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Abstract

We consider solving the Wiener�Hopf equations with high order quadrature rules

by preconditioned conjugate gradient �PCG� methods� We propose using convolu�

tion operators as preconditioners for these equations� We will show that with proper

choice of kernel functions for the preconditioners� the resulting preconditioned equa�

tions will have clustered spectra and therefore can be solved by the PCG method

with superlinear convergence rate� Moreover� the discretization of these equations

by high order quadrature rules leads to matrix systems that involve only Toeplitz

or diagonal matrix�vector multiplications and hence can be computed e�ciently by

FFTs� Numerical results are given to illustrate the fast convergence of the method
and the improvement on accuracy by using higher order quadrature rule� We also

compare the performance of our preconditioners with the circulant integral opera�

tors�
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� Introduction

Wiener�Hopf equations arise in a variety of practical applications in mathematics and
engineering� especially in the solutions of inverse problems� Typical examples are linear
prediction problems for stationary stochastic processes ��� pp����
��	�� di�usion problems
and scattering problems ��� pp���	
����� In this paper� we consider the numerical solution
of Wiener�Hopf equations de�ned on the half�line ������

y�t� �

Z �

�

a�t� s�y�s�ds � g�t�� � � t ��� ���

Here a�t� � L��IR� and g�t� � L������ are given functions� One way of solving ��� is by
the projection method ��� where the solution y�t� of ��� is approximated by the solution
y� �t� of the �nite�section equation

y� �t� �

Z �

�

a�t� s�y��s�ds � g�t�� � � t � �� �
�

It is shown in ��� Theorem ���� that

lim
���

jjy� � yjjLp����� � �� � � p ���

The �nite�section equation �
� can be solved numerically by either direct or iterative
methods� For a �xed � � the �nite�section operator A� de�ned by

�A�x��t� �

��
�
Z �

�

a�t� s�x�s�ds� � � t � ��

�� t � ��
���

is a compact operator� Therefore� the spectrum of the Wiener�Hopf operator I � A�

�where I is the identity operator� is clustered around � and hence solving �
� by iterative
methods such as the conjugate gradient �CG� method will be less expensive than direct
methods� However� as � tends to �� the spectrum of this �nite�section operator A�

becomes dense in the spectrum of the half�line operator de�ned by ��� and hence the
convergence rate of the CG method will deteriorate� see the numerical results in x��

One standard way of speeding up the convergence rate of the CG method is to apply
a preconditioner� Thus instead of solving �
�� one solves the preconditioned equation

H�I �A� �y��t� � Hg�t�� � � t � �� ���

for some operator H� In ���� Gohberg� Hanke and Koltracht proposed using circulant

integral operators to precondition �
�� Circulant integral operators are operators of the
form

�C�x��t� �

Z �

�

c� �t� s�x�s�ds� � � t � �� ���






where c� is a � �periodic function in L����� � �� The preconditioned equation is given by

�I � C� �
���I �A� �y��t� � �I � C� �

��g�t�� � � t � �� �	�

It has been shown in ��� that for large � � the spectra of the circulant preconditioned
operators �I�C� �

���I�A� � are clustered around �� Hence the preconditioned conjugate
gradient �PCG� method converges superlinearly for large � �

We note that if the rectangular quadrature rule is used to discretize �	�� then we get
a matrix system�

�I�C����I�A�y � �I�C���g ���

where the matrices �I � C� and �I � A� are n�by�n circulant and Toeplitz matrices re�
spectively� Here n is the number of quadrature points used in the discretization� We
see that ��� is basically a circulant preconditioned Toeplitz system which requires only
O�n logn� operations in each iteration by means of Fast Fourier Transforms �FFTs� and
the convergence rate of these systems has been analyzed for instances in ��� ��� ����

One main drawback of using the rectangular rule is that the order of accuracy of the
discretized solution y depends only linearly on the number of quadrature points� Thus in
order to obtain a reasonable accurate solution for �
�� small step�size has to be used and
hence the dimension of the resulting matrix system will be large� In order to obtain high
order of accuracy� one can use higher order quadrature rules such as the trapezoidal rule or
Simpson�s rule which have second and fourth order of accuracy respectively� However� the
corresponding discretization matrices of the circulant integral operators are I�CD where
D is a diagonal matrix� We note that they are in general not circulant and therefore their
inversion �I�CD��� cannot be computed by using FFT� Hence the cost per iteration of
the PCG method will exceed O�n logn� operations�

The main aim of the paper is to construct preconditioners for �
� such that the precon�
ditioned operators have clustered spectra and that only O�n logn� operations are required
in each iteration of the PCG method even when higher order quadrature rule is employed�
Our idea is to precondition �
� as in ��� where only Hy are required for each iteration
of the PCG and also its discretization matrix�vector products Hy can be computed in
O�n logn� operations� In this paper� we use convolution operators for H to precondition
I �A� � More precisely� given A� � we �rst construct the convolution operator B� whose
kernel function b�t� satis�es �b�t� � �a�t���� � �a�t��� �Here and also in the following� we
will use �� to denote the Fourier transform�� Then we precondition �
� as

�I � B� ��I �A� �y��t� � �I � B� �g�t�� � � t � �� ���

We will prove that the spectra of the preconditioned operators �I � B� ��I � A� � are
clustered around �� Hence when we apply the conjugate gradient methods to solve ����
the convergence rate will be superlinear for large � �

�



We note that it may be di�cult to compute the kernel function b�t� explicitly� and
hence B� cannot be formed e�ciently� In this case� we derive another convolution op�
erator by considering a periodic function from a and using its periodicity to construct
the preconditioner� For convergence rate� we will show that the resulting preconditioned
Wiener�Hopf operator also has clustered spectrum around �� Numerical results show that
our methods converge faster than those preconditioned by using circulant integral oper�
ators� We will see that if Newton�Cotes quadrature rules are employed to discretize the
convolution integral operators A� and B� � the corresponding discretization matrices are
just products of Toeplitz matrices and diagonal matrices� Hence FFT can be used to
carry out the matrix�vector multiplication in each iteration of the PCG method� Thus
the cost per iteration remains O�n logn��

The outline of the paper is as follows� We introduce the construction of our precondi�
tioners in x
� In x�� we analyze the spectra of the preconditioned Wiener�Hopf operators�
The properties of the discretized matrices using higher order quadrature rules are given in
x�� In x�� we give numerical examples to illustrate the e�ectiveness of our preconditioners
and the improvement of accuracy by employing higher order quadrature rules� Finally�
concluding remarks are given in x	�

� Construction of the Preconditioners

In the following� we will assume that a�t� � L��IR� is conjugate symmetric� i�e� a�t� �
a��t� for all t and that �a�t� � �� Thus the operator A� de�ned in ��� is a self�adjoint
positive operator� In the applications of linear prediction problems� �a corresponds to the
spectral density function of a continuous stationary stochastic process� In these applica�
tions� the non�negativeness of �a is always valid� see Priestley���� p��
��� The motivation
for the construction of our preconditioners is given by the following Lemma�

Lemma � �Moiseiwitsch� 	�
� p�
��� Let a�t� � L��IR� be conjugate symmetric and

g�t� � L��IR�� Then the solution to the whole�line Wiener�Hopf equation

y�t� �

Z �

��

a�t� s�y�s�ds � g�t�� �� � t ��� ���

is given by

y�t� � g�t��

Z �

��

�g�s��a�s�

� � �a�s�
eistds�

By Paley�Wiener Theorem ���� Theorem ����� if � � �a�t� �� �� then there exists a
function b�t� � L��IR� such that

�b�t� �
�a�t�

� � �a�t�
� ����

�



or

b�t� �

Z �

��

a�t� s�b�s�ds � a�t�� �� � t ��� ����

It follows that the solution y�t� to ��� is given by

y�t� � g�t��

Z �

��

b�t� s�g�s�ds�

This leads us to consider using the integral operators I � B� where

�B�x��t� �

Z �

�

b�t� s�x�s�ds� � � t � �� ��
�

to precondition I �A� �
We note that the construction of B� involves the Fourier transform of a and the inverse

Fourier transform of �a��� � �a�� The kernel function b�t� cannot be obtained explicitly in
some cases� Therefore� we construct another convolution operator as preconditioner such
that its corresponding kernel function can be computed more e�ciently�

To construct such operator� we �rst de�ne the functions

D� �t� �

�
�� jtj � ��
�� jtj � ��

����

and a� �t� � D� �t�a�t�� We note that

A�x�t� �

Z �

�

a�t� s�x�s�ds �

Z �

�

a� �t� s�x�s�ds� � � t � ��

Thus as far as the projected operator A� is concerned� a��� and a� ��� are equal�
Similar to ����� we consider the solution p�� of the following equation to construct the

kernel function of the preconditioner�

p�� �t� �

Z �

��

c�� �t� s�p�� �s�ds � c�� �t�� �� � t � �� ����

where c�� �t� is a 
� �periodic function de�ned by

c�� �t� � a� �t�� �� � t � ��

We remark that as c�� is 
� �periodic and in L������ � ��� also is p�� � see ��� p�	� Theorem
����� Let P�� be the convolution operator with kernel function given by p�� �

�P��x��t� �

Z �

��

p�� �t� s�x�s�ds� � � t � 
��

�



Here� we employ the periodicity of c�� instead of using the Fourier transform of a as in
����� Therefore� by using the lemma in �	� p����� Theorem ����� the eigenvalues of P��

are given by

�n�P�� � �

Z �

��

p�� �t�e
�i�nt��dt �

�a� �
n�
�
�

� � �a� �
n�
�
�
� n � ZZ� ����

where

�a� �t� �

Z �

��

D� �s�a�s�e
�istds �

Z �

��

a�s�e�istds � �D� � �a�t�� ��	�

Similar to ��
�� we de�ne w� �t� by

w� �t� � D� �t�p�� �t�� ����

and consider using the integral operators I �W� where

�W�x��t� �

Z �

�

w�t� s�x�s�ds� � � t � �� ����

to precondition I �A� �
In x�� we will analyze the spectra of these preconditioned Wiener�Hopf equations ���

with the operators I � B� and I � W� as preconditioners� In x�� we will see that the
discretization matrix of I �W� can be obtained e�ciently by using FFTs�

� Convergence Analysis

In this section� we analyze the spectra of the preconditioned Wiener�Hopf equations ����
We �rst show that the operators I �A� and I � B� are positive�

Lemma 
 �Grenander and Szeg
o 	�� p������ Let f�t� � L��IR� be conjugate symmet�
ric and F� be the convolution operator de�ned on ��� � � with kernel function f�t�� Then

for all � � �� the spectrum ��F�� of F� satis�es ��F� � 	 �m�M �� where m and M are

the in�mum and supremum of �f�t� respectively�

By applying Lemma 
 to the operators A� and B� we have

Lemma � Let a�t� � L��IR� be conjugate symmetric and �a�t� � �� Then ��I � A� � 	
��� 	� and � ��I � B� � 	 �	��� ��� where

	 � � � sup
t�IR

�a�t� ���

In particular� the operator �I �A� �
��� is a well�de�ned� invertible operator from L���� ��

to L���� �� with
jj�I �A� �

���jj� � 	��� ��� ����

	



Proof� We �rst note that since limt�� �a�t� � � and �a�t� is uniformly continuous on IR

�see Champeney �
� Theorem ������ 	 ��� Next we note that by �����

� � �b�t� �
�a�t�

� � �a�t�
� ��

�

� � �a�t�
� �� 	��� 
t � IR�

In order to prove that the preconditioned operators have clustered spectra� we �rst
introduce the circulant integral operator proposed by Chan et al� ���� For any given kernel
function f�t� in L��IR�� the circulant integral operator G� is de�ned as

�G�y��t� �

��
�
Z �

�

g� �t� s�y�s�ds� � � t � ��

�� t � �
�
��

where the function g� is a � �periodic function de�ned by

g� �t� � f�t� � f�t� ��� � � t � ��

The eigenvalues of G� are given by the convolution of �D� and �f at the point 

n�� � i�e�

�n�G� � � � �D� � �f��


n

�
�� 
n � ZZ� �
��

whereD� �t� is de�ned in ����� The following lemma shows that G� is a good preconditioner
for A� �

Lemma � �Gohberg� Hanke and Koltracht 	��� Chan� Jin and Ng 	��� Let a�t� �
L��IR� be conjugate symmetric and �a�t� � �� Then for any given � � �� there exist positive
integers N and � � such that for all � � � �� there exists a decomposition A��G� � R��E� �
with self�adjoint operators R� and E� satisfying rank R� � N and jjE� jj� � �� Moreover�

the preconditioned operator �I � G� �
���I � A� � has at most N eigenvalues outside the

interval ��� �� � � ���

We now show that the preconditioner di�ers from ours by a low rank and small norm
perturbation�

Lemma � Let a�t� � L��IR� be conjugate symmetric and �a�t� � �� Then for any given

� � �� there exist positive integers N and � � such that for all � � � ��

�I � G� �
�� � �I � B� � � R� � E� �

�

with self�adjoint operators R� and E� satisfying rank R� � N and jjE� jj� � ��

�



Proof� For the convolution operator B� � we let K� be its preconditioner as de�ned in
�
��� In view of Lemma �� it su�ces to show that

lim
���

jj�I � G� �
�� � �I � K� �jj� � ��

However� since G� and K� are circulant operators� we have

jj�I � G� �
�� � �I � K� �jj� � sup

n�ZZ

j�n��I � G� �
���� �n�I � K� �j�

see ���p���
�� By �
��

�n�K� � � � �D� � �b��


n

�
�� 
n � ZZ

and

�n��I � G� �
��� �

�
� � � �D� � �a��



n

�
�

���
� 
n � ZZ�

Therefore we have

sup
n�ZZ

j�n��I � G� �
���� �n�I � K� �j

� sup
n�ZZ

����� �

� � � �D� � �a��
��n
�
�
� � � � �D� � �b��



n

�
�

�����
� sup

n�ZZ

����� �a���n
�
�� � �D� � �a��

��n
�
�

�� � �a���n
�
���� � � �D� � �a��

��n
�
��
� � �D� � �b��



n

�
�� �b�



n

�
�

����� �
As a�t� and b�t� are in L��IR�� �a and �b are uniformly continuous on IR and hence �D� � �a
and �D� ��b converge uniformly to �a and �b respectively on IR� Hence the result follows�

Now we are ready to prove the fast convergence of our method for the preconditioner
�I � B� ��

Theorem � Let a�t� � L��IR� be conjugate symmetric and �a�t� � �� Then for any given

� � �� there exist positive integers N and � � such that for all � � � �� the spectrum of

�I � B� ��I �A�� has at most N eigenvalues outside the interval ��� �� � � ���

Proof� By Lemma �� �I �A��
��� is an invertible operator� Hence the spectra of

�I � B� ��I �A� � and �I �A� �
����I � B� ��I �A��

���

are the same� By �

�� we have

�I �A� �
����I � B� ��I �A� �

��� � �I �A��
�����I � G� �

�� �R� � E� ��I �A� �
���

� �I �A��
����I � G� �

���I �A� �
��� � �R� � �E� �

�



where by Lemma � and �����

rank �R� � rank
	
�I �A� �

���R� �I �A� �
���


� N

and
jj �E� jj� � jj�I �A� �

���E� �I �A� �
���jj� � 	��

Since by Lemma �� the operator �I�A� �
����I�G� �

���I�A� �
��� has clustered spectrum�

our theorem follows by applying the minimax theorem �	� p��
���

We end this section by considering the operator I � W� as preconditioner� We �rst
let �K� be the preconditioner of W� as de�ned in �
���

Lemma � Let G� be the circulant integral operator as de�ned in Lemma �� Then

�I � G� �
�� � I � �K� �

Proof� We just note from ���� and ���� that

�w� �
n


�
� � �n�P�� � �

�a� �
n�
�
�

� � �a� �
n�
�
�
� n � ZZ� �
��

Hence� it is easily seen that

�n�I � �K� � �
�

� � �a� �
��n
�
�
� �n��I � G� �

���� n � ZZ�

Next we prove that the operators I �W� is positive�

Lemma � Let a�t� � L��IR� be conjugate symmetric and �a�t� � �� Then for su�ciently

large � � the operator I �W� is positive de�nite�

Proof� We �rst de�ne the following functions q
�k�
� for k � �� ��

q�k�� �

�
�
�
�w� �t� � e�ikw� �t� ���� � � t � ��

�
�
�e��ikw� �t� �� � w��t��� �� � t � ��

�
��

We note that w� � q
���
� � q

���
� � Therefore� we can write

I �W� �
�



�I � Q���

� � �
�



�I � Q���

� ��

�



where

Q�k�
� �

Z �

�

q�k�� �t� s�x�s�ds� k � �� ��

By using the spectral decomposition of the operators Q
�k�
� �	� p����� Theorem ���� and

�
��� it follows that the eigenvalues of I � Q
�k�
� for k � �� � are given by

�n�I � Q
�k�
� � �

�

� � �a� �
��n
�

� �k
�
�
� n � ZZ�

Noting that ���
 � �a� �t� � maxt�IRf�a�t�g���
 for su�ciently large � � the result follows�

Combining Lemmas �� �� 	 and �� we have the following theorem which shows that
I �W� is also a good preconditioner for I �A� �

Theorem 
 Let a�t� � L��IR� be conjugate symmetric and �a�t� � �� For any given

� � �� there exist positive integers N and � � such that for all � � � �� the spectrum of

�I �W� ��I �A� � has at most N eigenvalues outside the interval ��� �� � � ���

Thus the CG method� when applied to solving the preconditioned operator equation
��� with preconditioners I � B� or I �W� � will converge superlinearly� see Axelsson and
Barker ���� Finally� we remark that Theorems � and 
 also holds if the condition �a�t� � �
is relaxed to � � �a�t� � � � � for some constant ��

� Discretization of Preconditioned Operators

Let us consider the linear systems generated by discretizing ��� by Netwon�Cotes type
quadrature rules� Let the interval ��� � � be divided into n subintervals of equal length h�
i�e� hn � � � Given any convolution operator F� de�ned on ��� � � with kernel function
f�t�� it is straightforward to show that its discretization matrix will be of the form TD
where T is a Toeplitz matrix whose �rst column is given by

�T�j� � hf�jh�� j � �� �� � � � � n� �
��

and D is a diagonal matrix that depends only on the quadrature formula used� For
examples� for the rectangular rule� the trapezoidal rule and Simpson�s rule� the diagonals
of D are given respectively by

��� �� � � � � �� ��� �
�



� �� �� � � � � �� ��

�



� and �

�

�
�
�

�
�



�
�
�

�
�



�
� � � � �

�

�
�



�
�
�

�
�
�

�
�

��



Thus we see that after discretization� ��� becomes

�I�BD��I�AD�y � �I�BD�g �
	�

where I is the identity matrix�A and B are Toeplitz matrices� This discretized system can
then be solved by the PCG method� In each iteration� we only need Toeplitz matrix�vector
multiplications and diagonal matrix�vector multiplications� Thus the cost per iteration is
of order O�n logn� by using FFTs� We note that by using the transformation

�y � D���y and �g � D���g� �
��

�
	� can be symmetrized as

�I�D���BD�����I�D���AD�����y � �I�D���BD�����g� �
��

If the operator I�W� is used as preconditioner� then from �
��� we know that we only
need the values of w� �jh� for j � �� �� � � � � n� Here the values of w� ��� are de�ned in �����
i�e� we need to compute the values of p�� �jh� for j � �� �� � � � � n� In order to compute
�a� �t� in the integrand of ����� we partition the interval ���� � � into 
n equal subintervals
of step�size h and approximate ��	� as

�a� �t� � h
n��X
k��n

a�kh�e�ikht� �
��

We note that the approximate values of �a� �
j��� for j � ����� � � � ��n can be computed
by �
�� by one FFT of length 
n� From these values� we can then calculate the approx�
imate values of �j�P�� � for j � ����� � � � ��n according to ����� Then the approximate
values of p�� �kh� for k � ����� � � � ��n can be obtained by approximating the integral
���� by a formula of the form �
�� again� This just requires one inverse FFT�

The main feature of our proposed preconditioner is that it is already inverted� Hence
only Toeplitz matrix�vector products �plus some inner products� are required in each step
of PCG algorithm� In contrast� if circulant integral operators �see ���� are used with high
order quadrature rules� then one has to invert matrix of the form I�CD which in general
has no fast inversion formula� However� one can still remedy the drawback of circulant
integral operators by using our approach and thus avoids the inversion of I�CD�

The construction of such circulant preconditioners is as follows� For circulant integral
operator C� given in ���� we note that if I � C� is invertible� then its inverse can be
expressed in the form�

�I � C� �
�� � I �M�

��



where the kernel function of M� is given by

m� �t� �
�

�

X
k�ZZ

�k
� � �k

e��ikt�� �

Here �k are the eigenvalues of C� given by

�k �

Z ���

����

c� �t�e
���ikt��dt� 
k � ZZ�

We remark that our preconditioned operator equation will become

�I �M���I �A� �y��t� � �I �M� �g�t�� � � t � �� ����

We know again from �
�� that we only need the values of m� �jh� for j � �� �� � � � � n in
order to construct matrix preconditioner� To approximate these values� we partition the
interval ����
� ��
� into n equal subintervals of step�size h and approximate �k as

��k � h

n����X
k��n��

c�kh�e���ijk�n�

Then the approximate values of m� �jh� for j � ����� � � � ��n can be calculated from

m� �jh� �
�

nh

n����X
k��n��

��k

� � ��k
e��ijk�n�

Hence the matrix preconditioner can be constructed by using the inverse of circulant
integral operator� However� we remark that numerical results in x� show that our proposed
convolution preconditioners are better than these inverted�circulant type preconditioners�

To conclude this section� we compare the computational costs of using our proposed
preconditioners and inverted�circulant preconditioners� We recall that the multiplication
of an n�by�n circulant matrix to an n�vector requires only two n�dimensional FFTs� For
Toeplitz matrix T� products of the form Tv can be obtained by �rst embedding the
matrices into 
n�by�
n circulant matrices and using 
n�dimensional FFTs� see Strang
����� Thus the cost per iteration when I � B� or I � W� is used as preconditioner is
about the same as the cost of applying four 
n�dimensional FFTs� If I �M� is used�
then one of the Toeplitz matrix�vector product will be replaced by circulant matrix�vector
product� Hence the cost per iteration of our method is roughly ��� times higher than that
required by inverted�circulant preconditioned systems� In all cases� the cost is O�n logn�
operations per iteration�
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Table �� The numbers of iterations for the rectangular rule�

� Numerical Examples

In this section� we test the e�ectiveness of our proposed preconditioners by two test kernel
functions� The �rst one is

a��t� �
�



e��jtj�

We note that its b�t� �as de�ned in ����� is given by

b�t� �
�


�
e��jtj�

where

� �

r

�



� ���

In practical applications� the parameter 
 is the regularization parameter and is usually
a small positive number� In the test� we set 
 � ���� and � � ���� We choose our right
hand side function g�t� such that the corresponding solution for the Wiener�Hopf equation
��� is

s�t� �

�
��	� t��� � � t � �	�
�� t � �	�

����

The preconditioned equation ��� is �rst discretized by quadrature rules to obtain the linear
system �
	�� Then the transformation �
�� is used to symmetrize the linear systems� see
�
��� We use the same random vector as our initial guess for all methods� The stopping
criterion is

jj�g � �I�D���AD�����y�k�jj� � ����

where �y�k� is the kth iterant and the vector 
�norm is de�ned as jjxjj�� 
 xTx� All
computations are done by Matlab�
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Table 
� The numbers of iterations for the trapezoidal rule�
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Table �� The numbers of iterations for Simpson�s rule�
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Tables ��� give the numbers of iterations required for convergence when di�erent
preconditioners are used� The preconditioners are discretized according to the discussion
in x�� The symbol I represents that �
� is solved without using any preconditioner� The
discretization rule used is listed in the caption�

From the tables� we see that without using preconditioner� the method will converge
very slowly especially for large � and n� However� our preconditioner B� and W� work
well provided that the step�size h � ��n is su�ciently small� For moderate size h� W� is
already good enough to give us fast convergence� We see from numerical results that our
methods converges faster than those preconditioned by using circulant integral operators�

We note that a��t� is not di�erentiable at t � �� therefore the higher order quadratures�
for instance� Simpson�s rule� are not useful in this case� In order to preserve high order
of accuracy� we approximate the �nite�section Wiener�Hopf integral operator on ��� � � by
using Simpson�s rule except that the section of integralZ �k	��h

�k���h

a�kh� s�y�s�ds� for odd integers k� ��
�

is discretized by using trapezoidal rule� More precisely� we approximate the integral ��
�
by

�



a�h�y��k � ��h� � a���y�kh� �

�



a��h�y��k � ��h��

This combined Simpson�trapezoidal scheme gives higher order of accuracy as compared
with those of trapezoidal and Simpson�s rules alone� We note that the resulting coe�cient
matrix will be a sum of an identity matrix� Toeplitz times diagonal matrix and a band ma�
trix with odd rows being zeros� Since these discretization matrices cannot be symmetrized
as in �
��� we solve its normal equations by preconditioned conjugate gradient methods�
Table � gives the number of iterations of solving the preconditioned normal equations
when this combined rule is used� We see from the table that our proposed preconditioner
performs very well and our methods converges faster than those non�preconditioned or
preconditioned by using inverted�circulant integral operators�

To illustrate the usefulness of using higher order quadrature rules� we give in Table ��
the error of the numerical solutions� The error is computed as�

h �
nX

j��

jy�jh�� s�jh�j�

����

�

�Z �

�

jy�t�� s�t�j�dt


���

where fy�jh�gnj�� is the computed solution and s�t� is the true solution given by ����� Since
a� is not di�erentiable at t � �� the error of the numerical solution by using Simpson�s
rule is larger than that of using trapezoidal rule� However� for the combined Simpson�
trapezoidal rule� the error decreases like O�h
� which is faster than the O�h�� rate of using
trapezoidal rule alone�
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Table �� The number of iterations for the combined Simpson�trapezoidal rules�
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Next we test our methods on another kernel function�

a��t� �
�


�� � t��
�

with 
 � ����� In this case� we do not have explicit formula for the b�t� of the kernel
function a��t�� Tables 	�� below give the numbers of iterations required for convergence
for a��t�� We see from the tables that the performance of our proposed preconditioner
is better than the others� We see from Table � that the error decreases like O�h�� O�h��
and O�h�� for the rectangular� trapezoidal and Simpson�s rule respectively�

� Concluding Remarks

We remark that the accuracy of the computed solution depends only on the quadrature
rule used in discretize A� � However� the convergence rate of the preconditioned systems
and the costs per iteration of the PCG method depend on how we discretize the precon�
ditioning operators� From the numerical results� we see that it is advantageous to use
higher order quadrature rule to discretize the operator equation because of accuracy con�
cern� But to speed up the convergence rate of the method and to minimize the costs per
iteration� one may need to use our proposed preconditioner rather than circulant ones�
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Table 	� The numbers of iterations for the rectangular rule�
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Table �� The numbers of iterations for the trapezoidal rule�
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Table �� The numbers of iterations for Simpson�s rule�
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