MATH 6211 Assignment 2 Due date: Dec. 4

1. Suppose f is a rational function of the form f(z) = p(z)/q(z), where p(z) and q(z) are trigonometric polynomials of degrees μ and ν respectively. Then the number of outlying eigenvalues of $(S(T_n))^{-1}T_n$ is exactly equal to $2 \max\{\mu, \nu\}$. Hence, the method converges in at most $2 \max\{\mu, \nu\} + 1$ steps for large n. If, however,

$$f(z) = \sum_{j=0}^{\infty} a_j z^j$$

is analytic only in a neighborhood of |z| = 1, then there exist constants c > 0 and $0 \le r < 1$ such that

$$\frac{|||\boldsymbol{e}^{(k+1)}|||}{|||\boldsymbol{e}^{(0)}|||} \leq c^k r^{k^2/4 + k/2}.$$

2. Suppose f is a Lipschitz function of order ν for $0 < \nu \leq 1$, or f has a continuous ν -th derivatives for $\nu \geq 1$. Then there exists a constant c > 0 which depends only on f and ν such that for large n,

$$\frac{|||\boldsymbol{e}^{(2k)}|||}{|||\boldsymbol{e}^{(0)}|||} \le \prod_{p=2}^{k} \frac{c \log^2 p}{p^{2\nu}}.$$

3. Let $C_n(T_n)$ be the Tony Chan's preconditioner for some $n \times n$ Toeplitz matrix T_n . As we have learned from lectures, such definition could be extended to an arbitrary $n \times n$ matrices. Show that C_n is a linear operator from $\mathbb{C}^{n \times n}$ to space of circulant matrices and $||C_n||_F = 1$.

4. Let f has 0 at θ_0 with order 2l and define $\tilde{f}(\theta) = f(\theta + \theta_0)$. Then

$$T_n[f(\theta)] = \Phi_n^* T_n[f(\theta)] \Phi_n,$$

where $\Phi_n = \operatorname{diag}(1, e^{-i\theta_0}, \cdots, e^{-(n-1)i\theta_0}).$

5. Let f has zeroes at $\theta_1, \dots, \theta_k$ with order $2l_1 < \dots < 2l_k$. Then $\lambda_1[T_n[f]] = O(n^{-2l_k})$, which implies the conditional number of $T_n[f]$ is $O(n^{2l_k})$.

6. Let $R_n[f]$ be the R. Chan's preconditioner with respect to generating function f. Show that

$$\lambda_j(R_n[f]) = s_{n-1}[f](\frac{2\pi j}{n}), \forall \ 0 \le j < n,$$

where $s_k[f]$ is the partial sum of f up to the kth term.