MATH 6211 Assignment 2

Due date: Dec. 4

1. Suppose f is a rational function of the form $f(z)=p(z) / q(z)$, where $p(z)$ and $q(z)$ are trigonometric polynomials of degrees μ and ν respectively. Then the number of outlying eigenvalues of $\left(S\left(T_{n}\right)\right)^{-1} T_{n}$ is exactly equal to $2 \max \{\mu, \nu\}$. Hence, the method converges in at most $2 \max \{\mu, \nu\}+1$ steps for large n. If, however,

$$
f(z)=\sum_{j=0}^{\infty} a_{j} z^{j}
$$

is analytic only in a neighborhood of $|z|=1$, then there exist constants $c>0$ and $0 \leq r<1$ such that

$$
\frac{\left\|\boldsymbol{e}^{(k+1)}\right\| \|}{\left\|\mid \boldsymbol{e}^{(0)}\right\| \|} \leq c^{k} r^{k^{2} / 4+k / 2}
$$

2. Suppose f is a Lipschitz function of order ν for $0<\nu \leq 1$, or f has a continuous ν-th derivatives for $\nu \geq 1$. Then there exists a constant $c>0$ which depends only on f and ν such that for large n,

$$
\frac{\left\|\boldsymbol{e}^{(2 k)}\right\| \|}{\left\|\boldsymbol{e}^{(0)}\right\|} \leq \prod_{p=2}^{k} \frac{c \log ^{2} p}{p^{2 \nu}}
$$

3. Let $C_{n}\left(T_{n}\right)$ be the Tony Chan's preconditioner for some $n \times n$ Toeplitz matrix T_{n}. As we have learned from lectures, such definition could be extended to an arbitrary $n \times n$ matrices. Show that C_{n} is a linear operator from $\mathbb{C}^{n \times n}$ to space of circulant matrices and $\left\|C_{n}\right\|_{F}=1$.
4. Let f has 0 at θ_{0} with order $2 l$ and define $\tilde{f}(\theta)=f\left(\theta+\theta_{0}\right)$. Then

$$
T_{n}[\tilde{f}(\theta)]=\Phi_{n}^{*} T_{n}[f(\theta)] \Phi_{n}
$$

where $\Phi_{n}=\operatorname{diag}\left(1, e^{-i \theta_{0}}, \cdots, e^{-(n-1) i \theta_{0}}\right)$.
5. Let f has zeroes at $\theta_{1}, \cdots, \theta_{k}$ with order $2 l_{1}<\cdots<2 l_{k}$. Then $\lambda_{1}\left[T_{n}[f]\right]=O\left(n^{-2 l_{k}}\right)$, which implies the conditional number of $T_{n}[f]$ is $O\left(n^{2 l_{k}}\right)$.
6. Let $R_{n}[f]$ be the R . Chan's preconditioner with respect to generating function f. Show that

$$
\lambda_{j}\left(R_{n}[f]\right)=s_{n-1}[f]\left(\frac{2 \pi j}{n}\right), \forall 0 \leq j<n,
$$

where $s_{k}[f]$ is the partial sum of f up to the k th term.

