Assignment No. 1. Due date: Oct 31, 2018.
Q1. Suppose n is even, use quadratic polynomials to get an upper bound of $\max _{\lambda \in[a, b]}|P(\lambda)|$. And hence find a bound for $\frac{E_{Q}^{2}\left(\mathbf{x}_{k}\right)}{E_{Q}^{2}\left(\mathbf{x}_{0}\right)}$.

Q2. Let $A, E \in \mathbb{C}^{n}$ be Hermitian with $\operatorname{rank}(E)=1, E \leq 0$. Show that

$$
\begin{gathered}
\lambda_{k-1}(A) \leq \lambda_{k}(A+E) \leq \lambda_{k}(A), \text { for } 2 \leq k \leq n \\
\lambda_{1}(A)+\lambda_{1}(E) \leq \lambda_{1}(A+E) \leq \lambda_{1}(A)
\end{gathered}
$$

Q3. Let $A, E \in \mathbb{C}^{n}$ be Hermitian with $\operatorname{rank}(E)=p$. Show that there exist at most p eigenvalues of $A+E$ outside $\left[\lambda_{1}(A), \lambda_{n}(A)\right.$].

Q4. Find the eigenvalues and eigenvectors of the Laplacian matrix with Neumann Boundary Condition.

Q5. Complete the second half of the proof of Courant Fisher min-max Theorem, i.e.

$$
\lambda_{k}(A)=\max _{\operatorname{dim}(K)=n-k+1} \min _{\mathbf{x} \in K \backslash\{0\}} \frac{\mathbf{x}^{*} A \mathbf{x}}{\mathbf{x}^{*} \mathbf{x}}
$$

