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Abstract

The optimal circulant preconditioner for a given matrix A is de�ned to be the

minimizer of jjC � AjjF over the set of all circulant matrices C� Here jj � jjF is

the Frobenius norm� Optimal circulant preconditioners have been proved to be

good preconditioners in solving Toeplitz systems with the preconditioned conjugate
gradient method� In this paper� we construct optimal sine transform based precon�

ditioner which is de�ned to be the minimizer of jjB �AjjF over the set of matrices

B that can be diagonalized by sine transforms� We will prove that for general n�

by�n matrices A� these optimal preconditioners can be constructed in O�n�� real

operations and in O�n� real operations if A is Toeplitz� We will also show that

the convergence properties of these optimal sine transform preconditioners are the

same as that of the optimal circulant ones when they are employed to solve Toeplitz

systems� Numerical examples are given to support our convergence analysis�
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� Introduction

In this paper� we discuss the solutions to a class of symmetric positive de
nite systems
Ax � b by the preconditioned conjugate gradient �PCG
 method� The rate of conver�
gence of the conjugate gradient �CG
 method depends on the condition number ��A
� see
Axelsson and Barker ��� p����� In general� the smaller ��A
 is� the faster the convergence
will be� In case ��A
 is not small� the method is always used with a symmetric positive
de
nite matrix M to speed up the convergence rate� More precisely� instead of applying
the CG method to the system Ax � b� we apply the method to the transformed system
�A�x � �b where �A � M����AM����� �x � M���x and �b � M����b� The matrix M is called
a preconditioner for A� The preconditioner M is chosen in the hope that it will minimize
��M��A
 and allow e�cient computation of the product M��v for any given vector v�
The preconditioner M for A can also be viewed as an approximation to A that is easily
invertible�

An n�by�n matrix T � �ti�j� is said to be Toeplitz if ti�j�ti�j� i�e�� T is constant along
its diagonals� An n�by�n matrix C is said to be circulant if it is Toeplitz and its diagonals
cj satisfy cn�j�c�j for � � j � n � �� We remark that all circulant matrices C can be
diagonalized as

C � F ��F ��


where F � �p
n
�e

��ijk
n �n��j�k�� is the Fourier matrix� Hence� for any vector v� the matrix�

vector multiplicationC����v � F ������Fv can be computed e�ciently by the fast Fourier
transform �FFT
 in O�n logn
 operations� see Bergland ����

Since circulant matrices are Toeplitz matrices themselves� it is natural to consider
using circulant matrices as preconditioners for Toeplitz systems� Given a Toeplitz matrix
T � there are many possible circulant matrices C that one can de
ne to be preconditioners
for the system Tx � b� Since the convergence rate of the PCG method depends on how
good the preconditioner C approximates T � much attention has been focused on searching
a circulant matrix C which is close to the matrix T in certain norms� see T� Chan ����
Tyrtyshnikov ���� and Huckle ����� T� Chan in ��� proposed a circulant preconditioner
c�T 
 which is the minimizer of jjC�T jjF over all circulant matrices C� Here jj � jjF denotes
the Frobenius norm� He called c�T 
 the optimal circulant preconditioner and showed that
the 
rst column entries cj of c�T 
 are given by

cj �
jt��n�j� � �n� j
tj

n
� j � �� �� ���� n� ��

where tj are the diagonals of T �
It was shown in Chan ��� that if the underlying generating function of T is a positive

function in the Wiener class� then the spectrum of c�T 
��T is clustered around �� Tyr�
tyshnikov in ���� extended the de
nition of c��
 to any general n�by�n matrix A� Also� he
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proved that c�A
 is symmetric positive de
nite whenever A is� Note that forming c�A

only requires O�n
 operations for Toeplitz matrix A of order n� and O�n�
 operations
for general n�by�n matrix A� However� we remark that when A are tridiagonal Toeplitz
matrix or tridiagonal block Toeplitz matrix� such as the ��dimensional and ��dimensional
discrete Laplacian P � tridiag���� ����� and P � I� I�P respectively� the performance
of the optimal circulant preconditioners c�A
 are not very good� see R� Chan and T� Chan
�����

The purpose of this paper is to construct optimal sine transform based preconditioners
s�A
 for general matrices A� They are de
ned to be the minimizer of jjB�AjjF over the
set of matrices B that can be diagonalized by the sine transform matrix S� Since only
sine transforms will be involved� all computations can be done in real arithmetic� We
remark that the matrix�vector product Sv can be done in O�n logn
 real operations� see
for instance Yip and Rao ����� Moreover� we will see that if A is a tridiagonal Toeplitz
matrix� s�A
 is just equal to A itself�

We note that since the Frobenius norm is a unitary�invariant norm� the minimizer
s�A
 is given by S�S� where � is a diagonal matrix with diagonal entries

�j�j � �SAS
j�j� j � �� � � � � n� ��


see for instance Huckle ����� However� computing all the diagonal entries of � using
formula ��
 will require O�n� logn
 operations� In this paper� we will show that the
minimizer s�A
 can be obtained in O�n�
 operations for general matrix A� The cost can
even be reduced to O�n
 operations when A is a Toeplitz matrix�

We remark that these operation counts are the same as that of obtaining optimal
circulant preconditioners c�A
� see T� Chan ���� However� we emphasize that to construct
c�A
 economically� T� Chan has used the fact that all matrices that can be diagonalized
by Fourier matrix are circulant matrices which are matrices having very nice algebraic
structures� Thus in order to construct s�A
 e�ciently� one needs to 
nd matrices having
special algebraic structures to characterize all matrices that can be diagonalized by sine
transforms� Recently� Boman and Koltracht ���� Bini and Benedetto ��� and Huckle ��	�
independently showed that matrices that can be diagonalized by sine transforms can be
written as a sum of a Toeplitz matrix and a Hankel matrix� This decomposition is the
crucial step that leads us to a fast algorithm for obtaining s�A
�

As for how good optimal sine transform based preconditioners s�T 
 are as precondi�
tioners for Toeplitz systems Tx � b� we will show that they have the same convergence
properties as the optimal circulant preconditioners c�T 
� More precisely� we will show that
if a given Toeplitz matrix T is generated by a ���periodic positive continuous function�
then the spectrum of s�T 
��T is clustered around ��

The outline of the paper is as follows� In the next section� we will exhibit a basis for
the set of matrices that can be diagonalized by sine transforms� The basis is 
rst obtained
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by Boman and Koltracht ���� Using this basis� we can then construct the optimal sine
transform based preconditioner s�A
 for any given matrix A� We will prove that the
construction of such preconditioners is of O�n�
 operations for general matrices and the
count reduces to O�n
 operations when A is a Toeplitz matrix� We show that s�A
 is
positive de
nite when A is positive de
nite� We also show that if SAS has Property A�
then s�A
 is the best conditioned sine transform based preconditioner� i�e�

��s�A
����As�A
����
 � ��B����AB����


for any matrices B that can be diagonalized by the sine transform matrix S� In x�� we will
give the convergence analysis of the optimal sine transform based preconditioners when
they are applied to solve symmetric Toeplitz systems� Finally� numerical results and some
concluding remarks are given in x��

� Optimal Discrete Sine Transform Preconditioner

Let Sn be the n�by�n discrete sine transform matrix with the �i� j
th entry given byr
�

n � �
sin�

�ij

n� �

� � � i� j � n� ��


We note that Sn are symmetric and orthogonal� i�e� Sn � St
n and SnS

t
n � In� Also� for

any n�vector v� the matrix�vector multiplication Snv can be computed in O�n logn
 real
operations� ��n��
 logn� n� � multiplications and �n logn� �n� � additions
� see Yip
and Rao ����� In contrast� the numbers of real multiplications and real additions required
in n�dimensional fast Fourier transform �FFT
 are n logn � �n � � and ��n��
 logn �
��n��
 � � respectively� see Bergland ���� The number of operations required for the fast
sine transform �FST
� are almost the same as that of FFT� In this paper� we consider
solving linear systems by the PCG method with preconditioners that can be diagonalized
by Sn� Let Bn�n be the vector space containing all such matrices� More precisely� we let

Bn�n � fSn�nSn j �n is an n�by�n diagonal matrixg�

Recently� Boman and Koltracht ���� Bini and Benedetto ��� and Huckle ��	� indepen�
dently proved that a matrix belongs to Bn�n if and only if the matrix can be expressed as
a special sum of a Toeplitz matrix and a Hankel matrix� We recall that a matrix A � �ai�j�
is said to be Toeplitz if ai�j � ai�j and Hankel if ai�j � ai�j� The idea of their proof is
to exhibit a basis for Bn�n with each element in the basis being a sparse matrix and
possessing a nice structure� The following Lemma gives the basis Boman and Koltracht
considered�
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Lemma � �Boman and Koltracht ��	� Let Qi� i � �� � � � � n� be n�by�n matrices with

the �h� k
th entry given by

Qi�h� k
 �

����
���

� if jh� kj � i� ��
�� if h� k � i� ��
�� if h� k � �n� i� ��
� otherwise�

Then fQig
n
i�� is a basis for Bn�n�

To illustrate the sparsity and nice structure of Qi� we display the basis for the case
n � ��

Q� �

�
BBBBBB�

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

�
CCCCCCA
� Q� �

�
BBBBBB�

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

�
CCCCCCA
�

Q� �

�
BBBBBB�

�� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � ��

�
CCCCCCA
� Q	 �

�
BBBBBB�

� �� � � � �
�� � � � � �
� � � � � �
� � � � � �
� � � � � ��
� � � � �� �

�
CCCCCCA
�

Q
 �

�
BBBBBB�

� � �� � � �
� �� � � � �

�� � � � � �
� � � � � ��
� � � � �� �
� � � �� � �

�
CCCCCCA
� Q� �

�
BBBBBB�

� � � �� � �
� � �� � � �
� �� � � � ��

�� � � � �� �
� � � �� � �
� � �� � � �

�
CCCCCCA
�

��

In order to give a precise description of the vector space Bn�n� let us introduce the
following notations�

De�nition � Let z � �z�� � � � � zn

t be an n�vector� De�ne

�z � �zn� � � � � z�

t

to be the vector with components of z listed in reverse order� Also� de�ne

��z
 � �z�� � � � � zn� �� �

t

to be the n�vector which is obtained by upper shifting of z by two entries�
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De�nition 
 Let z be an n�vector� De�ne Tn�z
 to be the n�by�n symmetric Toeplitz

matrix with z as the �rst column and Hn�z
 to be the n�by�n Hankel matrix with z as the

�rst column and �z as the last column�

With the above notations� we are going to identify the vector space Bn�n�

Lemma 
 Bn�n � fTn�z
�Hn���z

 j z � �z�� � � � � zn

t � Rng�

Proof� Let ei be the ith unit vector in Rn� Then by Lemma �� Qi can be rewritten as

Qi � Tn�ei
�Hn���ei

�

Therefore� an n�by�n matrix Bn belongs to Bn�n if and only if there exist z�� � � � � zn � R
such that

Bn �
nX

j��

zjQj �
nX

j��

zj�Tn�ej
�Hn���ej

�

� Tn�
nX
j��

zjej
�Hn���
nX
j��

zjej



� Tn�z
�Hn���z



with z �
Pn

j�� zjej�

For any Toeplitz matrix Tn with t � �t�� � � � � tn��

t as the 
rst column� Boman and

Koltracht ��� recently considered using the matrices Kn � Tn�t
�Hn���t

 as precondi�
tioners for solving symmetric Toeplitz systems Tnx � b� We remark from Lemma � that
Kn can be diagonalized by the sine transform matrix Sn� In ���� the preconditioner Kn

is shown to be positive de
nite whenever Tn is� Also� if tj are Fourier coe�cients of a
positive function in the Wiener class �i�e�

P�
j�� jtjj � �
� then the conjugate gradient

method applied to the preconditioned matrix K��
n Tn has a superlinear convergence rate�

We note that if Tn is a tridiagonal Toeplitz matrix� then Hn���t

� the Hankel part of
Kn� is a zero matrix and hence the preconditioner Kn is equal to the matrix Tn itself�
It follows that tridiagonal Toeplitz systems can be solved in one iteration by the PCG
method with preconditioners Kn�

However� we remark that their approach of constructing sine transform based pre�
conditioners for Toeplitz matrices cannot be extended to general symmetric matrices� In
this paper� we are going to proposal sine transform based preconditioners s�An
 that
are de
ned for any n�by�n symmetric matrices An� Furthermore� if An is a symmetric
tridiagonal Toeplitz matrix� then our s�An
 is also equal to An itself�

�



Since preconditioners can be viewed as approximations to the given matrix An� it is
reasonable to consider preconditioners which minimize jjBn � Anjj over all Bn � Bn�n
for some matrix norm jj � jj� We choose our preconditioner s�An
 to be the minimizer of
jjBn � AnjjF in the Frobenius norm� According to the terminology used in T� Chan ����
we call s�An
 the optimal sine transform based preconditioner� We will show that s�An

can be obtained in O�n�
 operations for general matrix� The cost can even be reduced to
O�n
 operations when An is a Toeplitz matrix� We remark that the cost of constructing
s�An
 is the same as that of optimal circulant preconditioner c�An
�

For the sake of presentation� let us illustrate the procedure of constructing s�An
 by
considering the simple case n � �� By Lemma �� s�A�
 is of the following form�

s�A�
 �

�
BBBBBB�

z� z� z� z	 z
 z�
z� z� z� z� z	 z

z� z� z� z� z� z	
z	 z� z� z� z� z�
z
 z	 z� z� z� z�
z� z
 z	 z� z� z�

�
CCCCCCA
�

�
BBBBBB�

z� z	 z
 z� � �
z	 z
 z� � � �
z
 z� � � � z�
z� � � � z� z

� � � z� z
 z	
� � z� z
 z	 z�

�
CCCCCCA
�

where z � �z�� z�� z�� z	� z
� z�

t is the unknown vector to be found� Let aij be the �i� j
th

entry of A�� Minimizing ks�A�
� A�k
�
F by setting

	

	zi
ks�A�
� A�k

�
F � �� for i � �� � � � � ��

we see that z satis
es the following linear system�
BBBBBB�

� � �� � �� �
� �� � �� � ��

�� � �� � �� �
� �� � �� � ��

�� � �� � �� �
� �� � �� � ��

�
CCCCCCA

�
BBBBBB�

z�
z�
z�
z	
z

z�

�
CCCCCCA

�

�
BBBBBB�

a�� � a�� � a�� � a		 � a

 � a��
a�� � a�� � a�	 � a	
 � a
� � a�� � a�� � a	� � a
	 � a�

a�� � a�	 � a�
 � a	� � a�� � a	� � a
� � a�	 � a�� � a��
a�	 � a�
 � a�� � a	� � a
� � a�� � a�� � a�� � a
� � a�

a�
 � a�� � a
� � a�� � a�� � a�� � a�� � a	� � a

 � a�	
a�� � a�� � a�	 � a�� � a�� � a	� � a�� � a	
 � a
	 � a��

�
CCCCCCA
� ��


We observe that the ith entry of the right hand side vector in ��
 is obtained by adding
or subtracting those ahk for which the �h� k
th position of Qi is � or �� respectively �c�f�
��

�

�



For general n� if we let �n be the n�vector with all entries being one and � be the
Hadamard product� then a straightforward computation as the one we did above shows
that the right hand side vector is given by

rn � ��tn�Q� � An
�n� �
t
n�Q� � An
�n� � � � � �

t
n�Qn � An
�n


t� ��


If An has no special structure� then clearly� rn � �r�� � � � � rn

t can be computed in O�n�


operations because Qi are sparse with only O�n
 nonzero entries each� We note however
that if An is a Toeplitz matrix with 
rst row �t�� t�� � � � � tn��
� then rn can be obtained in
O�n
 operations� This can be seen from the following algorithm when n is even� For odd
n� similar algorithm can be derived�

Algorithm ��
r� � nt�
r� � ��n� �
t�
w� � �t�
v� � ��t�
for k � � � n

�

r�k�� � ��n� �k � �
t�k�� � �wk��
wk � wk�� � �t�k��
r�k � ��n� �k � �
t�k�� � �vk��
vk � vk�� � �t�k��

end

We now go back to the solution of the linear system ��
� We 
rst reorder the unknowns
zi of z in such a way that the odd index entries and even index entries appear respectively
in the upper half and lower half of the resulting vector� For simplicity� this leads to the
following de
nition�

De�nition � Let Pn be the n�by�n permutation matrix with the �i� j
th entry given by

�Pn�i�j �

��
�

� if � � i � dn
�
e and j � �i� ��

� if dn
�
e � i � n and j � �i� �dn

�
e�

� otherwise�

In particular� P� is given by �
BBBBBB�

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

�
CCCCCCA
�

�



After permutation� ��
 becomes a block diagonal system��
BBBBBB�

� �� �� � � �
�� �� �� � � �
�� �� �� � � �
� � � �� �� ��
� � � �� �� ��
� � � �� �� ��

�
CCCCCCA

�
BBBBBB�

z�
z�
z

z�
z	
z�

�
CCCCCCA

� P�r�� ��


The following theorem proves that in general if rn is known in advance� then solving
the block diagonal matrix can be done in O�n
 operations�

Theorem � Let An � �ajk� be an n�by�n symmetric matrix and s�An
 be the minimizer

of kBn � AnkF over all Bn � Bn�n� Denote Um to be the m�by�m matrix with all its

entries being one� and e� to be the �rst unit vector of length dn
�
e� Then

s�An
 � Tn�z
�Hn���z



with

z �
�

��n� �

P t
n

	
Un

�
� In

�
� e�e

t
� �

� �Un
�
� In

�



Pnrn ��


if n is even� and

z �
�

��n� �

P t
n

�
�Un��

�

� In��
�

� e�e
t
� �

� Un��
�

� In��
�

�
Pnrn �	


if n is odd�

Proof� Here we just give the proof for the case n is even� The proof for odd n is similar�
To minimize kBn � Ank

�
F over Bn�n� we set

	

	zi
ks�An
� Ank

�
F � �� for i � �� � � � � n�

We obtain a linear system that has the same structure as that in ��
� Permutating the
system by Pn yields 	

DKD � n��
�
e�e

t
� �

� K



Pnz � Pnrn�

Here K is an n
�
�by�n

�
Toeplitz matrix given by

K � Tn
�
����n� �
������� � � � ����t


	



and D � diag��
�
� �� �� � � � � �
 is an n

�
�by�n

�
diagonal matrix �c�f� ��

� Note that K can be

rewritten as
K � ��n� �
In

�
� �Un

�
� ���


Applying Sherman�Morrison formula� see ���� p���� we can express K�� as�

K�� �
�

n � �
Un

�
�

�

��n� �

In
�
�

Similarly by rewriting

DKD �
n� �

�
e�e

t
� � ��n� �
In

�
� ���n

�
� e�
���n

�
� e�


t � �n� �
e�e
t
�

and applying Sherman�Morrison formula we have

�

��n� �

�DKD �

n� �

�
e�e

t
�
�Un

�
� In

�
� e�e

t
�
 � In

�
�

Combining these together with the fact that Pn is orthogonal� ��
 follows�

Before going on� let us 
rst emphasize the relationship between the 
rst column of
matrices B � Bn�n and their eigenvalues� For any matrix B � Bn�n� we have B � S�S
where � is the eigenvalue matrix of B� If D denotes the diagonal matrix whose diagonal
is equal to the 
rst column of Sn� then we have Se� � D�n� Therefore the relation is
given by

D��SnBe� � ��n� ���


Hence� any matrix in Bn�n is determined by its 
rst column� In particular� eigenvalues of
the minimizer s�An
 can be computed in O�n logn
 operations� The following corollary
gives the explicit formula for the entries of the 
rst column of s�An
� The proof follows
directly from the expressions ��
 and �	
 and therefore we omit it�

Corollary � Let An � �ajk� be an n�by�n symmetric matrix and s�An
 be the minimizer

of kBn � AnkF over all Bn � Bn�n� Denote z to be the �rst column of s�An
� If so and
se are de�ned respectively to be the sum of the odd and even index entries of rn� then we

have

�z�� �
�

��n� �

���rn�� � �rn��


�z�i �
�

��n� �

��rn�i � �rn�i��
 i � �� � � � � n� �

��



with

�z�n�� �
�

��n� �

�so � �rn�n��


�z�n �
�

��n� �

��se � �rn�n


if n is even� and

�z�n�� �
�

��n� �

�se � �rn�n


�z�n �
�

��n� �

��so � �rn�n


if n is odd�

From Corollary � and ��
� we see that s�An
 can be obtained in O�n�
 operations for
general symmetric matrix An and O�n
 operations for band matrix An� Using Algorithm
�� we further see that only O�n
 operations is required if An is a symmetric Toeplitz
matrix� In the following� we give some spectral properties of s�An
�

Theorem 
 Let An be an n�by�n symmetric matrix� Then s�An
 is symmetric� Moreover�

we have


min�An
 � 
min�s�An

 � 
max�s�An

 � 
max�An
 � ���


where 
max��
 and 
min��
 denote the largest and the smallest eigenvalues respectively� In

particular�

jjs�An
jj� � jjAnjj� ���


and if An is positive de�nite� then s�An
 is also positive de�nite�

Proof� The proof is similar to that of Theorem � in Chan� Jin and Yeung �	� or that of
Theorem � in Huckle �����

Next we consider matrices An having Property A� i�e� there exists a permutation
matrix P such that

PAnP
t �

	
D�

E�

E�

D�



�

where D� and D� are square diagonal matrices and E� and E� are arbitrary matrices� In
����� Chan and Wong proved that if FAnF

� has Property A� then the optimal circulant
preconditioner c�An
 minimizes the condition number ��C����AnC

����
 over all positive
de
nite circulant matrices C� Here similarly if SnAnSn has Property A� then we can prove
that s�An
 minimizes ��B����AnB

����
 over all positive de
nite B � Bn�n� The proof of
the following theorem is similar to that of Theorem � in ���� and therefore will be omitted�

��



Theorem � Let An be an n�by�n symmetric positive de�nite matrix� If the matrix

SnAnSn has Property A� then s�An
 minimizes ��B����AB����
 over all symmetric posi�

tive de�nite matrices B � Bn�n�

� Application in Solving Toeplitz Systems

In this section� we consider applying the optimal sine transform based preconditioners
s�Tn
 to solving a class of symmetric Toeplitz systems Tnx � b by the preconditioned
conjugate gradient method� Our main result is that the spectra of these preconditioned
matrices s�Tn


��Tn are clustered around �� Hence the conjugate gradient method when
applied to solving the preconditioned systems s�Tn


��Tnx � s�Tn

��b converges su��

ciently fast�
In the following� we assume that the Toeplitz matrices Tn are generated by ���periodic

continuous real�valued even functions� We emphasize that this class of symmetric Toeplitz
matrices arises in some practical problems� Typical examples of generating functions
are the kernels of the Wiener�Hopf equations� see Gohberg and Fel�dman ���� p����� the
function which gives amplitude characteristic of the recursive digital 
lters� see Chui and
Chan ����� the spectral density functions in stationary stochastic process � see Grenander
and Szeg�o ���� p����� and the point�spread functions in image deblurring� see Oppenheim
���� p������ In the following discussions� we denote C�� to be the set of ���periodic
continuous real�valued even functions� For all f � C��� let

tk�f
 �
�

��

Z ��

�

f��
e�ik�d�� k � ��	��	�� � � �

be the Fourier coe�cients of f � Since f is even and real�valued� we have

tk�f
 � t�k�f
� k � ��	��	�� � � � �

For simplicity� we write tk�f
 � tk� We also let fn to be an n�vector with entries given by
the 
rst n Fourier coe�cients of f � i�e�

fn � �t�� t�� t�� � � � � tn��

t�

The following Lemma gives the relation between f and the spectrum 
�Tn�fn

 of Tn�fn
�

Lemma � �Grenander and Szeg
o ���� pp������	� Let f � C�� with the minimum

and maximum values given by fmin and fmax respectively� Then 
�Tn�fn

 
 �fmin� fmax��
In particular� we have

jjTn�fn
jj� � jjf jj�

where jj � jj� denotes the supremum norm�

��



In the following� we 
rst prove that if f is an even function in the Wiener class� then
the spectrum of Tn�fn
�s�Tn�fn

 is clustered around zero� Then we extend the clustering
result from the Wiener class to C��� We remark that a function f is in the Wiener class
if its Fourier coe�cients are absolutely summable� i�e�

�X
k���

jtkj ���

It is clear that if f is an even function in the Wiener class� then f � C���
In the analysis of the spectra of the preconditioned matrices� we 
rst write Tn�fn
 �

s�Tn�fn

 as

Tn�fn
� s�Tn�fn

 � Hn���fn

 � Tn�fn
�Hn���fn

� s�Tn�fn

� ���


The clustering of the spectrum of Hn���fn

 has already been proved by Boman and
Koltracht ����

Lemma � �Boman and Koltracht ��	
 Let f be an even function in the Wiener class�

Then for all � 
 �� there exist N�M 
 � such that for all n 
 N � at most M eigenvalues

of Hn���fn

 have absolute value larger than ��

According to this lemma and equation ���
� it su�ces to show that the spectra of
Tn�fn
�Hn���fn

 and s�Tn�fn

 are asymptotically the same�

Lemma � Let f be an even function in the Wiener class� then

lim
n��

jjs�Tn�fn

� �Tn�fn
�Hn���fn

�jj� � ��

Proof� For simplicity� we only consider the case where n � �m� The case where n is odd
can be proved similarly� We 
rst note from Theorem � and Corollary � that our optimal
sine transform based preconditioner s�Tn�fn

 can be expressed as follows�

s�Tn�fn

 � Tn�zn
�Hn���zn

�

��



Here the kth entry of the n�vector zn is given by

�zn�k �

������������������
�����������������

t� �
�

n� �

m��X
j��k�����

t�j � k � ��

t� �
�

n� �

m��X
j�k��

t�j��� k � ��

	
n� k � �

n � �



tk�� �

�

n � �

m��X
j��k�����

t�j� � � k � n and where k is odd�

	
n� k � �

n � �



tk�� �

�

n � �

m��X
j�k��

t�j� � � k � n and where k is even�

It is clear that Tn�fn
�Hn���fn

�s�Tn�fn

 is a symmetric Toeplitz�plus�Hankel matrix�
After some manipulations� it can be re�written as

Tn�fn
�Hn���fn

� s�Tn�fn

 � Tn�x�
�Hn���x�

� Tn�x�
 �Hn���x�

�

where

x� �
�

n� �
��� �� t�� �t�� � � � � �n� �
tn��� �n� �
tn��


t

and

x� �
�

n� �

�
m��X
j��

t�j�
m��X
j��

t�j���
m��X
j��

t�j�
m��X
j��

t�j��� � � � � tn��� tn��� �� �

�t

�

As Tn�x�
� Tn�x�
� Hn���x�

 and Hn���x�

 are symmetric matrices� we obtain

jjTn�x�
jj� � jjTn�x�
jj� � �jjx�jj��

jjTn�x�
jj� � jjTn�x�
jj� � �jjx�jj��

jjHn���x�

jj� � �jjx�jj�

and
jjHn���x�

jj� � �jjx�jj��

For all � 
 �� since f is in the Wiener class� we can always 
nd positive integers N�� N�

and an N� 
 N� such that

�

N�

�X
j��

jtjj �
�

�
�

�X
j�N���

jtjj �
�

��
and

�

N�

N�X
j��

jjtjj �
�

��
�

��



Thus� for all n 
 maxfN�� N�g� we have jjx�jj� � ��� and

jjx�jj� �
�

N�

N�X
j��

j�jt�jj� jt�j��j
 � �
�X

j�N���

�jt�jj� jt�j��j
 �
�

�
�

Hence the result follows�

We now extend the result in Lemma � to the class of ���periodic continuous even
functions�

Lemma � Let f � C��� Then for all � 
 �� there exist N�M 
 � such that for all n 
 N �

at most M eigenvalues of Tn�fn
� s�Tn�fn

 have absolute value larger than ��

Proof� The idea of our proof is to use the Weierstrass Theorem to approximate any
real�valued even function in C�� by trigonometric polynomials� Let f � C��� Then for
any � 
 �� there exist an integer M 
 � and a trigonometric polynomial

p��
 �
MX

k��M
cke

ik�

with ck � c�k such that g � f � p and

jjgjj� � �� ���


see Cheney ���� p������ For all n 
 �M � by Lemmas � and �� we write

Tn�fn
� s�Tn�fn



� Tn�gn
� s�Tn�gn

 � Tn�pn
� s�Tn�pn



� Tn�gn
� s�Tn�gn

 �Hn���pn

 � Tn�pn
�Hn���pn

� s�Tn�pn

� ���


We note that the 
rst two terms in right hand side of ���
 are matrices of small norm� In
fact by ���
� Lemma � and ���
� we have

jjTn�gn
� s�Tn�gn

jj� � jjTn�gn
jj� � jjs�Tn�gn

jj� � jjgjj� � jjgjj� � ���

Since p is a real�valued even function and also in the Wiener class� Lemmas � and � imply
that both matrices Hn���pn

 and Tn�pn
�Hn���pn

�s�Tn�pn

 have spectra clustered
around zero� Hence the result follows�

��



From ���
 and Lemma �� we can easily show that the smallest eigenvalue of s�Tn�fn


is uniformly bounded from below when f is positive� Using the identity

s�Tn�fn


��Tn�fn
 � In � s�Tn�fn



����Tn�fn
� s�Tn�fn

��

we obtain the following main theorem�

Theorem � Let f � C�� be positive� Then for all � 
 �� there exist N�M 
 � such that

for all n 
 N � at most M eigenvalues of s�Tn�fn


��Tn�fn
� In have absolute value larger

than ��

It follows from Theorem � that the conjugate gradient method when applied to solving
Tn�fn
x � b� converges superlinearly� see for instance Chan ���� Finally we consider the
cost of solving Toeplitz systems� It is known that the cost per iteration in the precon�
ditioned conjugate gradient method is about �n operations plus the cost of computing
Tn�fn
y and s�Tn�fn



��d for some vectors y and d� see Axelsson and Barker ��� p�����
Both matrix�vector multiplications Tn�fn
y and s�Tn�fn



��d can be done by using fast
sine transforms� see for instance Boman and Koltracht ���� The cost is of O�n logn
 oper�
ations� Hence the cost per iteration is of order O�n logn
 operations� As the method con�
verges superlinearly� the number of iterations required for convergence remains bounded�
Hence the total cost of solving the Toeplitz system Tn�fn
x � b is in O�n logn
 operations�
We emphasize that all the computations can be done in real arithmetic�

� Numerical Examples and Concluding Remarks

In this section� we compare our optimal sine transform based preconditioners s�Tn
 with
sine transform based preconditioners derived by Boman and Koltracht ���� Strang�s cir�
culant preconditioners ���� and T� Chan�s circulant preconditioners ���� We test their
performances on four even functions de
ned on ���� ��� They are

�i

P�

k����� � jkj
����eik��

�ii
 �	 � ��

�iii
 �� and

�iv

P�

k����� � jkj
��eik��

We note that the 
rst three functions are continuous� but the fourth one is not� Also the
third function has a zero at � � �� The Toeplitz matrices Tn are formed by evaluating
the Fourier coe�cients of the test functions�

��



In the test� we used the vector of all ones as the right hand side vector and the zero
vector as the initial guess� The stopping criterion is jjeqjj��jje�jj� � ����� where eq is the
residual vector after q iterations� All computations are done by Matlab on a SUN sparc
workstation� Tables ��� show the numbers of iterations required for convergence with
di�erent choices of preconditioners� In the tables� I denotes no preconditioner was used�
SC � SB� CS and CT are respectively our optimal sine transform based preconditioners�
Boman and Koltracht�s preconditioners� Strang�s circulant preconditioners and T� Chan�s
circulant preconditioners�

From the numerical results� we see that in all tests� our optimal sine transform based
preconditioners SC performs almost the same as Boman�s� Strang�s and T� Chan�s ones�
However� for the test function �iii
� the number of iterations of our optimal sine transform
based preconditioners SC is less than that of circulant preconditioners �c�f� Table �
�

n I SC SB CS CT

�� � � � � �
�� �� � � � �
�� �� � � � �
��� �� � � � �
��� �� � � � �
��� �� � � � �

Table �� Numbers of iterations for test function �i
�

n I SC SB CS CT

�� � � � � �
�� �	 � � � �
�� �� � � � �
��� �� � � � �
��� �� � � � �
��� �� � � � �

Table �� Number of iterations for test function �ii
�

n I SC SB CS CT

�� � � � � �
�� �� � � � ��
�� �� � � � ��
��� �� � � � ��
��� ��� � � � ��
��� ��� � � � ��

Table �� Number of iterations for test function �iii
�

��



n I SC SB CS CT

�� � � � � �
�� �� � � � �
�� �� � � � �
��� �	 � � � �
��� �� � � � �
��� �� � � � �

Table �� Number of iterations for test function �iv
�

��



In this paper� we have proposed and analyzed the optimal sine transform based pre�
conditioners s�A
 for general symmetric matrices A� For Toeplitz or near�Toeplitz systems
arising from the discretization of elliptic problems with Dirichlet boundary conditions� we
anticipate them to be better preconditioners than circulant ones� A typical example is
the ��dimensional Laplacian tridiag���� ������ In this case� our preconditioner is exact
whereas the condition number of the system preconditioned by the optimal circulant pre�
conditioner is of O�n���
� see R� Chan and T� Chan ����� Recently� Chan and Wong ����
proved that when the optimal sine transform based preconditioners are used in solving
the elliptic problems� the condition number of these preconditioned matrices are bounded
independent of the sizes of the discretization matrices�

We remark that using the approach in this paper� one can also construct the optimal
cosine transform based preconditioner which is de
ned to be the minimizer of jjR�AjjF
over the set of matrices R that can be diagonalized by the cosine transform matrix� The
cost of construction will also be the same as that of s�A
�

�	
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