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Abstract
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� Introduction

In this paper� we study numerical solutions to integral equations of the second kind de
ned
on the half�line� More precisely� we consider the equation

y�t �

Z �

�

a�t� sy�sds � g�t� � � t �� ��

where g�t is a given function in L����� and the kernel function a�s� t is in L��IR
�� One

way of solving �� is by the projection method ��� where the solution y�t is approximated
by the solution y��t of the 
nite�section equation

y� �t �

Z �

�

a�t� sy� �t � g�t� � � t � �� �	

It is shown in ��� that

lim
���

jjy� � yjjLp����� � �� � � p ���

The 
nite�section equation �	 can be solved numerically by either direct or iterative
methods� For a 
xed � � the 
nite�section operator A� de
ned by

�A�x�t �

��
�
Z �

�

a�t� sx�sds� � � t � ��

�� t � ��
��

is a compact operator� Therefore� the spectrum of the operator I�A� is clustered around
� and hence solving �	 by iterative methods such as the conjugate gradient �CG method
will be less expensive than direct methods� However� as � � �� the spectrum of A�

becomes dense in that of A� where A is de
ned as

Ax�t �

Z �

�

a�t� sx�sds� � � t ���

and hence the convergence rate of the CG method will deteriorate� see the numerical
results in x��

One way of speeding up the convergence rate of the CG method is to apply a precon�
ditioner to �	� Thus instead of solving �	� we solve the preconditioned equation

�I �H� 
���I � A� y��t � �I �H� 

��g�t� ��

We will call the operator H� a preconditioner for the operator A� � A good preconditioner
H� is an operator that is close to A� in some norm and yet the operator equation

�I �H�x�t � f�t ��

	



is easier to solve than �	 for arbitrary function f � L���� � �� A class of candidates is the
class of operators of the form

H�x�t �

Z �

�

h� �t� sx�sds� � � t � ��

where the kernel functions h� are periodic in ��� � �� They are called circulant integral
operators in ���� The eigenfunctions and eigenvalues of the operator H� are given by

um�t �
�p
�
e��imt�� � m � ZZ� ��

and

�m �
p
� �h� � um� �

p
�

Z �

�

h� �t�um�tdt� m � ZZ� ��

Therefore� �� can be solved e�eciently by using the Fourier transforms�
The convergence rate of solving the preconditioned system �� with CG method de�

pends on how close the operator �I �H�  is to the operator �I � A� � see Axelsson and
Barker ��� p�	��� Therefore� a natural idea is to 
nd the circulant integral operator H�

that minimizes the di�erence A� �H� in some norm over all circulant integral operators�
In this paper� we will consider the minimization in the Hilbert�Schmidt norm jjj � jjj� We
will construct two di�erent kinds of circulant integral preconditioners for A� � The 
rst
one minimizes jjjA� � H� jjj and the second one minimizes jjjI � �I � H� 

���I � A� jjj�
Following the terminologies used in the study of Toeplitz matrices� we call the 
rst mini�
mizer the optimal preconditioner and denote it by P�A� � see �	�� The circulant operator
that minimizes the second one will be called the super�optimal preconditioner� see ����

We will prove some of the properties of the operator P� In particular� we will show
that for self�adjoint operators A� �

inf
jjxjj���

�A�x� x� � inf
jjxjj���

�P�A� x� x� � sup
jjxjj���

�P�A� x� x� � sup
jjxjj���

�A�x� x� �

where

�a� b� �
Z �

�

a�t�b�tdt�

Thus if A� is a positive operator� then so is P�A� � We also show that the operator norms
of P derived from the 	�norm and the Hilbert�Schmidt norm are both equal to �� We
then show that the super�optimal preconditioners are good preconditioners for integral
equations with convolution kernels because the spectra of the preconditioned operators
will be clustered around � for su�ciently large � � As a corollary� we prove that the
preconditioned conjugate gradient �PCG method will converge superlinearly for integral
operators A that are close to convolution�type operators in the Hilbert�Schmidt norm�
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The outline of the paper is as follows� In x	� we construct the optimal circulant integral
preconditioners P�A�  for integral operators A� and study some of its spectral properties�
In x�� we construct the super�optimal circulant integral preconditioners� The convergence
analysis of the preconditioned operators for convolution�type operators and for general
integral operators are discussed in x�� Finally numerical results are given in x��

� Optimal Circulant Integral Operator

In this section� we discuss some of the properties of the optimal circulant integral operator
P�A�  for integral operator A� given in ��� The preconditioner P�A�  is de
ned to be
the circulant integral operator that minimizes the Hilbert�Schmidt norm

jjjA� �H� jjj� �
Z �

�

Z �

�

�a�t� s� h� �t� s��a�t� s� �h� �t� sdsdt ��

over all circulant integral operators H� � We 
rst give the expression of the kernel function
of P�A� �

Lemma � Let a��� � � L����� � �
�� Then the kernel function of P�A�  is given by

pA�
�s �

�

�

Z �

��s
a�v � s� �� vdv �

�

�

Z ��s

�

a�v � s� vdv� ��

In terms of Fourier expansions�

pA�
�t� s �

�X
m���

�A�um� um�um�t�um�s� � � s� t � �� ���

Proof� Since a��� � � L����� � �
�� we can write� by using Fourier expansions

a�t� s �
�X

m�n���
�m�num�t�un�s� � � s� t � �� ���

where um�t is given in �� and

�m�n �
Z �

�

Z �

�

a�t� sun�s�um�tdsdt � �A�un� um� � m� n � ZZ� ��	

Let H� be a circulant integral operator with kernel function h� in L����� � �� By means of
Fourier expansion� we can write

h� �t� s �
�X

m���
�mum�t�um�s� � � s� t � �

�



where �m is given in ��� Combining this with ��� and using the orthogonality of un� we
can rephrase the distance �� as

jjjA� �H� jjj� �
�X

m���
j�m�m � �mj� �

�X
m�n���

m��n

j�m�nj��

Clearly� the expression becomes minimal if and only if �m � �m�m � �A�um� um� for all
integers m� Thus ��� follows�

To obtain ��� we observe from ��	 that for all integer m�

�m � �m�m �

Z �

�

Z �

�

a�t� sum�s�um�tdsdt �
�p
�

Z �

�

Z �

�

a�t� s�um�t� sdsdt�

By using Fubini�s theorem and the substitutions v � t� s and s � s� we get

�m �
�p
�

�Z �

��

Z �

�s
a�v � s� v�um�sdvds�

Z �

�

Z ��s

�

a�v � s� v�um�sdvds

�

�
p
�

Z �

�

�
�

�

Z �

��s
a�v � s� �� vdv �

�

�

Z ��s

�

a�v � s� vdv

�
�um�sds�

Comparing this with ��� we see that the kernel function pA�
is given by ���

In Lemma � below� we study some of the properties of the operator P which are useful
in proving convergence in x�� We 
rst note the following result whose proof is trivial and
will be omitted�

Lemma � Let A� and B� be two integral operators with kernel functions a� and b� re�
spectively� If a� ��� � and b� ��� � are in L����� � �

�� then the kernel function d� ��� � of the
composite operator D� � A�B� is also in L����� � �

� and is given by

d� �t� s �

Z �

�

a� �t� wb��w� sdw� ���

Moreover� we have jjD� jj� � jjA� jj�jjB� jj��

Lemma 	 The following properties of the operator P hold�

�i� P is a linear projection operator� i�e�� P�P�A�  � P�A� �

�ii� Let H� be any circulant integral operator� Then we have

P�H�A�  � H�P�A�  � P�A� H� � P�A�H� �

�



�iii� jjPjj� � jjjPjjj � � where jj � jj� and jjj � jjj are the operator norms of P derived from
the ��norm and the Hilbert�Schmidt norm respectively�

�iv� If A� is self�adjoint� i�e�� �a�t� s � a�s� t� then so is P�A� � and we have

inf
jjxjj���

�A�x� x� � inf
jjxjj���

�P�A� x� x� � sup
jjxjj���

�P�A� x� x� � sup
jjxjj���

�A�x� x� �

In particular� if A� is positive� i�e� �A�x� x� � � for all x � L���� � �� then P�A�  is
also positive�

Proof� The proof of �i is obvious and will be omitted� For �ii� we 
rst prove that the
operators P�H�A�  and H�P�A�  have the same kernel function� Let the kernel functions
of A� and H� be

a� �t� s �
�X

m�n���
�m�num�t�un�s� � � s� t � �

and

h� �t� s �
�X

m���
�mum�t�un�s� � � s� t � �

respectively� By ��� the kernel function of H�A� at the point �t� s is given by

Z �

�

�X
m���

�mum�t�um�w
�X

m�n���
�m�num�w�un�sds �

�X
m�n���

�m�m�num�t�un�s�

By Lemma �� the kernel function of P�H�A�  at the point �t� s is therefore given by

�X
m���

�m�m�mum�t�um�s�

It is easy to check that H�P�A�  has the same kernel function� Thus the 
rst equality in
�ii holds� The third equality in �ii can be proved likewise� The second equality in �ii
follows from the fact that the composite of two circulant integral operators with the same
period is commutative� see for instance ��� p������

To prove �iii� we 
rst note that for an arbitrary function x�s �
P�

m��� 	mum�s in
L���� � �� we have by ���

jjP�A� x�tjj�� �
�X

m���
j	mj�j�m�mj� � sup

m�ZZ
j�m�mj�jjxjj���

�



where �m�m are de
ned in ��	� Thus jjP�A� jj� � supm�ZZ j�m�mj� However� for each
integer m�

jjP�A� jj� � jjP�A� umjj� � j�m�mj�
it follows that jjP�A� jj� � supm�ZZ j�m�mj� On the other hand� since un are orthonormal�
we see that for all n � ZZ�

jjA� jj�� � jjA�unjj�� � jj
�X

m���
�m�num�tjj�� �

�X
m���

j�m�nj��

Hence�

jjA� jj�� � sup
n�ZZ

�X
m���

j�m�nj� � sup
m�ZZ

j�m�mj� � jjP�A� jj���

Since when A� is circulant� jjA� jj� � jjP�A� jj�� it follows that jjPjj� � �� That jjjPjjj � �
can be proved similarly� In fact� by ��� and ���� we see that

jjjA� jjj� �
�X

m�n���
j�m�nj� �

�X
m���

j�m�mj� � jjjP�A�jjj��

Finally� we prove �iv� It is clear that if A� is self�adjoint� then P�A�  is also self�
adjoint� By ��� and ��	� we see that

inf
jjxjj���

�A�x� x� � inf
m�ZZ

�A�um� um� �

However� by ����

inf
m�ZZ

�A�um� um� � inf
m�ZZ

�P�A� um� um� � inf
jjxjj���

�P�A� x� x� �

The inequality for the supremum in �iv can be proved likewise�

� Super�Optimal Integral Preconditioners

In this section� we consider another type of circulant integral preconditioners which are
obtained by minimizing the Hilbert�Schmidt norm

jjjI � �I �H� 
���I � A� jjj ���

over all circulant integral operatorsH� such that �I�H� 
�� exists� The reason we consider

this preconditioner is that in the PCG method �cf ��� we want the preconditioned

�



operator �I �H� 
���I � A�  to be as close to the identity operator I as possible� If the

minimum of ��� is attained by I�C� � then we call C� the super�optimal circulant integral
preconditioner for A� � In order to 
nd the kernel function for C� � we 
rst characterize
the inverse of operators of the form I �H� �

Lemma 
 Let H� be a circulant integral operator with kernel function h� and eigenvalues
�m given in �	�� If I �H� is invertible� then its inverse is given by

�I �H� 
�� � I �K�

where K� is also a circulant integral operator with kernel function

k� �t� s �
�X

n���

�
�n

� � �n

�
un�t�un�s� ���

Proof� Since I �H� is invertible� � � �n 	� � for all integers n� Moreover� since h� is in
L����� � ��

P�
n��� j�nj� �� and therefore j� � �nj � �
	 for all jnj su�ciently large� In

particular� the function k� de
ned in ��� is a � �periodic function in L����� � �� By ����
the kernel function of H�K� at the point �t� s is given by

Z �

�

�X
m���

�mum�t�um�w
�X

n���

�
�n

� � �n

�
un�w�un�sdw �

�X
n���

�
��n

� � �n

�
un�t�un�s�

From this� it is straightforward to check that the kernel function of

H� �K� �H�K� � �I �H� �I �K� � I

is the zero function� Thus �I �H� 
�� � �I �K� �

In view of this Lemma� the problem of minimizing the norm ��� becomes the problem
of minimizing jjjI � �I � K� �I � A� jjj over all circulant integral operator K� � In this
formulation� it is easy to 
nd the super�optimal circulant preconditioner C� for A� �

Lemma � Let a��� � � L����� � �
� be such that I � P�A�  is invertible� Let C� be the

super�optimal circulant integral operator for A� � Then I �C� is invertible and the kernel
function c� of C� is given by

c� �t� s �
�X

m���

�
�m � �m�m

� � ��m�m

�
um�t�um�s� ���

where �m�n � �A�un� um� and �m �
P�

n��� j�m�nj��

�



Proof� Let H� be any circulant integral operator such that I �H� is invertible� Denote
the kernel function of H� by

h� �t� s �
�X

m���
�mum�t�um�s�

By Lemma �� �I �H� 
�� � I�K� where the kernel function of K� is given in ���� Thus

jjjI � �I �H� 
���I � A� jjj � jjjK� �K�A� � A� jjj�

By ��� and ���� the kernel function of K� �K�A� � A� at the point �t� s is given by

�X
m�n���

�
�m�n�m
� � �m

�
�m�m�n

� � �m
� �m�n

�
um�t�un�s �

�X
m�n���

�
�m�n�m � �m�n

� � �m

�
um�t�un�s�

where �m�n denotes the Kronecker symbol� By the de
nition of the Hilbert�Schmidt norm�

jjjI � �I �H� 
���I � A� jjj� �

�X
m�n���

j�m�n�m � �m�n

� � �m
j��

It is clear that the above expression is minimized if and only if the term

j�mj� � �m��m�m � ��m�m�m � �m
j� � �mj�

is minimized for all integers m� However� by di�erentiating this quotient with respect to
the real and imaginary parts of �m� we see that the minimum will be obtained if we set

�m �
�m � �m�m

� � ��m�m

for all m� Hence ��� follows� We note that by ���� the assumption that I � P�A�  is
invertible implies that the denominator � � ��m�m in the above expression is nonzero for
all m� Moreover� since

� � �m �

P�
n����n��m j�m�nj� � j� � ��m�mj�

� � ��m�m

	� ��

we see that I � C� is invertible�

�



� Convergence Analysis

In this section we consider the convergence rate of the optimal and super�optimal circulant
integral preconditioners for solving integral equations of the second kind� We begin with
equations having convolution kernel 
rst� In this case� the convergence analysis for the
optimal circulant integral preconditioners has already been studied�

Lemma � �Gohberg Hanke and Koltracht ���� Let A be a self�adjoint� positive
convolution�type integral operator with kernel function a�� � L��IR� Let P�A�  be the
optimal circulant integral operator of A� � Then for each  � � there is a positive integer
� and a � � � � such that for each � � � �� there exists a decomposition

A� � P�A�  � Q� �R� � ���

with self�adjoint operators Q� and R� satisfying jjQ� jj� �  and rank R� � �� Moreover�
the spectrum of

�I � P�A� 
�����I � A� �I � P�A� 

����

has at most � eigenvalues outside interval ��� � � � �

This lemma basically states that the spectrum of the preconditioned operator is clus�
tered around �� Hence using standard theory of the PCG method� see for instance ���
p�	��� we can conclude that the method with the optimal preconditioner converges super�
linearly� We now prove a similar result for the super�optimal preconditioner�

Theorem � Let A be a self�adjoint� positive convolution�type integral operator with kernel
function a�� � L��IR 
 L��IR� Let C� be the super�optimal circulant integral precondi�
tioner for A� � Then for each  � �� there is a positive integer � and a � � � � such that
for each � � � �� there exists a decomposition

A� � C� � S� � T� � ���

where S� and T� are self�adjoint operators satisfying kS�k� �  and rank T� � �� More�
over� the spectrum of �I �C� 

�����I �A� �I �C� 
���� has at most � eigenvalues outside

interval ��� � � � �

By comparing ��� and ���� we see that Theorem � can be easily proved if we can
show that

lim
���

jjP�A� � C� jj� � ��

The next Lemma and Corollary are devoted to proving this limit�

��



Lemma � Let A be a self�adjoint convolution�type integral operator with kernel function
a � L��IR 
 L��IR� Then

lim
���

jjP�A�
�� P�A� 

�jj� � �� ���

Proof� Since a � L��IR� for each  � �� there is a �� � � such that
R�
��
ja�sjds � �

De
ne
� � � maxf��jjajj�
� ��� �� jjajj��
� 	��g� �	�

For each � � � �� we decompose the di�erence A� � P�A�  as

A� � P�A�  � E� � F� �	�

where E� and F� are self�adjoint operators with kernel functions

e� �s �

�
a�s� pA�

�s� jsj � � � ��
�� jsj � � � ��

�		

and

f� �s �

�
a�s� pA�

�s� � � �� � jsj � �
�� otherwise

�	�

respectively� Using the decomposition �	� and Lemma ��ii� we then have

P�A�
�� P�A� 

� � P��A� � P�A� �A� � P�A� �

� P��E� � F� 
��

� P�E�
� � E�F� � F�E�  � P�F�

��

Therefore by Lemma ��iii� we then have

jjP�A�
�� P�A� 

�jj� � jjE�
� � E�F� � F�E� jj� � jjP�F�

�jj�� �	�

We now estimate the 	�norm of the two terms on the right hand side of �	��
For the 
rst term� we need estimates of jjE� jj� and jjF� jj�� From �		� �	� and ���

we get

jjE� jj� � jje� jj� � 	

Z ����

�

s

�
ja�s� �� a�sjds

� 	

�Z ����

�

ja�s� �jds�
Z ��

�

��
�
ja�sjds�

Z ����

��

ja�sjds
�

� 	

�Z ���

��
ja�vjdv � ��

�
jjajj� � 

�
� ��

��



From �	� and Lemma ��iii� we see that

jjF� jj� � jjP�A� jj� � jjA� jj� � jjE� jj� � 	jjA� jj� � jjE� jj� � 	jjajj� � ��

Thus for the 
rst term in the right hand side of �	�� we have

jjE�
� � E�F� � F�E� jj� � ��� � �	�	jjajj� � � � ���� � 	�jjajj�� �	�

Next we estimate second term in the right hand side of �	�� By ���� the kernel
function of F�

� is given by

�f� �s� t �

Z �

�

f� �s� wf��w � tdw

and by ��� the kernel function of P�F�
� is

pF���s �
�

�

Z �

��s
�f� �v � s� �� vdv �

�

�

Z ��s

�

�f� �v � s� vdv�

Using the de
nition of f� in �	�� we can check that� j �f��s� tj � jjf� jj��� � � �� � s� t � � or � � s� t � ���

j �f��s� tj � �� otherwise�

Using this� it is straightforward to check that�
pF� ��s � �� �� � s � � � ���

jpF� ��sj � 	��jjf� jj��
�� � � s � �� or � � �� � s � ��

Therefore� it follows that for all � � � �

jjpF�� jj� �
Z ��

�

jpF� ��sjds�
Z �

����
jpF� ��sjds �

�jjf� jj��� ��
�

�

We now claim that jjf� jj�� � �jjajj��� If this is true� then by our choice of � � in �	��
jjP�F�

�jj� � jjpF�� jj� � � Putting this result and �	� back into �	�� our Lemma
follows�

Thus it remains to prove that jjf� jj�� � �jjajj��� But by �	��

jjf� jj�� � jjpA�
jj�� � jja� jj�� � 	jja� jj�jjpA�

jj�
and by ���

jpA�
�tj � j� � t

�
a�t �

t

�
a�t� �j � ja�tj� ja�t� �j� � � t � ��

Using Schwarz�s inequality� we have jjpA�
jj�� � �jjajj��� Hence jjf� jj�� � �jjajj���

�	



Corollary � Let A be a self�adjoint convolution�type integral operator with kernel func�
tion a � L��IR 
 L��IR� Let �m�n � �Aum� un� � Then

lim
���

sup
m�ZZ

�X
n���

n��m

j�m�nj� � �� �	�

Proof� By ��� and ���� the kernel function of A�
� at the point �t� s is given by

�X
m�k���

�
�X

n���
�m�n�n�kum�t�uk�s�

Therefore by ���� the kernel function P�A�
� at the point �t� s is given by

�X
m���

�

�X
n���

�m�n�n�mum�t�um�s �
�X

m���

	 �X
n���

j�m�nj�


um�t�um�s�

However by ��� and ��� again� the kernel function of P�A� 
� at the point �t�s is given

by
�X

m���
j�m�mj�um�t�um�s�

Thus the kernel function of P�A�
�� P�A� 

� at the point �t� s is given by

�X
m���

�
B� �X

n���

n��m

j�m�nj�

CA um�t�um�s�

Hence �	� follows from ����

Now we are ready to prove Theorem ��

Proof of Theorem �� By Lemma �� I � P�A�  is invertible� Hence by Lemma ��
the super�optimal preconditioner C� of A� exists� Using ��� and ��� and noting that
�m�m � �A�um� um� is real� we see that the kernel function of C� � P�A�  is given by

�X
m���

�
�m � ��m�m

� � �m�m

�
um�t�um�s �

�X
m���

�
B� �

� � �m�m

�X
n���

n��m

j�m�nj�

CAum�t�um�s�

��



Since A is a positive operator� � � �m�m � � for all m� Hence �	� implies that

lim
���

jjC� � P�A� jj� � lim
���

sup
m

�
B� �

� � �m�m

�X
n���

n��m

j�m�nj�

CA � ��

By combining this result with ���� equation ��� follows with S� � Q� �P�A� �C� and
T� � R� �

Finally we prove the clustering of the spectrum of the preconditioned operator� By
���� the eigenvalues of the operator I � C� are equal to

�m � 	�m�m � �

� � �m�m

� ��

Thus I �C� is a positive operator with jj�I �C� 
��jj� � �� Using ���� we therefore have

�I � C�
�����I � A� �I � C� 

���� � I

� �I � C�
����T� �I � C�

���� � �I � C� 
����S� �I � C� 

���� � �T� � �S� �

where clearly we have rank �T� � rank T� � � and

jj �S� jj� � jjS� jj�jj�I � C� 
����jj�� � �

Thus� by the min�max theorem ��� p��	��� Theorem � follows�

In the following� we extend the convergence result to operators that are close to con�
volution operators in the Hilbert�Schmidt norm� We 
rst note that if E is an operator
with 
nite Hilbert�Schmidt norm� then E� � the restriction operator of E onto ��� �� can
be decomposed as the sum of a small norm operator and a low rank operator�

Lemma � Let E be a self�adjoint operator with kernel function e�s� t� IfZ �

�

Z �

�

je�t� sj�dtds �M �� �	�

for some constant M � then for each given  � �� at most M
� eigenvalues of E� outside
the interval ��� �
Proof� The Lemma follows easily by noting that the eigenvalues �n of E� satis
esX

n

j�nj� �
Z �

�

Z �

�

je�t� sj�dtds �M�

see ��� p��	� for instance�

Combining this together with Lemma � or Theorem �� we have our main theorem�

��



Theorem � Let B be a self�adjoint integral operator with kernel function b�t� s � a�t�
s�e�t� s where a�� � L��IR
L��IR and e�s� t satis
es ��	�� Let A� be the operator on
��� � with kernel function a�� and D� be the optimal �or super�optimal� preconditioner
for A� � Then for each  � �� there is a positive integer � and a � � � � such that for each
� � � �� there exists a decomposition

B� �D� � S� � T� �

where S� and T� are self�adjoint operators satisfying kS�k� �  and rank T� � �� More�
over� the spectrum of �I �D� 

�����I �B� �I �D� 
���� has at most � eigenvalues outside

interval ��� � � � �

Thus if I �B� is preconditioned by I �D� � we expect fast convergence�

� Numerical Results

In this section� we test the convergence performance of the optimal and super�optimal
preconditioners for solving integral equations of the second kind� In the tests� the op�
erators are all discretized by the rectangular quadrature rule� The rule using N points
will yield N �by�N matrices� Random vectors are used as initial guesses and are kept the
same for all preconditioners� The stopping criterion is jjrkjj�
jjr�jj� � ����� where rk is
the residual vector of preconditioned conjugate gradient method after k iterations�

We 
rst test the preformance on integral equations with convolution kernels� Two
kernel functions were tested and they are�

�� a��t �
�

� � ejtj
�

	� a��t �
�

� � jtj���� �

We note that in real applications� ��� is the regularization parameter used and is usually
small� In all our experiments� we set ��� � ����� We note that the discretization matrices
formed from I � A� and I � P�A�  are Toeplitz and circulant matrices respectively�
Tables � and 	 gives the numbers of iterations required for convergence for di�erent
preconditioners� In the tables� O� S and I denote that the optimal� super�optimal and no
preconditioner is used respectively� We see from the tables that the two preconditioners
perform almost the same when � is large and their performances are much better than
that of no preconditioning�

��



Table �� Number of iterations for test function a��t�

N ���� ���� ��	�� ����	�
O S I O S I O S I O S I

��	� � �� �� � � �� � � �� � � 	�
	��� � �� �� � � �� � � �� � � ��
���� � �� �� � � �� � � �� � � ��
���	 � �� �	 � � �� � � �� � � ��

Table �� The number of iterations for test function a��t�

N ���� ���� ��	�� ����	�
O S I O S I O S I O S I

��	� � �� �� � � �� � � �� � � ��
	��� � �� �	 � � �� � � �� � � �	
���� � �� �� � � �� � � ��� � � ��
���	 � �� �� � � �� � � �	� � � �		

Next we test our algorithms for general integral equations� We tried the following two
kernel functions�

�� a��s� t � �� �
�	
s�t�� � e�

p
t�	s��

	� a��s� t �
�

� � �s� t��� � �� � t � s��
�

Again ��� was set to ���� in our experiments� We remark that with a�t � �
��� t�� the
function a��s� t satisi
es the assumptions in Theorem 	 while a��s� t does not� In the
tests� we used the optimal preconditioner for the operator A� as the preconditioner in both
cases� The convergence results are listed in Table �� We see that the numbers of iterations
of PCG method are smaller than that of the CG method considerably� We also emphasize
that if we look at the numbers of iterations for 
xed mesh�size� i�e� �
N is 
xed� we see
that the numbers are increasing rapidly with increasing � for the non�preconditioned
systems� This indiciates that the 
nite�section equation �	 is less well�conditioned as
� ��� However� the numbers stay basically unchanged for the preconditioned one�

Table 	� The numbers of iterations for a��s� t and a��s� t�

��



a��s� t a��s� t
���� ���	 ���� ���	� ���� ���	 ���� ���	�

N O I O I O I O I O I O I O I O I
�� � �� � �� � � � � � �� � �� � � � �
�	� �� �	 � �� � �� � � � �� � �� � �� � �
	�� �� �	 � �� � �� � �� �� �� �� �� � �� � ��
��	 �� �� � �� � �� � �� �� �� � �� �� �� � ��

��



References

��� O� Axelsson and V� Barker� Finite Element Solution of Boundary Value Problems�
Academic Press� Orlando� �����

�	� T� Chan� An Optimal Circulant Preconditioner for Toeplitz Systems� SIAM J� Sci�
Statist� Comput�� � ������ ��������

��� I� Gohberg and I� Fel�dman� Convolution Equations and Projection Methods for Their
Solutions� Transl� Math� Monographs� ��� Amer� Math� Soc�� Providence� RI� �����

��� I� Gohberg and S� Goldberg� Basic Operator Theory� Birkhauser� Boston� �����

��� I� Gohberg� M� Hanke and I� Koltracht� Fast Preconditioned Conjugate Gradient Al�
gorithms for Wiener�Hopf Integral Equations� to appear�

��� E� Tyrtyshnikov� Optimal and Super�optimal Circulant Preconditioners� SIAM Matrix
Anal� Appl�� �� ����	� ��������

��� P� Zabreyko� A� Koshelev� M� Krasnosel�skii� S� Mikhlin� L� Rakovshchik and V�
Stet�senko� Integral Equations � a Reference Text� Noordho� International Publishing�
Leyden� �����

��


