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Abstract

We consider using the preconditioned conjugate gradient (PCG) method
to solve linear systems Ax = b arising from second-order elliptic problems
and queueing problems. The preconditioners are matrices that can be di-
agonalized by either sine or cosine transform matrices. For 2-dimensional
elliptic problems with slowly variating coefficients, the condition numbers
of our preconditioned system is of order O(1) whereas the system precon-
ditioned by the MILU and MINV methods are of order O(n), where n is
the number of mesh points in one direction. For queueing problems, our
method is also significantly faster than the point-SOR method.

1 Optimal Sine Transform Based Precondition-
ers

Let A be an n-by-n positive definite matrix. Consider solving the linear system
Ax = b by the conjugate gradient (CG) method. If the condition number x(A)
of A is close to 1, then the CG method converges very fast, see [1]. However, if
k(A) is large, preconditioning is needed, i.e. we solve M *Ax = M ~'b. There
are two criteria on choosing the preconditioner M. We want M = A in some
norm and yet M is easily invertible, see [1].

One approach to the second requirement is to use the circulant matrices as
preconditioners. The reason is that all circulant matrices C can be diagonalized
by Fourier matrix F. Hence C~! can be easily invertible. Let us denote the
class of circulant matrices by F. For the first requirement that C' & A in some
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norm, T. Chan [7] proposed circulant preconditioner that is the minimizer of
the Frobenius norm

1€ = Allr (1)

over F. The minimizer, denoted by c(A), is called the optimal circulant pre-
conditioner for the matrix A. If the matrix A is the 1-dimensional discrete
Laplacian with Dirichlet boundary conditions, we have x(4) = O(n?) but
k(c(A)7tA) = O(n'®). Here n is the number of mesh points used. Modify-
ing ¢(A) in the manner used in Modified ILU method can further reduce the
condition number to O(n), see [4].

In this paper, our preconditioners are matrices that can be diagonalized by
either sine or cosine transform matrices. For simplicity, we concentrate on the
sine transform matrix S first. One of our motivations for using S is that the
transform matrices S and F' possess basically the same properties. We have F'
is unitary and S is orthogonal. Both matrices have fast transform algorithm to
perform the matrix-vector multiplication. Their main difference is that S diag-
onalizes the 1-dimensional discrete Laplacian with Dirichlet boundary condition
while F' diagonalizes the same operator but with periodic boundary condition.

However, from the results in [12], we know that for matrices arising from el-
liptic boundary value problem, a “good” preconditioner must keep the boundary
condition of the given operator. Therefore, for Dirichlet problems, we consider
preconditioners B such that B = SAS. Let S denote such class of matrices.
Similar to (1), for any matrix A, we define the optimal sine preconditioner s(A)
to be the minimizer of the Frobenius norm ||B — Al|r over all B € S.

Since || - ||# is unitary invariant, we have s(A) = S6(SAS)S, where §(B) is
the diagonal matrix with diagonal entries given by the diagonal of B. However,
constructing s(A4) by this formula requires O(n?logn) operations for general
matrices A. whereas ¢(A) can be obtained in only O(n?) operations. Thus we
need a faster algorithm of computing s(A).

2 Constructing s(A)

In forming c(A), we used the fact that F has a basis {P;} = {P?} where P is
just the shift operator. To form s(A), we first need a basis {Q;} of S.
lemma [2, Bini and Benedetto]

1 iflh—k|=i—1,
) -1 ifhtk=i-2
@ik =9 _1 sth+k—on—i+s
0 otherwise.

Note that each basis matrix is a special sum of a Toeplitz matrix and Hankel
matrix. Hence all elements in S are special Toeplitz-plus-Hankel matrices. To



form s(A) fast, we make use of the sparsity of {@;} and obtained the following
theorem.

theorem [5, Chan, Ng and Wong] The matrix s(4) can be formed in
O(n?) operations for general A and O(n) operations if A is Toeplitz or banded.
We remark that the operation counts for computing s(A) are thus the same as
that of ¢(A).

3 Extension to 2-Dimensional Case

Consider the second order elliptic equation

_(a(may)uz)z - (b(a:,y)uy)y = f(mvy) on [07 1]2

with Dirichlet boundary condition. Using the 5-point centered differencing gives

D; A, 0
A2 D2 A3
A= _ (2)
. A,
0 An Dy

where D; are symmetric tridiagonal matrices and A; are diagonal matrices.

There are two approachs of constructing preconditioners for A. One can use
the “block” approach introduced by T. Chan and Olkin [8] and take the optimal
sine approximation of each block of A to obtain the preconditioner:

S(Dl) S(AQ) 0
s(A2) s(D2) s(As)

S1 (A) =

0 s(4n) s(Dn)

We noted that for the 2-dimensional discrete Laplacian matrix A given in
(2), s1(A) = A and we have an exact approximation. In general, we have the
following theorem.

theorem [6, Chan and Wong] For the variable coefficient case,

c
K(s1(4)71A) < ()%,
Cmin
where 0 < ¢min < a(z,9),b(z,y) < Cmax-
However, this “block” approach does not work for non-rectangular domains.

For those domains, we need the “INV” approach introduced in [9]. We first note
that the block Cholesky factorization of the matrix A in (2) is given by

A=+ L)Y YT+ LY,



where

0 0
A, 0
L= As 5
0 - Ar; 0
and ¥ = diag[¥q,---,%,] with
Y, = D;i—-AX A

The preconditioner in [9], called the INV preconditioner, is obtained by approx-
imating X; by band matrices. Here we just use the optimal sine operator s(-)
on ¥; to obtain our approximation.

theorem [6, Chan and Wong] For rectangular domains, two approaches
are equivalent.

For L,C, or T-shaped regions, the diagonal block D; in (2) may have different
sizes and the subdiagonal block A; may not be square. However, we can still
apply s(+) to the sub-block ;.

For comparison, let us list in Table 1 the construction cost of different pre-
conditioners and the cost per iteration of CG method if the preconditioner is
used. In the table, n is number of mesh points in one direction, “No” means no
preconditioner is used. For references on MINV and MILU preconditioners, see
[9] and [10].

Construction Cost Cost per Iteration
No | s1(A) | MINV | MILU || No | s;(A) | MINV | MILU
0 | n’logn n? n? n? | n?logn n? n?
Table 1: Construction Cost and Cost per Iteration.

4 Numerical Results for Elliptic Problems

Let us consider solving the second order elliptic problem

w € u
% [(1+ee”tY) %] + % [(1+ 3 sin(2m(z + y)))g—y] = f(z,y)
with Dirichlet boundary conditions. We note that the parameter € controls the
variations in the coefficient functions. The equation is discretized by standard
five point scheme. Random initial guess and right hand side are used in the CG
method, ut these vectors are kept the same for different preconditioners. The
tolerance is 1075 and again n is the number of mesh points in one direction.
The numbers of iterations required for convergence for the case of rectangular
domain and L-shaped domain are given in Tables 2 and 3 respectively.



0.0 0.01

€

n || No | si(A) | MINV | MILU || No | s1(4) | MINV | MILU
i 9 1 1 7 2] 3 1 7

8 | 23| 1 5 9 2% | 3 5 9
16 || 43 | 1 7 13 | 47 | 3 7 13
32 | 84 | 1 11 19 |9 | 3 11 20
64 |[ 165 | 1 16 28 || 186 | 3 16 28
128 [ 318 | 1 24 41 [[363| 3 24 41

e 0.1 1.0

n || No | si(A) | MINV | MILU || No | s1(4) | MINV | MILU
1 13 3 3 7 5] 5 3 6

8 | 26 | 4 5 9 29 | 7 4 9
16 || 46 | 5 8 13 (54| 9 6 14
32 97 | 5 11 20 || 107 | 11 10 20
64 [ 189 | 5 16 28 [[209 | 12 15 28
128 [ 379 | 5 24 41 419 | 13 22 A1

Table 2: Numbers of Iterations for Rectangular Domain [0, 1],

€ 0.0 0.01

n No | s1(A4) | MINV | MILU || No | s1(4) | MINV | MILU

8 21 3 4 9 22 3 4 9
16 42 3 6 12 40 3 6 12
32 7 4 9 17 80 4 9 17
64 | 155 4 14 25 155 4 14 25
128 || 306 4 21 36 311 4 21 36

€ 0.1 1.0

n No | s1(A) | MINV | MILU || No | s1(4) | MINV | MILU

8 22 4 4 9 24 7 4 9
16 42 5 6 12 45 9 6 13
32 82 5 9 18 86 10 8 18
64 | 162 6 14 25 169 12 12 26
128 || 322 7 21 36 338 14 19 37

Table 3: Numbers of Iterations for L-shaped Domain [0, 1]* \ [§, 1]°.

5 Extension to Queueing Problems

Consider a 2-queue Markovian network with overflow from queue 1 to queue 2
permitted only when queue 1 is full, see Figure 1. We are interested in finding
the steady-state probability distribution vector, see [11].



Let us denote \;, u;, n; and s; to be the input rate, output rate of single
server, buffer sizes and number of servers for queue i. If the traffic density

i
Silbi

= 1+0(;®),

for some positive «, then the queueing problem resembles a second order ellip-
tic equation on a rectangle with oblique boundary condition on one side and
Neumann boundary condition on the others, see [3].
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[1] : customer waiting in queue
D : empty buffer in queue

Figure 1. Two-queue Overflow Network.



The SOR method is the standard method in solving this problem, see [11].
However, in [3], CG method has also been considered, with the preconditioner
being constructed by changing the oblique boundary condition to Neumann
boundary condition. This preconditioner will be referred to as Neumann pre-
conditioner in below. Since the 1-dimensional discrete Laplacian with Neumann
boundary conditions can be diagonalized by cosine transform matrix, one natu-
rally leads to consider using optimal cosine preconditioner to precondition such
queueing system. The definition of such preconditioner is similar to that of
optimal sine preconditioner and will be omitted here.

The following table compares the cost per iteration of the three different
methods.

s=1 s>1
Cost per || Cosine | Neumann | PSOR || Cosine | Neumann | PSOR
Iteration | n?logn | nZlogn n? nZlogn n? n?

Table 4. Cost per Iteration.

The following table gives the number of iterations required for convergence
when the tolerance is 1078, For the point-SOR method, optimal relaxation fac-
tor, obtained numerically to 4 significant digits, is used. The symbol *x signifies
more than 1000 iterations. For the “Cosine” and “Neumann” precondition-
ers, since the problem is nonsymmetric, a generalized CG method, called the
preconditioned conjugate gradient squared method is used, see [13].

a=1 s=1 §=95
n Cosine | Neumann | PSOR || Cosine | Neumann | PSOR
8 6 7 210 7 7 70
16 8 9 512 10 9 196
32 9 11 *ok 10 12 533
64 10 14 *ok 12 14 *ok
128 10 14 *ok 13 16 *ok
a=2 s=1 s=25
n Cosine | Neumann | PSOR || Cosine | Neumann | PSOR
8 6 7 113 7 7 60
16 8 9 262 10 9 182
32 9 11 581 10 12 476
64 11 14 *ok 12 14 *ok
128 10 17 *ok 13 16 *x

Table 5: Number of Iterations for Convergence.
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