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Abstract

This paper proposes a novel two-stage method for the classification of hyperspectral im-

ages. Pixel-wise classifiers, such as the classical support vector machine (SVM), consider

spectral information only; therefore they would generate noisy classification results as spatial

information is not utilized. Many existing methods, such as morphological profiles, superpixel

segmentation, and composite kernels, exploit the spatial information too. In this paper, we
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propose a two-stage approach to incorporate the spatial information. In the first stage, an

SVM is used to estimate the class probability for each pixel. The resulting probability map

for each class will be noisy. In the second stage, a variational denoising method is used to

restore these noisy probability maps to get a good classification map. Our proposed method

effectively utilizes both spectral and spatial information of the hyperspectral data sets. Ex-

perimental results on three widely used real hyperspectral data sets indicate that our method

is very competitive when compared with current state-of-the-art methods, especially when

the inter-class spectra are similar or the percentage of the training pixels is high.

1 Introduction

Remotely-sensed hyperspectral images (HSI) are images taken from airplanes or satellites that

record a wide range of electromagnetic spectrum, typically more than 100 spectral bands from

visible to near-infrared wavelengths. Since different materials reflect different spectral signatures,

one can identify the materials at each pixel of the image by examining its spectral signatures. HSI

is used in many applications, including agriculture [1, 2], disaster relief [3, 4], food safety [5, 6],

military [7, 8] and mineralogy [9].

One of the most important problems in hyperspectral data exploitation is HSI classification. It

has been an active research topic in past decades [10, 11]. The pixels in the hyperspectral image

are labeled manually by experts based on careful review of the spectral signatures and investigation

of the scene. Given these ground-truth labels (also called “training pixels”), the objective of HSI

classification is to assign labels to part or all of the remaining pixels (the “testing pixels”) based

on their spectral signatures and their locations.

Numerous methods have been developed for HSI classification. Among these, machine learning

is a well-studied approach. It includes multinomial logistic regression [12, 13, 14], artificial neural

networks [15, 16, 17, 18, 19], and support vector machines (SVMs) [20, 21, 22]. Since our method

is partly based on SVMs, we will discuss it in more details here. The original SVM classification

method [23, 24] performs pixel-wise classification that utilizes spectral information but not spatial

dependencies. Numerous spectral-spatial SVM classification methods have been introduced since
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then. They show better performances when compared to the pixel-wise SVM classifiers. Here we

report some of them.

SVMs with composite kernels [25] use composite kernels that are weighted summations of

spectral kernels and spatial kernels. The spatial information is extracted by taking the average

of the spectra in a fixed window around each pixel. To further utilize the spatial information,

the method in [26] first applies superpixel segmentation to break the hyperspectral image into

small regions with flexible shapes and sizes. Then it extracts the spatial information based on

the segmentation and finally performs the classification using SVMs with multiple kernels. In

[27], a pixel-wise SVM classification is first used to produce classification maps, then a partitional

clustering is applied to obtain a segmentation of the hyperspectral image. Then a majority vote

scheme is used in each cluster and finally a filter is applied to denoise the result. The method

in [28] first produces pixel-wise classification maps using SVMs and then applies edge-preserving

filtering to the classification maps. In addition to these methods, techniques based on Markov

random fields [29], segmentation [27, 30, 26, 31] and morphological profiles [32, 31] have also been

incorporated into SVMs to exploit the spatial information.

Besides machine learning approaches, another powerful approach is sparse representation [33].

It is based on the observation that spectral signatures within the same class usually lie in a

low-dimensional subspace; therefore test data can be represented by a few atoms in a training

dictionary. A joint sparse representation method is introduced in [34] to make use of the spatial

homogeneity of neighboring pixels. In particular, each test pixel and its neighboring pixels inside a

fixed window are jointly sparsely represented. In [35], a kernel-based sparse algorithm is proposed

which incorporates the kernel functions into the joint sparse representation method. It uses a fixed

size local region to extract the spatial information. Approaches with more flexible local regions

were proposed in [36] and [37]. They incorporate a multiscale scheme and superpixel segmentation

into the joint sparse representation method respectively. Multiple-feature-based adaptive sparse

representation was proposed in [38]. It first extracts various spectral and spatial features and

then the adaptive sparse representations of the features are computed. The method in [39] first

estimates the pixel-wise class probabilities using SVMs, then applies sparse representation to obtain
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superpixel-wise class probabilities in which spatial information is utilized and the final result is

obtained by combining both probabilities.

A pixel-wise classifier (such as SVM), which considers only spectral information, generates

results with decent accuracy but would appear noisy as spatial information is not used, see [23]

and also Figure 1. The noise can be restored by image denoising techniques that incorporate the

spatial information. Image denoising is a well-studied subject and numerous effective denoising

methods have been introduced [40, 41, 42, 43, 44]. In this paper, we propose a simple but effective

two-stage classification method inspired by our two-stage method for impulse noise removal [42].

In the first stage, we apply a pixel-wise SVM method that exploits the spectral information to

estimate a pixel-wise probability map for each class. In the second stage, we apply a convex

denoising model to exploit the spatial information so as to obtain a smooth classification result.

In the second stage, the training pixels are kept fixed as their ground-truth labels are already

given. In this sense, this stage is exactly the same at the second stage in our impulse noise removal

method in [42].

Figure 1: An example of classification result using pixel-wise SVM classifier

Our method utilizes only spectral information in the first stage and spatial information in

the second stage. Experiments show that our method generates very competitive accuracy com-

pared to the state-of-the-art methods on real HSI data sets, especially when the inter-class spectra

are similar or the percentage of training pixels is high. This is because our method can effec-

tively exploit the spatial information even when the other methods cannot distinguish the spectra.

Moreover, our method has small number of parameters and shorter computational time than the
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state-of-the-art methods.

This paper is organized as follows. In Section 2 the support vector machine and variational

denoising methods are reviewed. In Section 3 our proposed two-stage classification method is

presented. In Section 4 experimental results are presented to illustrate the effectiveness of our

method. Section 5 concludes the paper.

2 Support Vector Machines and Denoising Methods

2.1 Review of ν-Support Vector Classifiers

Support vector machines (SVMs) has been used successfully in pattern recognition [45], object

detection [46, 47], and financial time series forecasting [48, 49] etc. It also has superior performance

in hyperspectral classification especially when the dimensionality of data is high and the number

of training data is limited [23, 24]. In this subsection, we review the ν-support vector classifier

(ν-SVC) [22] which will be used in the first stage of our method.

Consider for simplicity a supervised binary classification problem. We are given m training data

{xi}mi=1 in Rd, and each data is associated with a binary label yi ∈ {−1,+1} for i = 1, 2, ...,m. In

the training phase of SVM, one aims to find a hyperplane to separate the two classes of labels and

maximize the distance between the hyperplane and the closest training data, which is called the

support vector. In the kernel SVM, the data is mapped to a higher dimensional feature space by

a feature map φ : Rd → Rh in order to improve the separability between the two classes.

The ν-SVC is an advanced support vector classifier which enables the user to specify the

maximum training error before the training phase. Its formulation is given as follows:



min
w,b,ξ,ρ

1
2
||w||22 − νρ+ 1

N

m∑
i=1

ξi

subject to: yi(w · φ(xi) + b) ≥ ρ− ξi, i = 1, 2, . . . ,m,

ξi ≥ 0, i = 1, 2, . . . ,m,

η ≥ 0,

(1)
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where w ∈ Rh and b ∈ R are the normal vector and the bias of the hyperplane respectively, ξi’s are

the slack variables which allow training errors, and ρ/||w||2 is the distance between the hyperplane

and the support vector. The parameter ν ∈ (0, 1] can be shown to be an upper bound on the

fraction of training errors [22].

The optimization problem (1) can be solved through its Lagrangian dual:



max
α
− 1

2

m∑
i,j=1

αiαjyiyjK(xi,xj)

subject to: 0 ≤ αi ≤ 1
N
, i = 1, 2, . . . ,m,

m∑
i=1

αiyi = 0,

m∑
i=1

αi ≥ ν.

(2)

Its optimal Lagrange multipliers can be calculated using quadratic programming methods [50].

After obtaining them, the parameters of the optimal hyperplane can be represented by the Lagrange

multipliers and the training data. The decision function for a test pixel x is given by:

g(x) = sgn(f(x)), where f(x) =
m∑
i=1

αiyiK(xi,x) + b. (3)

Mercer’s Theorem [50, p. 423-424] states that a symmetric function K can be represented as

an inner product of some feature maps φ, i.e. K(x,y) = φ(x) · φ(y) for all x,y, if and only

if K is positive semi-definite. In that case, the feature map φ need not be known in order to

perform the training and classification, but only the kernel function K is required. Examples of

K satisfying the condition in Mercer’s Theorem include: K(xi,xj) = exp(−||xi−xj||2/(2σ2)) and

K(xi,xj) = (xi · xj)p.

2.2 Review of Denoising Methods

Let Ω = {1, ..., N1} × {1, ..., N2} be the index set of pixel locations of an image, v is the noisy

image and u is the restored image. One famous approach for image denoising is the total variation

(TV) method. It involves an optimization model with a TV regularization term which corresponds
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to the function ‖∇ · ‖1. However, it is known that it reproduces images with staircase effect, i.e.

with piecewise constant regions. Here, we introduce two approaches to improve it and they are

related to our proposed method.

The first approach is to add a higher-order term, see, e.g., [51, 40, 52, 43, 44]. In [43], the

authors considered minimizing

H(u) =
1

2
||v − u||22 + α1||∇u||1 +

α2

2
||∇u||22. (4)

Here the first term is the `2 data-fitting term that caters for Gaussian noise. The second term is

the TV term while the third term is the extra higher order term added to introduce smoothness to

the restored image u. By setting the parameters {αi}2
i=1 appropriately, one can control the trade

off between a piece-wise constant and a piece-wise smooth u. In [53, 54, 55], the authors derived

the same minimizational function (4) as a convex and smooth approximation of the Mumford-

Shad model for segmentation. They applied it successfully for segmenting greyscale and color

images corrupted by different noise (Gaussian, Poisson, Gamma), information loss and/or blur

successfully.

The second approach is to smooth the TV function ‖∇ · ‖1. In [42], a two-stage method is

proposed to restore an image v corrupted by impulse noise. In the first stage an impulse noise

detector called Adaptive Median Filter [56] is used to detect the locations of possible noisy pixels.

Then in the second stage, it restores the noisy pixels while keeping the non-noisy pixels unchanged

by minimizing:

F (u) = ||v − u||1 +
β

2
‖∇u‖α,

s.t. u|Υ = v|Υ,
(5)

where Υ is the set of non-noisy pixels, u|Υ = (ui)i∈Υ, and 1 < α ≤ 2. This 2-stage method is the

first method that can successfully restore images corrupted with extremely high level of impulse

noise (e.g. 90%).

Our proposed method is inspired by this two-stage method. In the first stage we use the spectral
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classifer ν-SVC to generate a pixel-wise probability map for each class. Then in the second stage,

we use a combination of (4) and (5) to restore the mis-classified pixels, subject to the constraint

that the training pixels are kept unchanged since their ground-truth labels are already given.

3 Our Two-stage Classification Method

SVMs yield decent classification accuracy [23] but their results can be noisy (see Figure 1) since

only spectral information is used. We therefore propose to use a denoising scheme to incorporate

the spatial information into the classification. Our method first estimate the pixel-wise probability

map for each class using SVMs. Then the spatial positions of the training data are used in the

denoising scheme to effectively remove the noise in the map.

3.1 First Stage: Pixel-wise Probability Map Estimation

3.1.1 SVM Classifier

HSI classification is a multi-class classification but the SVM is a binary classifier. To extend SVM

to multi-class, we use the One-Against-One (OAO) strategy [57] where [c(c−1)/2] SVMs are built

to classify every possible pair of classes. Here c is the number of classes. In this paper, we choose

the SVM method ν-SVC [22] with OAO strategy for the HSI multiclass classification in our first

stage. We remark that one can use other SVMs or multiclass strategy such as the One-Against-All

strategy in [57] instead. Moreover, the basis function kernel (RBF kernel) is used as the kernel

function in our SVM method. The RBF kernel is defined as:

K(xi,xj) = exp
(
− ||xi − xj||2

2σ2

)
. (6)

3.1.2 Probability Estimation of SVM Outputs

Given a testing pixel x and a SVM classifier with decision function f(x) in (3), we can label x

with a class according to the sign of f(x), see [21]. Under the OAO strategy, there are [c(c− 1)]/2

such pairwise functions fi,j, 1 ≤ i, j ≤ c, i 6= j. We use them to estimate the probability pi that x
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is in the i-th class. The idea is given in [58, 59]. We first estimate the pairwise class probability

Prob(y = i | y = i or y = j) by computing

ri,j =
1

1 + eρfi,j(x)+τ
, (7)

where ρ and τ are computed by minimizing a negative log likelihood problem over all the training

pixels [58].

Then the probability vector p = [p1, p2, ..., pc]
T of the testing pixel x is estimated by solving:

min
p

1

2

c∑
i=1

∑
j 6=i

(rj,ipi − ri,jpj)2,

s.t. pi ≥ 0,∀i,
c∑
i=1

pi = 1. (8)

Its optimal solution can be obtained by solving the following simple linear system, see [59]:

Q e

eT 0


p

b

 =

0

1

 , (9)

where

Qij =


∑
s 6=i

r2
s,i if i = j,

−rj,iri,j if i 6= j,

b is the Lagrange multiplier of the equality constraint in (8), e is the c-vector of all ones, and 0

is the c-vector of all zeros. In our tests, the probability vectors p(x) for all testing pixels x are

computed by this method using the toolbox of LIBSVM library [60].

We finish Stage 1 by forming the 3D tensor V where Vi,j,k gives the probability that pixel (i, j)

is in class k. More specifically, if pixel (i, j) is a testing pixel, then Vi,j,: = p(xi,j); if pixel (i, j) is

a training pixel belonging to the c-th class, then Vi,j,c = 1 and Vi,j,k = 0 for all other k’s.
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3.2 Second Stage: Restoring the Pixel-wise Probability Map

Given the probability tensor V obtained in Stage 1, one can obtain an HSI classification by taking

the maximum probability for each pixel [28]. However, the result will appear noisy as no spatial

information is taken into account. The goal of our second stage is to incorporate the spatial

information into V by a variational denoising method that keeps the value of the training pixels

unchanged during the optimization, as their ground-truth labels are given a priori.

Let vk := V:,:,k be the “noisy” probability map of the k-th class, where k = 1, ..., c. We restore

them by minimizing:

min
u

1

2
||u− vk||22 + β1||∇u||1 +

β2

2
||∇u||22,

s.t. u|Υ = vk|Υ,
(10)

where β1, β2 are regularization parameters and Υ is the set of training pixels. We choose this

minimization functional because it gives superb performance in denoising and segmenting various

types of images, see [43, 53, 54, 55]. The higher-order ||∇u||22 term encourages smoothness of

the solution and can improve the classification accuracy, see Section 4.4. In our tests, we use

anisotropic TV [61] and periodic boundary condition for the discrete gradient operator, see [62,

p. 258].

Alternating direction method of multipliers (ADMM) [63] is used to solve (10). First, we rewrite

(10) as follows:

min
u

1

2
||u− vk||22 + β1||s||1 +

β2

2
||Du||22 + ιw

s.t. s = Du and w = u.

(11)

Here D denote the discrete operator of ∇, D =

(
Dx

Dy

)
∈ R2n×n, where Dx and Dy are the first-

order difference matrices in the horizontal and vertical directions respectively and n is the number

of pixels, ιw is the indicator function, where ιw = 0 if w|Υ = vk|Υ and ιw = ∞ otherwise. Its
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augmented Lagrangian is given by:

L(u, s,w,λ) =
1

2
||u− vk||22 + β1||s||1 +

β2

2
||Du||22 + ιw +

µ

2
||Eu− g − λ||22, (12)

where µ > 0 is a positive constant, E =

(
D
I

)
, g =

(
s
w

)
and λ =

(
λ1

λ2

)
the Lagrange multipliers.

The formulation (12) allows us to solve u and g alternately as follows:

u(r+1) = argmin
u

{
1

2
||u− vk||22 +

β2

2
||Du||22 +

µ

2
||Eu− g(r) − λ(r)||22

}
(13a)

g(r+1) = argmin
g

{
β1||s||1 + ιw +

µ

2
||Eu(r+1) − g − λ(r)||22

}
(13b)

λ(r+1) = λ(r) − Eu(r+1) + g(r+1) (13c)

The u-subproblem (13a) is a least squares problem. Its solution is

u(r+1) = (I + β2D
TD + µETE)−1(vk + µET (g(r) + λ(r))). (14)

Since periodic boundary conditions are used, the solution can be computed efficiently using the

two-dimensional fast Fourier transform (FFT) [64] in O(n log n) complexity.

For the g-subproblem, the optimal s and w can be computed separately as follows:

s(r+1) = argmin
s

{
β1||s||1 +

µ

2
||Du(r+1) − s− λ

(r)
1 ||22

}
(15)

and

w(r+1) = argmin
w

{
ιw +

µ

2
||u(r+1) −w − λ

(r)
2 ||22

}
(16)

The solution of (15) can be obtained by soft thresholding [65]:

[s(r+1)]i = sgn([r]i) ·max{|[r]i| −
β1

µ
, 0}, i = 1, ..., 2n, (17)
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where r = Du(r+1) − λ
(r)
1 . The solution of (16) is simply

[w(r+1)]i =

 [vk]i if i ∈ Υ,

[u(r+1) − λ
(r)
2 ]i otherwise.

(18)

Note that the computation of (13c), (17) and (18) have a computational complexity of O(n). Hence

the computational complexity is O(n log n) for each iteration.

Our algorithm is summarized in Algorithm 1. Its convergence to the global minimum is guar-

anteed by [63]. Once it finishes, we obtain the restored votes u for class k. We denote it as U:,:,k.

After the votes for each class are restored we get a 3D tensor U . The final classification of the

(i, j)-th pixel is given by finding the maximum value in Ui,j,:, i.e. argmax
k

Ui,j,k.

Algorithm 1 ADMM update process for solving (10)

1: Initialize:
Set r = 0. Choose µ > 0, u(0), s(0), λ(0) and w(0) where w(0)|Υ = vk|Υ.

2: When stopping criterion is not yet satisfied, do:
3: u(r+1) ← (I + β2D

TD + µETE)−1(vk + µET (g(r) + λ(r)))

4: s(r+1) ← sgn(r) ·max{|r| − β1
µ
, 0}, where r = Du(r+1) − λ

(r)
1

5: w(r+1)|Ω\Υ ← (u(r+1) − λ
(r)
2 )|Ω\Υ

6: λ(r+1) ← λ(r) − Eu(r+1) + g(r+1)

We remark that in Stage 1, the operation is along the spectral dimension, i.e. the third index of

the tensor, while in Stage 2, the operation is along the spatial dimension, i.e. the first two indices

of the tensor.

4 Experimental Results

4.1 Experimental Setup

4.1.1 Data Sets

Three commonly-tested hyperspectral dataset are used in our experiments. These data sets have

pixels labeled so that we can compare the methods quantitatively. The first one is the “Indian

Pines” data set acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor
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over the Indian Pines test site in North-western Indiana. It has a spatial resolution of 20 m per

pixel and a spectral coverage ranging from 0.2 to 2.4 µm in 220 spectral bands. However, due

to water absorption, 20 of the spectral bands (the 104-108th, 150-163th and 220th bands) are

discarded in experiments in previous papers. Therefore our data set is of size 145× 145× 200, and

there are 16 classes in the given ground-truth labels.

The second and third images are the “University of Pavia” and “Pavia Center” data sets

acquired by the Reflective Optics System Imaging Spectrometer (ROSIS) sensor over Pavia in

northern Italy. The sensor has 1.3 m spatial resolution and spectral coverage ranging from 0.43

to 0.86 µm. The data set sizes are 610× 340× 103 and 1096× 715× 102 respectively, where the

third dimension is the spectral dimension. Both sets have 9 classes in the ground-truth labels.

4.1.2 Methods Compared and Parameters Used

We have compared our method with five well-known classification methods: ν-support vector

classifiers (ν-SVC) [22, 23] (i.e. the first stage of our method), SVMs with composite kernels

(SVM-CK) [25], edge-preserving filtering (EPF) [28], superpixel-based classification via multiple

kernels (SC-MK) [26] and multiple-feature-based adaptive sparse representation (MFASR) [38].

All the tests are run on a laptop computer with an Intel Core i5-7200U CPU, 8 GB RAM and the

software platform is MATLAB R2016a.

In the experiments, the parameters are chosen as follows. For the ν-SVC method, the param-

eters are obtained by performing a five-fold cross-validation [66]. For the SVM-CK method, the

parameters are tuned such that it gives the highest classification accuracy. All parameters of the

EPF method, the SC-MK method, and the MFASR method are chosen as stated in [28, 26, 38]

respectively, except the window size in the EPF method, the number of superpixels and the pa-

rameters of the superpixel segmentation algorithm in the SC-MK method, and the sparsity level

of the MFASR are tuned such that the highest classification accuracies are obtained. For our

method, the parameters of the ν-SVC (1) in the first stage are obtained by performing a five-fold

cross-validation and the parameters of the optimization problem (10) in the second stage are tuned

such that it gives the highest classification accuracy.
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4.1.3 Performance Metrics

To quantitatively evaluate the performance of the methods, we use the following three widely-used

metrics: (i) overall accuracy (OA): the percentage of correctly classified pixels, (ii) average accuracy

(AA): the average percentage of correctly classified pixels over each class, and (iii) kappa coefficient

(kappa): the percentage of correctly classified pixels corrected by the number of agreements that

would be expected purely by chance [67].

For each method, we perform the classification ten times where each time we randomly choose

a different set of training pixels. In the tables below, we give the averages of these metrics over

the ten runs. The accuracies are given in percentage, and the highest accuracy of each category is

listed in boldface. In the figures, we count the number of mis-classification for each testing pixel

over the ten runs. The numbers of mis-classification are shown in the corresponding heatmap

figures, with the heatmap colorbar indicating the number of mis-classifications.

4.2 Classification Results

4.2.1 Indian Pines

The Indian Pines data set consists mainly of big homogeneous regions and has very similar inter-

class spectra (see Figure 2 for the spectra of the training pixels of Indian Pines data where there are

three similar classes of corns, three similar classes of grasses and three similar classes of soybeans).

It is therefore very difficult to classify it if only spectral information is used. In the experiments,

we choose the same number of training pixels as in [37, 26] and they amount to about 10% of the

pixels from each class. The rest of the labeled pixels are used as testing pixels.

The number of training and testing pixels as well as the classification accuracies obtained by

different methods are reported in Table 1. We see that our method generates the best results for

all three metrics (OA, AA and kappa) and outperforms the comparing methods by a significant

margin. They are at least 0.95% higher than the others. Also, the second stage of our method

improves the overall accuracy of ν-SVC (used in the first stage of our method) by almost 20%.

Figure 3 shows the heatmaps of mis-classifications. The results of the ν-SVC, SVM-CK and

EPF methods produce large area of mis-classifications. The SC-MK also produces mis-classification
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at the top-right region and the middle-right region which are soybeans-clean and soybeans-no

till respectively. This shows that SC-MK cannot distinguishing these two similar classes well.

The heatmap of MFASR method contains scattered regions of mis-classification. In contrast, our

method generates smaller regions of mis-classifications and less errors as it effectively utilizes the

spatial information to give an accurate result.

Figure 2: Spectra of training pixels of Indian Pines data

15



Table 1: Number of training/testing pixels and classification accuracies for Indian Pines data set.

Class train/test ν-SVC SVM-CK EPF SC-MK MFASR 2-stage
Alfalfa 10/36 70.28% 81.94% 97.29% 100% 98.06% 99.17%

Corn-no till 143/1285 77.90% 89.98% 96.03% 95.44% 96.66% 97.89%
Corn-mill till 83/747 67.80% 89.68% 97.75% 97.16% 97.94% 98.73%

Corn 24/213 52.96% 86.24% 93.03% 99.25% 91.69% 99.01%
Grass/pasture 48/435 89.13% 93.31% 99.17% 96.67% 94.62% 96.92%

Grass/trees 73/657 96.15% 98.98% 96.02% 99.70% 99.56% 99.74%
Grass/pasture-mowed 10/18 93.33% 96.11% 99.47% 100% 100% 100%

Hay-windrowed 48/430 93.93% 98.42% 100% 100% 99.98% 100%
Oats 10/10 90.00% 100% 96.25% 100% 100% 100%

Soybeans-no till 97/875 72.26% 88.81% 92.21% 94.62% 96.03% 96.01%
Soybeans-mill till 246/2209 79.71% 91.57% 86.65% 98.80% 98.58% 99.54%
Soybeans-clean 59/534 67.66% 85.90% 96.26% 96.29% 97.06% 99.64%

Wheat 21/184 96.09% 98.64% 100% 99.67% 99.57% 100%
Woods 127/1138 91.89% 96.85% 95.24% 99.99% 99.89% 99.91%

Bridg-Grass-Tree-Drives 39/347 56.97% 88.01% 93.70% 98.39% 98.01% 99.14%
Stone-steel lowers 10/83 85.66% 98.43% 96.11% 97.71% 98.92% 96.39%

OA 79.78% 92.11% 93.34% 97.83% 97.88% 98.83%
AA 80.11% 92.68% 95.95% 98.35% 97.91% 98.88%

kappa 0.769 0.910 0.924 0.975 0.976 0.987

4.2.2 University of Pavia

The University of Pavia data set consists of regions with various shapes, including thin and thick

structures and large homogeneous regions. Hence it can be used to test the ability of the classifi-

cation methods on handling different shapes. In the experiments, we choose the same number of

training pixels (200 for each class) as in [26]. This accounts for approximately 4% of the labeled

pixels. The remaining ones are used as testing pixels.

Table 2 reports the classification accuracies obtained by different methods. We see that the

performances of SC-MK, MFASR, and our method are very close: approximately 99% in all

three metrics (OA, AA and kappa) and they outperform the ν-SVC, SVM-CK and EPF methods.

Figure 4 shows the heatmaps of mis-classifications. The ν-SVC, SVM-CK and EPF methods

produce large regions of mis-classifications. The SC-MK method produces many mis-classifications

at the middle and bottom regions where the meadows are. The MFASR method and our method

generate smaller regions of mis-classification.
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Table 2: Number of training/testing pixels and classification accuracies for University of Pavia
data set.

Class train/test ν-SVC SVM-CK EPF SC-MK MFASR 2-stage
Asphalt 200/6431 84.65% 95.84% 98.84% 99.06% 99.44% 98.68%

Meadows 200/18449 89.96% 97.62% 99.62% 98.14% 98.52% 98.78%
Gravel 200/1899 83.59% 91.99% 95.50% 99.98% 99.80% 99.69%
Trees 200/2864 94.94% 97.95% 98.94% 99.03% 98.02% 96.56%

Metal Sheets 200/1145 99.59% 99.97% 99.03% 99.87% 99.91% 100%
Bare Soil 200/4829 90.69% 97.49% 92.95% 99.70% 99.78% 100%
Bitumen 200/1130 92.73% 98.41% 93.84% 100% 99.92% 100%
Bricks 200/3482 82.59% 92.71% 92.92% 99.05% 99.41% 99.02%

Shadows 200/747 99.60% 99.92% 99.30% 99.99% 100% 99.18%

OA 89.16% 96.80% 97.60% 98.83% 99.02% 98.89%
AA 90.93% 96.88% 96.77% 99.42% 99.42% 99.10%

kappa 0.857 0.957 0.968 0.984 0.987 0.985

4.2.3 Pavia Center

The Pavia Center data set also consists of regions with various shapes. In the experiments, we

use the same number of training pixels as in [31] (150 training pixels per class). This accounts for

approximately 1% of the labeled pixels. The rest of the labeled pixels are used as testing pixels.

Table 3 reports the number of training/testing pixels and the classification accuracies of different

methods. We see that the EPF method gives the highest OA and kappa while our method gives the

second highest and their values differ by about 0.1%. However, our method gives the highest AA

(99.12%) which outperforms the EPF method by almost 1%. The SC-MK and MFASR methods

give slightly worse accuracies than our method. Figure 5 shows the heatmaps of mis-classifications.

4.3 Advantages of Our 2-stage Method

4.3.1 Percentage of Training Pixels

Since our method improves on the classification accuracy by using the spatial information, it is

expected to be a better method if the training percentage (percentage of training pixels) is higher.

To verify that, Tables 4 to 6 show the overall accuracies obtained by our method on the three

data sets with different levels of training percentage. We see that our method outperforms the

other methods when training percentage is high. When it is not high, our method still gives a
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Table 3: Number of training/testing pixels and classification accuracies for Pavia Center data set.

Class train/test ν-SVC SVM-CK EPF SC-MK MFASR 2-stage
Water 150/65128 99.54% 99.82% 100% 99.86% 99.97% 99.66%
Trees 150/6357 94.22% 95.61% 99.11% 94.59% 95.52% 98.61%

Meadows 150/2741 95.14% 96.15% 97.16% 98.78% 98.54% 98.84%
Bricks 150/2002 92.56% 97.37% 90.08% 99.91% 99.62% 99.98%
Soil 150/6399 94.31% 96.51% 99.40% 99.76% 99.59% 98.69%

Asphalt 150/7375 95.94% 97.34% 98.86% 99.24% 98.76% 99.60%
Bitumen 150/7137 89.99% 94.75% 99.79% 98.64% 99.55% 97.86%

Tiles 150/2972 97.42% 99.33% 99.97% 99.32% 99.05% 99.52%
Shadows 150/2015 99.98% 100% 99.96% 99.85% 99.97% 99.27%

OA 97.54% 98.80% 99.59% 99.31% 99.33% 99.42%
AA 95.46% 97.43% 98.26% 98.88% 98.95% 99.12%

kappa 0.965 0.983 0.994 0.990 0.990 0.991

classification accuracy that is close to the best method compared.

Table 4: Classification results on the Indian Pines data with different levels of training pixels.

Method \Training percentage 5% 10% 20% 40%
ν-SVC 73.49% 79.78% 84.98% 88.55%

SVM-CK 86.00% 92.11% 96.00% 98.51%
EPF 89.37% 93.34% 97.42% 98.90%

SC-MK 97.21% 97.83% 98.11% 98.42%
MFASR 95.67% 97.88% 98.82% 99.25%
2-stage 96.98% 98.83% 99.61% 99.93%

Difference from the best 0.23 % 0.00 % 0.00 % 0.00%

Table 5: Classification results on the University of Pavia data with different levels of training
pixels.

Method \Training percentage 4% 8% 16% 32%
ν-SVC 89.16% 91.19% 94.04% 94.63%

SVM-CK 96.80% 97.93 % 98.78% 99.13%
EPF 97.60% 98.37% 98.60% 98.94%

SC-MK 98.83% 99.67% 99.66% 99.86%
MFASR 99.02% 99.52% 99.81% 99.85%
2-stage 98.89% 99.58% 99.82% 99.89%

Difference from the best 0.13 % 0.09% 0.00 % 0.00%
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Table 6: Classification results on the Pavia Center data with different levels of training pixels.

Method \Training percentage 1% 2% 4% 8%
ν-SVC 97.54% 98.01% 98.28% 98.51%

SVM-CK 98.80% 99.46% 99.67% 99.83%
EPF 99.59% 99.76% 99.76% 99.92%

SC-MK 99.31% 99.59% 99.75% 99.85%
MFASR 99.33% 99.64% 99.86% 99.92%
2-stage 99.42% 99.73% 99.90% 99.94%

Difference from the best 0.17 % 0.03% 0.00 % 0.00%

4.3.2 Model Complexity and Computational Time

Tables 7 and 8 shows the computational time required and the number of parameters for all

methods. We note that the reported timing does not count the time required to find the optimal

set of parameters. The ν-SVC, SVM-CK and EPF methods have fast computational time because

of the simpleness of their models. They have only a few parameters (2, 3 and 4 respectively).

However, from the results in Section 4.2, they are worse than the other three methods. The SC-MK

method is a good method in terms of accuracy and timing, but it has 9 parameters. The MFASR

method has 10 parameters and the longest computational time. In comparison, our method has

5 parameters (2 parameters ν and σ for the ν-SVC (1) and the RBF kernel (6) respectively in

the first stage, 2 parameters β1 and β2 for the denoising model (10) in the second stage and 1

parameter µ for the ADMM algorithm (12)). It has much better (if not the best) classification

accuracies and slightly longer computational time than those of ν-SVC, SVM-CK and EPF.

Table 7: Comparison of number of parameters.

ν-SVC SVM-CK EPF SC-MK MFASR 2-stage
Number of parameters 2 3 4 9 10 5

Table 8: Comparison of computational time (in seconds)

Data size/training % ν-SVC SVM-CK EPF SC-MK MFASR 2-stage
Indian Pines 145× 145× 200/10% 5.98 6.32 6.92 9.44 119 8.24

University of Pavia 610× 340× 103/4% 24.02 32.12 28.53 39.47 443 35.97
Pavia Center 1096× 715× 102/1% 58.46 81.63 118 107 2599 145
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4.4 Effect of the Second-order Term

Here we examine empirically the importance of the term ||∇u||22 in (10). Figure 6 shows the

heatmaps of mis-classifications on the Indian Pines data by using our method with and without

||∇u||22 over ten runs. The training pixels are randomly selected and consist of 2.5% of the labeled

pixels. Figure 6 (a) shows the ground-truth labels. Figure 6 (b)–(d) show the heatmaps of mis-

classifications of the ν-SVC classifier (i.e. the first stage of our method), the second stage of

our method without the ||∇u||22 term, and the second stage of our method with the ||∇u||22 term

respectively. Recall the term ||∇u||22 control the smoothness of the restored votes and the final

classification result is determined by taking the maximum over the restored votes of each class.

By choosing the parameter associated with the term appropriately, we can then control the level

of shrinking or expanding the homogeneous regions in the final classification result. From Figure 6

(c), when the term is dropped, the mis-classification regions at the top left and bottom left of the

first stage result are not only still mis-classified, but the numbers of mis-classification increase. In

contrast, when the term is kept, we see from Figure 6 (d) that the numbers of mis-classification

are significantly lowered. Moreover, most of the mis-classified regions of the first stage result are

now correctly classified when the parameters are chosen appropriately.

5 Conclusions

In this paper, a novel two-stage hyperspectral classification method inspired by image denoising

is proposed. The method is simple yet performs effectively. In the first stage, a support vector

machine method is used to estimate the pixel-wise probability map of each class. The result in the

first stage has decent accuracy but is noisy. In the second stage, an image denoising method is used

to clean the probability maps. Since both spectral and spatial information are effectively utilized,

our method is very competitive when compared with state-of-the-art classification methods. It

also has a simpler framework with fewer number of parameters and faster computational time. It

performs particularly well when the inter-class spectra are close or when the training percentage

is high.
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For future work, we plan to investigate automated parameter selection [68, 69, 70, 71] of the

denoising method in the second stage, using deep learning methods in the first stage [16, 17, 18, 19]

and classifying fused hyperspectral and LiDAR data [72, 73].
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(a) Ground Truth (b) Label color (c) False color image

(d) Heatmap
colorbar (e) SVM [23] (f) SVM-CK [25]

(g) EPF [28] (h) SC-MK [26] (i) MFASR [38]

(j) Our 2-stage

Figure 3: Indian Pines data set. (a) ground-truth labels, (b) label color of the ground-truth labels,
(c) false color image, (d) heatmap colorbar, (e)–(j) classification results by different methods.
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(a) Ground Truth (b) Label color (c) False color image

(d) Heatmap color-
bar (e) ν-SVC [22, 23] (f) SVM-CK [25] (g) EPF [28]

(h) SC-MK [26] (i) MFASR [38] (j) Our 2-stage

Figure 4: University of Pavia data set. (a) ground-truth labels, (b) label color of the ground-
truth labels, (c) false color image, (d) heatmap colorbar, (e)–(j) classification results by different
methods.
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(a) Ground Truth
(b) Label
color (c) False color image

(d) Heatmap
colorbar

(e) ν-SVC [22, 23] (f) SVM-CK [25] (g) EPF [28]

(h) SC-MK [26] (i) MFASR [38] (j) Our 2-stage

Figure 5: Pavia Center data set. (a) ground-truth labels, (b) label color of the ground-truth labels,
(c) false color image, (d) heatmap colorbar, (e)–(j) classification results by different methods.
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(a) Ground Truth (b) ν-SVC (c) 2-stage without
||∇u||22

(d) 2-stage with ||∇u||22

Figure 6: Heatmaps of mis-classifications on Indian Pines data. (a) ground-truth labels, (b) ν-SVC
(the first stage), (c) and (d) our method without or with the second order term respectively.
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