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ABSTRACT

The Galerkin matrices A,, from applications of the boundary element
method to integral equations of the first kind usually need to be precondi-
tioned. In the Laplace equation context, we highlight a family of precondi-
tioners C, that simultaneously enjoy two important properties: (a) A, and
C,, are spectrally equivalent, and (b) the eigenvalues of C7 ! A,, have a proper
cluster at unity. In the Helmholtz equation context, we prove the spectral
equivalence for the so-called second Galerkin matrices and that the eigenval-
ues of C,; 1A, still have a proper cluster at unity. We then show that some
circulant integral approximate operator (CTAQO) preconditioners belong to
this family, including the well-known optimal CIAO. Consequently, if we use
the preconditioned conjugate gradients to solve the problems, the number
of iterations for a prescribed accuracy does not depend on n, and, what is
more, the convergence rate is superlinear.

Keywords: Boundary Element Method, Spectral Equivalence, Circulant
Integral Operator.

“Institute of Numerical Mathematics, Russian Academy of Sciences, Gubkina 8,
Moscow 117333, Russia. Research was carried out during the visit to the Institute of
Mathematical Sciences of the Chinese University of Hong Kong. Supported in part by the
RFBR Grants 97-01-00155, 99-01-00017 and Volkswagen-Stiftung.

tDepartment of Mathematics, Chinese University of Hong Kong, Shatin, Hong Kong.
Research supported in part by Hong Kong Research Grants Council Grant No. CUHK
4207/97P and CUHK DAG Grant No. 2060143.



1 Introduction

In this paper, we study preconditioners for the moment matrices 4, € C**"
in the Galerkin method applied to some integral equations of the first kind.
Since the spectral condition number of A, may (and does) grow with n,
we use as preconditioners some other matrices C,, € C"*" that are easier
to invert. The purpose here is to make the condition number of C, 1A,
bounded or, if that can not be acheived, at least to slow down its growth
with n and anyway to improve the behavior of the eigenvalues. The first
case can be achieved if A, and C), are spectrally equivalent:

Definition 1 Consider two sequences of Hermitian positive definite ma-
trices Ap and Cy, and assume that all the eigenvalues X of C, 1A, satisfy
c1 < A < ¢y with positive ¢; and co independent of n. Then A, and C,, are
said to be spectrally equivalent.

In this case, the number of iterations in the preconditioned conjugate
gradients (PCG) depends only on the desired reduction of the residual and
not upon n. This is the well-known linear convergence result of PCG, see
for instance [2]. However, we may expect even a faster convergence for
sufficiently large n if the eigenvalues behave properly:

Definition 2 Denote by v, (c) the number of those eigenvalues of A, that
lie at a distance farther than ¢ from z € C. The eigenvalues of A, are said
to have a proper cluster at z if y,(e) < c(e) for all n and for all ¢ > 0.
If two matrices A, and C,, are nonsingular and the eigenvalues of C;; 1A,
have a proper cluster at unity, then we say that A, and C, are properly
equivalent.

In the Hermitian case, “properly equivalent” is what accounts for the so-
called superlinear convergence of PCG.

Definition 3 An iterative method converges superlinearly for A, if, for any
0 < q <1 and for all sufficiently large n the residual at the ith iteration is
bounded above by cq’ (c may depend on q, n, the right-hand side, and the
initial vector).

In the Hermitian case, if C), is a properly equivalent preconditioner for
Ay, then PCG converge superlinearly, see for instance [2, 3]. In this sense,
C, may be called an optimal preconditioner for A,; yet, since the word
“optimal” is overused, we will call C,, a superlinear preconditioner (see [13]).
If at least one of the matrices A, or C, has the Frobenius norm growing
not faster than o(y/n), then, it follows from [15] that the eigenvalues of C,
and A, are equally distributed (in the spirit of G. Weyl’s and G. Szegd’s
approach [10] extended in [15]).



Why superlinear preconditioners make PCG converge superlinearly is
explained, for example, in [2] and in [3]. The latter paper considered the
case of A, being Toeplitz matrices with a positive symbol from the Wiener
class and C, being G. Strang’s or T. Chan’s circulants. It is proved therein
that the eigenvalues of C7'A,, have a proper cluster at unity and how the
superlinear convergence follows from that. The crucial notion of cluster has
then been extended and studied in [15, 16].

In the non-Hermitian case, we can apply PCG to solve the normal equa-
tions Ay A,x = A;b. Then, we are interested to have Ay A, and C;C),
spectrally equivalent. It is equal to the claim that the singular values o of
A,C, L all satisfy ¢; < o < ¢p with some positive ¢; and co. In addition,
if C:C, and A} A, are properly equivalent, then superlinear convergence
comes as a fringe benefit.

In this paper, as basic examples we consider two typical single layer
potential equations related to the Dirichlet boundary value problems for
the Laplace (Aw = 0) and Helmholtz ((A + x%)w = 0) equations in two
dimensions. The first one is (some call it Symm’s equation [12])
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here ds(y) is the arclength element. For simplicity, we assume for the time
being that 0 is an infinitely smooth closed curve cutting the plane into the
interior domain 2 and the exterior Q¢ (our results in later sections cover
boundaries with a finite smoothness). The kernels for the equations are
the fundamental solutions for the Laplace and Helmholtz equations in two
dimensions. In particular, Hél) in (2) is the Hankel function of order 0 of
the first kind. Recall that

o4
Hél)(z) ~ ?1 logz as z—0, (3)

and so the two kernels have the same type of singularity at x = y. Theory
and applications of these equations are well-known [7]; nonetheless we will
recollect the crucial facts when they are needed.

The Galerkin matrices A,, are Hermitian for the equation (1) while non-
Hermitian (yet symmetric) for (2). In our analysis, we rely heavily on the
results in the theory of elliptic boundary integral equations which are well
appreciated nowadays and mostly due to Hsiao and Wendland [11]; cf. [7].
We always assume that the integral operators in question have a trivial null-
space. For (1) that means the diameter of the contour is less than 1 and,



if it is not the case, it can be easily remedied by a contraction [7]. As far
as (2) is concerned, the assumption amounts to that some (resonant for )
values of k are prohibited.

For the equation (1), we find that if C,, are the Galerkin matrices for
any other smooth contour of diameter less than 1, then A, and C, are
spectrally equivalent. It implies that C), can correspond to any convenient
contour for which C), is easily invertible. The best choice might be a circle,
in which case (), are circulant matrices, see [3, 14, 16]. It was shown in
[4] that the optimal circulant integral approximate operator (CIAO) also
leads to preconditioners spectrally equivalent to A, (some previous papers
on CIAOs for the Wiener-Hopf equations are [5, 9]). Note that the circle-
based preconditioner, though not optimal, in the sense of [6] and [4], is
also a CIAQO. In light of our results, the performance of the optimal CTAO
preconditioner for (1) is the same as that of the circle-based CTAO (and of
any other contour-based preconditioner). We will illustrate this by numerical
results in §6.

In the case of (2), we prove the spectral equivalence for the so-called
second Galerkin matrices (defined in (6)) which are related to the normal
equations of (2).

Furthermore, for both equations, we prove that the Galerkin matrices A4,
and C), corresponding to any two smooth contours are properly equivalent.
It is therefore natural to use the circle-based CIAOs which yield easily in-
vertible matrices. It is a superlinear preconditioner for A,,, and equally good
compared with any other contour-based preconditioner (at least asymptot-
ically). Even we may choose C, to be the matrices coming from (1) to
precondition 4, from (2).

All in all, for equations (1) and (2), we have pretty simple precondition-
ers which are both spectrally equivalent and properly equivalent (provide a
proper cluster at unity). In general, these two properties do not imply each
other but in our case we have as much as both. The proof is of a certain
generic nature, so without significant changes we can cover other kinds of
equations.

The outline of the paper is as follows. In Sections 2 and 3, we consider
spectral equivalent preconditioners for matrices from (1) and (2) respec-
tively. In Section 4, we consider the clustering properties of these precon-
ditioners. In Section 5, we show that the CTAO preconditioners have the
properties we studied in Sections 2—-5. Numerical results are given in Section
6 to illustrate our theory.



2 Spectral equivalence: Hermitian case

Given two sequences of Hermitian positive definite matrices A, and C,,,
both of order n, we wish to know whether they are spectrally equivalent.
Here is an obvious observation that can help.

Lemma 2.1 Two sequences of Hermitian positive definite matrices A, and
C,, are spectrally equivalent if and only if there are constants 0 < ¢; < co
such that for any n, there exists a vector norm || - ||« on C* for which

cr [Ix[[Z < x"Anx < ez [|x]]3

and
cr ||x[|? < x*Chx < o [|x]|?

hold for any x € C".

This lemma may shed some light on why we are so anxious in matrix
analysis to study norms in a general setting. Still, where does this norm
|- ||« come from?

Assume that A: H — H' is a continuously invertible linear operator
on a pair of Hilbert spaces H and H' which are dual with respect to a
bounded Hermitian bilinear form (f,u), where f € H' and v € H. Consider
a sequence of finite sets {u;,}; ; of linearly independent (basis) functions
ujn, € H and the corresponding Galerkin matrices

An = [.A]n = [aij], Qi5 = (.Aujn,um), 1 < i,j <n. (4)

Assume additionally that

(Au,v) = (Av,u), Yu,veH
and, for 0 < ¢; < ¢y,
e lully < (Auyu) < e |fulll,  Vu € H.

In this case, we say that A is a Hermitian positive definite operator. Now,
the vector norm on C" can be defined as follows:

n
%[l = lullm, w=>zium, x=[z1,...,z4] .
i=1
It is easy to check that x*A,x = (Au,u). Hence, we are immediately led to
the following.

Lemma 2.2 Suppose that A and B are Hermitian positive definite operators
on the same pair of Hilbert spaces. Then the Galerkin matrices A, = [A],
and By, = [B], are spectrally equivalent.



Now, let A be the integral operator from (1) or (2). Since any curve is
dealt with through some parametrization, functions on 92 can be identified
with those on [0,27] (or with 2m-periodic functions on the real axis). For
example, we can use the parametrization by arclength and tailor the param-
eter by mapping it linearly onto [0, 27]. Thus without loss of generality, let
00 = {~(t), 0 <t <27m}. We demand = to be a diffeomorphism, which im-
plies that 7/(¢) never vanishes, and, sometimes, v may be required to have
some higher order derivatives. (However, some results hold for Lipschitz
boundaries [8].) With the parametrization, (1) and (2) can be casted in the
form

with different kernels a(x,y). Obviously,

u(t) =U(®) Y @), f(r) =F(y(r)).

It is exactly how we proceed in practice. Also, in view of Lemma 2.2, we are
now able (and keen) to consider different kernels and contours with exactly
the same spaces for u(t) and f(7).

Denote by H® the Sobolev space of order s € R. Recall that it can be
defined as the completion of infinitely smooth functions u(t) with respect to

the norm
1/2

oo
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expressed through the Fourier coefficients @; of w. This norm is naturally
related to the scalar product

(w,v)s = Y g 5 (1+]5)%,

j==o0

where

oo o0
u(t) = Z et w(t) = Z Bielit,

Jj=—00 J=—00

Thus, H* is a Hilbert space (cf. [12]).

Let a(x,y) be either the kernel function of the integral in (1) or (2). We
gather from the theory of pseudodifferential equations that for any v € C'*°
the corresponding operator A can be viewed as a continuous operator from
H* to HT! for any s € R (as a pseudodifferential operator of order —1)
[7]. For finitely smooth « (and even for Lipschitz boundaries [8]), it is still
a continuous operator from H /2 to HY/2. In line with the above, we take



H =H"'2 H' = HY?, and the Hermitian bilinear form is defined by the
Lebesgue integral

27
Um%j/ﬂwﬂﬁﬁ (5)
0

(it is easy to see that fu € Ly = H?).

In the case of (1), the fundamental result of Hsiao and Wendland [11]
can be put in the following form.

Theorem 2.1 (Hsiao and Wendlandt [11]) Let a(z,y) = —5= log |z — y|,
and assume that the boundary v is sufficiently smooth and of diameter less
than 1. Then A is a Hermitian positive definite operator from H~'/2 to
H'Y/? with respect to the Hermitian bilinear form defined by (5).

Combining the above theorem with the previous lemmas, we immediately
come up with the following result.

Theorem 2.2 Let 1 and 2 be two contours satisfying the hypotheses of
Theorem 2.1 with the corresponding logarithmic-kernel operators being Aq
and Ay. Then the Galerkin matrices [Ai], and [As], are spectrally equiva-
lent.

Remark. In agreement with the results reported in [8], the spectral equiv-
alence still holds for Lipschitz v. However, in the presence of corners, we
may need to use some graded meshes or nonuniform finite elements. Con-
sequently, some nice structures of the Galerkin matrices, even for circular
contours, might vanish.

3 Spectral equivalence: non-Hermitian case

We get on to the equation (2) (yet everything applies to the equation (1),
too). Since

e llull2y gy < AU < o llullZy . Ve H V2,

the matrices [(Awjn, Auin); /2] for different contours are spectrally equiva-
lent. But these matrices never appear in practice. Of some real-life interest
are matrices of the form

A*Aln = [aij),  aij = (Aujn, Augy) = (Ajn, Auin)o, 0<4,5 <n, (6)

which we call the second Galerkin matrices. They are related to the normal
equations of [A],x = b, see (8) and (9) below.



If v € C*°, then the inequalities
e [[ullf < [JAull31y < e [ull?

hold for any s € R (the constants depend on s) [7, 12]. The choice s = —1
gives

e |Jul2y < (Au, Au)o < ez [Jull?y, (7)
and, therefore, the second Galerkin matrices for different v € C'* are spec-
trally equivalent. (Note that the norm || - ||_1 is somewhat irrelevant to

the problem, for all functions u of physical interest lie at least in H /2,
This norm is still what has made things trivial.) We formulate the result as
follows.

Theorem 3.1 Let a(z,y) = —5- log|z —y| or % Hél)(/dx —yl|). Assume
that v1 and o are sufficiently smooth such that the corresponding operators
Ay and Ay satisfy (7). Then the second Galerkin matrices [A}A], and

[A5Asln are spectrally equivalent.

Remark. For finitely smooth v and even for Lipschitz boundaries the in-
equalities (7) are still valid [8] (for Lipschitz domains, the Hilbert scale boils
down to |s| < 1). Consequently, the above premises are fulfilled.

In practice, if we use step functions on a uniform grid with stepsize h and
compute the outer integrals in the quantities (Awjn, uin) and (Aujy,, Auin)
by the rectangular rule using the same nodes, then

A A = h™" [Alx [Aln, (8)

where computed matrices are underlined. If the stepsize is not constant,
say, h; for the jth function, then

[A*Al,, = [Aly diag {h; '} [Aln- (9)

In a bit less straightforward way, this observation can be extended also to
other quadrature rules and different trial functions.

4 Proper clusters

In this section, we consider conditions under which two Galerkin matrices
are properly equivalent. Let H and H’ be Banach spaces which are dual
with respect to a bounded Hermitian bilinear form (f,u), f € H andu € H,
and consider a continuous linear operator A from H to H'.

The Galerkin method can be viewed as the projection method wherein
the solution u € H to the equation

Au = f



is approximated by the solutions w, € i, = span{uin,...,un,} to the
finite-dimensional equations

Aptup = fns Ay, = QnAPp, fn = Qnf.

Here P, = 73% is a projector in H onto P,H =4, C H, and Q,, = Q% is the
dual projector acting on H'. These projectors can be expressed explicitly as
follows. Let fj, € H', 1 < j < n, be the dual system for u;, € H, 1 <i < n.
This means, by definition, that

1, 1=
e
Then (cf. [16])

=1

j=1 i—

In practice, one never cares about these projectors P, and Q,,, because
n

the Galerkin matrices are entirely determined by {,. If w, = ) zj, ujn,
i=1
then the equation A,u, = f, takes the form

=1

Since f;, are linearly independent, we equate the coefficients at f;, and
arrive at the familiar Galerkin system

Tin (fa uln)
Apx=Db, x= : , b= : ,
Tnn (fs unn)
where A, is the Galerkin matrix defined by (4).

Next two lemmas relate the Galerkin operators with the Galerkin ma-
trices.

Lemma 4.1 Let A and C be linear operators from H to H' defined on
U, and A, and C, be the corresponding Galerkin matrices. Consider the
Gualerkin operators A, = Qn AP, and C, = Q,CP,. Then

Anu = AChu, u#0, (10)
if and only if
Apx=2Cpx, x#0, (11)
n
where u and x = [x1,...,3,]" are related by the formula u =Y zuj,.
7=1



Proof. It is easy to verify that (10) is equivalent to

n

> fin > (Aujn,win) p =X Y fin Y (Clijn, in) 5,
i=1

j=1 i=1 j=1

which, thanks to the linear independence of fj,, is equivalent to (11).

Lemma 4.2 Under the hypotheses of Lemma 4.1, assume that the operator
Cn, has a trivial null-space in PpH. Then the matriz Cy, is nonsingular, and

C-1A,, is the matriz representation of C;' A, in the basis uin, ..., Up,. The
same matrix also represents AnC;l in the basis Cpiin, ... ,Cplny-
Proof. Let M = [m;;] represent C, ' A, in the basis uip,...,Un,. Then

n

~1

C, Apujn = E Mij Ui,
=1

After multiplying both sides by C, and taking scalar products with w;,, we
obtain

n
(Anum,um) = Zmlj (Cntin, in),
=1

which gives the first assertion. The second is proved similarly. 5

From now on, by A, — A we mean that A,u — Au for any u € H.
Denote by Z and Z’ the identity operators on H and H' respectively. If
Cn = QnCPyp has only a trivial null-space in P, H, then its restriction C, :
PoH — Q,H' is a one-to-one mapping. Let C; ' : Q,H' — P, H denote the
corresponding inverse operator.

Lemma 4.3 Assume that P,, — T and Q,, — I'. Let C be a continuously
invertible operator from H to H', and assume that the Galerkin method is

stable for C in the sense that, for some ¢ > 0, there is a compact operator
T from H to H' such that

Re ((C — T)u,u) > c||lullg, Yu € i,.
Then C; ' : Q,H' — P, H ezists for all sufficiently large n and
Cc,tQ,—cCcth

Behind the thesis is the well-known formula “approximation and stability
= convergence” in conjunction with the convergence-preserving property of
compact perturbations. The proof can be found, for example, in [16]. Also,
note that if 7 = 0 then C,, and hence C), are invertible for all n.

10



Now assume that A and C are continuously invertible linear operators
from H to H' and, in addition, the difference

K=A-C
is a compact operator from H to H'. Then
AC ' =T+ KCH,

where KC~! is a compact operator from H’ to H'. From the operator the-
ory, its spectrum contains zero and for any ¢ > 0 there are only finitely
many nonzero spectral points, each being an eigenvalue of finite algebraic
multiplicity.

For the corresponding Galerkin matrices for K, A, and C we obtain,

obviously,
K,=A4,—-C,

and, if C), is nonsingular,
ClA,=I+C'K,.

To proceed further, we need to know whether and how the eigenvalues of
C. ! K, approximate the spectrum of the compact operator KXC . Owing
to Lemma 4.2, the question reduces to the approximation properties of the
nonzero eigenvalues of K, C, ! Q.

Theorem 4.1 Let K : H — H' be compact and C : H — H' obey the
hypotheses of Lemma 4.3. Then for sufficiently large n the Galerkin matrices
C,, are nonsingular, and the eigenvalues of C;;'K,, have a proper cluster at
zero.

Proof. We are interested in counting only the nonzero eigenvalues of
C. 'K,. From Lemma 4.2, we know that they coincide (together with
algebraic multiplicities) with those of K,C,;'Q,. Owing to Lemma 4.3,
C,;'Q, — C~!, and, as a consequence,

Tn=K.CtQ, - T=KC L

Let us show that 7,, n € N, are collectively compact operators, i.e. those
for which the set {T,u : n € N, ||u||g < 1} is totally bounded. Note
that KC,, are collectively compact. First, since P, — Z, Q,, — T, and K
is compact, we can prove that 9,/ converges to K not only pointwise but
also in norm, and any convergent-in-norm sequence of bounded operators
is collectively compact [1]. Second, if a collectively compact sequence is
postmultiplied by a uniformly bounded sequence of operators, then the re-
sulting sequence is also collectively compact [1]. It remains to note that, by

11



the Banach-Steinhaus theorem, the operators Q,,, P,, and C; ' Q,, must be
uniformly bounded in norm (due to their pointwise convergence to C~1).

Thus, 7, are collectively compact, 7, — T, and therefore T is a compact
operator. With that much we are aware [1] that if z # 0 is an eigenvalue
of algebraic multiplicity « for 7', then there is an open set O(z) 3 z that
contains exactly « (with multiplicities) eigenvalues of 7, for all sufficiently
large n, and these eigenvalues converge to z as n — oo. This obviously
completes the proof.

Corollary. Under the premises of Theorem 4.1, the eigenvalues of I +
C-'K, have a proper cluster at unity.

We are now in the position to apply Theorem 4.1 to the integral operators
from equations (1) and (2).
Theorem 4.2 Let a(z,y) = —5= log |z —y]| or iHél)(/ﬂx—yD, and assume
that v1 and o are two boundaries belonging to H**° for some § > 0. Let
the corresponding operators A1 and As have a trivial null-space. Then their
Galerkin matrices [A1], and [As], are nonsingular for sufficiently large n,
and [Az]; ! [A1]n have a proper eigenvalue cluster at unity.

Proof. The operators in question enjoy the assumptions of Lemma 4.3 with
H = H Y2 and H' = H'/? [7]. In line with Theorem 4.1, it suffices to prove
that the difference K = A; — Aj is a compact operator from H~'/2 to H'/2.
Let the kernel function of K be k(7,1).

If v, and 2 belong to C*°, the assertion follows straightforwardly from
the observation that

(1) =)

hmt) =log | =)

‘ € C*(]0,2x] x [0, 27]);

and in fact, this infinitely smooth kernel generates a so-called smoothing
operator. For Hankel kernel, we use (3) to get the same conclusion. If ;
and 7 are relegated to H21t with some 6 > 0, then

k(r,t) € H*°([0,2x] x [0, 2x]).

In this case, by a direct calculation we can show that if uw € H /2 then
Ku € H'/?*¢ with some ¢ > 0. Since the imbedding H'/?*¢ ¢ HY? is
compact (for example, see [7]), K is a compact operator from H /2 to
H'/2_ and this completes the proof. 0

We do not claim that the smoothness assumptions imposed on v can
not be mellowed. Nevertheless, some smoothness assumptions are certainly
needed.

12



5 CIAO preconditioners

For a circle, the integral operators in (1) and (2) are of the form

2T
(Cu)(r) = /0 e(r — tyu(t) dt

with a 27-periodic kernel function ¢(-). We call C a circulant integral operator
[4, 5, 9]. Circulant integral operator appears more often implicitly than
explicitly: it usually comes in as a result of the approximation of more
general operators. Consider a general operator

2w
(Au)(1) = / a(r,t)u(t) dt,
0
where a(7,t) is 2m-periodic both in 7 and ¢, we may choose a function
c(tr—t) = a(r,t) (12)

and regard C as a circulant integral approzimate operator (CIAO) for A.

The choice of the CIAO depends on how we understand (12). Some
recent constructions [4, 5, 9] were inspired by T. Chan’s idea of optimal
circulant preconditioners [6] (developed further in [14]). A matrix C = [c;],
0 <i4,5 <n—1,is called a circulant matrix if ¢;; is constant along any
wrapped diagonal ¢ — j = k(modn). The optimal circulant for a matrix
A = [a;;] is the minimizer of ||A — C||r. It can be shown that the diagonals
c; of the optimal circulant are given by

1 n—1
Cj = ﬁ Z%’Hla
=0

where the values of a;; are viewed as n-periodical in both indices [6].
This suggests that we consider

1

T on

2m
c(9) /0 a(p+6,0) do, (13)

as the kernel for the approximate operator. The corresponding CIAO is
called optimal in [9, 5]. If C' is the optimal circulant preconditioner for a
matrix A, then [14]

(Aej,ej) = (Cej,e5)

for all columns e; of the Fourier matrix. In the optimal CIAO case, quite
the same arises in the form [4]

(Aej, e) = (Cej, €5) (14)

13



for any e;(t) = elit j = 0,+1,.... It makes it easy to disclose that
the optimal CTAO C minimizes the Hilbert—Schmidt norm (assume that
a,c € Ly)

2T 2w
IA=clli= [ [ latr.o) — el — o ar a,
0 0

which imparts a variational sense to the name given.

In [4], the optimal CTAO was used as a preconditioner for the Galerkin
matrices from (1). The main theoretical result was the spectral equivalence.
In fact, it was proved that A and C are both Hermitian positive definite
operators from H~'/? to H'/? (cf. Lemmas 2.1 and 2.2 above). Now we can
add to this that C is also a superlinear preconditioner for A.

Theorem 5.1 Let a(z,y) = —5= log |z —y]| or iHél)(/ﬂx—yD, and assume
that v € H?*0 for some § > 0, and the corresponding operator A has a trivial
null-space in H='/2. Let C denote the optimal CIAO for A, and assume that
C has a trivial null-space in H /2. Then the Galerkin matrices [A], and
[C]n are nonsingular for sufficiently large n, and [C];' [A], have a proper
etgenvalue cluster at unity.

Proof. We need to ascertain first that C enjoys the hypotheses of Lemma
4.3. To this end, we can exploit (14) and easily adopt the proof from [4]
that C is positive definite in the logarithmic kernel case. Take into account
that

v(1) = ()

k(r,t) = log‘ | € H'™([0,27] x [0,2x]), 4 > 0.

Then, the optimal CTAO kernel is the sum of the two terms: the optimal
CIAO kernel for a(7,t) — k(7,t) and that for k(7,t), respectively. Since the
operator with kernel a(7,t) —k(7,t) is already an integral circulant operator,
its optimal CIAO is the operator itself. The kernel of the optimal CTAO
for k(7,t) inherits the smoothness of k(7,t) (see (13)), and we can use the
arguments from the proof of Theorem 4.2. For the Hankel kernel, we use
(3) to get the same conclusion.

Remark. In the logarithmic kernel case, C inherits the positive definiteness
from A, which is the case when the diameter of v is less than 1.

For the equation (2), there is also a possibility of building up the optimal
CIAO for A*A. For simplicity, let v € C°°. Then A*A can be viewed as a
Hermitian positive definite operator from H ! to HO. Its kernel is

2m
a(r,t) = /0 a(t,0) a(t,0) db.
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Let C denote the corresponding optimal CIAO. Based on (14) and the
method of [4], it is easy to check that it takes the positive definiteness from

A*A. Then, owing to Lemma 2.2, matrices [A*A], and [C], are spectrally
equivalent.

Now, it can be argued that one might find the optimal CIAO precon-
ditioners less beneficial than some simpler CIAQO. For integral equations on
closed curves, the CIAO generated from a cicular contour may be a bet-
ter choice as it is easier to construct and invert. Usually it does not count
much if it gives one or two iterations more than the optimal CIAO. The
circle-based CIAQO in fact solves some approximation problem of the form
(12): it makes the difference a(7,t) — c¢(7 —t) smoother. Moreover, when ~y
is infinitely smooth, it makes it infinitely smooth too.

It is remarkable that the performance of the circle-based CTAO does not
depend on the contour, or in other words, on a particular problem from
a particular class. It is entirely determined by the class — in the integral
equation context, by the kernel singularity, or more precisely, by the prin-
cipal symbol of the integral operator. The conclusion is that as long as
the boundary has a certain degree of smoothness, the singularity is what
matters, not the geometry of the contour. The latter is somehow captured
by the optimal CTAQO, though with just a minor effect. In the next section
these theoretical findings are illustrated by numerical experiments.

6 Numerical illustrations

Consider the Hankel-kernel equation (2) on an elliptic boundary with half-
axes a = 0.4, b = 0.05. Let A, denote the Galerkin matrices for the step
functions on a uniform grid. To illustrate the above theory, we consider the
following preconditioners Cy,:

e the Galerkin matrices corresponding to the same equation for the el-
lipse with half-axes a = 0.05 and b = 0.4 (this ridiculuos choice is not
for practice, just to check the clustering property);

e the Galerkin (circulant) matrices corresponding to the same equation
for the circle of radius 0.1;

e the Galerkin (circulant) matrices corresponding to the logarithmic ker-
nel equation (1) for the circle of radius 0.1.

In Figure 1, we can see that the eigenvalues and singular values of the
matrices A,C, ! have a cluster at unity in all three cases (n = 256).

Next we consider the performance of the preconditioned conjugate gra-
dients applied to the normal equations with the coefficient matrices A; A,
preconditioned by C)C),. As C),, we take the optimal circulant matrices and
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the circle-based CIAO matrices for the circle of radius 0.1. The stopping
criterion is when the residual becomes less than e times the initial residual
where we take ¢ = 107°. The right-hand side function is f(t) = |sint|3/2,
The Hankel kernel is taken with x = 15. The contour is the ellipse with
a = 0.8 and b = 0.05. We also depict the approximate relative errors com-
puted by comparing the solutions in the Ly norm for two neighboring grids.
The numbers of iterations required for convergence are given in Table 1.

Matrix size 64 128 256 512 1024 | 2048
No preconditioner 33 63 114 182 266 359
Optimal circulant

preconditioner 10 11 11 11 12 11
Circle-based

preconditioner 11 12 12 12 12 12
Relative error 0.68% | 0.30% | 0.15% | 0.07% | 0.04%

Table 1: The preconditioned conjugate gradients for
normal equations in the Hankel-kernel case.
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