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Abstract

Video clip consists of frames, and each frame can be con-
sidered as a transformed picture of the reference frame. In
this paper, we briefly discuss a framelet method for high-
resolution image reconstruction to enhance the resolution
of video clips. The detailed discussion can be found in [10].
Experiments on an actual video clip show that our method
can provide information that are not discernable from the
given video clip.

1. Introduction
In this paper, we extend the method of high resolution im-
age reconstructions for sensor arrays [2] to video clips to
enhance the resolution of one specified frame, i.e. reference
frame. We aim to improve its resolution by incorporating
information in other frames. In video clip, most frames
taken close to the reference frame in time can be consid-
ered as small perturbations of it. Hence we have a setting
similar to that of the high-resolution image reconstruction
in [1, 2]. Thus the framelet algorithm developed in [2] may
be used to improve the resolution of reference frame.

The models in [1, 2] assume that the perturbation of low
resolution images are translation only. Therefore we will
also develop ways to remove other motional effects within
the frames and to estimate the displacement between the
frames nearby and the reference frame. Once the displace-
ment is determined, we can apply the method in [2]. This is
done frame by frame to exploit the information in all useful
frames in video clip, details can be found in [10].

The outline of the paper is as follows. In Section 2, we
recall the model of high resolution image reconstruction and
the problems arising for video case. Then in Section 3, we
present our algorithms and apply them on a video clip taken
by a video camcorder. Our experimental results on a video
clip on a stack of books show that our method is useful in
revealing hidden information in video clips.
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2 Model

2.1 resolution enhancement for image

Here we give a brief introduction to high-resolution image
reconstruction. Details can be found in [1, 2, 10].

High-resolution image reconstruction for image refers to
the problem of constructing an image with resolution M -
by-M using low resolution images with resolution N -by-N
(N < M ). It can be modeled by

g = Hh + η (1)

where h is the desired M -by-M high resolution image, H
is a blurring kernel, η is the noise, and g is the so-called
observed high resolution image formed by composing the
low resolution images {gi,j}0≤i,j<2, i.e.

gi,j [n1, n2] = g[2n1 + i, 2n2 + j], 0 ≤ i, j < 2, (2)

and

g =
1∑

i,j=0

gi,j ⊗ (ej+1 ⊗ et
i+1) (3)

where {en}2
j=1 are the jth column vectors of the 2-by-2

identity matrix I2 and ⊗ is the Kronecker product.
In this paper, the blurring kernel in (1) is the tensor prod-

uct of 1-D convolution kernel m0 ≡ 1
2 [12 , 1, 1

2 ]. In this case,
we have

gi,j(x, y) = g0,0(x +
i

2
, y +

j

2
), 0 ≤ i, j < 2. (4)

Equation (4) gives the half-pixel displacement relation be-
tween the low resolution images gi,j and the reference low
resolution image g0,0.

To represent (1) in matrix form, we express all images by
column vectors using raster scanning. Define the sampling
and the synthetic matrices Di,j , Ui,j , 0 ≤ i, j < 2 as:

Di,j = (IN ⊗ et
j+1) ⊗ (IN ⊗ et

i+1) (5)

Ui,j = (IN ⊗ ej+1) ⊗ (IN ⊗ ei+1) (6)

Then (2) and (3) can be rewritten as

gi,j = Di,jg, and g =
1∑

i,j=0

Ui,jgi,j . (7)
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The matrix Ui,j synthesizes g from the low resolution im-
ages gi,j , whereas Di,j extracts the image gi,j back from g.
We note that

1∑
i,j=0

Ui,jDi,j = IM2 . (8)

The observed image g is already an M -by-M image and
is better than any one of the low resolution images gi,j . To
obtain an even better image than g, one will have to solve
h from (1). It is a famous ill-posed inverse problem where
many methods are available. One of them is the recent tight
frame approach developed in [2].

In [2], the problem of high-resolution image reconstruc-
tion is understood and analyzed under the framework of
multi-resolution analysis of L2(�2) by recognizing that m0

is a low-pass filter associated with a multi-resolution anal-
ysis. More precisely, the following filters form tight frame
filters by applying the unitary extension principle of [7, 2].

m0 ≡ 1
2
[
1
2
, 1,

1
2
]

m1 ≡
√

2
4

[−1, 0, 1] (9)

m2 ≡ 1
2
[−1

2
, 1,−1

2
]

In resolution enhancement for video clip, we may con-
sider the reference frame f0 as the low resolution reference
image g0,0. Each frame fk other than f0 generates a low res-
olution image gi,j for some (i, j). However, most frames in
video clips may not satisfy the half pixel displacement con-
dition (4). This leads to two difficulties in video enhance-
ment. The first is that fk may not be a simple translation
of f0. For this, we have to remove other motional effects
in fk to obtain its translation from f0. The second diffi-
culty is that the resulting translation may not be exactly a
half pixel displacement of f0 as required in (4). We will use
tight frame systems to remedy this. These two steps will be
explained in following two sections.

2.2 Preparing the Frames

Video clips consist of many still frames. Each frame can be
considered as perturbations of its nearby frames. Consider
a sequence of frames {fk}K

k=−K in a given video clip. We
aim to improve the resolution of the reference frame f0 by
incorporating information from frames {fk}k �=0. In order
to use the framelet method in [2] to handle the displacement
error, {fk}k �=0 are required to be a translation of f0 only.

Rather than using displacement vector field as in [9],
for computational efficiency, we restrict ourselves to affine
transforms only, see [5]. In particular, we assume that the
frames {fk} are related to f0 by a coordinate transform, i.e.

fk(Rkx + rk) ≈ f0(x), −K ≤ k ≤ K, (10)

where x are the coordinates of the pixels in the region of
interest, which may be the entire image or part of the image.
Denote

x̃ ≡ Rx + r ≡
[

c0 c1 c2

c3 c4 c5

] [
x

1

]
. (11)

Our task is to estimate the parameters {ci}5
i=0 for each

transformed frame f ∈ {fk}K
k=−K . This is done by min-

imizing the sum of squares of the intensity between f and
the reference frame f0:

E(f, f0) =
∑
j∈I

[f(Rxj + r) − f0(xj)]2 ≡
∑
j∈I

e2
j , (12)

where I is the index set of pixels in the region of interest.
Here and in the following, whenever Rx + r �∈ Z2, we will
evaluate f(Rx + r) by using the bilinear interpolation [6,
pp. 126–132].

We solve (12) by using the Levenberg-Marquardt itera-
tive nonlinear minimization algorithm (LMA) as in [8]. The
advantage of using LMA over straightforward gradient de-
scent is that it converges in fewer iterations [6, pp. 686–
694]. For each f ∈ {fk}K

k=−K , LMA will estimate the
parameter (R, r) in (12), i.e. Affine(f, f0) → (R, r). By
(10), f0(x) ≈ f(Rx+r) = f [R(x+R−1

r)]. Thus f(R(·))
can be viewed as a translation of f0 with displacement vec-
tor −R−1

r. If we write

R−1
r = u +

1
2

[
sx

sy

]
+

1
2

[
εx

εy

]
(13)

where u ∈ Z2, sx, sy ∈ {0, 1} and both |εx| and |εy| are
less than 1/2. Then f̂(x) ≡ f(R(x + u)) can be consid-
ered as the low resolution image close to gsx,sy in (4) with
displacement errors (εx, εy), see [10]. The image with dis-
placement error is obtained in following algorithm.

Algorithm 1 (f̂ , sx, sy, εx, εy) ← Register(f, f0): Regis-
ter frame f against the reference frame f0.

1. Use LMA to compute Affine(f, f0) → (R, r).

2. If the peak signal to noise ratio of [f0(x)−f(Rx+r)]
is less than P0, then registration fails, return. Other-
wise, compute [r̃1, r̃2]t = R−1

r.

3. Let u ≡ [ �r̃1 + 1
4�, �r̃2 + 1

4� ]t, then [d1, d2] ≡
[r̃1, r̃2] − u

t has entries in [− 1
4 , 3

4 ).

4. Let [sx, sy] ≡ [ �2d1 + 1
2�, �2d2 + 1

2� ], then sx
i , sy

i ∈
{0, 1}.

5. Let [εx, εy] ≡ [2d1 − sx, 2d2 − sy
i ], then |εx

i |, |εy
i | ≤ 1

2 ,
and (13) holds.

6. f̂(x) ≡ f(R(x + u)).

The threshold P0 in Step (2) determines if f(Rx + r) is
close enough to f0(x) or else we discard the frame. In the
experiments, we set P0 = 25dB.
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2.3 Displacement Error Correcting

When displacement error ε exists, the convolution kernel in
(1) is m0,ε ≡ 1

2 [12 − ε, 1, 1
2 + ε] instead of m0 in our model.

One may verify that m0,ε = m0 +
√

2ε ·m1, m0 and m1 as
defined in (9).

The displacement error may be corrected using tight
frame transform corresponding to {mp}2

p=0. In matrix
form, the forward and inverse tight frame transforms can be
represented by the matrices {Tp}2

p=0 and {T̃p}2
p=0 defined

by

Tp = A + B

T̃p =
{

A + B when p is even,
A − B when p is odd.

Here A = Toeplitz(ap,bp) and B =
PseudoHankel(bp,ap) as defined in [2] and ap and
bp are M -vectors given by:

ap = [mp(0),mp(1), 0, · · · , 0]t (14)

bp = [mp(0),mp(−1), 0, · · · , 0]t (15)

with mp ≡ [mp(−1),mp(0),mp(1)] for p = 0, 1, 2. We re-
mark that the vector bp reflects the whole-point symmetric
boundary condition we used here, see [2].

In 2-D case, the forward and inverse tight frame trans-
forms can be represented by the matrices {Tp,q}2

p,q=0 and

{T̃p,q}2
p,q=0 defined by Tp,q = Tq ⊗Tp and T̃p,q = T̃q ⊗ T̃p,

see [2, Theorem 2].
With all these definitions, it is given in [10] that,

gi,j = g̃i,j− Di,j

(√
2εx

i,jT0,1 +
√

2εy
i,jT1,0+

2εx
i,jε

y
i,jT1,1

)
h, (16)

where g̃i,j is the vector representation of the low resolu-
tion image corresponding to gi,j with displacement error
(εx, εy). Equation (16) corrects the displacement errors of
g̃i,j , and

gi,j = Di,jT0,0h (17)

3 Enhancing

3.1 The Algorithm

In this section, we give our algorithms for improving the
resolution of images in video clips. Given the reference
frame f0 and a sequence of frames {fk}K

k=−K , our idea is
to apply algorithm in [2] to each frame to improve the reso-
lution of f0. The frame fk can be viewed as the low resolu-
tion image f̂k corresponding gsx

k
,sy

k
with displacement error

(εx
k, εy

k). Equation (16) can be used to obtain gsx
k
,sy

k
by cor-

recting the displacement error in f̂k. By (17), low resolution

images gi,j , (i, j) �= (sx
k, sy

k), 0 ≤ i, j < 2 are obtained by
downsampling T0,0h, where h is the current estimate of the
high-resolution image.
The resolution enhancement algorithm for video is as fol-
lows,

Algorithm 2 h ← Update(h, f̂ , sx, sy, εx, εy): Update
the high resolution image h by a registered frame f̂ with
parameters (sx, sy, εx, εy).

1. Let n = 0 and h0 = h.

2. Iterate on n until convergence:

(a) Obtain the observed image g:

• gsx,sy = f̂−Dsx,sy (
√

2εxT0,1+
√

2εyT1,0+
2εxεyT1,1)hn,

• gi,j = Di,jT0,0hn for all (i, j) �= (sx, sy),
• g =

∑1
i,j=0 Ui,jgi,j .

(b) Update hn:

hn+1 = T̃0,0g +
2∑

i,j=0,(i,j) �=(0,0)

T̃i,jD(Ti,jhn).

We stop Step (2) when PSNR[gsx,sy − Dsx,syT0,0hn] >
40dB.

The operator D in Step (2)(b) is Donoho’s denoising op-
erator defined by:

D(f) = (T̃0,0)3(T0,0)3f +
2∑

q=0

(T̃0,0)q
2∑

r,s=0,(r,s) �=(0,0)

T̃r,sTλ(Tr,sT
q
0,0f),

The operator Tλ is the soft thresholding operator defined in
[3]:

Tλ((x1, · · · , xl, · · ·)t) = (tλ(x1), · · · , tλ(xl), · · ·)t

where tλ(x) = sgn(x)max(|x| − λ, 0). A typical choice
for λ is λ = 2σ

√
log M , where σ is the variance of the

Gaussian noise in the image h estimated numerically by the
method given in [3].

We remark that sometimes, there exist more than one im-
age corresponding to the same gi,j in a video clip. It may
also happen that we do not have any image for a particular
half pixel displacement position.

In the following we give the full complete algorithm of
our method. Given a reference frame f0, it is conceivable
that the frames taken just before or just after f0 will give
the most information regarding f0. Thus we write our al-
gorithm for a sequence of 2K frames {fk}K

k=−K that are
taken just before and after the reference frame f0.

Algorithm 3 Resolution Enhancement for Video Clip
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1. Obtain an initial guess of the high resolution image h

by using bilinear interpolation on f0.

2. for j = 1,−1, 2,−2, · · · ,K,−K:

(a) Apply Algorithm 1 to get (f̂j , s
x
j , sy

j , εx
j , εy

j ) ←
Register(fj , f0).

(b) If registration is successful, use Algorithm 2 to
update h ← Update(h, f̂j , s

x
j , sy

j , εx
j , εy

j )

Algorithm 3 uses the new information from new good
frames to update h. Its advantage is that it chooses the good
candidate frames automatically. We need not determine the
number of frames to be used in advance.

One can easily extend our algorithms to color images.
In color imaging, it is well-known that the intensity com-
ponent plays the most important role amongst all color
components. Thus given a color image, we first change it
from the RGB color space to the YCrCb color space, see
[4]. Then we apply our algorithms to each of the com-
ponents in the YCrCb space simultaneously. More pre-
cisely, we have h = (hY ,hCr,hCb) in the algorithms.
However we use the Y (the intensity) component for the
stopping criteria, e.g. Step (2) of Algorithm 2 will stop if
PSNR[gY

sx,sy − Dsx,syT0,0h
Y
n ] > 40dB.

3.2 Experimental Results

In this section, we implement and test our resolution en-
hancement algorithms. To simulate affine transforms, we
pan our video camcorder over some books on a table to
obtain the video clip. The output clip is in MPEG format
with size 352-by-288 specified in CIF format. We choose
the 100th frame as our reference frame f0 in this 5 seconds
video clip, see Figure 1. Figure 2 gives the first guess of
the high resolution image of f0, which is obtained by the
bilinear interpolation on f0. It is of size 704-by-576. We
let K = 10, i.e. we will use the 91th to 110th frames to
improve the resolution of f0. The result of Algorithm 3 is
shown in Figures 3.

The alignment parameters of frames {fk}110
k=90 using al-

gorithm 1 are listed in Table 1. The first column is the
index of the frame; the second and third columns list the
parameters of (sx, sy) and displacement error (εx, εy) for
each frame; the fourth column indicates whether the frame
is close to reference frame f100. Table 1 shows that frame
f106, f107, and f108 are discarded.

From the resulting high resolution images, one may dis-
cern the words in the title of the books such as “Digital Im-
age Processing”, “Classical Fourier Transforms” and many
other titles. This is very difficult to do from the original
frames or from the video clip. The titles of “Digital Image
Processing” and “Classical Fourier Transforms” are much
clearer in Figure 3 than in Figure 2 (see Figure 4).

Table 1: Alignment result of algorithm 1
Frame f0(x) ≈
Index (sx, sy) (εx, εy) f(Rx + r)

101 (0,1) (-0.140,-0.293) Yes
99 (0,0) ( 0.318,-0.408) Yes

102 (0,1) (-0.219, 0.226) Yes
98 (0,1) ( 0.424, 0.206) Yes

103 (0,1) (-0.297, 0.364) Yes
97 (1,1) (-0.006,-0.255) Yes

104 (0,1) (-0.315, 0.468) Yes
96 (1,0) ( 0.340, 0.074) Yes

105 (1,0) ( 0.238, 0.218) Yes
95 (0,0) ( 0.076, 0.086) Yes

106 . . . . . . No
94 (0,0) ( 0.299,-0.008) Yes

107 . . . . . . No
93 (1,0) (-0.025,-0.451) Yes

108 . . . . . . No
92 (0,1) (-0.350, 0.126) Yes

109 (1,1) (-0.138, 0.421) Yes
91 (1,1) (-0.333, 0.011) Yes

110 (1,0) (-0.315,-0.323) Yes
90 (0,1) (-0.245,-0.404) Yes

Figure 1: The 100th Low Resolution Frame

Figure 2: First Guess of the High Resolution Image
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Figure 3: Reconstructed High Resolution Image using Al-
gorithm 3

Figure 4: Zoom-in of Figure 2 (First Guess) and Figure 3
(Algorithm 3)

The improvement of the image contents by our algo-
rithms shows that our approach is promising and can reveal
hidden information in video clips.
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