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ABSTRACT

The Galerkin matrices An from applications of the boundary element
method to integral equations of the �rst kind usually need to be precondi�
tioned� In the Laplace equation context� we highlight a family of precondi�
tioners Cn that simultaneously enjoy two important properties� �a� An and
Cn are spectrally equivalent� and �b� the eigenvalues of C

��
n An have a proper

cluster at unity� In the Helmholtz equation context� we prove the spectral
equivalence for the so�called second Galerkin matrices and that the eigenval�
ues of C��

n An still have a proper cluster at unity� We then show that some
circulant integral approximate operator �CIAO� preconditioners belong to
this family� including the well�known optimal CIAO� Consequently� if we use
the preconditioned conjugate gradients to solve the problems� the number
of iterations for a prescribed accuracy does not depend on n� and� what is
more� the convergence rate is superlinear�
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� Introduction

In this paper� we study preconditioners for the moment matrices An � C
n�n

in the Galerkin method applied to some integral equations of the �rst kind�
Since the spectral condition number of An may �and does� grow with n�
we use as preconditioners some other matrices Cn � C n�n that are easier
to invert� The purpose here is to make the condition number of C��

n An

bounded or� if that can not be acheived� at least to slow down its growth
with n and anyway to improve the behavior of the eigenvalues� The �rst
case can be achieved if An and Cn are spectrally equivalent�

De�nition � Consider two sequences of Hermitian positive de�nite ma�

trices An and Cn and assume that all the eigenvalues � of C��
n An satisfy

c� � � � c� with positive c� and c� independent of n� Then An and Cn are
said to be spectrally equivalent�

In this case� the number of iterations in the preconditioned conjugate
gradients �PCG� depends only on the desired reduction of the residual and
not upon n� This is the well�known linear convergence result of PCG� see
for instance 
��� However� we may expect even a faster convergence for
su
ciently large n if the eigenvalues behave properly�

De�nition � Denote by �n��� the number of those eigenvalues of An that

lie at a distance farther than � from z � C � The eigenvalues of An are said

to have a proper cluster at z if �n��� � c��� for all n and for all � � ��
If two matrices An and Cn are nonsingular and the eigenvalues of C��

n An

have a proper cluster at unity� then we say that An and Cn are properly
equivalent�

In the Hermitian case� �properly equivalent� is what accounts for the so�
called superlinear convergence of PCG�

De�nition � An iterative method converges superlinearly for An if� for any

� � q � 	 and for all su�ciently large n the residual at the ith iteration is
bounded above by c qi �c may depend on q� n� the right�hand side� and the

initial vector��

In the Hermitian case� if Cn is a properly equivalent preconditioner for
An� then PCG converge superlinearly� see for instance 
�� ��� In this sense�
Cn may be called an optimal preconditioner for An� yet� since the word
�optimal� is overused� we will call Cn a superlinear preconditioner �see 
	����
If at least one of the matrices An or Cn has the Frobenius norm growing
not faster than o�

p
n�� then� it follows from 
	�� that the eigenvalues of Cn

and An are equally distributed �in the spirit of G� Weyl�s and G� Szeg�o�s
approach 
	�� extended in 
	����

�



Why superlinear preconditioners make PCG converge superlinearly is
explained� for example� in 
�� and in 
��� The latter paper considered the
case of An being Toeplitz matrices with a positive symbol from the Wiener
class and Cn being G� Strang�s or T� Chan�s circulants� It is proved therein
that the eigenvalues of C��

n An have a proper cluster at unity and how the
superlinear convergence follows from that� The crucial notion of cluster has
then been extended and studied in 
	�� 	���

In the non�Hermitian case� we can apply PCG to solve the normal equa�
tions A�nAnx � A�nb� Then� we are interested to have A�nAn and C�

nCn

spectrally equivalent� It is equal to the claim that the singular values � of
AnC

��
n all satisfy c� � � � c� with some positive c� and c�� In addition�

if C�
nCn and A�nAn are properly equivalent� then superlinear convergence

comes as a fringe bene�t�

In this paper� as basic examples we consider two typical single layer
potential equations related to the Dirichlet boundary value problems for
the Laplace ��w � �� and Helmholtz ��� � ���w � �� equations in two
dimensions� The �rst one is �some call it Symm�s equation 
	���

� 	

�	

Z
��

log jx� yj U�y� ds�y� � F �x�
 x � ��
 �	�

and the second is

i

�

Z
��

H
���
� ��jx� yj� U�y� ds�y� � F �x�
 x � ��
 ���

here ds�y� is the arclength element� For simplicity� we assume for the time
being that �� is an in�nitely smooth closed curve cutting the plane into the
interior domain � and the exterior �c �our results in later sections cover
boundaries with a �nite smoothness�� The kernels for the equations are
the fundamental solutions for the Laplace and Helmholtz equations in two

dimensions� In particular� H
���
� in ��� is the Hankel function of order � of

the �rst kind� Recall that

H
���
� �z� � �i

	
log z as z � �
 ���

and so the two kernels have the same type of singularity at x � y� Theory
and applications of these equations are well�known 
��� nonetheless we will
recollect the crucial facts when they are needed�

The Galerkin matrices An are Hermitian for the equation �	� while non�
Hermitian �yet symmetric� for ���� In our analysis� we rely heavily on the
results in the theory of elliptic boundary integral equations which are well
appreciated nowadays and mostly due to Hsiao and Wendland 
		�� cf� 
���
We always assume that the integral operators in question have a trivial null�
space� For �	� that means the diameter of the contour is less than 	 and�

�



if it is not the case� it can be easily remedied by a contraction 
��� As far
as ��� is concerned� the assumption amounts to that some �resonant for ��
values of � are prohibited�

For the equation �	�� we �nd that if Cn are the Galerkin matrices for
any other smooth contour of diameter less than 	� then An and Cn are
spectrally equivalent� It implies that Cn can correspond to any convenient
contour for which Cn is easily invertible� The best choice might be a circle�
in which case Cn are circulant matrices� see 
�� 	�� 	��� It was shown in

�� that the optimal circulant integral approximate operator �CIAO� also
leads to preconditioners spectrally equivalent to An �some previous papers
on CIAOs for the Wiener�Hopf equations are 
�� ���� Note that the circle�
based preconditioner� though not optimal� in the sense of 
�� and 
��� is
also a CIAO� In light of our results� the performance of the optimal CIAO
preconditioner for �	� is the same as that of the circle�based CIAO �and of
any other contour�based preconditioner�� We will illustrate this by numerical
results in x��

In the case of ���� we prove the spectral equivalence for the so�called
second Galerkin matrices �de�ned in ���� which are related to the normal
equations of ����

Furthermore� for both equations� we prove that the Galerkin matrices An

and Cn corresponding to any two smooth contours are properly equivalent�
It is therefore natural to use the circle�based CIAOs which yield easily in�
vertible matrices� It is a superlinear preconditioner for An� and equally good
compared with any other contour�based preconditioner �at least asymptot�
ically�� Even we may choose Cn to be the matrices coming from �	� to
precondition An from ����

All in all� for equations �	� and ���� we have pretty simple precondition�
ers which are both spectrally equivalent and properly equivalent �provide a
proper cluster at unity�� In general� these two properties do not imply each
other but in our case we have as much as both� The proof is of a certain
generic nature� so without signi�cant changes we can cover other kinds of
equations�

The outline of the paper is as follows� In Sections � and �� we consider
spectral equivalent preconditioners for matrices from �	� and ��� respec�
tively� In Section �� we consider the clustering properties of these precon�
ditioners� In Section �� we show that the CIAO preconditioners have the
properties we studied in Sections ���� Numerical results are given in Section
� to illustrate our theory�
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� Spectral equivalence� Hermitian case

Given two sequences of Hermitian positive de�nite matrices An and Cn�
both of order n� we wish to know whether they are spectrally equivalent�
Here is an obvious observation that can help�

Lemma ��� Two sequences of Hermitian positive de�nite matrices An and

Cn are spectrally equivalent if and only if there are constants � � c� � c�
such that for any n� there exists a vector norm jj � jj� on C

n for which

c� jjxjj�� � x�Anx � c� jjxjj��
and

c� jjxjj�� � x�Cnx � c� jjxjj��
hold for any x � C

n �

This lemma may shed some light on why we are so anxious in matrix
analysis to study norms in a general setting� Still� where does this norm
jj � jj� come from�

Assume that A � H � H � is a continuously invertible linear operator
on a pair of Hilbert spaces H and H � which are dual with respect to a
bounded Hermitian bilinear form �f
 u�� where f � H � and u � H� Consider
a sequence of �nite sets fuingni�� of linearly independent �basis� functions
uin � H and the corresponding Galerkin matrices

An � 
A�n � 
aij �
 aij � �Aujn
 uin�
 	 � i
 j � n� ���

Assume additionally that

�Au
 v� � �Av
 u�
 � u
 v � H

and� for � � c� � c��

c� jjujj�H � �Au
 u� � c� jjujj�H 
 �u � H�

In this case� we say that A is a Hermitian positive de�nite operator� Now�
the vector norm on C n can be de�ned as follows�

jjxjj� � jjujjH 
 u �

nX
i��

xi uin
 x � 
x�
 � � � 
 xn�
T �

It is easy to check that x�Anx � �Au
 u�� Hence� we are immediately led to
the following�

Lemma ��� Suppose that A and B are Hermitian positive de�nite operators

on the same pair of Hilbert spaces� Then the Galerkin matrices An � 
A�n
and Bn � 
B�n are spectrally equivalent�
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Now� let A be the integral operator from �	� or ���� Since any curve is
dealt with through some parametrization� functions on �� can be identi�ed
with those on 
�
 �	� �or with �	�periodic functions on the real axis�� For
example� we can use the parametrization by arclength and tailor the param�
eter by mapping it linearly onto 
�
 �	�� Thus without loss of generality� let
�� � f��t�
 � � t � �	g� We demand � to be a di eomorphism� which im�
plies that ���t� never vanishes� and� sometimes� � may be required to have
some higher order derivatives� �However� some results hold for Lipschitz
boundaries 
!��� With the parametrization� �	� and ��� can be casted in the
form

��Z
�

a���
�
 ��t�� u�t� dt � f�
�


with di erent kernels a�x
 y�� Obviously�

u�t� � U���t�� j���t�j
 f�
� � F ���
���

It is exactly how we proceed in practice� Also� in view of Lemma ���� we are
now able �and keen� to consider di erent kernels and contours with exactly
the same spaces for u�t� and f�
��

Denote by Hs the Sobolev space of order s � R� Recall that it can be
de�ned as the completion of in�nitely smooth functions u�t� with respect to
the norm

jjujjs �
�
� �X

j���

j"uj j� �	 � jjj��s
�
A

���

expressed through the Fourier coe
cients "uj of u� This norm is naturally
related to the scalar product

�u
 v�s �

�X
j���

"uj "vj �	 � jjj��s


where

u�t� �
�X

j���

"uje
ijt
 v�t� �

�X
j���

"vje
ijt�

Thus� Hs is a Hilbert space �cf� 
	����

Let a�x
 y� be either the kernel function of the integral in �	� or ���� We
gather from the theory of pseudodi erential equations that for any � � C�

the corresponding operator A can be viewed as a continuous operator from
Hs to Hs�� for any s � R �as a pseudodi erential operator of order �	�

��� For �nitely smooth � �and even for Lipschitz boundaries 
!��� it is still
a continuous operator from H���� to H���� In line with the above� we take

�



H � H����� H � � H���� and the Hermitian bilinear form is de�ned by the
Lebesgue integral

�f
 u� �

��Z
�

f�t� u�t� dt ���

�it is easy to see that fu � L� � H���

In the case of �	�� the fundamental result of Hsiao and Wendland 
		�
can be put in the following form�

Theorem ��� �Hsiao and Wendlandt 
		�� Let a�x
 y� � � �
�� log jx � yj�

and assume that the boundary � is su�ciently smooth and of diameter less

than 	� Then A is a Hermitian positive de�nite operator from H���� to

H��� with respect to the Hermitian bilinear form de�ned by �
��

Combining the above theorem with the previous lemmas� we immediately
come up with the following result�

Theorem ��� Let �� and �� be two contours satisfying the hypotheses of

Theorem ��	 with the corresponding logarithmic�kernel operators being A�

and A�� Then the Galerkin matrices 
A��n and 
A��n are spectrally equiva�

lent�

Remark� In agreement with the results reported in 
!�� the spectral equiv�
alence still holds for Lipschitz �� However� in the presence of corners� we
may need to use some graded meshes or nonuniform �nite elements� Con�
sequently� some nice structures of the Galerkin matrices� even for circular
contours� might vanish�

� Spectral equivalence� non�Hermitian case

We get on to the equation ��� �yet everything applies to the equation �	��
too�� Since

c� jjujj����� � jjAujj���� � c� jjujj�����
 � u � H����


the matrices 
�Aujn
Auin����� for di erent contours are spectrally equiva�
lent� But these matrices never appear in practice� Of some real�life interest
are matrices of the form


A�A�n � 
aij �
 aij � �Aujn
Auin� � �Aujn
Auin��
 � � i
 j � n
 ���

which we call the second Galerkin matrices� They are related to the normal
equations of 
A�nx � b� see �!� and ��� below�
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If � � C�� then the inequalities

c� jjujj�s � jjAujj�s�� � c� jjujj�s
hold for any s � R �the constants depend on s� 
�� 	��� The choice s � �	
gives

c� jjujj��� � �Au
Au�� � c� jjujj���
 ���

and� therefore� the second Galerkin matrices for di erent � � C� are spec�
trally equivalent� �Note that the norm jj � jj�� is somewhat irrelevant to
the problem� for all functions u of physical interest lie at least in H�����
This norm is still what has made things trivial�� We formulate the result as
follows�

Theorem ��� Let a�x
 y� � � �
�� log jx � yj or i

	 H
���
� ��jx � yj�� Assume

that �� and �� are su�ciently smooth such that the corresponding operators

A� and A� satisfy ���� Then the second Galerkin matrices 
A�
�A��n and


A�
�A��n are spectrally equivalent�

Remark� For �nitely smooth � and even for Lipschitz boundaries the in�
equalities ��� are still valid 
!� �for Lipschitz domains� the Hilbert scale boils
down to jsj � 	�� Consequently� the above premises are ful�lled�

In practice� if we use step functions on a uniform grid with stepsize h and
compute the outer integrals in the quantities �Aujn
 uin� and �Aujn
Auin�
by the rectangular rule using the same nodes� then


A�A�n � h�� 
A� �n 
A�n
 �!�

where computed matrices are underlined� If the stepsize is not constant�
say� hj for the jth function� then


A�A�n � 
A� �n diag fh��j g 
A�n� ���

In a bit less straightforward way� this observation can be extended also to
other quadrature rules and di erent trial functions�

� Proper clusters

In this section� we consider conditions under which two Galerkin matrices
are properly equivalent� Let H and H � be Banach spaces which are dual
with respect to a bounded Hermitian bilinear form �f
 u�� f � H � and u � H�
and consider a continuous linear operator A from H to H ��

The Galerkin method can be viewed as the projection method wherein
the solution u � H to the equation

Au � f

!



is approximated by the solutions un � Un � span fu�n
 � � � 
 unng to the
�nite�dimensional equations

Anun � fn
 An � QnAPn
 fn � Qnf�

Here Pn � P�
n is a projector in H onto PnH � Un 	 H� and Qn � Q�

n is the
dual projector acting on H �� These projectors can be expressed explicitly as
follows� Let fjn � H �� 	 � j � n� be the dual system for uin � H� 	 � i � n�
This means� by de�nition� that

�fjn
 uin� �

�
	
 i � j


�
 i 
� j�

Then �cf� 
	���

Pn u �

nX
j��

ujn �fjn
 u�
 Qn f �

nX
i��

fin �f
 uin��

In practice� one never cares about these projectors Pn and Qn� because

the Galerkin matrices are entirely determined by Un� If un �
nP

j��
xjn ujn�

then the equation Anun � fn takes the form

nX
i��

fin

nX
j��

�Aujn
 uin� xjn �
nX

i��

fin �f
 uin��

Since fin are linearly independent� we equate the coe
cients at fin and
arrive at the familiar Galerkin system

An x � b
 x �

�
��

x�n
���

xnn

	

� 
 b �

�
��

�f
 u�n�
���

�f
 unn�

	

� 


where An is the Galerkin matrix de�ned by ����
Next two lemmas relate the Galerkin operators with the Galerkin ma�

trices�

Lemma ��� Let A and C be linear operators from H to H � de�ned on

Un� and An and Cn be the corresponding Galerkin matrices� Consider the

Galerkin operators An � QnAPn and Cn � QnCPn� Then

Anu � � Cnu
 u 
� �
 �	��

if and only if

Anx � � Cnx
 x 
� �
 �		�

where u and x � 
x�
 � � � 
 xn�
T are related by the formula u �

nP
j��

xjujn�

�



Proof� It is easy to verify that �	�� is equivalent to

nX
i��

fin

nX
j��

�Aujn
 uin� xj � �

nX
i��

fin

nX
j��

�Cujn
 uin� xj


which� thanks to the linear independence of fin� is equivalent to �		��

Lemma ��� Under the hypotheses of Lemma 
�	� assume that the operator

Cn has a trivial null�space in PnH� Then the matrix Cn is nonsingular� and

C��
n An is the matrix representation of C��n An in the basis u�n
 � � � 
 unn� The

same matrix also represents AnC��n in the basis Cnu�n
 � � � 
 Cnunn�

Proof� Let M � 
mij� represent C��n An in the basis u�n
 � � � 
 unn� Then

C��n Anujn �

nX
l��

mlj uln�

After multiplying both sides by Cn and taking scalar products with uin� we
obtain

�Anujn
 uin� �

nX
l��

mlj �Cnuln
 uin�


which gives the �rst assertion� The second is proved similarly�

From now on� by An � A we mean that Anu � Au for any u � H�
Denote by I and I � the identity operators on H and H � respectively� If
Cn � QnCPn has only a trivial null�space in PnH� then its restriction Cn �
PnH � QnH

� is a one�to�one mapping� Let C��n � QnH
� � PnH denote the

corresponding inverse operator�

Lemma ��� Assume that Pn � I and Qn � I �� Let C be a continuously

invertible operator from H to H �� and assume that the Galerkin method is

stable for C in the sense that� for some c � �� there is a compact operator

T from H to H � such that

Re � �C � T �u
 u� � cjjujjH 
 �u � Un�

Then C��n � QnH
� � PnH exists for all su�ciently large n and

C��n Qn � C���

Behind the thesis is the well�known formula �approximation and stability
� convergence� in conjunction with the convergence�preserving property of
compact perturbations� The proof can be found� for example� in 
	��� Also�
note that if T � � then Cn and hence Cn are invertible for all n�

	�



Now assume that A and C are continuously invertible linear operators
from H to H � and� in addition� the di erence

K � A� C

is a compact operator from H to H �� Then

AC�� � I �KC��


where KC�� is a compact operator from H � to H �� From the operator the�
ory� its spectrum contains zero and for any � � � there are only �nitely
many nonzero spectral points� each being an eigenvalue of �nite algebraic
multiplicity�

For the corresponding Galerkin matrices for K� A� and C we obtain�
obviously�

Kn � An � Cn

and� if Cn is nonsingular�

C��
n An � I � C��

n Kn�

To proceed further� we need to know whether and how the eigenvalues of
C��
n Kn approximate the spectrum of the compact operator KC��� Owing

to Lemma ���� the question reduces to the approximation properties of the
nonzero eigenvalues of Kn C��n Qn�

Theorem ��� Let K � H � H � be compact and C � H � H � obey the

hypotheses of Lemma 
��� Then for su�ciently large n the Galerkin matrices
Cn are nonsingular� and the eigenvalues of C��

n Kn have a proper cluster at

zero�

Proof� We are interested in counting only the nonzero eigenvalues of
C��
n Kn� From Lemma ���� we know that they coincide �together with

algebraic multiplicities� with those of KnC��n Qn� Owing to Lemma ����
C��n Qn � C��� and� as a consequence�

Tn � Kn C��n Qn � T � K C���

Let us show that Tn� n � N� are collectively compact operators� i�e� those
for which the set fTnu � n � N
 jjujjH � 	g is totally bounded� Note
that Kn are collectively compact� First� since Pn � I� Qn � I �� and K
is compact� we can prove that QnK converges to K not only pointwise but
also in norm� and any convergent�in�norm sequence of bounded operators
is collectively compact 
	�� Second� if a collectively compact sequence is
postmultiplied by a uniformly bounded sequence of operators� then the re�
sulting sequence is also collectively compact 
	�� It remains to note that� by

		



the Banach�Steinhaus theorem� the operators Qn� Pn� and C��n Qn must be
uniformly bounded in norm �due to their pointwise convergence to C����

Thus� Tn are collectively compact� Tn � T � and therefore T is a compact
operator� With that much we are aware 
	� that if z 
� � is an eigenvalue
of algebraic multiplicity � for T � then there is an open set O�z� 
 z that
contains exactly � �with multiplicities� eigenvalues of Tn for all su
ciently
large n� and these eigenvalues converge to z as n � �� This obviously
completes the proof�

Corollary� Under the premises of Theorem 
�	� the eigenvalues of I �
C��
n Kn have a proper cluster at unity�

We are now in the position to apply Theorem ��	 to the integral operators
from equations �	� and ����

Theorem ��� Let a�x
 y� � � �
�� log jx�yj or i

	H
���
� ��jx�yj�� and assume

that �� and �� are two boundaries belonging to H��� for some � � �� Let

the corresponding operators A� and A� have a trivial null�space� Then their

Galerkin matrices 
A��n and 
A��n are nonsingular for su�ciently large n�
and 
A��

��
n 
A��n have a proper eigenvalue cluster at unity�

Proof� The operators in question enjoy the assumptions of Lemma ��� with
H � H���� and H � � H��� 
��� In line with Theorem ��	� it su
ces to prove
that the di erence K � A��A� is a compact operator from H���� to H����
Let the kernel function of K be k�

 t��

If �� and �� belong to C
�� the assertion follows straightforwardly from

the observation that

k�

 t� � log

�������
�� ���t�

���
�� ���t�

���� � C��
�
 �	� � 
�
 �	���

and in fact� this in�nitely smooth kernel generates a so�called smoothing

operator� For Hankel kernel� we use ��� to get the same conclusion� If ��
and �� are relegated to H��� with some � � �� then

k�

 t� � H����
�
 �	� � 
�
 �	���

In this case� by a direct calculation we can show that if u � H���� then
Ku � H����� with some � � �� Since the imbedding H����� 	 H��� is
compact �for example� see 
���� K is a compact operator from H���� to
H���� and this completes the proof�

We do not claim that the smoothness assumptions imposed on � can
not be mellowed� Nevertheless� some smoothness assumptions are certainly
needed�

	�



� CIAO preconditioners

For a circle� the integral operators in �	� and ��� are of the form

�Cu��
� �
Z ��

�
c�
 � t�u�t� dt

with a �	�periodic kernel function c���� We call C a circulant integral operator

�� �� ��� Circulant integral operator appears more often implicitly than
explicitly� it usually comes in as a result of the approximation of more
general operators� Consider a general operator

�Au��
� �
Z ��

�
a�

 t�u�t� dt


where a�

 t� is �	�periodic both in 
 and t� we may choose a function

c�
 � t� � a�

 t� �	��

and regard C as a circulant integral approximate operator �CIAO� for A�
The choice of the CIAO depends on how we understand �	��� Some

recent constructions 
�� �� �� were inspired by T� Chan�s idea of optimal
circulant preconditioners 
�� �developed further in 
	���� A matrix C � 
cij ��
� � i
 j � n � 	� is called a circulant matrix if cij is constant along any
wrapped diagonal i � j � k �modn�� The optimal circulant for a matrix
A � 
aij � is the minimizer of jjA�CjjF � It can be shown that the diagonals
cj of the optimal circulant are given by

cj �
	

n

n��X
l��

aj�l l


where the values of aij are viewed as n�periodical in both indices 
���
This suggests that we consider

c��� �
	

�	

Z ��

�
a��� �
 �� d�
 �	��

as the kernel for the approximate operator� The corresponding CIAO is
called optimal in 
�� ��� If C is the optimal circulant preconditioner for a
matrix A� then 
	��

�Aej 
 ej� � �Cej
 ej�

for all columns ej of the Fourier matrix� In the optimal CIAO case� quite
the same arises in the form 
��

�Aej 
 ej� � �Cej 
 ej� �	��

	�



for any ej�t� � ei jt� j � �
 �	
 � � � � It makes it easy to disclose that
the optimal CIAO C minimizes the Hilbert�Schmidt norm �assume that
a
 c � L��

jjjA � Cjjj �
Z ��

�

Z ��

�
ja�

 t� � c�
 � t�j� d
 dt


which imparts a variational sense to the name given�

In 
��� the optimal CIAO was used as a preconditioner for the Galerkin
matrices from �	�� The main theoretical result was the spectral equivalence�
In fact� it was proved that A and C are both Hermitian positive de�nite
operators from H���� to H��� �cf� Lemmas ��	 and ��� above�� Now we can
add to this that C is also a superlinear preconditioner for A�

Theorem 	�� Let a�x
 y� � � �
�� log jx�yj or i

	H
���
� ��jx�yj�� and assume

that � � H��� for some � � �� and the corresponding operator A has a trivial
null�space in H����� Let C denote the optimal CIAO for A� and assume that
C has a trivial null�space in H����� Then the Galerkin matrices 
A�n and


C�n are nonsingular for su�ciently large n� and 
C���n 
A�n have a proper

eigenvalue cluster at unity�

Proof� We need to ascertain �rst that C enjoys the hypotheses of Lemma
���� To this end� we can exploit �	�� and easily adopt the proof from 
��
that C is positive de�nite in the logarithmic kernel case� Take into account
that

k�

 t� � log

������
�� ��t�

ei� � eit

���� � H����
�
 �	� � 
�
 �	��
 � � ��

Then� the optimal CIAO kernel is the sum of the two terms� the optimal
CIAO kernel for a�

 t�� k�

 t� and that for k�

 t�� respectively� Since the
operator with kernel a�

 t��k�

 t� is already an integral circulant operator�
its optimal CIAO is the operator itself� The kernel of the optimal CIAO
for k�

 t� inherits the smoothness of k�

 t� �see �	���� and we can use the
arguments from the proof of Theorem ���� For the Hankel kernel� we use
��� to get the same conclusion�

Remark� In the logarithmic kernel case� C inherits the positive de�niteness
from A� which is the case when the diameter of � is less than 	�

For the equation ���� there is also a possibility of building up the optimal
CIAO for A�A� For simplicity� let � � C�� Then A�A can be viewed as a
Hermitian positive de�nite operator from H�� to H�� Its kernel is

#a�

 t� �

Z ��

�
a�

 �� a�t
 �� d��

	�



Let #C denote the corresponding optimal CIAO� Based on �	�� and the
method of 
��� it is easy to check that it takes the positive de�niteness from
A�A� Then� owing to Lemma ���� matrices 
A�A�n and 
 #C�n are spectrally
equivalent�

Now� it can be argued that one might �nd the optimal CIAO precon�
ditioners less bene�cial than some simpler CIAO� For integral equations on
closed curves� the CIAO generated from a cicular contour may be a bet�
ter choice as it is easier to construct and invert� Usually it does not count
much if it gives one or two iterations more than the optimal CIAO� The
circle�based CIAO in fact solves some approximation problem of the form
�	��� it makes the di erence a�

 t� � c�
 � t� smoother� Moreover� when �

is in�nitely smooth� it makes it in�nitely smooth too�

It is remarkable that the performance of the circle�based CIAO does not
depend on the contour� or in other words� on a particular problem from
a particular class� It is entirely determined by the class � in the integral
equation context� by the kernel singularity� or more precisely� by the prin�
cipal symbol of the integral operator� The conclusion is that as long as
the boundary has a certain degree of smoothness� the singularity is what
matters� not the geometry of the contour� The latter is somehow captured
by the optimal CIAO� though with just a minor e ect� In the next section
these theoretical �ndings are illustrated by numerical experiments�

� Numerical illustrations

Consider the Hankel�kernel equation ��� on an elliptic boundary with half�
axes a � ���� b � ����� Let An denote the Galerkin matrices for the step
functions on a uniform grid� To illustrate the above theory� we consider the
following preconditioners Cn�

� the Galerkin matrices corresponding to the same equation for the el�
lipse with half�axes a � ���� and b � ��� �this ridiculuos choice is not
for practice� just to check the clustering property��

� the Galerkin �circulant� matrices corresponding to the same equation
for the circle of radius ��	�

� the Galerkin �circulant� matrices corresponding to the logarithmic ker�
nel equation �	� for the circle of radius ��	�

In Figure 	� we can see that the eigenvalues and singular values of the
matrices AnC

��
n have a cluster at unity in all three cases �n � �����

Next we consider the performance of the preconditioned conjugate gra�
dients applied to the normal equations with the coe
cient matrices A�nAn

preconditioned by C�
nCn� As Cn� we take the optimal circulant matrices and
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Figure 	� Eigenvalues and singular values for AnC
��
n �
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the circle�based CIAO matrices for the circle of radius ��	� The stopping
criterion is when the residual becomes less than � times the initial residual
where we take � � 	��
� The right�hand side function is f�t� � j sin tj����
The Hankel kernel is taken with � � 	�� The contour is the ellipse with
a � ��! and b � ����� We also depict the approximate relative errors com�
puted by comparing the solutions in the L� norm for two neighboring grids�
The numbers of iterations required for convergence are given in Table 	�

Matrix size �� 	�! ��� �	� 	��� ���!

No preconditioner �� �� 		� 	!� ��� ���
Optimal circulant
preconditioner 	� 		 		 		 	� 		
Circle�based
preconditioner 		 	� 	� 	� 	� 	�

Relative error ���!$ ����$ ��	�$ ����$ ����$

Table 	� The preconditioned conjugate gradients for
normal equations in the Hankel�kernel case�
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