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Abstract

We consider using the preconditioned conjugate gradient �PCG� method
to solve linear systems Ax � b arising from second�order elliptic problems
and queueing problems� The preconditioners are matrices that can be di�
agonalized by either sine or cosine transform matrices� For ��dimensional
elliptic problems with slowly variating coe�cients	 the condition numbers
of our preconditioned system is of order O�
� whereas the system precon�
ditioned by the MILU and MINV methods are of order O�n�	 where n is
the number of mesh points in one direction� For queueing problems	 our
method is also signi�cantly faster than the point�SOR method�

� Optimal Sine Transform Based Precondition�

ers

Let A be an n�by�n positive de�nite matrix� Consider solving the linear system
Ax � b by the conjugate gradient �CG� method� If the condition number ��A�
of A is close to �	 then the CG method converges very fast	 see 
��� However	 if
��A� is large	 preconditioning is needed	 i�e� we solve M��Ax �M��b� There
are two criteria on choosing the preconditioner M � We want M � A in some
norm and yet M is easily invertible	 see 
���

One approach to the second requirement is to use the circulant matrices as
preconditioners� The reason is that all circulant matrices C can be diagonalized
by Fourier matrix F � Hence C�� can be easily invertible� Let us denote the
class of circulant matrices by F � For the �rst requirement that C � A in some
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norm	 T� Chan 
�� proposed circulant preconditioner that is the minimizer of
the Frobenius norm

kC �AkF ���

over F � The minimizer	 denoted by c�A�	 is called the optimal circulant pre�

conditioner for the matrix A� If the matrix A is the ��dimensional discrete
Laplacian with Dirichlet boundary conditions	 we have ��A� � O�n�� but
��c�A���A� � O�n����� Here n is the number of mesh points used� Modify�
ing c�A� in the manner used in Modi�ed ILU method can further reduce the
condition number to O�n�	 see 
��

In this paper	 our preconditioners are matrices that can be diagonalized by
either sine or cosine transform matrices� For simplicity	 we concentrate on the
sine transform matrix S �rst� One of our motivations for using S is that the
transform matrices S and F possess basically the same properties� We have F
is unitary and S is orthogonal� Both matrices have fast transform algorithm to
perform the matrix�vector multiplication� Their main di�erence is that S diag�
onalizes the ��dimensional discrete Laplacian with Dirichlet boundary condition
while F diagonalizes the same operator but with periodic boundary condition�

However	 from the results in 
���	 we know that for matrices arising from el�
liptic boundary value problem	 a �good� preconditioner must keep the boundary
condition of the given operator� Therefore	 for Dirichlet problems	 we consider
preconditioners B such that B � S�S� Let S denote such class of matrices�
Similar to ���	 for any matrix A	 we de�ne the optimal sine preconditioner s�A�
to be the minimizer of the Frobenius norm kB �AkF over all B � S�

Since k � kF is unitary invariant	 we have s�A� � S��SAS�S	 where ��B� is
the diagonal matrix with diagonal entries given by the diagonal of B� However	
constructing s�A� by this formula requires O�n� logn� operations for general
matrices A� whereas c�A� can be obtained in only O�n�� operations� Thus we
need a faster algorithm of computing s�A��

� Constructing s�A�

In forming c�A�	 we used the fact that F has a basis fPig � fP ig where P is
just the shift operator� To form s�A�	 we �rst need a basis fQig of S�

lemma ��� Bini and Benedetto�


Qi�h�k �

����
���

� if jh� kj � i� �	
�� if h� k � i� �	
�� if h� k � �n� i� �	
� otherwise�

Note that each basis matrix is a special sum of a Toeplitz matrix and Hankel
matrix� Hence all elements in S are special Toeplitz�plus�Hankel matrices� To
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form s�A� fast	 we make use of the sparsity of fQig and obtained the following
theorem�

theorem ��� Chan� Ng and Wong� The matrix s�A� can be formed in
O�n�� operations for general A and O�n� operations if A is Toeplitz or banded�
We remark that the operation counts for computing s�A� are thus the same as
that of c�A��

� Extension to ��Dimensional Case

Consider the second order elliptic equation

��a�x� y�ux�x � �b�x� y�uy�y � f�x� y� on 
�� ���

with Dirichlet boundary condition� Using the ��point centered di�erencing gives

A �

�
BBBBBB�

D� A� �
A� D� A�

� � �
� � �

� � �

� � �
� � � An

� An Dn

�
CCCCCCA
� ���

where Di are symmetric tridiagonal matrices and Ai are diagonal matrices�
There are two approachs of constructing preconditioners for A� One can use

the �block� approach introduced by T� Chan and Olkin 
�� and take the optimal
sine approximation of each block of A to obtain the preconditioner�

s��A� �

�
BBBBBB�

s�D�� s�A�� �
s�A�� s�D�� s�A��

� � �
� � �

� � �

� � �
� � � s�An�

� s�An� s�Dn�

�
CCCCCCA
�

We noted that for the ��dimensional discrete Laplacian matrix A given in
���	 s��A� � A and we have an exact approximation� In general	 we have the
following theorem�

theorem ��� Chan and Wong� For the variable coe�cient case	

��s��A�
��A� � �

cmax

cmin

���

where � � cmin � a�x� y�� b�x� y� � cmax�
However	 this �block� approach does not work for non�rectangular domains�

For those domains	 we need the �INV� approach introduced in 
��� We �rst note
that the block Cholesky factorization of the matrix A in ��� is given by

A � �� � L������ � Lt��
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where

L �

�
BBBBBB�

� �
A� �

A�

� � �

� � �
� � �

� An �

�
CCCCCCA
�

and � � diag
��� � � � ��n� with

�i � Di �Ai�
��

i��Ai�

The preconditioner in 
��	 called the INV preconditioner	 is obtained by approx�
imating �i by band matrices� Here we just use the optimal sine operator s���
on �i to obtain our approximation�

theorem ��� Chan and Wong� For rectangular domains	 two approaches
are equivalent�
For L	C	 or T�shaped regions	 the diagonal block Di in ��� may have di�erent
sizes and the subdiagonal block Ai may not be square� However	 we can still
apply s��� to the sub�block �i�

For comparison	 let us list in Table � the construction cost of di�erent pre�
conditioners and the cost per iteration of CG method if the preconditioner is
used� In the table	 n is number of mesh points in one direction	 �No� means no
preconditioner is used� For references on MINV and MILU preconditioners	 see

�� and 
����

Construction Cost Cost per Iteration
No s��A� MINV MILU No s��A� MINV MILU
� n� logn n� n� n� n� logn n� n�

Table �� Construction Cost and Cost per Iteration�

� Numerical Results for Elliptic Problems

Let us consider solving the second order elliptic problem

�

�x

�	
� � �ex�y
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�

�
sin��	�x� y��
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�y

�
� f�x� y�

with Dirichlet boundary conditions� We note that the parameter � controls the
variations in the coe�cient functions� The equation is discretized by standard
�ve point scheme� Random initial guess and right hand side are used in the CG
method	 ut these vectors are kept the same for di�erent preconditioners� The
tolerance is ���� and again n is the number of mesh points in one direction�
The numbers of iterations required for convergence for the case of rectangular
domain and L�shaped domain are given in Tables � and � respectively�





� ��� ����
n No s��A� MINV MILU No s��A� MINV MILU
 � �  � �� �  �
� �� � � � �� � � �
�� � � � �� � � � ��
�� � � �� �� �� � �� ��
� ��� � �� �� ��� � �� ��
��� ��� � � � ��� � � �

� ��� ���
n No s��A� MINV MILU No s��A� MINV MILU
 �� � � � �� � � �
� ��  � � �� �  �
�� � � � �� � � � �
�� �� � �� �� ��� �� �� ��
� ��� � �� �� ��� �� �� ��
��� ��� � � � �� �� �� �

Table �� Numbers of Iterations for Rectangular Domain 
�� ����

� ��� ����
n No s��A� MINV MILU No s��A� MINV MILU
� �� �  � �� �  �
�� � � � �� � � � ��
�� ��  � �� ��  � ��
� ���  � �� ���  � ��
��� ���  �� �� ���  �� ��

� ��� ���
n No s��A� MINV MILU No s��A� MINV MILU
� ��   � � �  �
�� � � � �� � � � ��
�� �� � � �� �� �� � ��
� ��� � � �� ��� �� �� ��
��� ��� � �� �� ��� � �� ��

Table �� Numbers of Iterations for L�shaped Domain 
�� ��� n 
 �
�
� ����

� Extension to Queueing Problems

Consider a ��queue Markovian network with over�ow from queue � to queue �
permitted only when queue � is full	 see Figure �� We are interested in �nding
the steady�state probability distribution vector	 see 
����
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Let us denote 
i	 �i	 ni and si to be the input rate	 output rate of single
server	 bu�er sizes and number of servers for queue i� If the tra�c density


i

si�i
� � �O�n��i ��

for some positive �	 then the queueing problem resembles a second order ellip�
tic equation on a rectangle with oblique boundary condition on one side and
Neumann boundary condition on the others	 see 
���
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� empty bu�er in queue

p p � customer waiting in queue

m��p p � customer being served

Figure �� Two�queue Over�ow Network�
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The SOR method is the standard method in solving this problem	 see 
����
However	 in 
��	 CG method has also been considered	 with the preconditioner
being constructed by changing the oblique boundary condition to Neumann
boundary condition� This preconditioner will be referred to as Neumann pre�
conditioner in below� Since the ��dimensional discrete Laplacian with Neumann
boundary conditions can be diagonalized by cosine transform matrix	 one natu�
rally leads to consider using optimal cosine preconditioner to precondition such
queueing system� The de�nition of such preconditioner is similar to that of
optimal sine preconditioner and will be omitted here�

The following table compares the cost per iteration of the three di�erent
methods�

s � � s  �
Cost per Cosine Neumann PSOR Cosine Neumann PSOR
Iteration n� logn n� logn n� n� logn n� n�

Table � Cost per Iteration�

The following table gives the number of iterations required for convergence
when the tolerance is ����� For the point�SOR method	 optimal relaxation fac�
tor	 obtained numerically to  signi�cant digits	 is used� The symbol �� signi�es
more than ���� iterations� For the �Cosine� and �Neumann� precondition�
ers	 since the problem is nonsymmetric	 a generalized CG method	 called the
preconditioned conjugate gradient squared method is used	 see 
����

� � � s � � s � �
n Cosine Neumann PSOR Cosine Neumann PSOR
� � � ��� � � ��
�� � � ��� �� � ���
�� � �� �� �� �� ���
� �� � �� �� � ��
��� �� � �� �� �� ��

� � � s � � s � �
n Cosine Neumann PSOR Cosine Neumann PSOR
� � � ��� � � ��
�� � � ��� �� � ���
�� � �� ��� �� �� ��
� �� � �� �� � ��
��� �� �� �� �� �� ��

Table �� Number of Iterations for Convergence�
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