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Abstract

We consider solving the Wiener-Hopf equations with high order quadrature rules
by preconditioned conjugate gradient (PCG) methods. We propose using convolu-
tion operators as preconditioners for these equations. We will show that with proper
choice of kernel functions for the preconditioners, the resulting preconditioned equa-
tions will have clustered spectra and therefore can be solved by the PCG method
with superlinear convergence rate. Moreover, the discretization of these equations
by high order quadrature rules leads to matrix systems that involve only Toeplitz
or diagonal matrix-vector multiplications and hence can be computed efficiently by
FFTs. Numerical results are given to illustrate the fast convergence of the method
and the improvement on accuracy by using higher order quadrature rule. We also
compare the performance of our preconditioners with the circulant integral opera-
tors.
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1 Introduction

Wiener-Hopf equations arise in a variety of practical applications in mathematics and
engineering, especially in the solutions of inverse problems. Typical examples are linear
prediction problems for stationary stochastic processes [8, pp.145-146], diffusion problems
and scattering problems [8, pp.186—189]. In this paper, we consider the numerical solution
of Wiener-Hopf equations defined on the half-line [0, c0):

y(t) + /000 a(t —s)y(s)ds = g(t), 0<t< 0. (1)

Here a(t) € Li(Rr) and ¢(t) € Ls[0,00) are given functions. One way of solving (1) is by
the projection method [5] where the solution y(¢) of (1) is approximated by the solution
y-(t) of the finite-section equation

w)+ [ att= s (s =g, 0<t<r o)
0
It is shown in [5, Theorem 3.1] that
Tlggo |y — y||Lp[0,T) =0, 1<p<oo.

The finite-section equation (2) can be solved numerically by either direct or iterative
methods. For a fixed 7, the finite-section operator A, defined by

(A,2)(t) = /0 a(t — s)x(s)ds, 0<t<r, (3)
0, t>T.

is a compact operator. Therefore, the spectrum of the Wiener-Hopf operator Z + A,
(where Z is the identity operator) is clustered around 1 and hence solving (2) by iterative
methods such as the conjugate gradient (CG) method will be less expensive than direct
methods. However, as 7 tends to oo, the spectrum of this finite-section operator A,
becomes dense in the spectrum of the half-line operator defined by (1) and hence the
convergence rate of the CG method will deteriorate, see the numerical results in §5.

One standard way of speeding up the convergence rate of the CG method is to apply
a preconditioner. Thus instead of solving (2), one solves the preconditioned equation

H(T + Ay, (t) =Hg(t), 0<t<T, (4)

for some operator . In [7], Gohberg, Hanke and Koltracht proposed using circulant
integral operators to precondition (2). Circulant integral operators are operators of the
form

(C.a)(t) = /0 et — S)a(s)ds, 0<t<r, (5)
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where ¢, is a 7-periodic function in L;[—7,7]. The preconditioned equation is given by
(Z+C)™ T+ Ay-(t) = (ZT+Cr)"'g(t), 0<t<T. (6)

It has been shown in [7] that for large 7, the spectra of the circulant preconditioned
operators (Z+C,) ' (Z+ A,) are clustered around 1. Hence the preconditioned conjugate
gradient (PCG) method converges superlinearly for large 7.

We note that if the rectangular quadrature rule is used to discretize (6), then we get
a matrix system:

I+C)'I+A)y=(1+C)'g (7)

where the matrices (I + C) and (I + A) are n-by-n circulant and Toeplitz matrices re-
spectively. Here n is the number of quadrature points used in the discretization. We
see that (7) is basically a circulant preconditioned Toeplitz system which requires only
O(nlogn) operations in each iteration by means of Fast Fourier Transforms (FFTs) and
the convergence rate of these systems has been analyzed for instances in [3, 11, 15].

One main drawback of using the rectangular rule is that the order of accuracy of the
discretized solution y depends only linearly on the number of quadrature points. Thus in
order to obtain a reasonable accurate solution for (2), small step-size has to be used and
hence the dimension of the resulting matrix system will be large. In order to obtain high
order of accuracy, one can use higher order quadrature rules such as the trapezoidal rule or
Simpson’s rule which have second and fourth order of accuracy respectively. However, the
corresponding discretization matrices of the circulant integral operators are I+ CD where
D is a diagonal matrix. We note that they are in general not circulant and therefore their
inversion (I + CD)~! cannot be computed by using FFT. Hence the cost per iteration of
the PCG method will exceed O(nlogn) operations.

The main aim of the paper is to construct preconditioners for (2) such that the precon-
ditioned operators have clustered spectra and that only O(nlogn) operations are required
in each iteration of the PCG method even when higher order quadrature rule is employed.
Our idea is to precondition (2) as in (4) where only Hy are required for each iteration
of the PCG and also its discretization matrix-vector products Hy can be computed in
O(nlogn) operations. In this paper, we use convolution operators for H to precondition
T + A,. More precisely, given A,, we first construct the convolution operator B, whose
kernel function b(t) satisfies b(t) = a(t)/(1 + a(t)). (Here and also in the following, we
will use * to denote the Fourier transform.) Then we precondition (2) as

(T~ BT+ A)y,(t) = (T Bglt), 0<t<r. ®)

We will prove that the spectra of the preconditioned operators (Z — B,)(Z + A,) are
clustered around 1. Hence when we apply the conjugate gradient methods to solve (8),
the convergence rate will be superlinear for large 7.



We note that it may be difficult to compute the kernel function b(¢) explicitly, and
hence B, cannot be formed efficiently. In this case, we derive another convolution op-
erator by considering a periodic function from a and using its periodicity to construct
the preconditioner. For convergence rate, we will show that the resulting preconditioned
Wiener-Hopf operator also has clustered spectrum around 1. Numerical results show that
our methods converge faster than those preconditioned by using circulant integral oper-
ators. We will see that if Newton-Cotes quadrature rules are employed to discretize the
convolution integral operators A, and B,, the corresponding discretization matrices are
just products of Toeplitz matrices and diagonal matrices. Hence FFT can be used to
carry out the matrix-vector multiplication in each iteration of the PCG method. Thus
the cost per iteration remains O(nlogn).

The outline of the paper is as follows. We introduce the construction of our precondi-
tioners in §2. In §3, we analyze the spectra of the preconditioned Wiener-Hopf operators.
The properties of the discretized matrices using higher order quadrature rules are given in
§4. In §5, we give numerical examples to illustrate the effectiveness of our preconditioners
and the improvement of accuracy by employing higher order quadrature rules. Finally,
concluding remarks are given in §6.

2 Construction of the Preconditioners

In the following, we will assume that a(t) € L;(R) is conjugate symmetric, i.e. a(t) =
a(—t) for all ¢ and that a(¢f) > 0. Thus the operator A, defined in (3) is a self-adjoint
positive operator. In the applications of linear prediction problems, a corresponds to the
spectral density function of a continuous stationary stochastic process. In these applica-
tions. the non-negativeness of a is always valid, see Priestley[13, p.127]. The motivation
for the construction of our preconditioners is given by the following Lemma.

Lemma 1 (Moiseiwitsch, [12, p.26]) Let a(t) € Li(R) be conjugate symmetric and
g(t) € Ly(R). Then the solution to the whole-line Wiener-Hopf equation

y(t) + /_00 a(t —s)y(s)ds = g(t), —oo <t < o0, 9)

oo

s given by

)=o) - [~ HA g

o 1+ a(s)

By Paley-Wiener Theorem [10, Theorem 4.3], if 1 + a(t) # 0, then there exists a
function b(t) € L;(R) such that

bty = —40_ (10)



or

b(t) + / a(t — s)b(s)ds = a(t), —oo <t < 0. (11)
It follows that the solution y(t) to (9) is given by
vty =9(t) = [ bt = s)a(s)as.

This leads us to consider using the integral operators Z — B, where

(Brx)(t) = /OT b(t — s)x(s)ds, 0<t<r, (12)

to precondition Z + A.,.

We note that the construction of B, involves the Fourier transform of a and the inverse
Fourier transform of a/(1 4 a). The kernel function b(¢) cannot be obtained explicitly in
some cases. Therefore, we construct another convolution operator as preconditioner such
that its corresponding kernel function can be computed more efficiently.

To construct such operator, we first define the functions

[

and a,(t) = D,(t)a(t). We note that

Arx(t) = /OT a(t — s)x(s)ds = /OT a(t — s)x(s)ds, 0<t <.

Thus as far as the projected operator A, is concerned, a(-) and a,(-) are equal.
Similar to (11), we consider the solution py, of the following equation to construct the
kernel function of the preconditioner,

par (t) + / Cor(t — 8)p2r(8)ds = cor(t), —T<t<T, (14)
where ¢y, (t) is a 27-periodic function defined by

cor(t) = a,(t), —1T<t<T.

We remark that as ¢y, is 27-periodic and in Li([—7,7]), also is ps,, see [5, p.6, Theorem
0.3]. Let Py, be the convolution operator with kernel function given by ps,,

(Parz)(t) = /T por(t — s)x(s)ds, 0<t<2r
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Here, we employ the periodicity of ¢y, instead of using the Fourier transform of a as in
(10). Therefore, by using the lemma in [6, p.119, Theorem 8.1}, the eigenvalues of P,
are given by

An(PQT) = / pQT(t)e_mnt/Tdt = LTTL?T n ez, (15)

where
.

i, (1) = / " Do (s)a(s)e-otds = / a(s)e=tds = D, * a(t). (16)

T

Similar to (12), we define w,(t) by
Wr (t) =D, (t)pQT (t)7 (17)

and consider using the integral operators Z — VW, where
(Wrx)(t) = / w(t —s)x(s)ds, 0<t<T, (18)
0

to precondition Z + A.,.

In §3, we will analyze the spectra of these preconditioned Wiener-Hopf equations (8)
with the operators Z — B, and Z — W, as preconditioners. In §4, we will see that the
discretization matrix of Z — W, can be obtained efficiently by using FFTs.

3 Convergence Analysis

In this section, we analyze the spectra of the preconditioned Wiener-Hopf equations (8).
We first show that the operators Z + A, and Z — B, are positive.

Lemma 2 (Grenander and Szegé [9, p.139]) Let f(t) € Li(R) be conjugate symmet-
ric and F, be the convolution operator defined on [0, 7| with kernel function f(t). Then
for all T > 0, the spectrum o(F;) of F. satisfies o(F;) C [m, M], where m and M are

~

the infimum and supremum of f(t) respectively.
By applying Lemma 2 to the operators A, and B, we have

Lemma 3 Let a(t) € Li(R) be conjugate symmetric and a(t) > 0. Then o(Z + A,) C
[1,7] and , o(Z — B;) C [y !, 1], where
v =14 supa(t) < oco.
teR

In particular, the operator (I + A,)"/?

to Ly[0, ) with

is a well-defined, invertible operator from Ls[0, T)

1(Z+ A2 l2 <412 < o0 (19)



Proof: We first note that since lim;_, a(t) = 0 and a(t) is uniformly continuous on R
(see Champeney [2, Theorem 8.1]), v < oo. Next we note that by (10),

t 1
() =1-—" - <1-9y' WVtem

Ogaﬂ:TIﬂﬂ a0

In order to prove that the preconditioned operators have clustered spectra, we first
introduce the circulant integral operator proposed by Chan et al. [4]. For any given kernel
function f(¢) in L,(R), the circulant integral operator G, is defined as

Gy = J, - ohtoids, 0<e<e (20)
0, t>7

where the function g, is a 7-periodic function defined by
gT(t):f(t)+f(t_T)v 0<t<T.
The eigenvalues of G, are given by the convolution of D, and f at the point 27n /7, i.e.

M(G)) = (D, « HCED), Vneaz, (21)

T

where D, (t) is defined in (13). The following lemma shows that G, is a good preconditioner
for A, .

Lemma 4 (Gohberg, Hanke and Koltracht [7], Chan, Jin and Ng [4]) Let a(t) €
Li(R) be conjugate symmetric and a(t) > 0. Then for any given € > 0, there exist positive
integers N and 7% such that for all T > 7%, there exists a decomposition A, —G, = R, +&;,
with self-adjoint operators R, and &, satisfying rank R, < N and ||&;||2 < €. Moreover,
the preconditioned operator (Z + G,;) Y (Z + A,) has at most N eigenvalues outside the
interval (1 —¢€,1 + €).

We now show that the preconditioner differs from ours by a low rank and small norm
perturbation.

Lemma 5 Let a(t) € Li(R) be conjugate symmetric and a(t) > 0. Then for any given
€ > 0, there exist positive integers N and 7 such that for all T > 7%,

(IT+G.)"'—(T-B,)=R,+&: (22)

with self-adjoint operators R, and &, satisfying rank R, < N and ||E;|]2 < e.
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Proof: For the convolution operator B,, we let K, be its preconditioner as defined in
(20). In view of Lemma 4, it suffices to show that

lim [|[(Z+G,) ' — (T —K,)|]=0.
T—00
However, since G, and K, are circulant operators, we have

IZ+G:) " = (T =Kl < sup (T +G) ) = MlT ~ Ko)L

see [9,p.112]. By (21)
Ao 21

MKy = (D, +B)(C2), W ez

-
and )
. 2
MT+6) ) = [1+ DD L e
Therefore we have
sup |\ ((Z +G,)7Y) — (T - K,
i X=y/4
1 . ~ 2T
= sup - — 14+ (D, xb)(—
neZ 1+(DT*&)(2”T”) ( ) T )
a(zn —(ﬁT*&)(%n) L~ 2mn, . 27n
= sup —— —————— + (Dr xb)(—) — b(—)
ne | [1+a(ZH)|[1 + (Dr * a) (7)) T T

As a(t) and b(t) are in Ly(R), @ and b are uniformly continuous on R and hence D, x d
and D; x b converge uniformly to a and b respectively on R. Hence the result follows.

Now we are ready to prove the fast convergence of our method for the preconditioner
(I - BT)

Theorem 1 Let a(t) € Li(R) be conjugate symmetric and a(t) > 0. Then for any given
€ > 0, there exist positive integers N and 7° such that for all T > 7%, the spectrum of
(Z — B,)(Z+ A,) has at most N eigenvalues outside the interval (1 —€,1+ €).

Proof: By Lemma 3, (T + A,)"/? is an invertible operator. Hence the spectra of
(T-B)(T+A,) and (T+A) T —-B)(T+A)?
are the same. By (22), we have

T+ANHT-B)IT+A)? = T+A)[(T+G,) " —R.—ET+ A)Y?

= (I+ AT)1/2(I+ gr)_l(z+ AT)1/2 - 75/7 - g‘r;
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where by Lemma 5 and (19),
rank R, = rank {(I+ ANVPR (T + AT)I/Q} <N

and )
1E 2 = (T + A)'2E(T + AN < 7e.

Since by Lemma 4, the operator (Z+.4,)"2(T+G,) " (T +.A,)"/? has clustered spectrum,
our theorem follows by applying the minimax theorem [6, p.123].

We end this section by considering the operator Z — W; as preconditioner. We first
let KC; be the preconditioner of W; as defined in (20).

Lemma 6 Let G, be the circulant integral operator as defined in Lemma 5. Then
(IT+G)'=T-K,.

Proof: We just note from (15) and (17) that

. nm a- (")
wT(T) = M(Por) = T+ a. (=) n € 7. (23)

Hence, it is easily seen that

~ 1
=R =

=\(Z+G)™"), nez.
[l
Next we prove that the operators Z — W, is positive.
Lemma 7 Let a(t) € Li(R) be conjugate symmetric and a(t) > 0. Then for sufficiently
large T, the operator T — W, is positive definite.

Proof: We first define the following functions qgk) for £k =0,1:

¢ =9 2 [lffn(;f) et (b =), OstsT (24)
sle ™ w (t + 1) + w. ()], —7<t<0.

(0) (1)

We note that w, = ¢’ + ¢ ’. Therefore, we can write

T-W,=[T- Q0]+ [T - Q)



where

o) — / P (t — s)z(s)ds, k=0,1.
0

By using the spectral decomposition of the operators Q(Tk) 6, p.119, Theorem 8.1] and
23), it follows that the eigenvalues of Z — Q(Tk) for £ = 0,1 are given by
g g
1

(T — QW) = , NnEZ.
(T-97) 1+ (22 + k)

Noting that —1/2 < a,(t) < max;er{a(t)}+1/2 for sufficiently large 7, the result follows.
(|

Combining Lemmas 3, 4, 6 and 7, we have the following theorem which shows that
T — W; is also a good preconditioner for Z + A, .

Theorem 2 Let a(t) € Li(R) be conjugate symmetric and a(t) > 0. For any given
e > 0, there exist positive integers N and 7 such that for all T > 7%, the spectrum of
(Z —W,)(Z+ A,) has at most N eigenvalues outside the interval (1 — €, 1+ €).

Thus the CG method, when applied to solving the preconditioned operator equation
(8) with preconditioners Z — B, or Z — W,, will converge superlinearly, see Axelsson and
Barker [1]. Finally, we remark that Theorems 1 and 2 also holds if the condition a(t) > 0
is relaxed to 1+ a(t) > 0 > 0 for some constant ¢.

4 Discretization of Preconditioned Operators

Let us consider the linear systems generated by discretizing (8) by Netwon-Cotes type
quadrature rules. Let the interval [0, 7] be divided into n subintervals of equal length h,
i.e. hn = 7. Given any convolution operator F, defined on [0, 7] with kernel function
f(t), it is straightforward to show that its discretization matrix will be of the form TD
where T is a Toeplitz matrix whose first column is given by

[T]]U = hf(]h)7 ] = 07 17 N, (25)

and D is a diagonal matrix that depends only on the quadrature formula used. For
examples, for the rectangular rule, the trapezoidal rule and Simpson’s rule, the diagonals
of D are given respectively by

1 1 14242 4241
(L1110, (5 LLLLg) and (5gg55  asss )
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Thus we see that after discretization, (8) becomes
(I-BD)(I+ AD)y = (I-BD)g (26)

where I is the identity matrix, A and B are Toeplitz matrices. This discretized system can
then be solved by the PCG method. In each iteration, we only need Toeplitz matrix-vector
multiplications and diagonal matrix-vector multiplications. Thus the cost per iteration is
of order O(nlogn) by using FFTs. We note that by using the transformation

y=D"?y and g=D"%g, (27)
(26) can be symmetrized as
(I - DY?BDY?)(I1 + DY?AD'?)y = (1 - D/?BD?)g. (28)

If the operator Z—W; is used as preconditioner, then from (25), we know that we only
need the values of w,(jh) for j =0,1,---,n. Here the values of w,(-) are defined in (17),
i.e. we need to compute the values of po.(jh) for j = 0,1,---,n. In order to compute
a,(t) in the integrand of (15), we partition the interval [—7, 7] into 2n equal subintervals
of step-size h and approximate (16) as

n—1
a-(t) = h > a(kh)e ™. (29)
k=—n

We note that the approximate values of a,(mwj/7) for j = 0,+1,-- -, £n can be computed
by (29) by one FEFT of length 2n. From these values, we can then calculate the approx-
imate values of \;(Ps,) for j = 0,£1,---,£n according to (15). Then the approximate
values of py,(kh) for k = 0,£1,---,£n can be obtained by approximating the integral
(15) by a formula of the form (29) again. This just requires one inverse FFT.

The main feature of our proposed preconditioner is that it is already inverted. Hence
only Toeplitz matrix-vector products (plus some inner products) are required in each step
of PCG algorithm. In contrast, if circulant integral operators (see [7]) are used with high
order quadrature rules, then one has to invert matrix of the form I+ CD which in general
has no fast inversion formula. However, one can still remedy the drawback of circulant
integral operators by using our approach and thus avoids the inversion of I + CD.

The construction of such circulant preconditioners is as follows. For circulant integral
operator C, given in (5), we note that if Z + C, is invertible, then its inverse can be
expressed in the form:

(ZT+C) =T —-M,
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where the kernel function of M, is given by

1 A ~
mT(t) —— Z k 62mkt/7‘

7 ke 71t

Here )\, are the eigenvalues of C, given by
T/2 )
A = / e (e 2R dt Yk €z,
—7/2

We remark that our preconditioned operator equation will become
(T~ M(T + Aye(t) = (T~ M)glt), 0<t<r. (30)

We know again from (25) that we only need the values of m,(jh) for j =0,1,---,n in
order to construct matrix preconditioner. To approximate these values, we partition the
interval [—7/2,7/2] into n equal subintervals of step-size h and approximate \; as

n/2—1
e =h /Z c(kh)e 2k,
k=—n/2
Then the approximate values of m.(jh) for j = 0,+£1,---, £n can be calculated from
n/2—1 ~
2 (g nh Z 1+ )\k e

Hence the matrix preconditioner can be constructed by using the inverse of circulant
integral operator. However, we remark that numerical results in §5 show that our proposed
convolution preconditioners are better than these inverted-circulant type preconditioners.

To conclude this section, we compare the computational costs of using our proposed
preconditioners and inverted-circulant preconditioners. We recall that the multiplication
of an n-by-n circulant matrix to an n-vector requires only two n-dimensional FFTs. For
Toeplitz matrix T, products of the form Tv can be obtained by first embedding the
matrices into 2n-by-2n circulant matrices and using 2n-dimensional FFTs, see Strang
[14]. Thus the cost per iteration when Z — B, or Z — W, is used as preconditioner is
about the same as the cost of applying four 2n-dimensional FFTs. If Z — M. is used,
then one of the Toeplitz matrix-vector product will be replaced by circulant matrix-vector
product. Hence the cost per iteration of our method is roughly 4/3 times higher than that
required by inverted-circulant preconditioned systems. In all cases, the cost is O(nlogn)
operations per iteration.

12



7=16 T=32 T=064 7=128
n B W, M, T |B, W, M, T |B. W, M, I |B. W, M, T
512 | 8 7 17 24112 6 14 37121 5 10 55|70 4 7 79
1024 | 8 9 17 26| 9 6 14 37|14 4 10 58|32 4 7 86
2048 | 7 9 17 26| 8 6 14 40|10 4 10 60|16 4 7 87
4096 | 7 9 17 26| 8 6 14 40| 9 4 10 60|12 4 7 89
8192 | 6 10 17 26| 7 6 14 40| 8 4 10 621 9 4 7 93

Table 1: The numbers of iterations for the rectangular rule.

5 Numerical Examples

In this section, we test the effectiveness of our proposed preconditioners by two test kernel

functions. The first one is
ay(t) = le*alt\_
1

We note that its b(t) (as defined in (10)) is given by

«
b(t) = —e*m”,
) ]
where
2
ﬁ — _a + a2.
1

In practical applications, the parameter p is the regularization parameter and is usually
a small positive number. In the test, we set 4 = 0.05 and o« = 0.1. We choose our right
hand side function ¢(¢) such that the corresponding solution for the Wiener-Hopf equation

(1) is
o= {gom osisn o

The preconditioned equation (8) is first discretized by quadrature rules to obtain the linear
system (26). Then the transformation (27) is used to symmetrize the linear systems, see
(28). We use the same random vector as our initial guess for all methods. The stopping
criterion is

1§ - (I+DZAD%)y "], < 107°

where y(¥) is the kth iterant and the vector 2-norm is defined as ||x|]2 = x"x. All

computations are done by Matlab.
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T7=16 T=32 T=064 T7=128
n B W, M, T |B, W, M, T |B, W, M, T |B, W, M, T
512 | 8 7 16 24|11 6 13 37119 5 9 56|74 4 7 83
1024 | 7 9 16 26| 9 6 13 40|13 5 9 60|31 4 7 86
2048 | 7 9 17 26| 7 6 14 40|10 4 10 60|16 4 7 88
4096 | 7 9 17 26| 8 6 14 40| 9 4 10 60|12 4 7 89
8192 | 6 10 17 27| 7 6 14 40| 8 4 10 62| 9 4 7 93
Table 2: The numbers of iterations for the trapezoidal rule.
T7=16 T=32 T=064 T7=128
n B W, M, T |B, W, M, T |B, W, M, T |B, W, M, T
512 | 8 10 16 24|12 7 13 36123 13 13 56|76 34 38 84
1024 | 8 9 16 26| 9 6 13 40114 9 11 60|38 16 17 87
2048 | 7 9 17 26| 7 6 14 40|10 8 10 60|17 10 11 87
4096 | 7 9 17 26| 8 6 14 40| 9 7 10 60|11 8 9 90
8192 | 6 10 17 27| 7 6 14 40| 8 6 10 6119 7 8 95

Table 3: The numbers of iterations for Simpson’s rule.
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Tables 1-3 give the numbers of iterations required for convergence when different
preconditioners are used. The preconditioners are discretized according to the discussion
in §4. The symbol Z represents that (2) is solved without using any preconditioner. The
discretization rule used is listed in the caption.

From the tables, we see that without using preconditioner, the method will converge
very slowly especially for large 7 and n. However, our preconditioner B, and W, work
well provided that the step-size h = 7/n is sufficiently small. For moderate size h, W, is
already good enough to give us fast convergence. We see from numerical results that our
methods converges faster than those preconditioned by using circulant integral operators.

We note that a;(t) is not differentiable at ¢ = 0, therefore the higher order quadratures,
for instance, Simpson’s rule, are not useful in this case. In order to preserve high order
of accuracy, we approximate the finite-section Wiener-Hopf integral operator on [0, 7| by
using Simpson’s rule except that the section of integral

(k+1)h
/ a(kh — s)y(s)ds, for odd integers k, (32)
(k—1)h
is discretized by using trapezoidal rule. More precisely, we approximate the integral (32)
by 1 1
Sa()y((k = 1)h) +a(0)y(kh) + sa(~h)y((k +1)h).

This combined Simpson-trapezoidal scheme gives higher order of accuracy as compared
with those of trapezoidal and Simpson’s rules alone. We note that the resulting coefficient
matrix will be a sum of an identity matrix, Toeplitz times diagonal matrix and a band ma-
trix with odd rows being zeros. Since these discretization matrices cannot be symmetrized
as in (28), we solve its normal equations by preconditioned conjugate gradient methods.
Table 4 gives the number of iterations of solving the preconditioned normal equations
when this combined rule is used. We see from the table that our proposed preconditioner
performs very well and our methods converges faster than those non-preconditioned or
preconditioned by using inverted-circulant integral operators.

To illustrate the usefulness of using higher order quadrature rules, we give in Table 5,
the error of the numerical solutions. The error is computed as

{h 3 lin) - s(jm?}l/z <{ [ - s<t>|2dt}m

§=0
where {y(jh)}7_, is the computed solution and s(#) is the true solution given by (31). Since
ay is not differentiable at ¢ = 0, the error of the numerical solution by using Simpson’s
rule is larger than that of using trapezoidal rule. However, for the combined Simpson-
trapezoidal rule, the error decreases like O(h*) which is faster than the O(h?) rate of using
trapezoidal rule alone.
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7=16 T=32 T=64 7=128
n B, W. M, T |B, W, M, I |B. W, M, I B W, M, T
512 |20 20 28 60|25 25 31 136 |47 51 56 18095 84 85 880
1024 | 15 17 29 55|19 20 26 121126 28 29 294|53 65 68 1108
2048 | 14 16 28 56|17 17 25 112|120 21 22 26726 31 32 678
4096 | 13 16 29 56|16 16 25 110 |17 17 20 243120 22 23 576
8192 | 12 15 28 60|14 14 27 114|116 16 21 255|16 18 21 580

Table 4: The number of iterations for the combined Simpson-trapezoidal rules.

T =064 T=128
n Rect. Trap. Simp. Comb. | Rect. Trap. Simp. Comb.
512 | 15.320  0.0894 2.496 0.214 | 30.610 0.391 9.694 0.547
1024 | 7.641  0.0212 0.627  0.00855 | 15.320 0.0894  2.496 0.214
2048 | 3.813 0.00515  0.157 7.952e-4 | 7.641 0.0212 0.627 0.00855
4096 | 1.904 0.00127 0.0391 8.804e-5 | 3.813 0.00515 0.157 7.952e-4
8192 | 0.951 3.147e-4 0.00978 1.041e-5 | 1.904 0.00127 0.0391 8.805e-5

Table 5: Error in the computed solution for a,(t).
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Next we test our methods on another kernel function:

1
ax(t) = PRESDE

with g = 0.05. In this case, we do not have explicit formula for the b(t) of the kernel
function ay(t). Tables 6-8 below give the numbers of iterations required for convergence
for ay(t). We see from the tables that the performance of our proposed preconditioner
is better than the others. We see from Table 9 that the error decreases like O(h), O(h?)
and O(h*) for the rectangular, trapezoidal and Simpson’s rule respectively.

6 Concluding Remarks

We remark that the accuracy of the computed solution depends only on the quadrature
rule used in discretize A,. However, the convergence rate of the preconditioned systems
and the costs per iteration of the PCG method depend on how we discretize the precon-
ditioning operators. From the numerical results, we see that it is advantageous to use
higher order quadrature rule to discretize the operator equation because of accuracy con-
cern. But to speed up the convergence rate of the method and to minimize the costs per
iteration, one may need to use our proposed preconditioner rather than circulant ones.
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7=16 T=32 T=064 T7=128
n (W, M, T |W, M, T W, M, T W, M, I
512 | 8 1 72| 7 11 103 | 7 11 139 7 11 160
1024 | 8 11 73] 8 11 111 7 11 136 7 11 158
2048 | 8 1 71| 8 11 111 7 11 142 7 11 156
4096 | 9 11 76| 8 11 114 | 8 11 142 7 11 162
8192 | 9 1 771 9 11 117 8 11 148 | 7 11 165
Table 6: The numbers of iterations for the rectangular rule.
7=16 T=32 T=064 T7=128
n (W, M, T |W, M, T W, M, T W, M, I
512 | 8 1 71| 8 11 109 7 12 141 7 12 156
1024 | 8 11 73] 8 11 111 7 11 144 | 7 12 160
2048 | 8 11 76| 8 11 115 7 11 144 7 11 164
4096 | 9 11 76| 8 11 115 | 8 11 148 | 7 11 165
8192 | 9 11 76| 9 11 115 | 8 11 151} 7 11 167
Table 7: The numbers of iterations for the trapezoidal rule.
7=16 T=32 T=064 T7=128
n (W, M, T |W, M, T W, M, T W, M, I
512 | 8 11 73] 8 12 111 7 12 141 | 11 14 158
1024 | 8 11 73] 8 11 111 7 12 144 | 7 12 160
2048 | 8 11 75| 7 11 114 7 12 144 | 7 12 165
4096 | 9 11 75| 7 11 115 7 11 148 | 7 12 165
8192 | 9 11 781 9 11 115 7 11 149 7 11 169

Table 8: The numbers of iterations for Simpson’s rule.
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T =064 T=128

n Rect.  Trap. Simp. Rect.  Trap. Simp.
512 | 29.8882 2.2306 0.036 56.2634 9.8180  1.0030
1024 | 154171 0.4993  0.0019 | 29.8882 2.2306  0.0360
2048 | 7.8301 0.1160 1.0565e-4 | 15.4171 0.4993  0.0019
4096 | 3.9457 0.0278 6.3212e-6 | 7.8301 0.1160 1.0565e-4
8192 | 1.9806 0.0068 9.8410e-7 | 3.9457 0.0278 6.7539e-6

Table 9: Error in the computed solution for as(t)
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