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Abstract

Stochastic Automata Networks �SANs� are widely used in modeling communication sys�
tems� manufacturing systems and computer systems� The SAN approach gives a more com�
pact and e�cient representation of the network when compared to the stochastic Petri nets
approach� To �nd the steady state distribution of SANs� it requires solutions of linear sys�
tems involving the generator matrices of the SANs� Very often� direct methods such as the
LU decomposition are ine�cient because of the huge size of the generator matrices� An
e�cient algorithm should make use of the structure of the matrices� Iterative methods such
as the conjugate gradient methods are possible choices� However� their convergence rates
are slow in general and preconditioning is required� We note that the MILU and MINV
based preconditioners are not appropriate because of their expensive construction cost� In
this paper� we consider preconditioners obtained by circulant approximations of SANs� They
have low construction cost and can be inverted e�ciently� We prove that if only one of the
automata is large in size compared to the others� then the preconditioned system of the
normal equations will converge very fast� Numerical results for three di	erent SANs solved
by CGS are given to illustrate the fast convergence of our method�

Key Words� Stochastic Automata Networks� Circulant Preconditioners� Preconditioned Con�
jugate Gradient Methods�

� Introduction

Stochastic Automata Networks �SANs� are widely used in modeling queueing systems ��� 	� 
� ���
communication systems ���� ��� ��� manufacturing systems and inventory control �� and also
computer networks ���� The SAN approach has a more compact and e�cient representation
when compared to the stochastic Petri nets approach ��� ��� Moreover because of the special
structure of the resulting representations� matrix�vector multiplications involving the generator
matrices can usually be done very fast ��
�

In analyzing the system performance of a SAN� it is required to �nd its steady state dis�
tribution� which can be obtained by solving a linear system involving the generator matrix of
the SAN� In general the solution cannot be obtained e�ciently by direct methods such as the
LU decomposition due to the huge size of the generator matrix� E�cient numerical algorithms
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should make use of the special structures of the generator matrices and their fast matrix�vector
multiplications� The conjugate gradient type methods ��� �� �
 are possible choices� However�
their convergence rates are slow in general� To speed up the convergence rate� we consider pre�
conditioned conjugate gradient methods� We note that the MILU ���� �� and MINV ���� �	
based preconditioners are not appropriate due to their expensive construction costs�

One of the early applications of preconditioned conjugate gradient methods in solving queue�
ing networks was done by Chan ��� ��� For Markovian over�ow networks with tra�c density
close to �� the generator matrices are close to the discretization matrices of elliptic equations�
Using techniques from elliptic equations� such as the fast Poisson solvers and domain decompo�
sition methods ���� Chan has constructed e�cient preconditioners for these networks� These
preconditioners make use of the tensor structure of the generator matrices and are easy to
construct and invert�

Toeplitz matrices are matrices with constant diagonal entries� Circulant matrices are Toeplitz
matrices such that each column is a cyclic shift of its preceding column� One important property
of circulant matrices is that they can be diagonalized by Fast Fourier Transforms ��
� Hence
their inverses can be found easily� Circulant matrices have shown to be good preconditioners
for Toeplitz systems in many applications ��� and in particular in queueing networks� see for
instance ���� ��� ��� �	� ��� The main observation in queueing network applications is that most
queueing networks have generator matrices that are close to Toeplitz matrices� These include
sophisticated networks such as the Markov modulated Poisson processes arising in manufacturing
systems and inventory control systems and also networks with more general queueing disciplines
such as batch arrivals�

In this paper� we consider circulant preconditioners for networks under a more general setting�
the SANs� The circulant preconditioners introduced here are easy to construct and can be
inverted e�ciently� We prove that if only one of the automata is large in size compared to
the others� then the preconditioned system of the normal equations will converge very fast� We
illustrate the e�ciency of our methods by applying it to three practical SANs using the practially
more relevant Conjugate Gradient Squared �CGS� method ���� p���
�

The paper is organized as follows� In x�� we �rst introduce a two�queue over�ow network
which is a particular example of SANs� In x�� we give an introduction of SANs� We then
construct our circulant preconditioners for SANs in x�� In x�� we give a convergence analysis
for our preconditioners� In x	� we test our preconditioners for three practical examples of SANs�
Finally� concluding remarks are given in x
�

� An Over�ow Queueing Network

Let us begin with some notations� We will use � and � to denote the zero column vector and
the column vector of all ones of appropriate length respectively� Also we will use O and I to
denote the zero and identity matrices of appropriate size respectively� For any matrix A� z�A�
will denote the number of nonzero columns in A� A matrix A is said to be nonnegative� denoted
by A � O� if all the entries of A are nonnegative�

To introduce the terminologies and notations of SANs� let us consider a simple example of
SANs with � automata� It is the ��queue over�ow network considered in ���� �� The network
consists of two queues �automata� with exogenous Poisson arrivals and exponential servers�
Whenever queue � is full� the arriving customers will over�ow to queue � if it is not yet full�
Otherwise the customers will be blocked and lost� see Figure ��
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Figure �� The Two Queue Over�ow System�

For queue i� i � �� �� let �i be the exogenous input rate� �i the service rate� si the number
of servers� and li � si � � the bu�er sizes� Then the generator matrix for the queueing system
is given by

A � Q� � Il� � Il� �Q� �R�Diag��� � � � � �� ��� ���

where

Qi �

�
BBBBBBBBBB�

�i ��i �
��i �i � �i ���i

� � �
� � �

� � �

��i �i � si�i �si�i
� � �

� � �
� � �

��i �i � si�i �si�i
� ��i si�i

�
CCCCCCCCCCA
� i � �� �� ���

R �

�
BBBBBB�

�� �
��� ��

��� � � �
� � � ��

� ��� �

�
CCCCCCA

���

and Ili is the identity matrix of size li� see ��� for instance�
We note that the matrix Qi in ��� corresponds to the generator matrix of a stand�alone

queue i and hence the matrix �Q� � Il� � Il� � Q�� in ��� corresponds to a ��queue network
where no over�ow can occur� It is called the non�interlacing part of the network� The last
term R � Diag��� � � � � �� �� in ��� corresponds to where the over�ows �or transitions� occur�
In general� SANs are composed of the non�interlacing part of the network together with the
transitions allowed� For our ��queue over�ow network� the queueing disciplines are governed by
three probabilistic rules� namely� the Markovian input�output processes of queues � and � �the
non�interlacing part� and the over�ow process from queue � to queue �� In fact� the generator
matrix A in ��� can be written in the form

A �
�X

i��

�O
j��

Qij

�



where Q��� Q��� Q��� Q��� Q�� and Q�� are Q�� Il� � R� Il� � Q� and Diag��� � � � � � �� �� respectively�
We note that A can be rewritten in a more complicated form� which is however the standard

form of SANs�

A �

�X
i��

��
�

�O
j��

Dij �
�O

j��

Eij

��
	 � ���

where

Dii �

�
BBBBBBBBBB�

�i �
�i � �i

� � �

�i � si�i
� � �

�i � si�i
� si�i

�
CCCCCCCCCCA
� i � �� �� ���

Eii �

�
BBBBBBBBBB�

� �i �
�i � ��i

� � �
� � �

� � �

�i � si�i
� � �

� � �
� � �

�i � si�i
� �i �

�
CCCCCCCCCCA
� i � �� �� �	�

D�� �

�
BBBBB�

�� �
��

� � �

��
� �

�
CCCCCA
� E�� �

�
BBBBBB�

� �
�� �

��
� � �
� � � �

� �� �

�
CCCCCCA
� �
�

D�� � E�� � Il� � D�� � E�� � Il� � and D�� � E�� � Diag��� � � � � �� ��� ���

We see that in this standard form� Dij and Eij � O� and that Dij are diagonal matrices with
diagonal entries equal to the column sums of Eij � In particular� Dij and Eij have the same
column sums� i�e� �tDij � �tEij for i � �� �� �� j � �� ��

To analyze the ��queue network� we need to �nd its steady state distribution vector� which is
the normalized right null vector of A� More precisely� the vector p is the nonnegative vector that
satis�es Ap � � and �tp � �� Classical methods such as the block Gauss�Seidel method and the
successive over�relaxation method are standard methods for solving this problem� see ���� In
��� ��� the preconditioned conjugate gradient method is used and a very e�cient preconditioner
is constructed for networks where the tra�c is about balance� i�e� �i � si�i�

However� not all systems have balance tra�c� In this paper� we are interested in the case
where only one automaton is relatively large in size� In the ��queue network above� since over�ow
is permitted only from queue � to queue �� the performance of queue � is important� It is thus
interesting to �nd p when the queue length of queue � is large� In many practical applications�
only one automaton� say the one corresponding to the inventory level of �nished products� is
large in size� In the next three sections� we will construct and analyze preconditioners that work
well under this situation�
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� Stochastic Automata Networks

A Stochastic Automata Network �SAN� consists of a number of individual stochastic automata�
Each automaton is represented by a number of states and probabilistic rules that govern the
transitions from one state to another� The state of an automaton at time t is just the state it
occupies at time t and the state of the SAN at time t is given by the states of its constituent
automata� For more details of SANs� see ��� 	� 
 for instance�

Consider a SAN with n automata and m probabilistic rules� Let the state space of the ith
automaton be of size li� �� The generator matrix A of the SAN can be written in the standard
form�

A �
mX
i��

��
�

nO
j��

Dij �
nO

j��

Eij

��
	 � ���

where Dij and Eij are of size lj�by�lj � see ��� ��� �
 and cf� ���� Here Eij � O are such that
each term

Nn
j��Eij represents the rate of certain transitions amongst the states� The Dij are

nonnegative diagonal matrices that contain the column sums of Eij � i�e�

�tDij � �tEij � i � �� � � � �m� j � �� � � � n� ����

For simplicity� let the non�interlacing part of the network be represented by the �rst n terms
in ���� Thus� Dii � Eii is the generator matrix of the ith automaton alone and Dij � Eij � I�
for � � i �� j � n �cf� the �rst two terms in ����� More precisely� the �rst n terms of ��� can be
written as

�D���E���� I � � � � � I � I � �D���E���� I � � � � � I � � � �� I � � � � � I � �Dnn�Enn�� ����

For ease of discussion� we assume that the generator matrices Dii � Eii� i � �� � � � � n� of the
individual automata are irreducible� As Dii are diagonal matrices� Eii are therefore irreducible�
Clearly from ����� we see that

Pn
i��

Nn
j��Eij is irreducible� Using the fact that Eij � O� we

see that
Pm

i��

Nn
j��Eij and therefore A in ��� are irreducible too� We thus have proved the

following lemma�

Lemma � If the generator matrix of each of the individual automata in a SAN is irreducible
then the generator matrix of the SAN �i�e� A in ���� is also irreducible�

To analyze the network� we need to �nd its steady state distribution vector p� which is the
normalized right null vector of A� We note that if n � m� i�e� the network consists only of
the non�interlacing part ����� then p can be obtained easily by taking the tensor product of the
steady state distribution vectors of the individual automata� For the general case where m � n�
the existence of p follows from the irreducibility of the matrix A� as the following lemma shows�

Lemma � Let B be an irreducible matrix of the form

B �

mX
i��

��
�

nO
j��

Uij �
nO

j��

Vij

��
	 �

where Vij � O and Uij are diagonal matrices such that

�tUij � �tVij � i � �� � � � �m� j � �� � � � n� ����

Then B has a ��dimensional null space with positive null vectors�
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Proof� It follows from ���� that �t�
Nn

j��Uij� � �t�
Nn

j�� Vij� and hence �
tB � �t� i�e� B has

zero column sums� Clearly B has nonpositive o��diagonal entries� In particular� the column
sum of the o��diagonal entries of any column of B cannot be positive� Since B is irreducible�
these column sums cannot be zero either� Because B has zero column sums� the diagonal entries
of B are therefore positive� Let D be the diagonal matrix containing the diagonal entries of B�
Then I � BD�� is an irreducible column stochastic matrix� The lemma now follows from the
Perron�Frobenius theorem� see for instance ��� p��
�

By Lemma �� we see that the steady state distribution vector p for A in ��� exists and is
unique� Moreover� all the entries in p are positive� Classical iterative methods such as the block
Gauss�Seidel method and the successive over�relaxation method are standard methods for �nding
p ���� ��� �
� However� in this paper� we consider preconditioned conjugate gradient methods
��� p���� To speed up the convergence� we need e�cient preconditioners� i�e� preconditioners
that can be constructed and inverted easily and can speed up the convergence rate� The choice
of the preconditioners depend on what kind of systems we are considering� In many practical
situations ���� �	� ��� ��� ��� ��� only one automaton will have a very large state space� A typical
example is when the automaton is corresponding to the inventory level of �nished products in a
manufacturing system ���� �	� �
� In this paper� we will consider SANs with only one automaton
having a very large state space and without loss of generality� we assume that it is the �rst one�
More precisely� we will analyze the convergence of our preconditioners under the limit that l� is
large� We will use the symbol ��l�� to denote constants that are less than l� and are independent
of l��

We note that because p exists and is unique and positive� it can be obtained by normalizing
the solution x in the matrix equation

Gx 	 �A� eet�x � e� ����

where e � ��� �� � � � � �� ��t� i�e� p � x���tx�� In the following� we will consider preconditioners
for G� Clearly� we have

rank�G�A� � �� ����

� Circulant Preconditioners for SAN

Toeplitz matrices are matrices with constant diagonal entries� Circulant matrices are Toeplitz
matrices such that each column is a cyclic shift of its preceding column� One important property
of circulant matrices is that they can be diagonalized by Fast Fourier Transforms ��
� Hence
their inverses can be found easily� Circulant preconditioners have been used in many applications
where the Toeplitz matrices come into play� such as in image processing� partial di�erential
equations� integral equations and in particular queueing networks� see ��� and the references
therein� In this section� we consider the construction of circulant preconditioners for SANs�

The success of our preconditioners depends on the observation that in many network ap�
plications� the matrices Dij and Eij in ��� are low rank perturbations of Toeplitz matrices �cf�
��������� Hence they can be approximated well by circulant matrices� Because we assume that
the �rst automaton is the one with the largest state space� our idea of constructing the pre�
conditioners is to solve the �rst automaton and its related disciplines approximately and the
remaining automata exactly� More precisely� we will approximate the matrices Ei� in ��� by
nonnegative circulant matrices c�Ei�� that are low rank perturbations of Ei��

	



For example� if Ei� takes the form of Eii in �	�� its circulant approximation will be given by

c�Eii� �

�
BBBBBBBBBB�

� si�i �i
�i � si�i �

� � �
� � �

� � �

�i � si�i

�
� � �

� � �
� � �

�i � si�i
si�i �i �

�
CCCCCCCCCCA
� ����

It is a rank s perturbation of Eii� In fact� the number of nonzero columns of �c�Eii� � Eii��
denoted by z�c�Eii��Eii�� is equal to s� �� For E�� in �
�� we de�ne

c�E��� �

�
BBBBBB�

� ��
�� �

��
� � �
� � � �

� �� �

�
CCCCCCA
�

Hence rank�c�E��� � E��� � z�c�E��� � E��� � �� For the other Eij in ���� we simply de�ne
c�I� � I and c�Diag��� � � � � �� ��� � O�

As another example� for automata with batch arrivals� the transition matrix E will be of the
form

E �

�
BBBBBBBBBBBB�

� � �
�� � ��
��� �� �

� � �

�b
���

� � �
� � � s�

�b
� � �

� � � � s�

�b
� � � �� � s�

� rb � � � r� �

�
CCCCCCCCCCCCA

� ��	�

where b is the largest possible batch size� �j is the arrival rate of batches with size j and

rj �
Pb

i�j �i for j � �� � � � � b� Here we de�ne

c�E� �

�
BBBBBBBBBBBBB�

� s� � �b � � � ��

�� � s�
� � �

� � �
���

��� �� �
� � �

� � � �b

�b
���

� � �
� � � s� �

�b
� � �

� � � � s�

� �b
� � � �� � s�

s� � �b � � � �� �

�
CCCCCCCCCCCCCA

�

In this case rank�E � c�E�� � max�s� b� � � and z�E � c�E�� � s� b�
With these examples in mind� we are now ready to de�ne our circulant approximations�






De�nition � For i � �� � � � �m� c�Ei�� is de	ned to be the circulant matrix such that �i� the
number of nonzero columns of Ei� � c�Ei�� is a constant less than l� and is independent of l��
i�e�

z�Ei� � c�Ei��� � ��l��� ��
�

and �ii� c�Ei�� is a nonnegative matrix� i�e�

c�Ei�� � O� ����

We remark that requirements ��
� and ���� are very general� The examples of c�Ei�� given
above and also those in x	 all satisfy these two requirements provided that the queueing pa�
rameters such as si� �i� �i and b �� l� � s� are all independent of l�� In general� there are
many di�erent forms of Ei� depending on the SAN itself� However� in many applications of the
SANs ��� 	� 
� �	� ��� ��� ��� ��� ��� the transition matrix E�� of the main automaton takes
the form of Eii in �	�� which is the transition matrix of an �M�M�si�li� queue� It has been
shown in ���� �	 that the time spent �service time� in a jobshop is asymptotically exponentially
distributed� Thus we may approximate a complex automaton with Poisson arrival process by
Eii of the form in �	� and c�Eii� so de�ned in ���� will satisfy ��
� and �����

Next we de�ne the circulant approximations c�Di�� for the diagonal matrices Di�� Similar
to ����� we de�ne the diagonal entries of c�Di�� to be the column sums of c�Ei��� which are the
same for all columns� as c�Ei�� are circulant matrices�

De�nition � For i � �� � � � �m� c�Di�� is de	ned to be the constant diagonal matrix such that

�tc�Di�� � �tc�Ei��� i � �� � � � �m� ����

Recall that the diagonal entries of Di� are the column sums of Ei�� Hence by ��
�� we see that

z�Di� � c�Di��� � ��l��� i � �� � � � m� ����

To construct our preconditioner� let us �rst de�ne �cf ����

c�A� �
mX
i��

��
�c�Di��

nO
j��

Dij � c�Ei��
nO

j��

Eij

��
	 � ����

We claim that c�A� is irreducible�

Lemma 	 If the generator matrix Dii � Eii� i � �� � � � � n� of each stand�alone automaton is
irreducible and that c�Ei�� satisfy ��
� and ���� for i � �� � � � �m� Then c�A� is irreducible� In
particular� c�A� has a one dimensional null space with positive null vectors�

Proof� By assumption� Eii are irreducible for i � �� � � � � n� We claim that c�E��� is irreducible�
For if not� then since it is a circulant matrix� it can only be a constant diagonal matrix� Then
by ��
�� E�� is the sum of a diagonal matrix and a matrix with ��l�� nonzero columns� Since
��l�� � l�� E�� cannot be irreducible� a contradiction� Thus c�E��� is irreducible�

By the de�nition of c�A� in ���� and the fact that the �rst n terms of A are given in �����
we see that the �rst n terms of c�A� will be of the form

�c�D���� c�E����� I � � � � � I � I � �D�� �E���� I � � � � � I � � � �� I � � � � � I � �Dnn �Enn�

�



which is clearly irreducible� In particular�
Pn

i��fc�Ei��
Nn

j��Eijg is also irreducible� Since Eij

and c�Eij� � O for all i and j�
Pm

i��fc�Ei��
Nn

j��Eijg and hence c�A� are irreducible too� By
applying Lemma � to c�A�� we see that c�A� has a one dimensional null space with positive null
vectors�

Since c�A� is singular� we cannot use it as a preconditioner� Our preconditioner is constructed
by perturbing c�A� by a rank one matrix� similar to what we did in ����� In order to do it
systematically� let us �rst look closely to the eigenvalues of c�Ei�� and c�Di��� Recall that
c�Di�� are constant diagonal matrices� thus we may write

c�Di�� � diI� i � �� � � � �m�

Lemma 
 Let F be the Fourier matrix of size l�� i�e� the �j� k�th entry of F is given by
exp��	

p��jk�l���
p
n� For i � �� � � � �m� c�Ei�� can be diagonalized by F �

F �c�Ei��F � Diag�ti�� ti�� � � � � til��� ����

Moreover�
til� � di� i � �� � � � �m� ����

Proof� Equation ���� follows from the fact that any circulant matrices can be diagonalized by
the Fourier matrix of the same size� see ��
� To get ����� we �rst note that the last column of
F is �p

n
�� i�e� Fe � �p

n
�� where e � ��� �� � � � � �� ��t� Thus by ����� we have

til� � etF �c�Ei��F �
�p
n
�tc�Ei��F �

�p
n
�tc�Di��F �

dip
n
�tF � di� i � �� � � � �m�

Using ����� we then have

�F � � I�c�A��F � I�

�

mX
i��

��
�diI

nO
j��

Dij �Diag�ti�� ti�� � � � � til��
nO

j��

Eij



�

� Diag

�
 mX
i��

��
�di

nO
j��

Dij � ti�

nO
j��

Eij

��
	 � � � � �

mX
i��

��
�di

nO
j��

Dij � til�

nO
j��

Eij

��
	


� � ����

which is a diagonal block matrix� Using ����� the last diagonal block in ���� becomes

mX
i��

di

��
�

nO
j��

Dij �
nO

j��

Eij

��
	 �

Premultiplying �t to this matrix we get�

�t �
mX
i��

di

��
�

nO
j��

Dij �
nO

j��

Eij

��
	 �

mX
i��

di

��
��t �

nO
j��

Dij � �t �
nO

j��

Eij

��
	 � �t�

where the last equality follows from ����� Thus the last diagonal block in ���� is a singular
matrix�

�



Since by Lemma �� c�A� has only a one�dimensional null space� the last diagonal block in
���� is the only singular block� All the other diagonal blocks in ���� are nonsingular� Similar to
the proof in Lemma �� we can easily prove that this last diagonal block is an irreducible matrix�
Hence by Lemma �� it also has a one dimensional null space with positive null vectors� To get
our nonsingular preconditioner� we replace this last block by a nonsingular matrix using a rank
� perturbation� as we did in �����

H 	
�
 mX
i��

di

��
�

nO
j��

Dij �
nO

j��

Eij

��
	� eet



� �

Thus our preconditioner is de�ned as

C 	 �F � I�Diag

�
 mX
i��

��
�di

nO
j��

Dij � ti�

nO
j��

Eij

��
	 � � � � �

mX
i��

��
�di

nO
j��

Dij � ti�l����
nO

j��

Eij

��
	 �H



� �F � � I�� ����

By the above arguments� C is clearly nonsingular� Moreover�

rank�c�A� � C� � �� ��	�

In the following� we will use C in ���� to precondition ����� i�e� instead of solving ����� we
solve

�GC���y � e where x � C��y� ��
�

by conjugate gradient type methods ��� ��� The cost per iteration of these methods depends on
the cost of the matrix�vector multiplications of the form Gu and also the cost of solving Cv � u�
In multiplying Gu� we can make use of the tensor structure of A as given in ��� and also the
special structure of the transition matrices Eij � Usually� Eij are either sparse or near�Toeplitz
matrices� cf� ������� and ��	�� The cost is therefore either of order O�l�� or O�l� log l���

The main cost for solving the preconditioner system Cv � u comes from �i� the matrix�
vector multiplications by the Fast Fourier Transform �see ����� and �ii� solving the diagonal
block systems in ����� The cost for �i� is of O�l� log l��� The cost for �ii� depends on the structure
of the individual blocks in ���� which are of size

Qn
i�� li�by�

Qn
i�� li� Again fast algorithms for

solving the block systems should make use of the sparse or near�Toeplitz structure of the blocks�
In any case� the cost of solving each block system will be independent of l�� As there are l�
diagonal blocks in ����� the total cost will be of order O�l��� Hence the total cost for solving
the preconditioner system is of O�l� log l� � l��� Clearly� one can speed up �ii� by solving the
diagonal block systems in parallel�

Take the ��queue over�ow network in x� as an example again� Each individual diagonal
block in ���� is a tridiagonal matrix which can be solved in O�l�� operations� Thus the cost per
iteration is O�l� log l� � l�l�� operations�

� Convergence Analysis

In this section� we prove that if all the system parameters such as n� m� �i� �i� si� �i � �� � � � � n��
and lj � �j � �� � � � � n� are �xed and independent of l�� then the preconditioned system GC��

��



in ��
� has singular values clustered around � as l� tends to in�nity� Hence if the conjugate
gradient method is applied to solving the normal equations of the preconditioned system ��
��
we expect fast convergence�

Theorem � Suppose all the system parameters such as n� m� �i� �i� si� �i � �� � � � � n�� and
lj� �j � �� � � � � n� are 	xed and independent of l�� and that c�Ei�� satisfy ��
� and ���� for
i � �� � � � �m� Then the preconditioned matrix GC�� has at most f� � ��

Pm
i�� ��l���

Qn
i�� lig

singular values not equal to ��

Proof� We �rst notice that by ��� and �����

A� c�A� �

mX
i��

��
��Di� � c�Di���

nO
j��

Dij � �Ei� � c�Ei���

nO
j��

Eij

��
	 �

Therefore by ��
� and �����

rank�A� c�A�� �
mX
i��

�z�Di� � c�Di���

nY
i��

li �

mX
i��

�z�Ei� � c�Ei���

nY
i��

li � ��

mX
i��

��l���

nY
i��

li�

Hence by ���� and ��	�� we have

rank�G� C� � rank�G�A� � rank�A� c�A�� � rank�c�A� � C� � � � ��

mX
i��

��l���

nY
i��

li�

If we write
GC�� � I � �G�C�C�� 	 I � L�

then rank�L� � � � ��
Pm

i�� ��l���
Qn

i�� li� Therefore

C��G�GC�� � I � L��I � L� � L�

is a matrix of rank at most � � ��
Pm

i�� ��l���
Qn

i�� li�

Thus the number of singular values ofGC�� that are distinct from � is a constant independent
of l�� In order to show the fast convergence of preconditioned conjugate gradient methods with
the preconditioner C� one still needs an estimate of 
min�GC

���� the smallest singular value of
GC��� If 
min�GC

��� is uniformly bounded away from zero independent of l�� then the method
converges in O��� iterations� and if 
min�GC

��� decreases like O�l��� � for some � � �� then the
method converges in at most O�log l�� steps� see ��� or ��� Lemma ������

Suppose it turns out that 
min�GC
��� decreases in an order faster than O�l��� � for any � � ��

such as like O�e�l��� Then ��
� is ill�posed� However� we can still have a fast convergence rate�
The key step is to consider a regularized equation of ��
��

C���G�G� l����� I�C��u � C��G�e ����

where � is any positive constant� We can prove that the regularized preconditioned matrix

C���G�G� l����� I�C��

has eigenvalues clustered around � and its smallest eigenvalue decreases at a rate no faster
than O�l����� �� Hence the preconditioned conjugate gradient methods will converge in at most

��



O�log l�� steps when applied to solving the normal equations of the preconditioned linear system
����� Moreover� we can prove that the ��norm of the error introduced by the regularization tends

to zero at a rate of O�l��� �� The proof for this regularization technique is similar to that given
in ���� �� and is therefore omitted here� We remark that in all the examples in x	� and also
in many other problems� see for instance ���� �	� ��� ��� ��� we can obtain fast convergence
without using the regularization technique�

From Theorem �� we see that the matrices G and C di�er by a low�rank matrix� Thus one
can use the Sherman�Morrison formula ���� p�� coupled with C�� to solve ����� However� we
will see in the numerical examples in x	 that unless for problems of small block size� our method
requires much less work�

� Practical Examples

In this section� we consider three practical SANs and compare our preconditioning method
discussed in x� with a classical method� the block Gauss�Seidel �BGS� method ��� p��
�� The
examples come from queueing systems� communication systems and manufacturing systems�

Since all the generator matrices considered here are non�symmetric� one can solve the systems
by considering their normal equations� Although our convergence analysis in x� is given for the
normal equations� the drawbacks of using this approach are the requirement of the transpose of
the iteration matrices and the squaring of the condition numbers� There are many generalized
conjugate gradient type method that can solve the systems without forming the transpose� see
for instance ���� Here to simplify our implementation� we employ the Conjugate Gradient
Squared �CGS� method ���� p���
 to solve our systems ��
��

The stopping criteria for all iterative methods is jjAxkjj� � ������ where xk is the approx�
imated steady state distribution vector obtained in the kth iteration� The initial guess for all
methods is e � ��� �� � � � � �� ��t� The symbols I� C and BGS in the tables below represent the
CGS method without preconditioning� with preconditioner C in ���� and the block Gauss�Seidel
method respectively� The N andM stands for the size of the generator matrix of the given SAN
�i�e� A in ���� and the size of the diagonal blocks in ���� respectively� The symbol 

 signi�es
more than ���� iterations� All the computations were done on an HP 
����� workstation with
MATLAB�

��� Over�ow Queueing Systems

We �rst consider the ��queue over�ow networks discussed in x� where over�ow is permitted
from queue � to queue � when queue � is full� Thus the performance of queue � is important�
We are interested in �nding the steady state distribution vector when the queue length of the
�rst queue increases� In the tests� we �x l� � �� and arbitrarily set s� � s�� �� � �� � � and
�� � �� � �� Tables �a and �b give the cost per iteration and the number of iterations required
for convergence for each method respectively�

I C BGS

O�l�l�� O�l�l� log l�� O�l�l��

Table �a� Cost Per Iteration�

��
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Table �b� Numbers of Iterations for Convergence�

We remark that if the Sherman�Morrison formula ���� p�� is used� then we need �s����M��
matrix�vector multiplications of the form C��y� Recall that the main cost of each CGS iteration
is the cost of the matrix�vector multiplication of the same form C��y� we therefore conclude
that our method is much better than the Sherman�Morrison formula approach�

��� Telecommunication Systems

In this section� we present an �MMPP�M�s�s �m� network arising in telecommunication ����
A Markov Modulated Poisson Process �MMPP� is a Poisson process whose instantaneous rate
varies according to an irreducible Markov chain� see for instance ���� Let us �rst de�ne the
system parameters� see Figure �� We let ��� be the mean arrival time of the exogenously
originating calls of the main queue� ��� the mean service time of each server of the main queue�
s the number of servers in the main queue� l � s� � the number of waiting spaces in the main
queue� n the number of over�ow queues� and �nally �Qj��j�� � � j � n� the parameters of the
MMPP�s modeling over�ow parcels� where

Qj �

�

j� �
j�
�
j� 
j�

�
and �j �

�
�j �
� �

�
�

Here 
j�� 
j� and �j � � � j � n� are positive MMPP parameters�

�
��

��
��
s� Queue �

���

�
�
�R�

�
�

�
�n

��
��
sn Queue n �

�n

�
�
��

�� Main Queue ��
��
s ��

Figure �� The Telecommunication System�

The input of the main queue comes from its own exogenous arrivals and the superposition
of several independent MMPPs� which is still an MMPP and is parameterized by two �n � �n

matrices �Q� �� Here

Q � �Q� � I� � � � � � I�� � �I� �Q� � I� � � � � � I�� � � � �� �I� � � � � � I� �Qn��

� � ��� � I� � � � � � I�� � �I� � �� � I� � � � � � I�� � � � �� �I� � � � � � I� � �n�

��



and  � �� �I�n � where I� and I�n are the �� � and �n � �n identity matrices respectively�
We can regard the �MMPP�M�s�l� queue as a Markov process on the state space

f�i� j� j � � i � l � �� � � j � �ng�

The number i corresponds to the number of calls at the destination� while j corresponds to
the state of the Markov process with generator matrix Q� Hence the generator matrix of the
queueing process is given by the following l�n � l�n tridiagonal block matrix�

A �

�
BBBBBBBBBB�

Q�  ��I �
� Q�  � �I ���I

� � �
� � �

� � �

� Q�  � s�I �s�I
� � �

� � �
� � �

� Q� � s�I �s�I
� � Q� s�I

�
CCCCCCCCCCA
�

It can be rewritten as
A � Il �Q� P� � I�n � P� �  �

where P� and P� take the form of Qi and R in ��� and ��� respectively�
We note that in this example there are �n � �� individual automata and m � ��n � ��

probabilistic rules� The cost per iteration of the CGS method with preconditioner C is of
O�n�nl log l�� see ���� whereas for the BGS method� it is of O���nl�� see ���� ��� In the tests�
we have tried the number of over�ow queues n to be � and �� The number of servers s is set
to � in all cases� The MMPP parameters are arbitrarily chosen to be 
j� � ���� 
j� � ���� for
j � �� � � � � n� The other queueing parameters are � � �� � � �� �j � ��n� for j � �� � � � � n� Tables
�a and �b give the cost per iteration and the number of iterations required for convergence for
each method�

I C BGS

O�n�nl� O�n�nl log l� O���nl�

Table �a� Cost Per Iteration�

s � � n � � n � �

l N M I C BGS N M I C BGS
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Table �b� Numbers of Iterations for Convergence�

For this problem� the cost of using Sherman�Morrison formula is about �s���M matrix�vector
multiplications of the form C��y� Thus for the �rst case where M � �� the Sherman�Morrison
formula is better� However� for larger M � such as in the second case� our method will be better�

��



��� The Manufacturing System

In this subsection� we consider a manufacturing system of two machines in tandem under the
hedging point product policy� see ��� and Figure �� The system parameters are� ���� the mean
inter�arrival time of a demand� ����� the mean unit processing time of the �rst machine� �����
the mean unit processing time of the second machine� b�� the size of the bu�er B� for the �rst
machine� b�� the maximum size of the bu�er B� for the �nished products� h� the hedging point�
and m� the maximum allowable backlog� We note that the inventory level of the �rst bu�er
cannot be negative or exceed the bu�er size b�� Thus the total number of possible inventory
levels in the �rst bu�er is �b� � ��� For the second bu�er� under the hedging point policy� the
maximum possible inventory level is h with h � b�� Since we allow a maximum backlog of m in
the system� the total number of possible inventory levels in the second bu�er is l � �m�h����
In practice the value of l can easily go up to thousands�

M� �
��

��
��
B� � M� �

��

��
��
B� �

�

Figure 	� Two Machines in Tandem�

We let z��t� and z��t� be the inventory levels of the �rst and second bu�ers at time t
respectively� Then z��t� and z��t� take integer values in ��� b� and ��m�h respectively� Thus
the joint inventory process f�z��t�� z��t��� t � �g is a continuous time Markov chain taking values
in the state space

S � f�z��t�� z��t�� � z� � �� � � � � b�� z� � �m� � � � � h�g�

We order the inventory states lexicographically� with z��t� �rst and then z��t�� Then we obtain
the tridiagonal block generator for the joint inventory system

A �

�
BBBBB�

� � ��Il ! �
���Il ��D � ��Il !

� � �
� � �

� � �

���Il ��D � ��Il !
� ���Il � �D

�
CCCCCA
�

where

� �

�
BBBB�

� �� �

�
� � �
� � � ��

� �

�
CCCCA � ! �

�
BBBB�

� �

��� � � �
� � �

� � �

� ��� �

�
CCCCA �

and D � Diag���� � � � � ��� �� is an l � l diagonal matrix� We note that A can be written as

A � Ib�	� � ��W� � Il �Diag��� �� � � � � ���D �W� � !� ����

��



where

W� �

�
BBB�

�� � �
��� ��

� � �
� � �

� ��� �

�
CCCA and W� �

�
BBBB�

� � �
� � �

� � �
� � � �

� �

�
CCCCA �

Here we are interested in the system performance when l is large�
Similar to the discussion in x�� our preconditioner is obtained by taking the circulant ap�

proximations of the matrices �� ! and D in ����� It is easy to check that our preconditioner is
unitary similar to a diagonal block matrix with each block being a tridiagonal matrix� The cost
per iteration in the CGS algorithm is therefore of O�l log l�� In our tests� we let � � �� �� � ���
and �� � �� Tables �a and �b give the cost per iteration and the number of iterations required
for convergence for each method respectively�

I C BGS

O�l� O�l log l� O�l�

Table 	a� Cost Per Iteration�

b� � � b� � �	
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Table 	b� Numbers of Iterations for Convergence

For this problem� the cost of using Sherman�Morrison formula is about �M�� matrix�vector
multiplications of the form C��y� Thus for the �rst case where M � �� the Sherman�Morrison
formula is better� However� for larger M � such as in the second case� our method is again better
than the Sherman�Morrison formula approach�

We conclude from the above three applications that the CGS method without preconditioning
converges very slowly� Although the cost of the preconditioned CGS method is larger than that
of the nonpreconditioned one or the BGS method by an order of O�log l��� the fast convergence
of the method can cover this overhead in all the examples tested� Also we conclude that if
M � the size of the blocks� is not small� then our method is better than the Sherman�Morrison
formula approach�

� Concluding Remarks

In this paper� we discuss circulant preconditioners for stochastic automata newtorks� Our pre�
conditioners are constructed by taking circulant approximations of the generator matrices of the
networks� Convergence rate of the preconditioned conjugate gradient method is proven in some
practical situations� We test our method for systems from three di�erent applications and they
all give very fast convergence when compared with the block Gauss�Seidel method�

�	



We remark that our preconditioners and convergence proof can be applied to manufacturing
systems of more than two machines �jobshops� in tandem� see ��� for instance� It will be
interesting to extend our results to other sophisticated Markovian models ���� ��� ��� ���
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