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Abstract. We propose a variational approach to obtain super-resolution images from multiple
low-resolution frames extracted from video clips. First the displacement between the low-resolution
frames and the reference frame are computed by an optical flow algorithm. Then a low-rank model
is used to construct the reference frame in high-resolution by incorporating the information of the
low-resolution frames. The model has two terms: a 2-norm data fidelity term and a nuclear-norm
regularization term. Alternating direction method of multipliers is used to solve the model. Com-
parison of our methods with other models on synthetic and real video clips show that our resulting
images are more accurate with less artifacts. It also provides much finer and discernable details.
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1. Introduction. Super-resolution (SR) image reconstruction from multiple low-
resolution (LR) frames have many applications, such as in remote sensing, surveillance,
and medical imaging. After the pioneering work of Tsai and Huang [27], SR image
reconstruction has become more and more popular in image processing community,
see for examples [3, 23, 24, 11, 8, 18, 10, 25]. SR image reconstruction problems can
be classified into two categories: single-frame super-resolution problems (SFSR) and
multi-frame super-resolution problems (MFSR). In this paper, we mainly focus on the
multi-frame case, especially the MFSR problems from low-resolution video sequences.
Below, we first review some existing work related to MFSR problems.

Bose and Boo [3] considered the case where the multiple LR image frames were
shifted with affine transformations. They modeled the original high-resolution (HR)
image as a stationary Markov-Gaussian random field. Then they made use of the
maximum a posteriori scheme to solve their model. However the affine transformation
assumption may not be satisfied in practice, for example when there are complex
motions or illumination changes. Another approach for SR image reconstruction is
the one known as patch-based or learning-based. Bishop et al. [2] used a set of
learned image patches which capture the information between the middle and high
spatial frequency bands. They assumed a priori distribution over such patches and
made use of the previous enhanced frame to provide part of the training set. The
disadvantage of this patch-based method is that it is usually time consuming and
sensitive to the off-line training set. Liu and Sun [17] applied Bayessian approach to
estimate simultaneously the underlying motion, the blurring kernel, the noise level and
the HR image. Within each iteration, they estimated the motion, the blurring kernel
and the HR image alternatively by maximizing a posteriori respectively. Based on this
work, Ma et al. [19] tackled motion blur in their paper. An expectation maximization
(EM) framework is applied to the Bayessian approach to guide the estimation of
motion blur. These methods used optical flow to model the motion between different
frames. However they are sensitive to the accuracy of flow estimation. The results
may fail when the noise is heavy.
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In [6], Chan et al. applied wavelet analysis to HR image reconstruction. They
decomposed the image from previous iteration into wavelet frequency domain and
applied wavelet thresholding to denoise the resulting images. Based on this model,
Chan et al. [7] later developed an iterative MFSR approach by using tight-frame
wavelet filters. However because of the number of framelets involved in analyzing the
LR images, the algorithm can be extremely time consuming.

Optimization models are one of the most important image processing models.
Following the classical ROF model [22], Farsiu et al. [12] proposed a total variation-l1
model where they used the l1 norm for the super-resolution data fidelity term. How-
ever it is known that TV regularization enforces a piecewise solution. Therefore their
method will produce some artifacts. Li, Dai and Shen [15] used l1 norm of the geo-
metric tight-framelet coefficients as the regularizer and adaptively mimicking l1 and l2
norms as the data fidelity term. They also assumed affine motions between different
frames. The results are therefore not good when complex motions or illumination
changes are involved.

Chen and Qi [9] recently proposed a single-frame HR image reconstruction method
via low rank regularization. Jin et al. [14] designed a patch based low rank matrix
completion algorithm from the sparse representation of LR images. The main idea of
these two papers is based on the assumption that each LR image is downsampled from
a blurred and shifted HR image. However these work assumed that the original HR
image, when considered as a matrix, has a low rank property, which is not convincing
in general.

In this paper, we show that the low rank property can in fact be constructed
under MFSR framework. The idea is to consider each LR image as a downsampled
instance of a different blurred and shifted HR image. Then when all these different
HR images are properly aligned, they should give a low rank matrix; and therefore
we can use a low rank prior to obtain a better solution. Many existing work assumes
the shift between two consecutive LR frames are small, see, e.g., [1, 12, 28, 20, 30]. In
this paper, we allow illumination changes and more complex motions other than affine
transformation. They are handled by an optical flow model proposed in [13]. Once
the motions are determined, we reconstruct the high-resolution image by minimizing
a functional which consists of two terms: the 2-norm data fidelity term to suppress
Gaussian noise and a nuclear-norm regularizer to enforce the low-rank prior. Tests on
seven synthetic and real video clips show that our resulting images is more accurate
with less artifacts. It can also provide much finer and discernable details.

The rest of the paper is organized as follows. Section 2 gives a brief review
of a classical model on modeling LR images from HR images. Our model will be
based on this model. Section 3 provides the details of our low-rank model, including
image registration by optical flow and the solution of our optimization problem by
alternating direction method. Section 4 gives experimental results on the test videos.
Conclusions are given in Section 5.

To simplify our discussion, we now give the notation that we will be using for the
rest of the paper. For any integer m ∈ Z, Im is the m×m identity matrix. For any
integer l ∈ Z and positive integer n ∈ Z+, there exists a unique 0 ≤ l̃ < n such that
l̃ ≡ l mod n. Let Nn(l) denote the n× n matrix

(1.1) Nn(l) =

[
0 In−l̃

Il̃ 0

]
.

For a vector f ∈ Rn, Nn(l)f is the vector with entries of f cyclic-shifted by l.
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Define the downsampling matrix Di and the upsampling matrix DT
i as

(1.2) Di(n) = In ⊗ eTi and DT
i (n) = In ⊗ ei, i = 0, 1,

where e0 = [1, 0]T , e1 = [0, 1]T and ⊗ is the Kronecker product. For 0 ≤ ϵ ≤ 1, define
Tn(ϵ) to be the n× n Toeplitz matrix

(1.3) Tn(ϵ) =


1− ϵ ϵ · · · 0

0 1− ϵ
. . .

...
...

. . . . . . ϵ
ϵ · · · 0 1− ϵ

 .

This Toeplitz matrix performs the effect of linear interpolation shifted by ϵ.

2. Low resolution model with shifts. Consider a LR sensor array recording a
video of an object. Then it gives multiple LR images of the object. Unless the object
or the sensor array is completely motionless during the recording, the LR images will
contain multiple information of the object at different shifted locations (either because
of the motion of the object or of the sensor array itself). Our problem is to improve
the resolution of one of the LR images (called the reference image) by incorporating
information from the other LR images.

Let the sensor array consist of m× n sensing elements, where the width and the
height of each sensing element is Lx and Ly respectively. Then, the sensor array will
produce an m × n discrete image with mn pixels where each of these LR pixels is
of size Lx × Ly. Let r be the upsampling factor, i.e. we would like to construct an
image of resolution rm × rn of the same scene. Then the size of the HR pixels will
be Lx/r × Ly/r. Fig 2.1a shows an example. The big rectangles with solid edges are
the LR pixels and the small rectangles with dashed edges are the HR pixels.

(a) Displacements between LR images (b) The averaging process

Fig. 2.1: LR Images with displacements

Let {gi ∈ Rm×n, 1 ≤ i ≤ p} be the sequence of LR images produced by the sensor
array at different time points, where p is the number of frames. For simplicity we let
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g0 be the reference LR image which can be chosen to be any one of the LR images gi.
The displacement of gi from the reference image g0 is denoted by (ϵxi Lx, ϵ

y
iLy), see

the solid rectangle in Fig. 2.1a labeled as gi. For ease of notation, we will represent
the 2D images gi, 0 ≤ i ≤ p, by vectors gi ∈ Rmn obtained by stacking the columns
of gi. We use f ∈ Rr2mn to denote the HR reconstruction of g0 that we are seeking.

We model the relationship between f and g0 by averaging, see [3, 8]. Fig. 2.1b
illustrates that the intensity value of the LR pixel is the weighted average of the
intensity values of the HR pixels overlapping with it. The weight is precisely the area
of overlapping. Thus the process from f to each of the LR images gi can be modeled
by [8]:

(2.1) gi = DKAif + ni, i = 1, 2, · · · , p,

where D = D0(n) ⊗ D0(m) ∈ Rmn×r2mn is the downsampling matrix defined by
(1.2); K ∈ Rr2mn×r2mn is the average operator mentioned above; Ai ∈ Rr2mn×r2mn

is the warping matrix which measures the displacement between gi and g0; and ni

is the additive unknown noise. In this paper, we assume for simplicity the noise are
Gaussian. Other noise models can be handled by choosing suitable data fidelity terms.

The warping matrix Ai, 1 ≤ i ≤ p, is to align the LR pixels in gi at exactly the
middle of the corresponding HR pixels in f , exactly like the g0 is w.r.t f0 in Fig. 2.1b.
Once this alignment is done, the average operator K, which is just a blurring operator,
can be written out easily. In fact, the 2D kernel (i.e. the point spread function) of K
is given by vvT , where v = [1/2, 1, . . . , 1, 1/2]T with (r − 1) ones in the middle, see
[3]. The Ai are more difficult to obtain. In the most ideal case where the motions are
only translation of less than one HR pixel length and width, Ai can be modeled by
Ai = Tn(ϵ

x
i )⊗Tm(ϵyi ), where Tn(ϵ

x
i ), Tm(ϵyi ) are Toeplitz matrices given by (1.3) with

(ϵxi Lx, ϵ
y
iLy) being the horizontal and vertical displacements of gi, see Fig. 2.1a and

[8]. In reality, the changes between different LR frames are much more complicated.
It can involve illumination changes and other complex non-planar motions. We will
discuss the formation of Ai in more details in Subsections 3.1 and 3.3.

3. Nuclear model. Given (2.1), a way to obtain f is to minimize the noise ni by
least-squares. However because D is singular, the problem is ill-posed. Regularization
is necessary to make use of some priori information to choose the correct solution.
A typical regularizer for solving this problem is Total Variation (TV) [22]. The TV
model is well known for edge preserving and can give a reasonable solution for MFSR
problems. However it assumes that the HR image is piecewise constant. This will
produce some artifacts.

Instead we will develop a low-rank model for the problem. The main motivation
is as follows. We consider each LR image gi as a downsampled version of an HR
image fi. If all these HR images fi are properly aligned with the HR image f , then
they all should be the same exactly (as they are representing the same scene f).
In particular, if Ai is the alignment matrix that aligns fi with f , then the matrix
[A1f1, A2f2, . . . , Apfp] should be a low rank matrix (ideally a rank 1 matrix). Thus
the rank of the matrix can be used as a prior.

In Subsection 3.1, we introduce our low-rank model in the case where the LR
images are perturbed only by translations. Then in Subsection 3.2, we explain how
to solve the model by the alternating direction method. In Subsection 3.3, we discuss
how to modify the model when there are more complex motions or changes between
the LR frames.
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3.1. Decomposition of the warping matrices. In order to introduce our
model without too cumbersome notations, we assume first here that the displacements
of the LR images from the reference frame are translations only. Let sxi Lx and syiLy

be the horizontal and vertical displacements of gi from g0. (How to obtain sxi and
syi will be discussed in Subsection 3.3.) Since the width and height of one HR pixel
are Lx/r and Ly/r respectively, the displacements are equivalent to rsxi HR pixel
length and rsyi HR pixel width. We decompose rsxi and rsyi into the integral parts
and fractional parts:

(3.1) rsxi = lxi + ϵxi , rsyi = lyi + ϵyi ,

where lxi , l
y
i are integers and 0 ≤ ϵxi , ϵ

x
i < 1. Then the warping matrix can be decom-

posed as:

(3.2) Ai = CiBi,

where Bi = Nn(l
x
i ) ⊗Nm(lyi ) is given by (1.1) and Ci = Tn(ϵ

x
i ) ⊗ Tm(ϵyi ) is given by

(1.3) [6]. Thus by letting fi = Bif , 1 ≤ i ≤ p, (2.1) can be rewritten as

(3.3) gi = DKCifi + ni, i = 1, 2, · · · , p.

As mentioned in the motivation above, all these fi, which are equal to Bif , are
integral shift from f . Hence if they are aligned correctly by an alignment matrix
Wi, then the overlapping entries should be the same. Fig. 3.1 is the 1D illustration
of this idea. The W x

i is the matrix that aligns fi with f (in the x-direction) and
the dark squares are the overlapping pixels and they should all be the same as the
corresponding pixels in f .

Fig. 3.1: 1-D signals with integer displacements

Mathematically, Wi is constructed as follows. Given the decomposition of rsxi
and rsyi in (3.1), let lx+ = maxi{0, lxi }, ly+ = maxi{0, lyi }, and lx− = maxi{0,−lxi },
ly− = maxi{0,−lyi }. Then

(3.4) Wi =

 0lx+−lxi

Irn−lx+−lx−

0lx−+lxi

⊗
 0ly+−lyi

Irm−ly+−ly−

0ly−+lyi

 .

Note that Wi nullifies the entries outside the overlapping part (i.e. outside the dark
squares in Fig. 3.1).
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Ideally, the matrix [W1f1,W2f2, · · · ,Wpfp] should be a rank-one matrix as every
column should be a replicate of f in the overlapping region. In practice, it can be of
low rank due to various reasons such as errors in measurements and noise in the given
video. Since nuclear norm is the convexification of low rank prior, see [5], this leads
to our convex model

(3.5) min
f1,··· ,fp

λ∥W1f1,W2f2, · · · ,Wpfp∥∗ +
1

2

p∑
i=1

∥gi −DKCifi∥22,

where ∥ · ∥∗ is the matrix nuclear norm and λ is the regularization parameter. We
call our model (3.5) the nuclear model. We remark that here we use the 2-norm data
fidelity term because we assume the noise are Gaussian. It can be changed to another
norm according to the noise type.

3.2. Algorithm for solving the nuclear model. We use alternating direction
method of multipliers (ADMM) [4] to solve the nuclear model. We replace {Wifi}pi=1

in the model by variables {hi}pi=1. Let H = [h1,h2, · · · ,hp], F = [f1, f2, · · · , fp], and
WF = [W1f1,W2f2, · · · ,Wpfp]. The Augmented Lagrangian of model (3.5) is

Lλρ(H,F,Λ) = λ∥H∥∗ +
1

2

p∑
i=1

∥gi −DKCifi∥22 +
p∑

i=1

⟨Λi,hi −Wifi⟩+
1

2ρ
∥H −WF∥2F ,

where Λ = [Λ1,Λ2, · · · ,Λp] is the Lagrangian multiplier, ∥ · ∥F is the Frobenius norm,
and ρ is an algorithm parameter.

To solve the nuclear model, it is equivalent to minimize Lλρ, and we use ADMM [4]
to minimize it. The idea of the scheme is to minimize H and F alternatively by fixing
the other, i.e., given the initial value F 0,Λ0, let Hk+1 = argminH Lλρ(H,F k,Λk),
F k+1 = argminF Lλρ(H

k+1, F,Λk), where k is the iteration number. These two
problems are convex problems. The singular value threshold (SVT) gives the solution
of the H-subproblem. The F -subproblem is reduced to solving p linear systems. For
a matrix X, the SVT of X is defined to be SV Tρ(X) = UΣ+

ρ V
T where X = UΣV T is

the singular value decomposition (SVD) of X and Σ+
ρ = max{Σ−ρ, 0}. We summarize

the algorithm in Algorithm 1 below. It is well-known that the algorithm is convergent
if ρ > 0 [4].

Algorithm 1 f ← ({gi,Wi, Ci},K, λ, ρ,Λ0, F 0)

for k = 1, 2, 3, · · · do
Hk+1 = SV Tλρ(WF k − Λk);
for i = 1 to p do

fk+1
i =

(
(DKCi)

TDKCi +
1
ρW

T
i Wi

)−1 (
(DKCi)

Tgi +WT
i Λk

i + 1
ρW

T
i hk+1

i

)
;

end for
Λk+1 = Λk + 1

ρ (H
k+1 −WF k+1);

end for
Output: f as the the average of the columns of F k.

In Algorithm 1, the SV T operator involves the SVD of a matrix WF k − Λk.
The number of its columns is p, the number of LR frames, which is relatively small.
Therefore the SVT step is not time consuming. For the second subproblem, we need
to solve p linear systems. The coefficient matrices contain some structures which help
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accelerating the calculation. The matrices DTD and WT
i Wi are diagonal matrices

while K and Ci can be diagonalized by either FFT or DCT depending on the bound-
ary conditions we choose, see [21]. In our tests, we always use periodic boundary
conditions.

3.3. Image registration and parameter selection. In Algorithm 1, we as-
sume that there are only translations between different LR frames. However there can
be other complex motions and/or illumination changes in practice. We handle these
by using the Local All-Pass (LAP) optical flow algorithm proposed in [13]. Given a
set of all-pass filters {ϕj}Nj=0 and ϕ := ϕ0 +

∑N−1
j=1 cjϕj , the optical flow Mi of gi is

obtained by solving the following problem:

min
{c1,··· ,cN−1}

∑
l,k∈R

|ϕ(k, l)gi(x− k, y − l)− ϕ(−k,−l)g0(x− k, y − l)|2,

where R is a window centered at (x, y). In our experiments, we followed the settings
in the paper [13], and let N = 6, R = 16 and

ϕ0(k, l) = e−
k2+l2

2σ2 , ϕ1(k, l) = kϕ0(k, l), ϕ2(k, l) = lϕ0(k, l),

ϕ3(k, l) = (k2 + l2 − 2σ2)ϕ0(k, l), ϕ4(k, l) = klϕ0(k, l), ϕ5(k, l) = (k2 − l2)ϕ0(k, l),

where σ = R+2
4 and ϕ is supported in [−R,R] × [−R,R]. The coefficients cn can be

obtained by solving a linear system. The optical flowMi at (x, y) is then given by

Mi(x, y) =

(
2
∑

k,l kϕ(k, l)∑
k,l ϕ(k, l)

,
2
∑

k,l lϕ(k, l)∑
k,l ϕ(k, l)

)
,

which can be used to transform gi back to the grid of g0. In order to increase the
speed by avoiding interpolation, here we consider only the integer part of the flow.
Hence we get the restored LR images

(3.6) g̃i(x, y) = gi([Mi](x, y)), i = 1, 2, · · · , p, ∀(x, y) ∈ Ω

where [Mi] is the integer part of the flowMi and Ω is the image domain.
The optical flow handles complex motions and illumination changes and will re-

store the positions of pixels in gi w.r.t g0. To enhance the accuracy of the image
registration, we further estimate if there are any translation that are unaccounted for
after the optical flow. In particular, we assume that g̃i may be displaced from g0 by
a simple translation

(3.7) T (x, y) =
[

x
y

]
−
[

sxi
syi

]
.

To estimate the displacement vector [sxi , s
y
i ]

T , we use the Marquardt-Levenberg algo-
rithm proposed in [26]. It aims to minimize the squared error

(3.8) E(g̃i, g0) =
∑

(x,y)∈Ω

[g̃i(T (x, y))− g0(x, y)]
2.

The detail implementation of this algorithm can be found in [8, Algorithm 3]. After
obtaining [sxi , s

y
i ], then by (3.2) and (3.4), we can construct the matrices Ci and Wi

for our nuclear model (3.5).
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Before giving out the whole algorithm, there remains the problem about param-
eters selection. There are two parameters to be determined: λ the regularization
parameter and ρ the algorithm (ADMM) parameter. We need to tune these two
parameters in practice such that the two subproblems can be solved effectively and
accurately. Theoretically, ρ will not affect the minimizer of the model but only the
convergence of the algorithm [4]. However in order to get an effective algorithm,
it should not be set very small. For λ, we use the following empirical formula to
approximate it in each iteration [15],

(3.9) λ ≈
1/2

∑p
i=1 ∥g̃i −DKCif

k
i ∥2

∥W1fk1 ,W2fk2 , · · · ,Wpfkp ∥∗
,

where fki is the estimation of fi in the k-th iteration. The formula may not give the
best λ but can largely narrow its scope. We then use trial and error to get the best
parameter. We give out the full algorithm for our model below.

Algorithm 2 f ← ({gi}, i0,K,Λ0, F 0, λ, ρ)

for i = 0, 1, 2, · · · p do
Compute g̃i(x, y) from (3.6);
Compute sxi and syi in (3.7) by using the Marquardt-Levenberg algorithm in [8,
Algorithm 3]
Compute the warping matrices Ci and Wi, according to (3.2) and (3.4);

end for
Apply Algorithm 1 to compute the HR images f ← ({g̃i,Wi, Ci},K, λ, ρ,Λ0, F 0);
Output f .

4. Numerical experiments. In this section, we illustrate the effectiveness of
our algorithm by comparing it with 3 different variational methods on 7 synthetic
videos and real videos. Chan et al. [6] applied wavelet analysis to MFSR problem
and then developed an iterative approach by using tight-frame wavelet filters [8].
We refer their model as Tight Frame model (TF). Li, Dai and Shen [15] proposed
the Sparse Directional Regularization model (SDR) where they used l1 norm of the
geometric tight-framelet coefficients as the regularizer and the adaptively-mimicking
l1 and l2 norms as the data fidelity term. Ma et al. [19] introduced an expectation-
maximization (EM) framework to the Bayessian approach of Liu and Sun [17]. They
also tackled motion blur in their paper. We refer it as the MAP model. We will
compare our Algorithm 2 (the nuclear model) with these three methods. The sizes of
the videos we used are listed in Table 4.1. The CPU timing of all methods are also
listed there. Except for one case (Eia with r = 2) our model is the fastest, see the
boldfaced numbers there.

There is one parameter for the TF model—a thresholding parameter η which
controls the registration quality of the restored LR images g̃i (see (3.6)). If the PSNR
value between g̃i and the reference image g0 are smaller than η, it will discard g̃i in
the reconstruction. We apply trial and error method to choose the best η. For the
SDR method, we use the default setting in the paper [15]. Hence the parameters are
selected automatically by the algorithm. The TF model, the SDR model and the
nuclear model are applied to g̃i, i.e. we use the same optical flow algorithm [13] for
these three models. For the MAP model, it utilized an optical flow algorithm from
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Table 4.1: Size of each data set and CPU time for all models.

Size of data Factor CPU time (in seconds)
Height Width Frame r TF MAP SDR Nuclear

Boat 240 240 17 2 3470 252 119 78
Boat 120 120 17 4 18518 212 124 67
Bridge 240 240 17 2 3954 261 127 87
Bridge 120 120 17 4 22641 209 125 63
Text 57 49 21 2 1583 23 7.6 6.1
Text 57 49 21 4 10601 42 19 10
Disk 57 49 19 2 1243 21 7.4 5.4
Disk 57 49 19 4 13469 40 19 10
Alpaca 96 128 21 2 2146 59 21 16
Alpaca 96 128 21 4 25233 188 105 57
Eia 90 90 16 2 1854 33 8.2 8.8
Eia 90 90 16 4 36034 61 56 26
Books 288 352 21 2 9265 614 830 606

Liu [16]. Following the paper, the optical flow parameter α is very small. We also
apply trail and error method to tune it.

All the videos used in the tests as well as the results are available at:
http://www.math.cuhk.edu.hk/~rchan/super-resolution/experiments.html

4.1. Synthetic videos. We start from a given HR image f∗, see e.g. the boat
image in Fig. 4.1f. We translate and rotate f∗ with known parameters and also change
their illuminations by different scales. Then we downsample these frames with the
given factor r = 2 or r = 4 to get our LR frames {gi}pi=1. We take p = 17, and
Gaussian noise of ratio 5% is added to each LR frame.

After we reconstruct the HR image f by a method, we compare it with the true
solution f∗ using two popular error measurements. The first one is peak signal-to-
noise ratio (PSNR) and the second one is structural similarity (SSIM) [29]. For two
signals x = (x1, x2, · · · , xn)

T and y = (y1, y2, · · · , yn)T , they are defined by

PSNR(x,y) = 10 log10

(
d2

∥x− y∥2/n

)
, SSIM(x,y) =

(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
,

where d is the dynamic range of x,y and µx, µy are the mean values of x and y; σx, σy

are the variances of x and y; σxy is the covariance of x and y; ci, i = 1, 2 are constants
related to d, which are typically set to be c1 = (0.01d)2, c2 = (0.03d)2. Because of
the motions, we do not have enough information to reconstruct f near the boundary;
hence this part of f will not be accurate. Thus we restrict the comparison within the
overlapping area of all LR images.

Table 4.2 gives the PSNR values and SSIM values of the reconstructed HR images
f from the boat and the bridge videos. The results show that our model gives much
more accurate f for both upsampling factor r = 2 and 4, see the boldfaced values
there. The improvement is significant when comparing to the other three models, e.g.
at least 1.6dB in PSNR for the boat video when r = 2. From Table 4.1, we also see
that our method is the fastest. To compare the images visually, we give the results
and their zoom-ins for the boat video in Figs. 4.1–4.3. The results for the bridge
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Table 4.2: PSNR and SSIM values for the “Boat” and “Bridge” videos.

Upsampling factor r = 2 Upsampling factor r = 4
TF MAP SDR Nuclear TF MAP SDR Nuclear

Boat PSNR 18.7 25.3 28.2 29.8 20.7 23.6 27.0 27.5
SSIM 0.69 0.70 0.80 0.83 0.69 0.67 0.72 0.77

Bridge PSNR 20.7 23.6 27.0 27.5 20.1 22.4 24.1 25.0
SSIM 0.69 0.67 0.72 0.77 0.53 0.57 0.65 0.72

video are similar and therefore omitted. Fig. 4.1 shows the boat reconstructions for
r = 2. We notice that the TF model loses many fine details, e.g., the ropes of the
mast. The MAP model produces some distortion on the edges and is sensitive to the
noise; and the SDR model contains some artifacts along the edges. One can see the
difference more clearly from the zoom-in images in Fig. 4.2. We also give the zoom-in
results for r = 4 in Fig. 4.3. We can see that the nuclear model produces more details
and less artifacts than the other three models.

(a) Reference LR image (b) TF (c) MAP

(d) SDR (e) Nuclear (f) True HR image

Fig. 4.1: Comparison of different algorithms on “Boat” image with upsampling factor
r = 2. (a) The reference LR image. (b) Result of the TF model [8]. (c) Result of the
MAP model [19]. (d) Result of the SDR model [15]. (e) Result of our nuclear model
(λ = 1, ρ = 400). (f) True HR image.
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(a) Original HR image (b) TF (c) MAP

(d) SDR (e) Nuclear (f) True HR image

Fig. 4.2: Zoomed-in comparison of different algorithms on “Boat” image for r = 2.
(a) The zoom-in part in the HR image. (b) Result of the TF model [8]. (c) Result
of the MAP model [19]. (d) Result of the SDR model [15]. (e) Result of our nuclear
model (λ = 1, ρ = 400). (f) Zoomed-in original HR image.

4.2. Real videos. In the following, experiments on real videos are carried out.
Four videos “Text”, “Disk”, “Alpaca” and “Eia” are downloaded from the website:

https://users.soe.ucsc.edu/~milanfar/software/sr-datasets.html.
The basic information of these videos are listed in Table 4.1. We see that they are
very low-resolution videos. Fig. 4.4 shows the reference LR images for these videos.
It is difficult to discern most of the letters from the reference images.

The first test video is the “Text Video”. The results are shown in Fig. 4.5. We see
that the TF model produces blurry reconstructions. The images by the MAP model
have obvious distortions. We also see that for the SDR model, some of the letters are
coalesced, e.g. the word “film”. The results of the nuclear model is better. One can
easily tell each word and there are no obvious artifacts for the letters.

The second video is the “Disk Video”, which contains 26 gray-scale images with
the last 7 ones being zoom-in images. So we only use the first 19 frames in our
experiment. The results are shown in Fig. 4.6. The TF model again produces blurry
reconstructions. The MAP results are better but still blurry. The SDR results have
some artifacts especially in the word “DIFFERENCE”. Our results are the best ones
with each letter being well reconstructed, especially when r = 2.

The third video is the “Alpaca Video”, and the results are shown in Fig. 4.7.
11



(a) Reference LR image (b) TF (c) MAP

(d) SDR (e) Nuclear (f) True HR image

Fig. 4.3: Zoom-in comparison of different algorithms on “Boat” image for r = 4. (a)
The reference LR image. (b) Result of the TF model [8]. (c) Result of the MAP
model [19]. (d) Result of the SDR model [15]. (e) Result of our nuclear model
(λ = 1, ρ = 400). (f) Zoomed-in original HR image.

When r = 2, the word “Service” are not clear from the TF model, the MAP model
and the SDR model. When r = 4, the resulting images from all models are improved
and the phrase “University Food Service” is clearer. However we can see that our
nuclear model still gives the best reconstruction.

The fourth video is the “Eia Video” which show a testing image. There are some
concentric circles labeled with different numbers in decreasing sizes. The results for
r = 4 are shown in Fig. 4.8. Our method gives an image where one can discern
the number up to "500" with almost no artifacts while all the other methods can
discern up to "200" at best with some noise or edge artifacts. This example clearly
demonstrates the effectiveness of our model in MFSR.

The last video is a color video which is used in the tests in [7, 8]. It contains 257
color frames. We take the 100-th frame to be the reference frame, see the leftmost
figure in Fig. 4.9. Frame 90 to frame 110 in the video are used as LR images to enhance
the reference image. We transform the RGB images into the Ycbcr color space, and
then apply the algorithms to each color channel. Then we transform the resulting HR
images back to the RGB color space. Figs. 4.9 and 4.10 show the zoom-in patches
of the resulting images by different models. In Fig. 4.9, the patch shows a number
“98” on the spine of a book. We see that the TF model gives a reasonable result when
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(a) Text (b) Disk (c) Alpaca (d) Eia

Fig. 4.4: The reference LR images of (a) “Text”, (b) “Disk”, (c) “Alpaca”, and (d)
“Eia”.

(a) TF (b) MAP (c) SDR (d) Nuclear

Fig. 4.5: Comparison of different algorithms on “Text Video”. Top row with upsam-
pling factor r = 2 and second row with r = 4. (a) Result of the TF model [8]. (b)
Result of the MAP model [19]. (d) Result of the SDR model [15]. (d) Result of our
nuclear model (λ = 1.5, ρ = 50 for r = 2 and λ = 1.375, ρ = 60 for r = 4).

compared with MAP and SDR. However, our nuclear model gives the clearest “98”
with very clean background. Fig. 4.10 shows the spines of two other books: “Fourier
Transforms” and “Digital Image Processing”. Again, we see that our nuclear model
gives the best reconstruction of the words with much less noisy artifacts.

5. Conclusion. In this paper, we proposed an effective algorithm to reconstruct
a high-resolution image using multiple low-resolution images from video clips. The
LR images are first registered to the reference frame by using an optical flow. Then a
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(a) TF (b) MAP (c) SDR (d) Nuclear

Fig. 4.6: Comparison of different algorithms on “Disk Video”. Top row with upsam-
pling factor r = 2 and second row with r = 4. (a) Result of the TF model [8]. (b)
Result of the MAP model [19]. (c) Result of the SDR model [15]. (d) Result of our
nuclear model (λ = 1.125, ρ = 50 for both r = 2 and 4).

low-rank model is used to reconstruct the high-resolution image by making use of the
overlapping information between different LR images. Our model can handle complex
motions and illumination changes. Tests on synthetic and real videos show that our
model can reconstruct an HR image with much more details and less artifacts.
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(a) Zoomed-in LR (b) TF

(c) MAP (d) SDR (e) Nuclear
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Result of the SDR model [15]. (e) Result of our nuclear model (λ = 1.375, ρ = 400).

(a) Zoomed-in LR (b) TF (c) MAP

(d) SDR (e) Nuclear

Fig. 4.10: Another zoom-in comparison on “Books Video”with r = 2. (a) Zoomed-in
LR image. (b) Result of the TF model [8]. (c) Result of the MAP model [19]. (d)
Result of the SDR model [15]. (e) Result of our nuclear model (λ = 1.375, ρ = 400).

[25] H. Takeda, P. Milanfar, M. Protter, and M. Elad, Super-resolution without explicit
subpixel motion estimation, IEEE Transactions on Image Processing, 18 (2009), pp. 1958–
1975.

[26] P. Thevenaz, U. E. Ruttimann, and M. Unser, A pyramid approach to subpixel registration
based on intensity, Image Processing, IEEE Transactions on, 7 (1998), pp. 27–41.

[27] R. Tsai and T. Huang, Multiframe image restoration and registration, Advances in computer
vision and Image Processing, 1 (1984), pp. 317–339.

[28] C. Wang, P. Xue, and W. Lin, Improved super-resolution reconstruction from video, Circuits
and Systems for Video Technology, IEEE Transactions on, 16 (2006), pp. 1411–1422.

[29] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, Image quality assessment:
from error visibility to structural similarity, IEEE Transactions on Image Processing, 13
(2004), pp. 600–612.

[30] M. V. W. Zibetti and J. Mayer, A robust and computationally efficient simultaneous super-
resolution scheme for image sequences, Circuits and Systems for Video Technology, IEEE
Transactions on, 17 (2007), pp. 1288–1300.

17


