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Abstract

The optimal circulant preconditioner for a given matrix A is defined to be the
minimizer of ||C — A||r over the set of all circulant matrices C. Here || - ||F is
the Frobenius norm. Optimal circulant preconditioners have been proved to be
good preconditioners in solving Toeplitz systems with the preconditioned conjugate
gradient method. In this paper, we construct optimal sine transform based precon-
ditioner which is defined to be the minimizer of ||B — Al||r over the set of matrices
B that can be diagonalized by sine transforms. We will prove that for general n-
by-n matrices A, these optimal preconditioners can be constructed in O(n?) real
operations and in O(n) real operations if A is Toeplitz. We will also show that
the convergence properties of these optimal sine transform preconditioners are the
same as that of the optimal circulant ones when they are employed to solve Toeplitz
systems. Numerical examples are given to support our convergence analysis.
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1 Introduction

In this paper, we discuss the solutions to a class of symmetric positive definite systems
Ax = b by the preconditioned conjugate gradient (PCG) method. The rate of conver-
gence of the conjugate gradient (CG) method depends on the condition number x(A), see
Axelsson and Barker [2, p.26]. In general, the smaller k(A) is, the faster the convergence
will be. In case k(A) is not small, the method is always used with a symmetric positive
definite matrix M to speed up the convergence rate. More precisely, instead of applying
the CG method to the system Ax = b, we apply the method to the transformed system
A% = b where A = M~Y2AM~'/2 % = M'?>x and b = M~'/2b. The matrix M is called
a preconditioner for A. The preconditioner M is chosen in the hope that it will minimize
k(M~tA) and allow efficient computation of the product M~'v for any given vector v.
The preconditioner M for A can also be viewed as an approximation to A that is easily
invertible.

An n-by-n matrix T' = [t; ;] is said to be Toeplitz if ¢; j=t;_;, i.e., T is constant along
its diagonals. An n-by-n matrix C' is said to be circulant if it is Toeplitz and its diagonals
c; satisty c,_;j=c_; for 0 < j < n —1. We remark that all circulant matrices C' can be
diagonalized as

C = F*AF (1)

2mijk _ . . . .
where F = %[e n ]?kio is the Fourier matrix. Hence, for any vector v, the matrix-

vector multiplication C~'/?v = F*A~'/2Fv can be computed efficiently by the fast Fourier
transform (FFT) in O(nlogn) operations, see Bergland [3].

Since circulant matrices are Toeplitz matrices themselves, it is natural to consider
using circulant matrices as preconditioners for Toeplitz systems. Given a Toeplitz matrix
T, there are many possible circulant matrices C' that one can define to be preconditioners
for the system Tx = b. Since the convergence rate of the PCG method depends on how
good the preconditioner C' approximates 7', much attention has been focused on searching
a circulant matrix C' which is close to the matrix 7" in certain norms, see T. Chan [6],
Tyrtyshnikov [22] and Huckle [18]. T. Chan in [6] proposed a circulant preconditioner
¢(T) which is the minimizer of ||C'—T||r over all circulant matrices C. Here ||-||r denotes
the Frobenius norm. He called ¢(7T') the optimal circulant preconditioner and showed that
the first column entries ¢; of ¢(T") are given by

Jt-n—gy) + (n =)t

¢ = p . j=0,1,..,n—1,

where ¢; are the diagonals of T'.

It was shown in Chan [7] that if the underlying generating function of 7" is a positive
function in the Wiener class, then the spectrum of ¢(T)"'T is clustered around 1. Tyr-
tyshnikov in [22] extended the definition of ¢(-) to any general n-by-n matrix A. Also, he
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proved that c¢(A) is symmetric positive definite whenever A is. Note that forming c(A)
only requires O(n) operations for Toeplitz matrix A of order n, and O(n?) operations
for general n-by-n matrix A. However, we remark that when A are tridiagonal Toeplitz
matrix or tridiagonal block Toeplitz matrix, such as the 1-dimensional and 2-dimensional
discrete Laplacian P = tridiag[—1,2, —1] and P® I + I ® P respectively, the performance
of the optimal circulant preconditioners ¢(A) are not very good, see R. Chan and T. Chan
[10].

The purpose of this paper is to construct optimal sine transform based preconditioners
s(A) for general matrices A. They are defined to be the minimizer of ||B — A||r over the
set of matrices B that can be diagonalized by the sine transform matrix S. Since only
sine transforms will be involved, all computations can be done in real arithmetic. We
remark that the matrix-vector product Sv can be done in O(nlogn) real operations, see
for instance Yip and Rao [23]. Moreover, we will see that if A is a tridiagonal Toeplitz
matrix, s(A) is just equal to A itself.

We note that since the Frobenius norm is a unitary-invariant norm, the minimizer
s(A) is given by SAS, where A is a diagonal matrix with diagonal entries

Aj,j = (SAS)],J, j = 1, cae, N, (2)

see for instance Huckle [18]. However, computing all the diagonal entries of A using
formula (2) will require O(n?logn) operations. In this paper, we will show that the
minimizer s(A) can be obtained in O(n?) operations for general matrix A. The cost can
even be reduced to O(n) operations when A is a Toeplitz matrix.

We remark that these operation counts are the same as that of obtaining optimal
circulant preconditioners ¢(A), see T. Chan [6]. However, we emphasize that to construct
¢(A) economically, T. Chan has used the fact that all matrices that can be diagonalized
by Fourier matrix are circulant matrices which are matrices having very nice algebraic
structures. Thus in order to construct s(A) efficiently, one needs to find matrices having
special algebraic structures to characterize all matrices that can be diagonalized by sine
transforms. Recently, Boman and Koltracht [5], Bini and Benedetto [4] and Huckle [19]
independently showed that matrices that can be diagonalized by sine transforms can be
written as a sum of a Toeplitz matrix and a Hankel matrix. This decomposition is the
crucial step that leads us to a fast algorithm for obtaining s(A).

As for how good optimal sine transform based preconditioners s(T') are as precondi-
tioners for Toeplitz systems Tx = b, we will show that they have the same convergence
properties as the optimal circulant preconditioners ¢(7"). More precisely, we will show that
if a given Toeplitz matrix T is generated by a 2m-periodic positive continuous function,
then the spectrum of s(T)"'T is clustered around 1.

The outline of the paper is as follows. In the next section, we will exhibit a basis for
the set of matrices that can be diagonalized by sine transforms. The basis is first obtained



by Boman and Koltracht [5]. Using this basis, we can then construct the optimal sine
transform based preconditioner s(A) for any given matrix A. We will prove that the
construction of such preconditioners is of O(n?) operations for general matrices and the
count reduces to O(n) operations when A is a Toeplitz matrix. We show that s(A) is
positive definite when A is positive definite. We also show that if SAS has Property A,
then s(A) is the best conditioned sine transform based preconditioner, i.e.

k(s(A)"V2As(A)"Y?) < k(BTY2AB7Y?)

for any matrices B that can be diagonalized by the sine transform matrix S. In §3, we will
give the convergence analysis of the optimal sine transform based preconditioners when
they are applied to solve symmetric Toeplitz systems. Finally, numerical results and some
concluding remarks are given in §4.

2 Optimal Discrete Sine Transform Preconditioner

Let S,, be the n-by-n discrete sine transform matrix with the (¢, j)th entry given by

2 . mij .
1< <n. 3
Voo, 1< <n 3

We note that S, are symmetric and orthogonal, i.e. S, = S! and S, S. = I,,. Also, for
any n-vector v, the matrix-vector multiplication S, v can be computed in O(nlogn) real
operations, ((n/2)logn —n + 1 multiplications and 2nlogn — 4n + 4 additions), see Yip
and Rao [23]. In contrast, the numbers of real multiplications and real additions required
in n-dimensional fast Fourier transform (FFT) are nlogn — 3n + 4 and (3n/2)logn —
(5n/2) + 4 respectively, see Bergland [3]. The number of operations required for the fast
sine transform (FST), are almost the same as that of FFT. In this paper, we consider
solving linear systems by the PCG method with preconditioners that can be diagonalized
by S,. Let B,«, be the vector space containing all such matrices. More precisely, we let

B,xn = {ShAnS, | A, is an n—by—n diagonal matrix}.

Recently, Boman and Koltracht [5], Bini and Benedetto [4] and Huckle [19] indepen-
dently proved that a matrix belongs to B,,«,, if and only if the matrix can be expressed as
a special sum of a Toeplitz matrix and a Hankel matrix. We recall that a matrix A = [a; ]
is said to be Toeplitz if a; ; = a;—; and Hankel if a; ; = a;;;. The idea of their proof is
to exhibit a basis for B, «, with each element in the basis being a sparse matrix and
possessing a nice structure. The following Lemma gives the basis Boman and Koltracht
considered.



Lemma 1 (Boman and Koltracht [5]) Let Q;, i = 1,...,n, be n-by-n matrices with
the (h, k)th entry given by

1 it h—k|=i—1,
—1 ifh+k=i-2,
Qlhk) =93 1 itpk—on—i+3,
0  otherwise.
Then {Q;}I, is a basis for By,y,.

To illustrate the sparsity and nice structure of ();, we display the basis for the case
n = 6.

100000 010000
010000 101000
001000 010100

Q1_000100’Q2_001010’
000010 000101
00000 1 0000T10

10100 0 0 -1 01 0 0
00010 0 -1 000 1 0
10001 0 0 000 0 1

@5 = 010001’Q4_ 1 000 0 o[
00100 0 0 100 0 —1
00010 —1 0 010 —1 0

0 0 -1 0 1 0 0O 0 0 -1 0 1

0 -1 0 0 0 1 0 0 -1 0 0 0

-1 0 0 0 0 0 0 -1 0 0 0 —1

@5 = 0o 0 0 0 0 —1 , @o= -1 0 0 0 -1 0

1 0 0 0 -1 0 0 0 0 -1 0 0

0 1 0 -1 0 0 1 0 -1 0 0 0

(4)
In order to give a precise description of the vector space B, «,, let us introduce the
following notations.

Definition 1 Let z = (z1,...,2,)" be an n-vector. Define

7= (2n,...,2)"
to be the vector with components of z listed in reverse order. Also, define
o(z) = (z3,...,2,,0,0)

to be the n-vector which is obtained by upper shifting of z by two entries.
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Definition 2 Let z be an n-vector. Define T,(z) to be the n-by-n symmetric Toeplitz
matriz with z as the first column and H,(z) to be the n-by-n Hankel matriz with z as the
first column and z as the last column.

With the above notations, we are going to identify the vector space B, ;.
Lemma 2 B,., = {7.(2) — H.(0(2)) | z = (z1,...,2,)" € R"}.
Proof: Let e; be the ith unit vector in R". Then by Lemma 1, (); can be rewritten as

Qi = Tu(ei) — Hulo(es)).

Therefore, an n-by-n matrix B,, belongs to B,,«, if and only if there exist z;,...,2, € R
such that
B, =Y %Q; = Y zlTule;) = Halo(e;))]
7j=1 7j=1
= T.>_ze) —Ha(0(>_ ze)))
j=1 j=1

= Tu(2) = Hu(o(2))

with z = Z?:l zjej. O
For any Toeplitz matrix T}, with t = (¢o,...,¢,_1)" as the first column, Boman and

Koltracht [5] recently considered using the matrices K, = T,(t) — H,(o(t)) as precondi-
tioners for solving symmetric Toeplitz systems 7,,x = b. We remark from Lemma 2 that
K, can be diagonalized by the sine transform matrix S,. In [5], the preconditioner K,
is shown to be positive definite whenever 7, is. Also, if ¢; are Fourier coeflicients of a
positive function in the Wiener class (i.e. Y 7 [t;| < oo), then the conjugate gradient
method applied to the preconditioned matrix K 'T;, has a superlinear convergence rate.
We note that if T, is a tridiagonal Toeplitz matrix, then #,(o(t)), the Hankel part of
K,, is a zero matrix and hence the preconditioner K, is equal to the matrix 7, itself.
It follows that tridiagonal Toeplitz systems can be solved in one iteration by the PCG
method with preconditioners K.

However, we remark that their approach of constructing sine transform based pre-
conditioners for Toeplitz matrices cannot be extended to general symmetric matrices. In
this paper, we are going to proposal sine transform based preconditioners s(A,) that
are defined for any n-by-n symmetric matrices A,. Furthermore, if A, is a symmetric
tridiagonal Toeplitz matrix, then our s(A,) is also equal to A,, itself.
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Since preconditioners can be viewed as approximations to the given matrix A,, it is
reasonable to consider preconditioners which minimize ||B, — A,l|| over all B, € By,
for some matrix norm || - ||. We choose our preconditioner s(A,) to be the minimizer of
||Bn, — Anl||F in the Frobenius norm. According to the terminology used in T. Chan [6],
we call s(A4,) the optimal sine transform based preconditioner. We will show that s(A4,,)
can be obtained in O(n?) operations for general matrix. The cost can even be reduced to
O(n) operations when A, is a Toeplitz matrix. We remark that the cost of constructing
s(Ay) is the same as that of optimal circulant preconditioner ¢(A,,).

For the sake of presentation, let us illustrate the procedure of constructing s(A,) by
considering the simple case n = 6. By Lemma 2, s(Ag) is of the following form:

Z1 R9 Z3 R4 Ry Zg Z3 24 R5 <g 0 0

Zo 21 29 23 21 % 20 25 2z 0 0 O

A — 23 29 21 2o 23 24 25 26 0 0 0 2z
S( 6) = - )

24 23 Z9 21 %2 23 26 0 0 0 2z 25

Zy R4 23 R9 21 R9 0 0 0 Z6 R5 24

26 R5 R4 R3 22 21 0 0 26 R5 R4 <3

where z = (21, 2, 23, 24, 25, 26)" is the unknown vector to be found. Let a;; be the (i, j)th
entry of Ag. Minimizing ||s(Ag) — As||% by setting

0
2 o(ae) ~ Aullp =0, fori=1,....6
we see that z satisfies the following linear system
6 0 -2 0 -2 0 %
0 10 0 —4 0 —4 29
-2 0 10 0 -4 O 23
0O -4 0 10 0 —4 24
-2 0 —4 0 10 O 25
0 —4 0 —4 0 10 %

a11 + Qg2 + A3z + Q44 + Q55 + Ges
(12 + Q23 + A34 + Q45 + A5 + Q21 + Q32 + Q43 + G54 + Gg5
o Q13 + Q24 + Q35 + Q46 + 31 + Q42 + Q53 + G4 — Q11 — Ags ‘ (5)
(14 + Qg5 + a36 + Q41 + G52 + A3 — Q12 — Q21 — 56 — U5
@15 + 26 + A51 + Qg2 — Q13 — Q22 — 431 — Q4 — 55 — Up4
Q16 + Qg1 — Q14 — Q23 — A32 — Q41 — A3 — (45 — A54 — G63

We observe that the ith entry of the right hand side vector in (5) is obtained by adding
or subtracting those ay, for which the (h, k)th position of @; is 1 or —1 respectively (c.f.

(4))-



For general n, if we let 1, be the n-vector with all entries being one and o be the
Hadamard product, then a straightforward computation as the one we did above shows
that the right hand side vector is given by

r, = (1,(Qro A1y, 1,(Q2 0 Ap) 1y, ., 15 (Qn 0 4,)1,,)" (6)
If A, has no special structure, then clearly, r,, = (r,...,7,)! can be computed in O(n?)
operations because ; are sparse with only O(n) nonzero entries each. We note however
that if A,, is a Toeplitz matrix with first row (¢, ¢, ..., ¢,_1), then r, can be obtained in

O(n) operations. This can be seen from the following algorithm when n is even. For odd
n, similar algorithm can be derived.

Algorithm 1:

r = ’nto

Ty = 2(7L — 1)t1
wy = —tp

v = —2t1
fork=2:7%

k-1 — 2(n — 2k + 2)t2k_2 + 2wk_1
Wy = Wg—1 — 2lop 2
Top = 2(n — 2k + 1)t2k,1 + 2up_1
Vg = Vg1 — 2lor1

end

We now go back to the solution of the linear system (5). We first reorder the unknowns
z; of z in such a way that the odd index entries and even index entries appear respectively
in the upper half and lower half of the resulting vector. For simplicity, this leads to the
following definition.

Definition 3 Let P, be the n-by-n permutation matriz with the (i, j)th entry given by

1 iflgig[%]andj:%—l,
[Pn]i,j: 1 if [%] <i§nandj:2i—2[%],
0 otherwise.

In particular, Fg is given by

[l lololNoll S
OO = O OO
[lelelall S ™)
oSO R O O O O
oSO oo~ O o
— o O O o O



After permutation, (5) becomes a block diagonal system,

6 -2 -2 0 0 0 7

2 10 =4 0 0 0 2

2 —4 10 0 0 0 |
0 0 0 10 —4 —4 N (7)
0 0 0 —4 10 —4 2
0 0 0 —4 —4 10 %

The following theorem proves that in general if r, is known in advance, then solving
the block diagonal matrix can be done in O(n) operations.

Theorem 1 Let A, = [a;;] be an n-by-n symmetric matriz and s(A,) be the minimizer
of ||Bn — Anl|F over all B, € B,x,. Denote U, to be the m-by-m matriz with all its
entries being one, and e, to be the first unit vector of length [5]. Then

s(An) = Tu(2) — Hn(o(2))

with .
1 Un + In +ee 0
= 7Pt ? p ! Pn n
T L G R ®
if n is even; and
1 2Uns1 + Ins1 + €€} 0
= P! 2 2 P,r, 9
2(n + 1) n( 0 Unc + Luz |0 (9)

if nois odd.

Proof: Here we just give the proof for the case n is even. The proof for odd n is similar.
To minimize ||B, — A,||% over B,,.,, we set

%HS(An)—AnH%:O, fori=1,...,n.

We obtain a linear system that has the same structure as that in (5). Permutating the
system by P, yields

DKD + Heel 0 B
( 0 Ie P,z = P,r,.
Here K is an -by-Z Toeplitz matrix given by
K = 7'%([2(71 —1),—4,—4,...,—4]")
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and D = diag(3,1,1,...,1) is an 2-by-2 diagonal matrix (c.f. (7)). Note that K can be
rewritten as
K =2(n+1)I; — 4Us. (10)

Applying Sherman-Morrison formula, see [17, p.3], we can express K~' as,

1 1
e Un + ——In.
n+1 2 2n+1) 2

Similarly by rewriting

1
DKD +

erel =2(n+1)Ix — (212 —e1)(212 —e1)" + (n + 1)esef

and applying Sherman-Morrison formula we have

1 n—+1
—_~_(DKD
st PEP+

ee))(Un + In +eef) = In.

Combining these together with the fact that P, is orthogonal, (8) follows. n

Before going on, let us first emphasize the relationship between the first column of
matrices B € B,,, and their eigenvalues. For any matrix B € B,,,, we have B = SAS
where A is the eigenvalue matrix of B. If D denotes the diagonal matrix whose diagonal
is equal to the first column of S,, then we have Se; = D1,,. Therefore the relation is
given by

D™'S,Be, = Al,,. (11)

Hence, any matrix in B,,«,, is determined by its first column. In particular, eigenvalues of
the minimizer s(A,) can be computed in O(nlogn) operations. The following corollary
gives the explicit formula for the entries of the first column of s(A4,). The proof follows
directly from the expressions (8) and (9) and therefore we omit it.

Corollary 1 Let A, = [aji] be an n-by-n symmetric matriz and s(A,) be the minimizer
of ||Bn, — Au||F over all B,, € B,x,. Denote z to be the first column of s(Ay). If s, and
s. are defined respectively to be the sum of the odd and even index entries of r,,, then we
have

[Z]1 = ﬁ@[rnh — [rn]3)
[z]i = m([rn]z — [rn]i+2) T = 2,...,n—2
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with

1

z],_, = m(so+[rn]n—1)
1

z], = m(QseﬂL[rn]n)

if n is even; and

B 1

2], , = m(5e+[rn]n)
1

z], = m(250+[rn]n)

if nois odd.

From Corollary 1 and (6), we see that s(A,) can be obtained in O(n?) operations for
general symmetric matrix A, and O(n) operations for band matrix A,. Using Algorithm
1, we further see that only O(n) operations is required if A, is a symmetric Toeplitz
matrix. In the following, we give some spectral properties of s(A,).

Theorem 2 Let A, be an n-by-n symmetric matriz. Then s(A,,) is symmetric. Moreover,
we have

)\min(An) S )\min(S(An)) S )\maX(S(An)) S )\maX(An) 9 (12)

where Amax(-) and Amin(+) denote the largest and the smallest eigenvalues respectively. In
particular,

[Is(An)ll2 < [[Anll2 (13)
and if A, is positive definite, then s(A,) is also positive definite.

Proof: The proof is similar to that of Theorem 1 in Chan, Jin and Yeung [9] or that of
Theorem 2 in Huckle [18]. 0

Next we consider matrices A, having Property A, i.e. there exists a permutation

matrix P such that
D, E
t_ 1 Lo
PAP _<E1 DQ),
where D, and D, are square diagonal matrices and F; and FE5 are arbitrary matrices. In
[11], Chan and Wong proved that if F'A, F* has Property A, then the optimal circulant
preconditioner ¢(A,) minimizes the condition number x(C~/2A4,C~1/2) over all positive
definite circulant matrices C'. Here similarly if S,, A,,S,, has Property A, then we can prove
that s(A,) minimizes x(B~Y?A, B~'/?) over all positive definite B € B,,,. The proof of
the following theorem is similar to that of Theorem 1 in [11] and therefore will be omitted.
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Theorem 3 Let A, be an n-by-n symmetric positive definite matriz. If the matriz
SnA,S, has Property A, then s(A,) minimizes k(B~Y2AB~'/?) over all symmetric posi-
tive definite matrices B € B, »y,.

3 Application in Solving Toeplitz Systems

In this section, we consider applying the optimal sine transform based preconditioners
s(T,) to solving a class of symmetric Toeplitz systems T,x = b by the preconditioned
conjugate gradient method. Our main result is that the spectra of these preconditioned
matrices s(7T},) 1T, are clustered around 1. Hence the conjugate gradient method when
applied to solving the preconditioned systems s(T;,)"'T,x = s(T;,)"'b converges suffi-
ciently fast.

In the following, we assume that the Toeplitz matrices 1), are generated by 2r-periodic
continuous real-valued even functions. We emphasize that this class of symmetric Toeplitz
matrices arises in some practical problems. Typical examples of generating functions
are the kernels of the Wiener-Hopf equations, see Gohberg and Fel’dman [15, p.82], the
function which gives amplitude characteristic of the recursive digital filters, see Chui and
Chan [14], the spectral density functions in stationary stochastic process , see Grenander
and Szeg6 [16, p.171] and the point-spread functions in image deblurring, see Oppenheim
[20, p.200]. In the following discussions, we denote Cy, to be the set of 2mw-periodic
continuous real-valued even functions. For all f € C,,, let

1 2w )
te(f) = —/ f(@)e *dg,  k=0,4+1,42,---
2 Jo
be the Fourier coefficients of f. Since f is even and real-valued, we have
t(f) =t k(f), k=0,£1,£2---.

For simplicity, we write ¢(f) = tx. We also let £, to be an n-vector with entries given by
the first n Fourier coefficients of f, i.e.

fn — (t(]; tl; t27 s 7tn71)t-
The following Lemma gives the relation between f and the spectrum \(7,(£,)) of T,(£,).

Lemma 3 (Grenander and Szegd [16, pp.63-65]) Let f € Cy, with the minimum
and mazimum values given by fuin and fmax respectively. Then MN(T,(£,)) C [fmin, fmax)-
In particular, we have

I Ta(®)l2 < 11f]l

where || - || denotes the supremum norm.
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In the following, we first prove that if f is an even function in the Wiener class, then
the spectrum of 7, (f,) —s(7,(£f,)) is clustered around zero. Then we extend the clustering
result from the Wiener class to Cy,. We remark that a function f is in the Wiener class
if its Fourier coefficients are absolutely summable, i.e.

o0

D ] < o

k=—00

It is clear that if f is an even function in the Wiener class, then f € C,,.
In the analysis of the spectra of the preconditioned matrices, we first write 7, (f,) —

s(Tau(£,)) as
To(£n) — s(Ta(£2)) = Hulo(£2)) + Ta(fn) — Ha(o(£n)) — s(Tu(fn))- (14)

The clustering of the spectrum of #,(c(f,)) has already been proved by Boman and
Koltracht [5].

Lemma 4 (Boman and Koltracht [5]) Let f be an even function in the Wiener class.
Then for all € > 0, there exist N, M > 0 such that for all n > N, at most M eigenvalues
of Hn(o(£,)) have absolute value larger than e.

According to this lemma and equation (14), it suffices to show that the spectra of
Tn(£,) — Hu(o(£,)) and s(7,(£f,)) are asymptotically the same.

Lemma 5 Let f be an even function in the Wiener class, then

n— 00

Proof: For simplicity, we only consider the case where n = 2m. The case where n is odd
can be proved similarly. We first note from Theorem 1 and Corollary 1 that our optimal
sine transform based preconditioner s(7,(f,)) can be expressed as follows:

$(To(£n)) = Ta(2n) — Hu(o(2n)).
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Here the kth entry of the n-vector z, is given by

( 92 m—1
t() + n——|—1 Z tgj, k= 17
Jj=(k+1)/2
9 m—1
Wt 2 i k=2,
[Znlk = 4 N
") (n—k+3 2 X
( n+1 )tk—1+—n+1 Z taj, 3 <k <n and where £ is odd,
j=(1~t1+1)/2
—k+3 2 =
<7nn+41r )tk1+—n+1 Z tajs 3 < k < n and where £ is even.
\ j=k/2

It is clear that 7, (f,) —H,(o(£,)) — s(T.(f,)) is a symmetric Toeplitz-plus-Hankel matrix.
After some manipulations, it can be re-written as

To(fn) = Hulo(£0)) = s(Ta(fn)) = Tu(x1) = Ha(0(x1)) = Ta(x2) + Halo(x2)),

where )
X; = 0,0,t9,2ts,...,(n—3)tn_o, (n — 2)tn_1)"
L= g (00,82, 20, (0= B, (1= 2t )
and
9 m—1 m—1 m—1 m—1 ¢
Xy = oo (Z t2j,Zt2j+1, ' taj, ' t2j+17---7tn—27tn—17070) :
7j=1 7j=1 7j=2 7j=2

As T, (x1), Tn(x2), Hy(o(x1)) and H,(0(x2)) are symmetric matrices, we obtain

| Ta(e)ll2 < M Ta(x0)ll < 2| ]

| Ta ()2 < [ Ta(x2) |l < 2x2l]s;

[ Hn (o (1)) l2 < 2[[x1 s

and
[ Hn(o(x2))|]2 < 2|[x2l]1.

For all € > 0, since f is in the Wiener class, we can always find positive integers Ny, N,
and an N3 > N; such that

o) 00 N»
1 € € 1 €
—E t] < = E t] < — d —E it < —.
N 2l =g It <55 an N, it < 5
Jj=1 Jj=Na2+1 j=1

14



Thus, for all n > max{Ny, N3}, we have ||x;||; < €/6 and

o0

N>
2 )
|21 < VZJ(VZH +ltgal) +2 D (ltgs] + [tz ]) <
3 =1 j=Na+1

| ™

Hence the result follows. O

We now extend the result in Lemma 4 to the class of 27-periodic continuous even
functions.

Lemma 6 Let f € Co,. Then for all e > 0, there exist N, M > 0 such that for alln > N,
at most M eigenvalues of Tp(f,) — s(Tp(£,)) have absolute value larger than e.

Proof: The idea of our proof is to use the Weierstrass Theorem to approximate any
real-valued even function in Cy, by trigonometric polynomials. Let f € C,,. Then for
any € > 0, there exist an integer M > 0 and a trigonometric polynomial

M
p(e): Z Ckeika
k=—M

with ¢y = ¢_j such that ¢ = f — p and

9lleo <, (15)

see Cheney [13, p.144]. For all n > 2M, by Lemmas 4 and 5, we write

= Tu(gn) — 8(Tu(8n)) + Tu(Pn) — s(Tu(Pn))
= Tu(gn) = 5(Tu(8n)) + Hul(o(Pn)) + Tu(Pn) — Hu(o(Pn)) — s(Tu(pn)).  (16)

We note that the first two terms in right hand side of (16) are matrices of small norm. In
fact by (13), Lemma 3 and (15), we have

170 (8n) = s(Ta(gu))ll2 < [[Tn(gn)ll2 + [[5(Ta(gn))ll2 < [glloo +[lglloo < 2e.

Since p is a real-valued even function and also in the Wiener class, Lemmas 4 and 5 imply
that both matrices H,(0(p,)) and 7, (pn) — Hn(0(Pn)) — s(Tn(prn)) have spectra clustered
around zero. Hence the result follows. O
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From (12) and Lemma 3, we can easily show that the smallest eigenvalue of s(7,(f,))
is uniformly bounded from below when f is positive. Using the identity

$(Ta(£2)) " Talfn) = Lo+ s(Ta(fa)) [(Ta(fa) — s(Tu(£))],
we obtain the following main theorem.

Theorem 4 Let f € Cy, be positive. Then for all e > 0, there exist N, M > 0 such that
for alln > N, at most M eigenvalues of s(T,(£,)) " T (£,) — I, have absolute value larger
than e.

It follows from Theorem 4 that the conjugate gradient method when applied to solving
T.(f,)x = b, converges superlinearly, see for instance Chan [8]. Finally we consider the
cost of solving Toeplitz systems. It is known that the cost per iteration in the precon-
ditioned conjugate gradient method is about 5n operations plus the cost of computing
T.(£,)y and s(7,(f,)) 'd for some vectors y and d, see Axelsson and Barker [2, p.23].
Both matrix-vector multiplications 7, (f,)y and s(7,(f,))~'d can be done by using fast
sine transforms, see for instance Boman and Koltracht [5]. The cost is of O(nlogn) oper-
ations. Hence the cost per iteration is of order O(nlogn) operations. As the method con-
verges superlinearly, the number of iterations required for convergence remains bounded.
Hence the total cost of solving the Toeplitz system 7, (f,)x = b is in O(n log n) operations.
We emphasize that all the computations can be done in real arithmetic.

4 Numerical Examples and Concluding Remarks

In this section, we compare our optimal sine transform based preconditioners s(7;,) with
sine transform based preconditioners derived by Boman and Koltracht [5], Strang’s cir-
culant preconditioners [21] and T. Chan’s circulant preconditioners [6]. We test their
performances on four even functions defined on [—m, 7]. They are

(1) S5 (14 [K]) e,
(i) 0" +1,

(iii) 62 and
(iv) S (14 k).

We note that the first three functions are continuous, but the fourth one is not. Also the
third function has a zero at # = 0. The Toeplitz matrices 7, are formed by evaluating
the Fourier coefficients of the test functions.

16



In the test, we used the vector of all ones as the right hand side vector and the zero
vector as the initial guess. The stopping criterion is ||e,||2/||eo||2 < 1077, where e, is the
residual vector after ¢ iterations. All computations are done by Matlab on a SUN sparc
workstation. Tables 1-4 show the numbers of iterations required for convergence with
different choices of preconditioners. In the tables, I denotes no preconditioner was used,
Sc, S, Cs and Cr are respectively our optimal sine transform based preconditioners,
Boman and Koltracht’s preconditioners, Strang’s circulant preconditioners and T. Chan’s
circulant preconditioners.

From the numerical results, we see that in all tests, our optimal sine transform based
preconditioners Sc performs almost the same as Boman’s, Strang’s and T. Chan’s ones.
However, for the test function (iii), the number of iterations of our optimal sine transform
based preconditioners S¢ is less than that of circulant preconditioners (c.f. Table 3).

n I SC SB CS CT
16 | 8 | 6 | 6 4 7
32 || 11| 6 5 5 6
64 || 14 | 5 5 Y Y
128 || 17| 5 5 Y Y
256 | 21| 5 5 Y Y
5121 22| 5 5 5 5

Table 1. Numbers of iterations for test function (i).

=

n I SC SB CS CT
16 | 8 | 6 | 6 8 8
32 119 6 5 7 8
64 || 36| 5 5 6 Y
128 || 54 | 5 5 6 Y
256 || 66 | 5 5 6 Y
512 | 70 | 5 5 6 5

Table 2. Number of iterations for test function (ii).

n I SC SB CS CT
16 8 4 5 7 8
32 || 16 | 4 Y 7 110
64 || 37 | 5 Y 7|11
128 | 83 | 5 6 7|14
256 || 176 | 5 6 8 | 17
012 || 370 | 5 6 8 | 22

Table 3. Number of iterations for test function (iii).
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n I SC SB CS CT
16 || 8 | 6 6 4 7
32 (|11 | 6 5) 5 6
64 |16 | 6 5 5 6
128 | 19| 6 5 5 5
256 | 21| 6 5 Y Y
512 || 24| 6 ) Y Y

Table 4. Number of iterations for test function (iv).
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In this paper, we have proposed and analyzed the optimal sine transform based pre-
conditioners s(A) for general symmetric matrices A. For Toeplitz or near-Toeplitz systems
arising from the discretization of elliptic problems with Dirichlet boundary conditions, we
anticipate them to be better preconditioners than circulant ones. A typical example is
the 1-dimensional Laplacian tridiag|—1,2, —1]. In this case, our preconditioner is exact
whereas the condition number of the system preconditioned by the optimal circulant pre-
conditioner is of O(n*?), see R. Chan and T. Chan [10]. Recently, Chan and Wong [12]
proved that when the optimal sine transform based preconditioners are used in solving
the elliptic problems, the condition number of these preconditioned matrices are bounded
independent of the sizes of the discretization matrices.

We remark that using the approach in this paper, one can also construct the optimal
cosine transform based preconditioner which is defined to be the minimizer of ||R — Al|p
over the set of matrices R that can be diagonalized by the cosine transform matrix. The
cost of construction will also be the same as that of s(A).
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