/ 1— =4 ——- |dt
0 t 0 2 3
1 1 1
Sty et
1 1 1 2 1 1
:(1+§+3—2+4—2+ )72—2(1+2—2+3—2+4—2+ )
_
C12

Therefore finally we obtain

[1]
2]
3]
[4]
[5]
[6]

7

8

9

(10]

(11]

w| oo

- (7.1)

/RyQ(wy)2 =
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