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Summary� Preconditioned conjugate gradient methods are employed to �nd the
steady�state probability distribution of Markovian queueing networks that have
over�ow capacity� Di�erent singular preconditioners that can be handled by
separation of variables are discussed� The resulting preconditioned systems are
nonsingular� Numerical results show that the number of iterations required for
convergence grows very slowly with the queue sizes�
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� Introduction

In a Markovian queueing network� most of the quantities of interest� for example
the blocking probability and the waiting time for customers in various queues�
can be expressed in terms of the steady�state probability distribution� The
distribution is the solution of the Kolmogorov balance equations� The resulting
matrix system has dimension N � where N is the total number of states in
the network� The matrix� called the generating matrix� is non�symmetric and
is known to have a one dimensional null�space� The steady�state probability
distribution is the normalized right null�vector of this matrix�
The method we employ to �nd the null�vector is based on the preconditioned

conjugate gradient method� The preconditioner is a singular matrix of order
N which can be handled by separation of variables� Although the original
matrix is singular� we can reduce the problem to solving a non�singular system
by computing the components of the eigenvector which is orthogonal to the
null�space of this chosen separable problem� The nonzero components of the
eigenvector correspond to the states where over�ow between the queues take
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place� The e�ective dimension of the problem can usually be reduced by an
order n� where n is the individual queue size�
In Chan ���� we applied our method to over�ow networks with two queues�

The preconditioner was chosen to be the generating matrix of the correspond�
ing 
�queue free model� We observed numerically that the number of iterations
required to attain a given accuracy is almost constant independent of the queue
size n� We then proved analytically that when there is only one server in each
queue� the number of iterations required can grow no faster than O�log� n�� As
a corollary� we also established the fast convergence of the preconditioned con�
jugate gradient method when applied to the oblique boundary value problems
with the correponding Neumann problem as preconditioner�
In this paper� we generalize our method in three di�erent directions� In x


� we apply our method to over�ow queueing networks with rectangular state�
spaces but arbitrary number of queues� As preconditioner� we use the generating
matrix of the corresponding free model� In x �� we consider other possible
preconditioners for these networks by �rst perturbing the singular system into
a nonsingular one� We introduce a family of preconditioners which includes the
generating matrix of the free model as a limiting case� These preconditioners
are separable such that the corresponding systems can be solved economically�
In x �� we consider networks where the state�spaces are not rectangular� We
will employ the technique of substructuring to �nd our optimal preconditioners�
The numerical results are reported in x 	� A comparison is made between this
method and the point SOR method� We see that our method has a much
better performance� In fact� the number of iterations required to attain a given
accuracy grows very slowly with the queue sizes�

� q�Queue Over�ow Models

Let us begin by introducing the notations that we will be using� Given a network
with q queues� we assume that customers are coming from q independent Poisson
sources� In the i�th queue�  � i � q� there are si parallel servers� and ni�si�
waiting spaces� Customers enter the queue with mean arrival rate �i � �� The
service time distributions of the servers are independent and each of them is
exponential distributed with mean ���i � �� Let pi��i������iq denote the steady�
state probability distribution which gives the probability of state �i�� ���� iq��
i�e�� the probability that ij customers are in the j�th queue�  � j � q� Since
� � ij � nj �  � j � q� the total number of states in the system is N �

Qq
j�� nj �

For simplicity� let Ik be the identity matrix of order k and �ij be the Kronecker
delta�
The idea of preconditioning the singular generating matrix of an over�ow

queueing model by the singular generating matrix of the corresponding free�
model� as discussed in Chan ���� can easily be extended to more general over�ow
queueing networks� provided that both matrices have the same dimension� Con�






sider the following q�queue over�ow networks� Customers from the i�th Poisson
source�  � i � q� will enter� wait and be served at the i�th queue if it is not
yet full� In particular� customers cannot jump between the waiting lines and
the over�ow of customers from any queue can occur only when the queue is full�
These conditions will ensure that all the N states in the network are accessible�
Hence the generating matrix A will be of the same order as the preconditioner
A�� the generating matrix of the q�queue free model�
When a particular queue is full� customers entering the queue will over�ow

and be served at other queues according to some given queueing disciplines� For
simplicity� let us denote by

i� �� i� �� � � � �� ij �
��

the queueing discipline that customers from the i��th Poisson source can over�ow
and be served at the ij�th queue if the i��th� i��th� � � �� ij���th queues are all
full and the ij�th queue is not yet full�
To avoid ambiguity� we assume that for any given queue there is at most one

direction of over�ow of customers� i�e�

� � � �� i �� j �� � � � and � � � �� i �� k �� � � � �� j � k� �
�
�

Moreover� to prevent customers from wandering within the network� we assume
that any given queueing discipline does not form a loop� More precisely� in �
���

k �� l �� ik �� il�  � k� l � j� �
���

Let p be the steady�state probability distribution vector of this network�
Then p is the solution of the following problem�

��
�

Ap � ��
��p � �
pi��i������iq 	 ��

�
���

Here A is the generating matrix of the network and � is the N �vector of all
ones� Similar to the 
�queue model case discussed in Chan ���� we partition the
generating matrix A as

A � A� �R�� �
�	�

Here A� is the generating matrix of the q�queue free model and is given by

A� �

qX
j��

qO
i��

G
�ij
i � �
���

�



where

Gi �

�
�����������

�i ��i
��i �i � �i �
�i �

��i �i � 
�i ���i
� � �

��i �i � si�i �si�i
� � �

� ��i �i � si�i �si�i
��i si�i

�
										


�
���
 � i � q� is a matrix of order ni and is the generating matrix of a �queue
free model� We remark that the steady�state probability distribution vector p�
corresponding to A� is given by

p� �

qO
i��

S�i �i� �
���

where �i is the ni�vector of all ones and Si is the diagonal similarity transfor�
mation that symmetrizes Gi with normalization condition �

�

iS
�
i �i � � Indeed�

for all i � � � � � q� S�i �i is the steady�state probability distribution vector corre�
sponding to Gi� i�e� GiS

�
i �i � ��

The residual matrix R� consists of terms that correspond to the over�ow
disciplines �
��� To obtain R�� let us �rst de�ne

jRi 
 �i �

�
�������


�  �

� �
� �

� � 
� �

�
						

� �
���

a square matrix of order nj �
jei to be the i�th unit vector in Rnj and Ei 


ieni
ie�ni � Then any queueing discipline of the form i �� j implies that R�

contains the following term

Rij �

qO
k��

E�ik
k �kRi�

�jk � �
���

This is because over�ow from the i�th queue to the j�th queue amounts to adding

�i � �kini���� �kjnj���pk������kq �
��

to one side of the Kolmogorov balance equations and

�i � �kini���� ��kj �pk������kj�������kq �
�
�

�



to the other side� for  � kj � nj �  � j � q� The term in �
�� indicates that
customers are leaving the state �k�� � � � � kq� at an additional rate �i when the
i�th queue is full and the j�th queue is not yet full� The term in �
�
� indicates
that customers are entering the state �k�� � � � � kq� at an additional rate �i from
the state �k�� � � � � kj � � � � � � kq� when the i�th queue is full�
Queueing disciplines involving more queues mean that the terms added to

R� have more Ei factors replaced by the Ini factors� Thus they are more sparse�
For example� the queueing discipline i �� j �� k means that we have to add to
R� the term

Rijk �

qO
l��

E�il
l E

�jl
l �

lRi�
�kl � �
���

This follows from the fact that we have to add

�i � �lini���ljnj���� �lknk���pl������lq

and
�i � �lini���ljnj���� ��lk�pl������lk�������lq

for  � lj � nj �  � j � q� to the two sides of the Kolmogorov balance equations�
In general� the queueing discipline in �
�� implies that R� has the term

Ri������ij �

qO
k��

E
�i�k
k � � �E

�ij��k

k �kRi�
�ijk � �
���

We note that by assumption �
���� every term added to R� has one and
only one jRi factor in it� Here the i and j indicate the original source and the
�nal destination of the over�owed customers respectively� Thus all the terms
added to R� have zero column sums� non�negative diagonal and non�positive o��
diagonal entries� This implies that A is an irreducible matrix with zero column
sums� strictly positive diagonal and non�positive o��diagonal entries� as A� is
already a matrix having these properties� Hence by Frobenius theory on positive
matrix� �see� for instance� Varga ����� the steady�state probability distribution
vector p of the network exists and is unique�
To obtain p� we �rst recall that �see Chan ����

RN � span � p� � �Im�A��� �
�	�

and that the generalized inverse A�

� of A� is invertible on

Im�A�� � fx � RN j��x � �g� �
���

In view of this� we can write p as

p � p� �A�

� 	�� �
���

	



where 	� � Im�A��� Substituting this Ansatz into the equation Ap � �� we get�

�I �R�A
�

� �	� � �R�p�� �
���

We claim that the matrix AA�

� � I �R�A
�

� is non�singular� i�e� the singularity
of A is cancelled exactly by the singularity of A�� In fact� we have

Lemma � Consider a system of the form��
�
�A� �R��p � ��

��p � �
pj 	 ��

If the solution p exists and is unique and ��R� � � then the matrix �I�R�A
�

� �
is non�singular�

Proof� We �rst note that ��R� � � implies that Im�R��  Im�A��� Thus
�I � R�A

�

� � maps Im�A�� into itself� Moreover� the existence and uniqueness
of p implies the existence and uniqueness of a 	� � Im�A�� that satis�es �I �
R�A

�

� �	� � �R�p�� Thus the matrix is invertible in Im�A��� Suppose y is in the
kernel of this matrix� By �
�	�� there exists a unique 
 and x � Im�A�� such
that y � 
p�� x� Hence �I �R�A

�

� �y � � implies that �
p� � �I �R�A
�

� �x�

R�A

�

� p�� Since Im�R��  Im�A��� the right hand side is in Im�A��� Thus by
�
�	� again� 
 � � and �I �R�A

�

� �x � �� Since x � Im�A��� the last equation
implies x � �� Hence y � �� Thus the matrix is non�singular� �

Next we claim that those terms added to R� are sparse� In fact� since
over�ow occurs only when at least one of the queues� say the i�th queue� is full�
the corresponding term in R� has at most N�ni non�zero rows� Moreover� since
every such term represents the over�ow from one queue to another� every non�
zero row has at most two non�zero entries� If we permit all possible directions
of over�ow within the network� the total number of non�zero rows in R� will be
bounded above by

mq 
 N �

qX
i��



ni
� �
���

Moreover� the total number of non�zero entries in every such row will not exceed
q � � since there are only q queues in the network� Thus R� is also sparse�
By �
���� we see that 	� � Im�R��� Thus� using the sparsity of R�� we

can reduce the system in �
��� to a system which has order at most mq �
qnq��� However� for general networks� this is often too large to be handled
by direct methods� Since they would require O�m�

q� � O�q�n�q��� storage
spaces� If we use the conjugate gradient method together with the source�and�
target technique of Banegas �
�� then in each iteration� only O�qnq��� storage
is required� �For q � 
� the storage requirement is O�n��� for we have to store
the ni by ni matrices that diagonalize Gi� see Chan ����� The cost per iteration

�



will depend on the cost of computing �I �R�A
�

�
�	 for 	 � Im�R��� Notice that

for any given vector x� the vector�matrix multiplication R�x requires at most
�q � �mq operations� This work is negligible when compared to the work of
computing A�

� 	� which is on the order of O�qn
q��� provided that we �rst obtain

the spectral decomposition of A�� i�e� diagonalize Gi�  � i � q� see Chan ����
Once 	� is found� we can obtain p by using �
��� and �
���� We note that if only
a linear functional l�p of p is required� where l is any N �vector� then the overall
storage requirement will remain at O�qnq��� as we do not have to store the
entries of p explicitly� This is of considerable advantage over the SOR method
which would require O�nq� storage�
In x 	� we apply this method to the ��queue model discussed in Kaufman

�
�� It has queueing disciplines  �� 
� 
 �� � and  �� 
 �� �� Our method
requiresO�n�� storage� and using the sparity of the problem� the operation count
is reduced to O�n�� per iteration� This algorithm is given in the Appendix
of Chan �	�� We remark that our method is quite suitable for designing an
algorithm that can accept the number of queues and the queueing disciplines as
input parameters�
For single�server cases� si � � using the continuous analogy mentioned in

Chan ���� the term Ri������iq that make up R� corresponds to a forward di�erence
operator on a particular face in the q�dimensional cube �see �
����� These faces
correspond to states where over�ow occurs� Thus R� is similar to an operator
which is zero in the q�dimensional cube� but with tangential derivatives on
some of the faces� A� is similar to a second order elliptic operator with constant
coe�cients and transport terms actin on this q�dimensional cube with Neumann
boundary conditions everywhere� �see �
��� with si �  and �i � �i�� This
operator is of the form

qX
i��

��i � �i��ii � 


qX
i��

�ni � ���i � �i��i�

The matrix A � A��R� therefore resembles this same operator but with oblique
derivatives on some particular faces� Hence the boundary conditions of A and
A� are of the same type� In our previous papers� see Chan �	� and ���� we have
shown that a Neumann problem can be used sucessfully to precondition an
oblique derivative problem in the constant coe�cient case� we therefore expect
our method to have fast convergence for these kind of models provided that the
elliptic terms are not dominated by the transport terms� i�e� ��i��i� � O�n���
with  � �
In x 	� we see that under this assumption� our method converges much

faster than the point�SOR method� The number of iterations required to attain
a given accuracy increases like O�logn� when the queue size n increases� We
also note that when � �  � � it is easy to show that the solution p tends to
p� exponentially fast as n��� see Chan ��� x ��
�

�



� Other Separable Preconditioners

The preconditioner A� discussed in x 
 is not the only viable preconditioner for
these queueing models� In this section� we will develop other possible precondi�
tioners for these models� We will only consider separable preconditioners here
because such systems can be solved economically� For simplicity� we con�ne our�
selves to the 
�queue model discussed in Chan ��� and Kaufman �
�� namely� a
model with over�ow discipline  �� 
� The idea can easily be extended to more
general networks�
Let us consider the model in which over�ow is permitted only from the �rst

queue into the second� i�e�  �� 
� The corresponding equation of this model is
given by

Ap � �A� �R��p � �� ����

where
R� � �

�en�
�e�n���

�R�� ���
�

Here A� is given by �
��� with q � 
� and �R� is de�ned in �
���� It is easy
to check that the generating matrix A has a one dimensional null�space with
positive null�vector p� hence we can �x one component of p� and solve the
resulting non�singular system� More precisely� since p is positive� and is unique
up to a multiple constant� we can always set pN � the last entry of p� to  and
partition the system ���� as

Ap �

�
B d
c� �

� �
�p
pN

�
� ��

Using the facts that A is irreducible and has zero column sum� we see that B is
irreducibly diagonally dominant and hence nonsingular� Thus we can proceed
to solve the reduced system B�p � �d by direct or iterative methods� see Kauf�
man �
� and Funderlic and Mankin ���� However� it is impossible to design a
separable preconditioner for B because its dimension is n�n��� To get around
this� we can� instead of considering submatrices of A� consider a perturbed ver�
sion of ����� More precisely� we �x pN such that ��pN � � or equivalently� let
���

�en�
�e�n� �

�en�
�e�n��p � eN � We then obtain p from

�Ap � fA� ���
�en�

�e�n� �
�en�

�e�n��gp � eN � �����

Notice that �A is irreducibly diagonally dominant and therefore non�singular�
Since �A is of order n�n�� it is now possible to design separable preconditioners
for �A�

�I� A family of separable preconditioners for �A
Let us partition �A as �A � �A� � �R�� where

�A� � V� � In� � In� �G�� �����

�R� � �� � f
�en�

�e�n� � tridiag��� �� ��g� ���	�

V� � G� � �� �
�en�

�e�n� � �����

�



Clearly �A� is separable and V� is irreducibly diagonally dominant� Hence �A� is
non�singular� We can write p � �A��

� 	� and solve the preconditioned system

�A �A��

�
	� � �I � �R�

�A��

�
�	� � eN �

Because of the sparsity of �R�� we can reduce this to an n� by n� system� Unfortu�
nately� numerical results show that the convergence rate for this preconditioned
system is very slow�
Notice that �A� resembles the �nite di�erence approximation of a second

order elliptic operator on the square with a Dirichlet boundary condition on
one of the sides and Neumann boundary conditions on the remaining sides� In
fact� if �i � �i � si � � then V� � tridiag��� 
���� e��e�� This is exactly
the �nite di�erence approximation of a simple second order ordinary di�erential
operator with a Neumann type data at one end and a Dirichlet type data at
the other� Thus the slow convergence is due to the fact that �A� is not a good
approximation to �A� it changes the oblique derivative in �A into a Dirichlet
boundary condition� see Chan �	��
Notice that �A� is not the only non�singular separable preconditioner for �A�

in fact� there exists a family of non�singular separable preconditioners� Let us
de�ne� for any 
�

V� � G� � 
�� � �
�en�

�e�n��� �����

�A� � V� � In� � In� �G�� �����

�R� � �� � f
�en�

�e�n� � tridiag��� � 
� ��g� �����

We note that �A � �A� � �R� � Clearly �A� is separable� When 
 � �� V� is irre�

ducibly diagonally dominant and hence �A� is nonsingular� We can then de�ne

p � �A��

� 	� � and solve for 	� � These preconditioners correspond to operators
with a mixed type of boundary condition on the side in question� Our numeri�
cal results show that the performance improves when 
 gets closer to zero� This
can also be explained by using the continuous analogy�
Let us consider the case when 
 � �� We obtain V� � G� and �A� � A��

This is the preconditioner considered previously� It is singular and corresponds
to the operator with Neumann boundary conditions on every sides� Hence we
cannot set p � �A��

�
	� and solve for 	�� However� we can still design a singular

separable preconditioner for the non�singular matrix �A� see �II� below�
For 
 � �� the preconditioners again correspond to operators with mixed

type boundary conditions� Numerical results show that the convergence rate
is slower when 
 becomes more negative� We remark that V� in ����� can be
symmetrized by a diagonal matrix� but it is no longer de�nite� More precisely�
by the Cauchy interlace theorem �see Parlett ����� V� � and hence �A� � has one
negative eigenvalue�

�II� Separable Preconditioner for �A when 
 � �

�



By �
�	�� there exists unique scalar  and 	� � Im�A�� such that p �
p� � A�

� 	�� Since we have set ��pN � �  is no longer arbitrary� Thus we
need an extra equation for � Recalling �A � A� � �R�� ����� becomes

�A�p� � A�

� 	�� � �I �
�R�A

�

� �	� �  �R�p� � eN �

Moreover� since 	� � Im�A��� we have �
�	� � �� Combining these equations�

we have the following �N � � by �N � � system

Ff 


�
�I � �R�A

�

� �
�R�p�

�� �

��
	�


�
�

�
eN
�

�
� �����

We claim that F is non�singular� To prove this� suppose that �	� 
�� is in
the kernel of F � This implies that �A�
p� � A�

� 	� � � and ��	 � �� Since �A
is non�singular� the �rst condition implies that 
p� � A�

� 	 � �� The second
condition implies that 	 � Im�A��� which by the de�nition of A

�

� � implies
that A�

� 	 � Im�A��� Thus by �
�	�� we have 
 � � and A�

� 	 � �� By the
invertability of A�

�
on Im�A��� we have 	 � �� Hence F is non�singular and it

is legitimate to solve for f in ������ By the sparsity of �R�� we can also reduce
����� to an �n� � � by �n� � � system�
Notice that by ������ �A di�ers from A by a rank one matrix� Thus �R� di�ers

from the R� in ���
� by a rank one matrix� Hence theN byN leading sub�matrix
of FF � di�ers from the preconditioned matrix �I � R�A

�

� ��I � R�A
�

� �
� by at

most a rank three matrix� Using the Cauchy interlace theorem� the singular
values of �I � R�A

�

� � will interlace the singular values of F � except possibly
a few outlying ones� In particular� if the singular values of �I � R�A

�

�
� are

clustered� so will be the singular values of F � �We remark that� in Chan ���� we
have shown that the singular values of �I �R�A

�

� � are indeed clustered around

� � ������
�

� in the single�server case�� The numerical results in x 	 show that
the convergence rate for these two systems are very similar�

� An Over�owModel with Restricted State�Space

In this section� we consider a model in which over�ow occurs even before a
queue is full� The resulting problem is still a homogeneous system of the form
Ap � �� but with some of the entries of p being set to zero� Thus the dimension
NA of A is less than the dimension N of the preconditioner A�� We introduce
two methods here to solve this queueing problem� In the �rst� we partition
the state space into subspaces in which we can �nd separable preconditioners�
In the second� we embed the state space into one where we can use A� as a
preconditioner�
Let us consider the following 
�queue network� Customers entering the �rst

queue will wait and be served at the second queue if all the spaces in the �rst
queue is �lled� Moreover� we assume that a customer waiting for service in

�



the �rst queue is moved to and served at the second queue if a server in the
second queue becomes available� Thus� some of the states are not admissible
here� More precisely� we have

pi�j � � s� � i � n�� � � j � s�� ����

We may associate the values of pi�j with the following L�shaped region�

� �� s� n� � 

l� pij � �

s� l�

�� �� � �� l� Figure 

n� �  ��

In the �gure� l�� l�� l� are line segments de�ned by





l� 
 fs�g � ��� s� � �� ���
�

l� 
 �s� � � n� � �� fs�g� �����

l� 
 fn� � g � �s�� n� � 
�� �����

For simplicity� we let

�� 
 l� � l� � l� � f�s�� s��� �n� � � n� � �g� ���	�

and �� to be the set of all boundary states that are not in ���
We remark that this model is similar to the one discussed in Kaufman� Serry

and Morrison ��� except that we have added one more feature� Namely� we
permit over�ow from the �rst queue to the second queue when the �rst queue
is full� The Kolmogorov balance equations of our model are given by

����� �in����jn����j�s� � � ���� �jn���� � min�i� s���� �min�j� s�����pi�j

� �� �i���s��s����j������ �i��pi���j � �� �jn����min�j � � s����pi�j���

� �� �j�������is��s��j � �in����j�s� � � ���� �i���s��s��j��pi�j�� �����

� �� �in������� �i�s��s����j�min�i� � s���� � s����i�s��js� �pi���j �

for � � i � n� and � � j � n�� Here

�l �


� l 	 ��
�� l � ��

�����

We note that these equations imply ���� and that the steady�state probability
distribution p satis�es the homogeneous equation

Ap � �� �����

Here A is the generating matrix of dimension NA� Since p is a probability
distribution� we supplement ����� with

��p � � �����

pi�j 	 �� �����

It is straightforward to check that A is an irreducible matrix with zero column
sums� strictly positive diagonal and non�positive o��diagonal entries� Hence the
solution p to ����� � ����� exists and is unique� Moreover�

pi�j � �� ����

Considering the continuous analogy� we �nd that the matrix A resembles
an second order elliptic operator acting on the L�shaped region with Neumann






boundary conditions on �� and oblique boundary conditions on ��� The idea of
the previous sections would suggest the partition

A � �A� �R� ���
�

with �A resembling the same operator but with Neumann boundary conditions
everywhere� �R will then be an operator that is zero in the L�shape region� but
has tangential derivatives along ��� We note that �A has the form

�A �

�
� T� D� �

E� C� D�

� E� T�

�

 � �����

Here Ti represents couplings between the pairs of states in �i� C� couplings
between the pairs of states on the interface � � and Di and Ei couplings between
the pairs belonging to �i and � � The dimension of C� is equal to the number
of states on � � which is equal to n� � s�� This is small when compared to
the dimension of Ti� which is equal to the total number of states in �i� The
dimension of T� is s�n� and that of T� is �n� � s���n� � s� � �� We note that
in �����

E� � ���� � In��s� ���
�� �����

D� � ��s��� � In��s� ���� ���	�

where � is the zero matrix of order �n� � s�� by �n� � s� � 
�� Thus they are
sparse�
We claim that the matrix �R is sparse� We �rst note that� depending on the

ordering of the states� any index j�  � j � NA� corresponds to a unique state
�j�� j�� in the L�shaped domain� Using this notation� it is straightforward to
check that

�R � �R� � �R�� �����

Here �R� is a diagonal matrix given by

� �R��jj �

����
���

�� � s��� �j�� j�� � �n� � � s���
�� �j�� j�� � l� � l�nf�n� � � s��g�
s��� �j�� j�� � l�nf�n� � � s��g�
� otherwise�

�����

and �R� is given by

� �R��kj �

��
�

��� �k�� k� � � and �j�� j�� � l� � l��
�s��� �k� � � k�� and �j�� j�� � l��
� otherwise�

�����

Thus the number of non�zero rows is equal to the number of states on ��� which
is equal to

N �R 
 n� � n� � s� � � �����

�



Moreover� every such rows has at most two non�zero entries� It can be shown
that �A is still singular with a one dimensional null�space� However� �A is not
separable� Hence �A�x cannot be computed economically� In the following� we
will design singular� separable preconditioners that are close to A in the sense
that they represent the same operator in the L�shaped region and have the
same type of boundary conditions� The �rst idea comes from the theory of
substructuring�

��� Partitioning of the State�Space

The method of substructuring has been used for solving elliptic problems de�
�ned in irregular regions� see Bj�rstad and Widlund ���� Dryja ���� Buzbee et
al� ��� and Concus et al� ���� The idea is to partition the problem into subprob�
lems which correspond to subregions into which the original region has been
partitioned� We can then solve each of these subproblems separately by direct
methods while the interactions between the subregions are solved by a direct or
iterative method� Since the number of nodes on the interface usually is small
compared to the number of nodes in each subregions� the size of this interface
problem is usually small compared to the original problem� If we are using
iterative methods to solve the interface problem� then in each iteration� we will
have to solve the subproblems once in each subregion� However� if the bound�
ary conditions for the original region are such that separation of variables is
possible� then solving the subproblems by direct methods will require very little
work�
To be more speci�c� let us consider the problem of solving Laplace�s equation

in the L�shaped region depicted in Figure � with Neumann boundary conditions
everywhere� Follows the idea from Bj�rstad and Widlund ���� we construct
the following preconditioner� We �rst solve the problem de�ned on �� with
Neumann boundary conditions on the boundary of �� including � � This is a
separable problem� Having solved this problem� we use the value of the solution
on the interface � as Dirichlet data and solve a Dirichlet�Neumann problem on
�� with Dirichlet boundary condition on the interface � and Neumann boundary
conditions on the remaining three sides� This problem is also separable�
Using the analogy between the queueing model and this continuous problem�

we construct our preconditioner accordingly� The numerical results in x 	 show
that this preconditioner is very good� In matrix terms� we partition our matrix
A as

A � �A� �R� ���
��

where

�A 


�
�A� �
�E� T�

�
�

�
� T� D� �

E� C� �
� E� T�

�

 � ���
�

�



Here
�E� 
 ��� E��� ���

�

and

�A� 


�
T� D�

E� C�

�
���
��

with
C� � C� � �� � In��s� � ���
��

Comparing ���
� with ������ we have

�R � �R�

�
� � � �

� C� � C� D�

� � �

�

 � ���
	�

Since �R� D� and C� � C� are sparse� �R is also sparse� In fact it has at most

m 
 n� � 
n� � s� � s� � 
 ���
��

non�zero rows� and every such rows has at most two non�zero entries� Notice
that the sub�matrix �A� corresponds to a Neumann problem on the subregion
��� In fact�

�A� � �G� � In� � Is��� �G�� ���
��

where �G�� of dimension s� �� is the same as Gi in �
��� but with s� replacing
ni �  there� Thus �A� is the generating matrix of a 
�queue free model with s�
spaces in the �rst queue and n� �  spaces in the second queue� Hence �A� is
separable� has a one dimensional null�space and a positive null�vector� Let us
denote its null�vector by �p��
On the other hand� T� corresponds to a mixed type problem de�ned on ���

In fact�
T� � V� � In��s� � In��s��� � V�� ���
��

Here

V� 
 tridiag����� �� � s�����s����� �� � en��s���e
�

n��s���
���
��

is a matrix of order n� � s� �  and

V� 
 tridiag����� �� � s�����s����� s��� � e�e
�

� � �� � en��s�e
�

n��s�
������

is a matrix of order n� � s�� It is clear that T� is separable and since V�
is irreducibly diagonally dominant� T� is non�singular� Thus by ���
�� �A is
singular� and has a one dimensional null�space� The null�vector of �A is given by

�p �

�
�p�

�T��

�
�E��p�

�
� �����

	



We note that the �pij are not necessarily positive� Let us de�ne the generalized

inverse �A� of �A as

�A� �

�
�A�

� �

�T��

�
�E�
�A�

� T��

�

�
� ����
�

We have

Lemma �

�i� Im� �A� � fx �

�
x�
x�

�
� RNA jx� � Im� �A��g�

�ii� �A� is invertible on Im� �A�� More precisely� for all y � Im� �A�� there exists
a unique x � Im� �A�� such that

�A�x � y� ������

where x � �Ay� Thus for all y � Im� �A��

�A �A�y � �A� �Ay � y� ������

�iii� For all y � RNA � there exist a unique  and 	 � Im� �A� such that�

y � �p� �A�	� ����	�

�iv� Let p be the solution to ����� � ������ then there exist a unique  �� � and
	 � Im� �A� such that�

p � �p� �A�	� ������

Proof� We �rst note that �A� is the generating matrix of a 
�queue free model�
hence �i� � �iii� follow easily from the fact that T� is non�singular and the remarks
we made in �
�	� � �
���� Thus let us prove �iv�� By �iii�� it su�ces to show

that  �� �� Suppose  � �� then p �

�
p�
p�

�
� �A�	 � Im� �A�� By �i��

p� � Im� �A��� hence �
�p� � �� contradicting ����� �

We remark that even though �A cannot be symmetrized� we still have a decom�
position of the state space as in ����	�� Notice that in ���
�� �A is in block
lower triangular form� Since �A� and T� are separable� and in view of ����� and
���

�� �E� is sparse� thus �A

�x can be computed easily for any x � Im� �A�� We
remark that �E� picks up the Dirichlet data on � �
Using �iv� in Lemma 
 and since p is unique up to a multiple constant� we

may let
p � �p� �A�	�� ������

�



and normalize it by ����� after we �nd it� Putting this Ansatz into ������ we get

�I � �R �A��	� � � �R�p� ������

It can easily be checked that �R�p �� �� We remark that since �R has m non�zero
rows� where m is given by ���
��� ������ is practically an m by m system�
Let us calculate the cost of computing �R �A�x for any x� Since �R has at

most 
m non�zero entries� �Rx can be computed in 
m operations� Next let us
consider solving

�A

�
y�
y�

�
�

�
x�
x�

�
�

where x� � Im� �A��� Notice that by ���
�� �A�y� � x�� Since �A� is separable�
this system can be solved in O�n��� operations� Let us remark that when s� �
n�� we can diagonalize �G� and then solve the resulting tridaigonal systems with
respect to G�� This requires only �n�s� operations� see Chan �	�� Having found
y�� we solve

T�y� � x� � �E�y�� ������

Since �E� is sparse� the right hand side of this equation can be computed in n��s�
operations� Since T� is separable too� y� can be solved by �rst diagonalizing V�
and then solving the resulting tridiagonal systems� We note that we can use the
Fast Fourier transform to perform the diagonalization� This follows from the
fact that V� is the generating matrix of a �queue single�server model with the
service rate s���� Thus the work for solving ������ is roughly 	�n� � s���n� �
s�� � 
�n� � s�� log�n� � s��� The �rst term here is the work required to solve
the resulting tridiagonal systems� Combining these results� we see that the work
required to compute �R �A�x is

�n�s� � 	�n� � s���n� � s�� � 
�n� � s�� log�n� � s��� ������

and the memory requirement is

s�� �O�ni � si�� �����

We note that there are many other viable separable preconditioners� For
example� instead of solving the Dirichlet�Neumann problem corresponding to
T�� we may solve a Dirichlet problem on ��� This is also a separable problem�
However� using the continuous analogy� see Bj�rstad and Widlund ���� we expect
that this preconditioner will not lead to an optimal method�

��� Embedding of the State�Space

Capacitance matrix methods have been developed for solving elliptic problems
in irregular regions such as the L�shaped region in Figure � see O�Leary and
Widlund ���� Proskurowski and Widlund �	� and Astrakhantsev ��� The idea

�



is to embed the state�space into a larger space where there is a separable pre�
conditioner� Here we design an algorithm that adopts this approach�
Recall that A� resembles a Neumann problem on the whole rectangular

region ��� n���� ��� n���� If we order the states in the L�shaped region �rst�
then we can write

A� �

�
A�� A��

A�� A��

�
����
�

where A�� and A�� are square matrices of dimension NA and N �NA respec�
tively� We claim that A�� is nonsingular� In fact� by the de�nition of A��

A�� � V� � Is� � In��s��� � �G�� ������

where V� is given by ���
�� and �G�� of dimension s�� is the principal submatrix
of G� obtained by deleting the last n� � s� columns and rows of G�� Since V�
and �G� are irreducibly diagonally dominant� A�� is nonsingular�
Consider the N by N matrix

AN 


�
A A��

� A��

�
� ������

where A is the generating matrix in ������ Clearly if p is the solution to ����� �

������ then pN �

�
p
�

�
is the unique solution to

ANpN � �� ����	�

��NpN � � ������

and
�pN �k�j 	 ��  � k� j � N� ������

Here �N � �� � ���� � � RN � Since ��NA� � � and �
�A � �� it follows that

��NAN � �� ������

Moreover� by �
�	� and ������� there exists a unique 	� � Im�A��� such that

pN � p� �A�

� 	�� ������

where p� is given by �
���� De�ne

RN 
 AN �A� �

�
A�A�� �
�A�� �

�
� ���	��

Then ����	� and ������ imply that

�I �RNA
�

� �	� � �RNp�� ���	�

�



By ���	�� and Lemma � the matrix �I � RNA
�

�
� is nonsingular� Thus we can

solve ���	� either by direct or iterative methods�
We claim that the matrix RN is sparse� In fact� by the de�nition of A�

�A���k�j �

��
�

��� �k� � � k�� and �j�� j�� � l��
�s��� �k�� k� � � and �j�� j�� � l��
� otherwise�

���	
�

On the other hand� it is straightforward to check that

A�� � �A�D� ���	��

where �A is given by ����� and D is a diagonal matrix such that

Djj �

��
�

�� �j�� j�� � l��
s��� �j�� j�� � l��
� otherwise�

���	��

By ���
� and ���	��� A � A�� � �R � D� From ����� � ������ we see that
�R�D still has N �R nonzero rows and every such rows has at most two nonzero
entries� Here N �R is given by ������ Moreover� by ���	�� and ���	
�� the number
of nonzero rows in RN is equal to

NR 
 N �R � s� � n� � n� � s� � s� � � ���		�

and every such rows has at most two nonzero elements� Hence RN is sparse�
Using the sparsity of RN � we can reduce the dimension of the problem ���	�

to NR� If conjugate gradient type methods are used� then in each step� we have
to compute a vector of the form RNA

�

� 	 where 	 � Im�RN �� We note that
though 	 is sparse� the computation of RNA

�

�
	 still requires O�n�i � work and

O�n�i � storage spaces� These counts are considerably higher than the counts
given in ������ and ������
This algorithm has not yet been tested� However� considering the fast con�

vergence of the capacitance method for elliptic problems and the continuous
analogue of the queueing models� we conjecture that this algorithm also has a
fast convergence rate�

� Numerical Results

In this section� we report on the numerical results for the models discussed in
previous sections� All the computations were carried out on the Cyber���� at
the Mathematics and Computing Laboratory of the Courant Institute� Single
precision� between fourteen and �fteen decimal digits� was used throughout�
Craig�s method� used in the computations� is a version of the ordinary conjugate
gradient method applied to the normal equations� see Elman ���� The Orthodir

�



method is a generalized conjugate gradient method in which the transpose of
the matrix is not needed� see Young and Jea ���� Convergence is said to occur
at the k�th step if

jjrk jj�
jjr�jj�

� tolerance�

Here rk is the residual vector at the k�th step and

jjxjj�� 



m

mX
i��

x�i �x � Rm�

The initial iterant x� is chosen to be identically zero�
Tables  gives the results of our method when applied to the ��queue model

discussed in x 
� The number of iterations increases like order O�logni�� Table

 shows the time in seconds required in each phase of the algorithm� Tables
� and � compare our method with the point SOR method� �� is the optimal
relaxation factor obtained experimentally� We see that our method performs
much better than the point SOR method especially when the si are small�
Tables 	 and � report on the performance of the family of preconditioners

discussed in x �� The parameter 
 in the tables indicates which preconditioner
we are using� If 
 �� �� the preconditioner is �A� which is nonsingular and is given
by ������ If 
 � �� the preconditioner is de�ned by ������ Recall that when

 � � the preconditioner resembles a Dirichlet problem while when 
 � �� it
resembles a Neumann problem� We see that the number of iterations decreases
as j
j � �� However� we remark that for su�ciently small 
� arithmetic over�ow
will occur� This is because by ����� and ������ the smallest eigenvalue of �A� tends
to zero as j
j � �� For comparison� we also report in the tables the number of
iterations required if A� is used as preconditioner�
For the L�shpaed region described in x �� tables � and � give the number

of iterations required for convergence when the method introduced in x �� is
used� In all cases� we see that the number of iterations increases at most like
O�log ni��
Table � Number of iterations by the Orthodir Method �tolerance � ����

Parameters si�i � �i � �ni � �
��� �i � � i � � 
� �

�n�� n�� n�� N si  si  si 
 
 �  
 �  
 �

������� ��  � � � � � � � � � � �
������� 	
  � � � � � � � � � � �
������� ����  � � � � � � � � � � �

Table 
� Time in seconds by the Orthodir Method �tolerance � ����


�



Parameters si�i � �i � �ni � �
��� �i � � si � �� i � � 
� �

n� � n� � n� � � �
Initialization ���	 ����	 �����
Iteration ����
 ����
 
�����

No� of iterations � � �
Time per iteration �����
 ��
�� �	��
Generating p ����� ����� ��	
�
Total time ���� ����� ���
�

Table �� Comparison with the Point SOR method
Parameters si�i � �i � �ni � �

��� �i � � i � � 
� �

Method point SOR� Initial guess p � � Orthodir
ni si N �� Relaxation factor � Iterations

�� �� �	 �� �� �� �� ��

�  �� ���� ��� 
�� 	� 	 �� �� �� �� �
� � �� �	�� �� �� 	� �� 	� �� �� �� �
�  	
 ��� �� �� ��� ��� ��� ��� �� 
�
 �
� � 	
 ��	 �	� �� 	�  �� �� ��	 �� 

�� more than ��� iterations

Table �� Time Comparison between the Orthodir and the Point SORmethods
Parameters si�i � �i � �ni � �

��� �i � � i � � 
� ��  � 


Problem ni � �� si � � ni � �� si � � ni � �� si � 
Dimension N �� 	
 	

Method Orthodir pt SOR Orthodir pt SOR Orthodir pt SOR
�� ��� �	�� ��� ��	 ��� ���

No� of iterations � �� 
 �� � 
�

Time for iteration ����� ����� 
��

 	���� ����	 ��

	
Time per iteration �����	 ����� ��
�	
 ��
 ��
��� ��
��

Total time ���
� ��	
� ��
�� 	���� ���	 ��
�


Table 	� Number of Iterations by the Craig�s Method� �tolerance � �����

Parameters
�i
�i
� � �

�
�ni � �

��� �i � si � � i � � 


�n�� n�� 
 A�

��� ��	 �	� �
	 �� �� ��� � ��� ��
	 ���	
����� � � � � � � � � � � � �
����� � � 	 � 
 � � 
 � � 

 �
��
��
� 
� 
� 
� 
� 	 � � � � 
� �� �
������� �� �� �� 
� 
� 
  � 
 �� �� 


�� more than �� iterations

Table �� Number of Iterations by the Orthodir Method� �tolerance � �����






Parameters
�i
�i
� � �

�
�ni � �

��� �i � si � � i � � 


�n�� n�� 
 A�

��� ��	 �	� �
	 �� �� ��� � ��� ��
	 ���	
����� � � � � � � �� � � � � �
����� 	 	 	 � � � �� � � � � 	
��
��
� 
� 
� 

 
 
 
 �� 
� 
 
� 
� 

������� �� �� � 
� 
	 
� �� �� 
	 �
 �� 
	

�� more than �� iterations

Table �� Number of Iterations by the Orthodir Method� �tolerance � ����
Parameters si�i � �i � �ni � �

��� �i � � i � � 


�n�� n��  �   � 
  � �
�s�� s�� Iterations �s�� s�� Iterations �s�� s�� Iterations

����� �
�
�  �	�	� � ����� 
�
��
�� ����� 	 �	�	� 	 ����� �
������� ����� � �	�	� � ����� �
������� ����� 
� �	�	� 

 ��
��
� �

Table �� Number of Iterations by the Orthodir Method� �tolerance � ����
Parameters si�i � �i � �ni � �

��� �i � � i � � 


�s�� s��  � �  � 
  � 

�n�� n�� Iterations �n�� n�� Iterations �n�� n�� Iterations

����� ����� 
 �
��
�� 	 �	�	� 
����� �
	�
�� � ��	���� � ������� �
����� ����
� � �	�	
� � ������� �
����� ������� 
� ������� 
 �
��
�� 
�
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