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Abstract� Image reconstruction is a mathematically ill�
posed problem and regularization methods are often used
to obtain a reasonable solution� Recently� the total vari�
ation �TV� regularization� proposed by Rudin� Osher and
Fatemi ����	�� has become very popular for this purpose�
In a typical iterative solution of the nonlinear regularization
problem� such as the 
xed point iteration of Vogel or New�
ton�s method� one has to invert linear operators consisting
of the sum of two distinct parts� One part corresponds to
the blurring operator and is often a convolution� the other
part corresponds to the TV regularization and resembles an
elliptic operator with highly varying coecients� In this pa�
per� we present a preconditioner for operators of this kind
which can be used in conjunction with the conjugate gra�
dient method� It is derived from combining fast transform
�e�g� cosine�transform based� preconditioners which the au�
thors had earlier proposed for Toeplitz matrices and for
elliptic operators separately� Some numerical results will
be presented� In particular� we will compare our precondi�
tioner with a variant of the product preconditioner proposed
by Vogel and Oman �	���

I� Introduction

In this paper� we apply conjugate gradient precondition�
ers to the iterative solution of some large�scale image pro�
cessing problems� The quality of the recorded image is
usually degraded by blurring and noise� The recorded im�
age z and the original image u are often related by the
equation�

z�x� y� � Hu�x� y� � ��x� y�

�
Z
�

h�x� s� y � t�u�s� t� dt ds� ��x� y��

�	�
see 
	��� Here H denotes the blurring operator for the blur�
ring function h� and � denotes the noise function� The
image restoration problem is to obtain a reasonable ap�
proximation of the original image�
Note that the problem Hu � z is ill�posed and the dis�

cretization matrix of H is usually ill�condition and hence
the problem is extremely sensitive to noise� Thus� we can�
not neglect the eect of noise and simply solve Hu � z� To
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remedy this ill�conditioning� several approaches of regular�
ization are used�
The Total Variation �TV� regularization method of

Rudin� Osher and Fatemi 
���� 
��� is extremely eective ap�
proach for restoring edges of the original image� They con�
sider solving the following constrained minimization prob�
lem�

min
u

Z
�

jruj dx dy subject to kHu� zkL���� � � ���

where j � j denotes the Euclidean norm and � is the noise
level� The quantity

R
� jruj dx dy is called the total varia�

tional norm of u�
Instead of solving the constrained problem� Vogel consid�

ered the following closely�related regularization problem�

min
u

f�u� � min
u

	

�
kHu� zk�L���� � �

Z
�

jruj dx dy� ���

see 
	�� 
���� Here � is a positive parameter which measures
the trade o between a good �t and an oscillatory solution�
At a stationary point of ���� the gradient of f vanishes�
giving�

g�u� � H��Hu� z�� �r �
� ru
jruj

�
� �� �x� y� � �� ���

�u

�n
� �� �x� y� � ���

The second term in g is obtained by taking the gradient
of �

R
�
jruj dx dy and then applying integration by parts

from which Neumann boundary condition results� We re�
mark that the Euler�Lagrange equation for ��� also has a
form similar to ����
Due to the term 	�jruj� ��� is a degenerate nonlinear

second order diusion equation� The degeneracy can be
removed by adding a positive parameter 	 to jruj� see

���� More precisely� if we let


��u� �
	pjruj� � 	

� Luv � �r � �
��u�rv� ���

and
Auv � �H�H � �Lu�v�

then ��� becomes the following non�degenerate system

Auu � H�z� �x� y� � �� ���

with
�u

�n
� �� �x� y� � ���

A recent survey of related PDE approach to image analysis
can be found in 
���



In 
���� Vogel introduced the �lagged diusivity �xed
point iteration�� which we denote by FP� to solve the sys�
tem ���� If Auk � H and Luk denote respectively the dis�
cretization matrices of Auk � H and Luk � then the FP it�
eration will produce a sequence of discrete approximations
fukg to the solution u and can be expressed as

Auku
k	� � �H�H��Luk�u

k	� � H�z� k � �� 	� ��� � ���

Note that obtaining uk	� from the solution of uk requires
solving a linear system with coe�cient matrixH�H��Luk �
For the image restoration problem in �	�� H corresponds

to a discretization of the convolution operator� and often
H will be a Toeplitz matrix� Thus� the coe�cient matrix
in ��� corresponds to a sum of a convolution operator and
an elliptic operator� We emphasize that it is not easy to
devise fast iterative algorithms to solve this linear system�
For example� the technique of applying multigrid method
to solve such linear system is not yet well developed� see

��� Vogel and Oman 
��� has recently proposed using a
�product� preconditioner for ��� which allows the deblur�
ring part H�H and the PDE part Luk to be preconditioned
separately� An alternative approach to solving the gradient
equation ��� is to directly solve the minimization problem
��� by non�smooth optimization techniques� see for exam�
ple 
�	�� 
����
In this work� we apply the preconditioned conjugate gra�

dient �PCG� method to solve ��� and we concentrate on
�nding a good preconditioner for ���� Given a matrix A�
there are two criteria for choosing a preconditioner for A�
see 
	��� First� a preconditioner should be a �good� ap�
proximation to A� Secondly� it must be easily invertible�
Recall that Auk corresponds to a sum of a convolution op�
erator and an elliptic operator� For matrices arising from
elliptic boundary value problem� a �good� preconditioner
must retain the boundary condition of the given operator

���� Based on this idea� optimal sine transform precon�
ditioners were constructed 
	�� for elliptic problems with
Dirichlet boundary condition� If the boundary is rectangu�
lar� it was proved 
	��� 
��� that the convergence rate of the
PCG method with this preconditioner is independent of
the grid size� In our present problem� Neumann boundary
condition is imposed� see ���� Since the discrete Laplacian
on a unit square with Neumann boundary conditions can
be diagonalized by the discrete cosine transform matrix�
this motivates us to use the optimal cosine transform ap�
proximation 
		� to Luk as a preconditioner for the elliptic
part in ����
In addition� R� Chan� Ng and Wong 
	�� applied the sine

transform approximation to construct preconditioners for
Toeplitz systems� It gives rise to fast convergence of the
PCG method� It has been shown in 
��� that the PCG
method with the optimal cosine transform approximation
can also produce the same good convergence result�
By combining the results mentioned in the previous two

paragraphs� we here propose a preconditioner for the sys�
tem ��� by taking the sum of the cosine transform approx�
imations to the matrices H�H and Luk separately� The
resulting approximation can still be diagonalized by the

discrete cosine transform matrix and therefore easily in�
vertible� This preconditioner was originally proposed in

	�� where preliminary results and numerical experiments
were given� In this paper� we will give a detailed discussion
and analysis of the preconditioner� including a comparison
of our preconditioner with the product preconditioner pro�
posed by Vogel and Oman 
����
The outline of the paper is as follows� In the next section�

we will de�ne and construct the optimal cosine transform
approximation for a general matrix� In Section III� we will
use the approximation to construct a preconditioner for
the system ���� In Section IV� we will introduce Vogel and
Oman�s product preconditioner and some of its possible
variants� In the �nal section� numerical performance of the
preconditioner will be presented�

II� Optimal Discrete Cosine Transform

Preconditioner

The concept of optimal transform approximation was
�rst introduced by T� Chan 
	��� Since preconditioners
can be viewed as approximations to the given matrix An�
it is reasonable to consider preconditioners which minimize
jjBn�Anjj over all Bn belonging to some class of matrices
and for some matrix norm jj � jj� T� Chan 
	�� proposed op�

timal circulant preconditioner that is the minimizer of the
Frobenius norm kBn �AnkF over the class of all circulant
matrices Bn� These preconditioners have been proved to be
very e�cient preconditioners for solving Toeplitz systems
with the PCG method� see 
���
Analogously� R� Chan� Ng and Wong 
	�� de�ned the op�

timal sine transform preconditioner to be the minimizer of
kBn � AnkF over all matrices Bn which can be diagonal�
ized by the discrete sine transform� They proved that for
a large class of Toeplitz system� the PCG method with the
sine transform preconditioner converges at the same rate
as the optimal circulant one� Following the same approach�
we will construct in Section II�A the optimal cosine trans�
form preconditioner for general matrices� We remark that
although the derivation is almost the same as that of the
sine transform preconditioner� we present it here for the
seek of charity� An alternative derivation using displace�
ment structure can be found in 
���� The preconditioner
will be applied to precondition both H�H and Luk in ���
separately� For a survey on fast transform type precondi�
tioners� we refer the reader to 
���

A� Construction of One�dimensional Preconditioner

Let us denote Cn to be the n�by�n discrete cosine trans�
form matrix� If �ij is the Kronecker delta� then the �i� j�th
entry of Cn is given byr

�� �j�
n

cos

�
��i� 	��j � 	��

�n

�
� 	 � i� j � n�

see Sorensen and Burrus 
��� p������ We note that the
Cn�s are orthogonal� i�e� CnC

t
n � In� Also� for any n�

vector v� the matrices�vector multiplication Cnv and Ct
nv

can be computed in O�n logn� real operations� see 
����



An cost of constructing c�An�
general O�n��
Toeplitz O�n�
banded O��bl � bu�n�

TABLE I

Cost of Constructing c�An��

Let Bn�n be the vector space containing all matrices that
can be diagonalized by Cn� More precisely�

Bn�n � fCn�nC
t
n j �n is an n�by�n

real diagonal matrixg�
For an n�by�n matrix An� we choose our preconditioner
c�An� to be the minimizer of jjBn�AnjjF in the Frobenius
norm in the space Bn�n� Following the terminology used
in T� Chan� the approximation is called the optimal cosine

transform preconditioner for An and denoted by c�An�� It
can be shown that c�An� is linear and preserves positive
de�niteness� see 
	���
We will show in Appendix A that c�An� can be ob�

tained optimally in O�n�� operations for general matrices�
The cost can be reduced to O�n� operations when An is a
banded matrix or a Toeplitz matrix� This is the same cost
as that for constructing the optimal circulant precondition�
ers� We recall that in our case� Luk and H are banded ma�
trix and Toeplitz matrix respectively� We summarize the
construction cost of c�An� in Table I� In Table I� we denote
bl and bu the lower and upper band width of An�

B� Construction of Two�dimensional Preconditioner

For �D n � n images� the matrices H�H and Lu in ���
are block matrices of the following form�

Ann �

�
BBB�

A��� A��� � � � A��n

A��� A��� � � � A��n

���
� � �

� � �
���

An�� An�� � � � An�n

�
CCCA �

Here Ai�j are square matrices of order n�
In 
	��� T� Chan and Olkin proposed the Level�	 and

Level�� circulant preconditioners for such block matrices�
Following their approach� we de�ne the Level�	 and Level��
cosine transform preconditioners for Ann� The idea of the
Level�	 and Level�� preconditioners is to approximate the
matrix Ann in one direction and two directions respectively�
Speci�cally� the Level�	 preconditioner c��Ann� is de�ned
by

c��Ann� �

�
BBB�

c�A���� c�A���� � � � c�A��n�
c�A���� c�A���� � � � c�A��n�

���
� � �

� � �
���

c�An��� c�An��� � � � c�An�n�

�
CCCA �

To de�ne the Level�� cosine transform preconditioner� let
us �rst give some notations� For any n��by�n� block matrix

Ann� we denote �Ann�i�j�k�l to be the �i� j�th entry of the
�k� l�th block of Ann� Let R be a permutation matrix which
simply reorders Ann in another coordinate direction� More
precisely� R satis�es

�RtAnnR�i�j�k�l � �Ann�k�l�i�j � 	 � i� j � n� 	 � k� l � n�

Then the Level�� cosine transform preconditioner c��Ann�
for Ann is de�ned by

c��Ann� � Rc��R
tc��Ann�R�R

t�

It is easy to show that the preconditioner c��Ann� can
be diagonalized by Cn � Cn�

c��Ann� � �Cn�Cn� diag��Cn�Cn�
tAnn�Cn�Cn�� �Cn�Cn�

t�

Hence� c��Ann� can be inverted easily� Note that in the
construction of our preconditioner� we will use the Level�
� approximation instead of the Level�	� It is because the
Level�	 preconditioner has a relatively expensive initializa�
tion cost for block Toeplitz matrices with Toeplitz block�
see 
���
For elliptic problem� it can be proved that the Level�� op�

timal cosine transform preconditioner c��Ann� is a �good�
preconditioner�
Theorem �� Let Ann be the ��point centered discretiza�

tion matrix of

��a�x� y�ux�x � �b�x� y�uy�y � u � f�x� y� on 
�� 	��

with homogeneous Neumann boundary condition� Assume
 � � and the mesh is uniform with size 	�n� Then we
have


�c��Ann�
��Ann� � �

cmax
cmin

��

where � � cmin � a�x� y�� b�x� y� � cmax�
Proof� We refer the reader to Appendix B�

Optimal cosine transform preconditioner can also be
shown to be good for solving Toeplitz system� For one�
dimensional cases� i�e� point�Toeplitz matrix systems� the
convergence proof has been established in 
���� For ��
dimensional cases� we can prove the following result�
Theorem �� Let Ann be a block Toeplitz matrix with

Toeplitz blocks� Assume the underlying generating se�

quence a
�j�
k of Ann is absolutely summable� i�e��

�X
j�

�X
k�

ja�j�k j � G �	

and

a
�j�
k � �Ann��j���n	k�� for 	 � j� k � n�

If �min�Ann� 
 � � � where � is independence on n� then
for all � � �� there exists N � � such that for all n � N � at
most O�n� of the eigenvalue values of the preconditioned
matrix c��� �Ann�Ann have absolute values larger than ��
Thus the PCG method converges in at most O�n� steps�



Proof� The proof is similar to that of Corollary 	 in

�� and will be omitted�
We remark that the numerical results in 
�� for the Level��
optimal circulant preconditioner is better than the theoret�
ical result and the numbers of iterations do not grow with
n� With Theorems 	 and �� it seems reasonable to use the
Level�� cosine approximation to construct preconditioners
for the linear system ����

III� Cosine Transform Preconditioner for TV

denoising and deblurring

A straightforward preconditioner for Auk is

c��Auk � � c��H
�H � �Luk � � c��H

�H� � �c��Luk ��

However� computing c��H
�H� according to the formula in

Corollary 	 in Appendix A� requires computing all the en�
tries of H�H and is costly� Another way is to approximate
c��H

�H� by c��H��c��H�� More precisely� a preconditioner
for Auk in ��� can be de�ned as

M � c��H��c��H� � �c��Luk �� ���

One problem with the preconditioner M is that it does
not capture the possibly large variation in the coe�cient
of the elliptic operator in ��� caused by the vanishing of
jruj in ���� To cure this problem� we apply the technique
of diagonal scaling� More precisely� if we denote ���� to be
the spectral radius of a matrix and we de�ne

� � ��H�H�I � � diag�Luk�

then we consider solving the equivalent system

 Auk  u
k	� �  H�z

where  Auk �  H�  H � � Luk �  H � H������  Luk �
�����Luk�

���� and  uk � ����uk� In summary� the Level�
� cosine preconditioner with diagonal scaling is given by

MD � !H� !H � �c�� Luk� ���

where !H � c��H�c���
������ We note further that if ��� ��

and �
 are respectively the eigenvalue matrices of c��H��
c���

����� and c�� Luk�� then the preconditioner can be ex�
pressed as

MD � �Cn � Cn� ��
�
����

�
��� � ��
� �Cn � Cn�

t�

Hence� the preconditioner can be easily invertible�
Finally� we comment on the cost of constructingMD and

of each PCG iteration� We note that Luk is a sparse matrix
with only �ve nonzero bands� Also since H corresponds to
a discretization of the convolution operator �	�� H often
is a block Toeplitz matrix with Toeplitz blocks� By using
Table I� the construction cost of c��H� and c��Luk� can be
shown to be O�n� logn� operations� see 
��� 
	��� The cost
of one PCG iteration is bounded by the cost of the matrix
vector multiplication  Aukv � ������H�H � �Luk��

����v
and the cost of solving the system MDy � b� The matrix

vector multiplication �����v can be computed in O�n��
operations because ����� is a diagonal matrix� Since Luk

is banded� Lukv can also be done in O�n�� operations�
For H being a block Toeplitz matrix with Toeplitz blocks�
Hv can be calculated in O�n� logn� operations� see 
���
Therefore� the matrix vector multiplication can be done
in O�n� logn� operations� The system MDy � b can be
solved in O�n� logn� operations by exploiting the Fast Co�
sine Transform� Therefore� the total cost of each PCG
iteration is bounded by of O�n� logn��

IV� The Product Preconditioner of Vogel and

Oman

In this section� we introduce the product preconditioner
proposed in Vogel and Oman in 
��� and discuss some of
its possible variants� The product preconditioner for the
system ��� is de�ned as

 P �
	

�
�H�H � �I������Luk � �I��H�H � �I����� �	��

Here� � is a parameter and will be chosen to be
p
� as

suggested in 
���� Note that computing  P��v in each PCG
iteration requires solving a convolution problem �H�H �
�I�����v and an elliptic problem ��Luk��I���v which are
not straightforward� To make the product preconditioner
 P more practical� Vogel and Oman assumed that the blur�
ring function h is periodic and hence �H�H � �I�����v
can be computed by the FFT� Moreover� when solving
��Luk��I�

��v� it requires an inner PCG iteration in which
a multigrid preconditioner is used� see 
���� More precisely�
there are three nested iterations in their method� the out�
ermost FP iterations� the inner PCG iterations with pre�
conditioner  P and the innermost PCG iterations to invert
��Luk � �I��
Since we do not make any assumptions on h and it would

not be fair to compare only the inner PCG iteration num�
bers and ignore the work required in the innermost PCG
iterations �i�e� the work on solving ��Luk � �I���v which
is substantial�� this makes the comparison between the two
preconditioners di�cult� In the experiments below� we will
instead use the following preconditioner for comparison�

P �
	

�
�c��H��c��H� � �I�����

��c��Luk� � �I� � �c��H��c��H� � �I�����
�		�

where � is again set to
p
�� This preconditioner is ob�

tained by taking cosine transform approximations of the
three factors in  P � The resulting preconditioner P can be
diagonalized by the ��D cosine transform and hence solving
P��v at each PCG step requires just about the same cost
as our preconditioner M � Moreover� there is no need for
the innermost PCG iterations�
We note that there is a connection between the product

preconditioner P and the preconditioner M given in ����
First� note that the product preconditioner P in �		� can
be viewed as an operator�splitted approximation of our pre�
conditioner M in ���� Since the three factors in the right



hand side of �		� are commutative� we have

P �M �
�

�
c��H��c��H�c��Luk� � �I� �	��

The right hand side matrix will be called the splitting error
of P � If we again take � �

p
�� the splitting error becomes

p
��c��H��c��H�c��Luk� � I��

Now� let us investigate the contribution from this split�
ting operator by using Fourier analysis� Denote H�f� and
L�f� to be the spectrum of the blurring function h and the
dierential operator Luk respectively� Then the splitting
error in �	�� will have spectrum

p
��jH�f�j�L�f� � 	�� �	��

where f denotes the frequency variable�
In general� the second order dierential operator Luk has

L�f� proportional to f�� In fact Luk � being a high pass
�lter� has large eigenvalues corresponding to the large fre�
quency modes and small eigenvalues corresponding to the
low frequency modes �c�f� the case when Luk is the Lapla�
cian operator�� On the other hand� the blurring operatorH
being a low pass �lter has the large eigenvalues correspond�
ing to the low frequency modes and the small eigenvalues
corresponding to the high frequency modes� Hence� we ex�
pect that the large eigenvalues of the dierential operator
will be damped by the small eigenvalues of the blurring
operator when they are multiplied together as in �	��� In
particular� we expect c��H��c��H�c��Luk � to be a bounded
operator �Note that the cosine transform approximation
c���� only changes the boundary condition of the operators�
and in general will not change the ordering of the eigenval�
ues�� Thus� for small �� the splitting error in �	�� will be
small and hence the performance of P and M should be
about the same�
However� since L�f� is proportional to f�� when the spec�

trum of the blurring functionH�f� decays slowly� L�f� may
not be su�ciently damped� As a result� the splitting error
in �	�� will be large� Therefore� in this case� we expect
M to outperform P for ��s that are not very small� In
particular� let us consider the limiting case� the denoising
problem with H�f� � 	 �i�e� h�x� y� is the delta function��
In this case�

M � �c��Luk� � I�

P �
	 � �

�
��c��Luk� � �I� � �	 �

p
���

p
�c��Luk� � I��

and hence
P �M �

p
��c��Luk� � I��

which is not small� We remark that even in this denoising
case� P �� M � The reason is due to the choice of � �

p
��

Of course� when � � 	� the performance of the precondi�
tioners P and M are exactly the same �since P � �M��
However� � �

p
� is the best choice over a wide range of

problems� see 
����
In conclusion� our preconditioner M is good and robust

for solving deblurring problems and we expect it to out�
perform the product preconditioner P especially when the

splitting error in �	�� is large� That is the case when h
is not a very signi�cant blur or when h tends to the delta
function �i�e�� H tends to I�� This will be demonstrated in
Section V�B when we compare the performance of P and
M for various blurring functions h and ��s�
As in the case for the preconditioner M � we can apply

a diagonal scaling to the matrix P to capture the possible
large variation in the coe�cient matrix� One possible way
is to de�ne it analogous to ���� i�e�

PD �
	

�
� !H� !H � �I������c�� Luk� � �I�� !H� !H � �I�����

Similarly� we have

PD �MD �
�

�
!H� !Hc�� Luk� � �I�

which will be called the splitting error of PD�

V� Numerical Results

In this section� we compare the numerical performance
of dierent preconditioners in solving the linear system ���
for dierent images�

A� Test Problem �

In this test� the original image is given by

u�x� y� � ����������������
��� � ��
�������������
���

where �x� y� � 
�� 	�� 
�� 	� and ��a�b� denotes the character�
istics function for the interval 
a� b�� The blurring function
h in �	� is chosen to be a truncated Gaussian� given by

h�x� y� �

�
e���x

�	y�� if jxj� jyj � 	��
� otherwise

� �	��

Here � is a parameter which controls the severity of the
blurring� More precisely� the smaller � is� the more signif�
icant the blurring will be� In this experiment� we choose
� � ��� so that h is a moderate blurring function� The
noise function � has normal distribution and is scaled such
that the noise�to�signal ratio �NSR�� k�kL��kHukL�� is ����
The true image and the observed image are shown in Figure
��
We will perform the FP iterations� starting with u � z�

until the gradient g in ��� satis�es kg�uk�k�� kg�u�k� �
	��
� We will apply the CG method to solve the linear
system ��� and the initial guess for the CG method in the
kth FP iteration is chosen to be the �k � 	�th FP iter�
ate� The iteration is stopped when the residual vector rk
of the linear system ��� at the kth CG iteration satis�es
jjrkjj��jjrjj� � 	��
� In our numerical experiment� we will
focus on the performance of dierent choices of precondi�
tioners for various of parameters n� � and 	� Here n is the
number of pixels in one direction� i�e� the matrix Auk is of
size n��by�n��
Tables II and III show the number of iterations required

for convergence of the FP iteration and the CG iteration for
dierent choices of preconditioners and parameters� Note



that the CG iteration numbers shown in Tables II and III
are the average number of CG iterations per FP step� The
symbol �"� denotes the number of iterations for FP� The
notations I � � denote respectively no preconditioner and
the diagonal scaling preconditioner� Some of the data are
plotted in Figures 	 and ��
We observe from Figure 	 that the MD and PD precon�

ditioners require signi�cantly fewer iterations than other
preconditioners for all values of 	 and �� Moreover� we can
observe that the smaller 	 is� the more ill�conditioned the
system is�
From Figure �� we observe that the number of iterations

corresponding to I grows like O�n���� which from standard
convergence theory for CG implies that 
�Auk � � O�n�����
If the preconditionerMD or PD is used� the number of iter�
ations grows like O�n���� which implies that 
�M��

D Auk �
� O�n����� However� the preconditioners �� M and P
reduce the growth of the number of iterations only to
O�n����� O�n���� and O�n���� respectively� Therefore�
MD and PD as preconditioners are much more eective
than other three preconditioners�
From Table III� we observe that the performance of the

preconditioners M and P �resp� MD and PD� are almost
the same� This is in agreement with our observation in
Section IV that for a smooth kernal function h �as in our
case� the Gaussian function in �	���� the splitting error
P �M will be small for small � �e�g� � 	���� and hence
we expect the performance of the preconditioners M and
P to be close�
In Figure �� we show the recovered images for various

	� The smaller 	 is� the closer the recovered image is to
the true image� Figure � shows how the recovered images
depend on the value of �� In this case� the FP method
produces the best image when � � 	��
�

B� Test Problem �

We will now perform two experiments to illustrate that
there are situations where our preconditioner M is better
and more robust than the product preconditioner P � In
this test problem� we will basically repeat the experiment
in Section V�A with two dierent type of blurring functions�
In the �rst experiment� we will choose the Gaussian blur�

ring function in �	�� with several parameters � � see Figure
�� We remark that the larger the � is� the less signi�cant
is the blurring �see Figure ��� and we expect that our pre�
conditioner to give a better performance than the product
preconditioner P � The parameter n is �xed to ��� 	 to ��	
and NSR����� We report the number of PCG iterations
required for various preconditioners and ��s in Table IV�
We observe from Table IV that when � � ���� the per�

formance of M and P are almost identical� as expected�
When � is increased to ����� the number of PCG itera�
tions required by P are much more than that by M for
� � 
	���� 	����� As we mentioned in Section IV� when
the blurring is not very signi�cant �i�e�� when h is close
to the delta function�� the splitting error in �	�� becomes
large unless � is very small �e�g� 	��� when � � ������ We
remark that the performance of MD and PD is still close
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Fig� �� Observation �top �gure�� the smaller the � is� the more
illcondition of A

uk
� Here n � �	� and � � �
��� Observation

�bottom �gure�� For various �� preconditioners MD and PD re
quires signi�cantly less PCG iterations compared to the others
preconditioners� Here n � �	� and � � 
���
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Fig� 	� We plot the no� of PCG iterations versus n in log scale for
various preconditioners and �� Here � � �
�� is �xed� Top �
� � 
�
�� slopes of I� �� M � P � MD� PD are 
���� 
���� 
����

���� 
�		� 
�		 respectively� Bottom� � � 
��� slopes of I� ��
M � P � MD� PD are 
���� 
���� 
���� 
���� 
�		� 
��� respectively�
Observation� Preconditioning by MD or PD require the smallest
number of PCG iterations� The lines correspond to MD and PD
have the smallest slope and therefore PCG has faster convergence
rate�
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Fig� �� True image �left� and the blurred noisy image� NSR�
��
�right��
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Fig� �� Deblurred images for various �� 
�
� �left top�� 
�� �right
top�� � �bottom left�� �
 �bottom right�� In this experiment�
� � �
��� n � ��� Observation� the smaller the � is� the shaper
the recovered image is �

n � 	�
� " I � M P MD PD
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Fig� �� Deblurred images for various �� �
�� �top left�� �
�� �top
right�� �
�� �bottom left�� �
�� �bottom right�� In this exper
iment� � � 
��� n � ��� Observation� when � is too small �e�g
�
���� the recovered images do not get enough regularization
and become irregular� When � is large �e�g� �
���� edges in the
recovered images seem to be smooth out� In this case� the FP
iteration produces the best image when � � �
���
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TABLE IV

Gaussian blur� n � �� and � � 
��

in this case� When we further increase � to ������ both
preconditioners M and MD outperform P and PD for a
wide range of � �e�g� 
	���� 	������

In the second experiment� we choose the out of focus
blurring functions� More precisely�

h�x� y� �

�
	������

p
x� � y� � �

� elsewhere
�

In this case� the smaller � is� the less signi�cant is the
blurring� see Figures � and 	�� From Table V� we can make
the same observation as for the Gaussian blurring function�
Namely� when the blurring is very signi�cant �e�g� when
� � ��	�� the performance ofM and P are almost the same�
However when the severity of blur decreases �e�g� � � ����
or ���	�� our preconditioners M and MD perform better�
In conclusion� the cosine transform preconditioners M and
MD are more robust than the product preconditioners P
and PD over a wide range of blurring functions�
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C� Test Problem �

We consider a �D image restoration problem arising in
ground�based atmospheric imaging� In this test� we will
compare the quality of the recovered images for several

� � ��	
� " M P MD PD
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Out of focus blur� n � �� and � � 
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Fig� �� Out of focus PSF�s when � � 
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Fig� ��� Observed images when � � 
��� 
�
�� 
�
� �left to right��

numbers of FP iterations� The problem consists of a ����
by���� image of an ocean reconnaissance satellite observed
by a simulated ground�based imaging system together with
a ����by���� image of a guide star observed under similar
circumstances� see Figure 	�� The data are provided by the
Phillips Air Force Laboratory at Kirkland AFB� NM 
���
The imaging system detects the atmospheric distortions
using a natural guide star image� see Figure 	� �right��
A wavefront sensor measures the optical distortions which
can then be digitized into a blurred image of the guide
star pixel� We refer the reader to 
	�� on how to form the
blurring matrix H � In Figures 	��	�� we present restored
images for various values of the parameter � after one� three
and �ve FP iteration�s�� Here� we �x 	 � ��	 and use the
MD preconditioner when solving the linear system ���� We
perform the PCG iterations until the relative residual less
than 	���� The value kg�u�k after the FP iterations are
presented�
In Table VI� we compare the number of CG iterations

with and without applying our preconditioner MD for var�
ious of ��s� We note that the preconditionerMD can signif�
ciantly speed up the convergence rate of the CG method�
We observe from Figures 	��	� that after performing only
� FP iterations� we obtain very good recovered images and
most of the noise in the observed image are removed� Also�
we note that when � is too large �e�g� � � 	����� the re�
covered image looks �#at� and lost most of the features in
the original image� When � got smaller �e�g� � � 	���

or 	����� an antenna appears in the recovered images� We
remark that the nonsmoothless of the images appearing in
Figure 	� is due to insu�cient regularization�

Fig� �	� Original image �left� and guide star image �right�

Fig� ��� Observed image

                                    

Fig� ��� Restored images for various FP iterations� Left� �st FP with
kg�u�k � ���� �
��� Middle� �rd FP with kg�u�k � ���� �
���
Right� �th FP with kg�u�k � ���� �
��� Here � � �
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Fig� ��� Restored images for various FP iterations� Left� �st FP with
kg�u�k � ���� �
��� Middle� �rd FP with kg�u�k � ���� �
���
Right� �th FP with kg�u�k � ���� �
��� Here � � �
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� I MD
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TABLE VI

Average number of PCG iterations in the first five FP

steps� The column �I� denotes no preconditioning�



VI� Conclusion Remarks

In this paper� we propose cosine transform precondition�
ers for solving linear systems arising from total variation
image deblurring problem� Our analysis and the numerical
results indicate that the cosine transform preconditioner is
an e�cient and robust preconditioner over a wide class of
image deblurring problems�

VII� Appendix A

In this appendix� we present how to construct c�An� e��
ciently� as stated in Table I in Section II�A� The approach
is basically the same as that for the sine transform precon�
ditioner� see 
	��� we present it here for the sake of clairty�
An alternative derivation can be found in 
���� An essen�
tial idea is to make use of a sparse and structured basis for
Bn�n� see 
	���

Lemma �� �Boman and Koltracht ���� Let Qk� k �
	� � � � � n� be n�by�n matrices with the �i� j�th entry given
by

Qk�i� j� �

�		

		�

	 if ji� jj � k � 	�
	 if i� j � �n� k � ��
	 if i� j � k�
� otherwise�

Then fQkgnk�� is a basis for Bn�n�
In other words� every matrix in Bn�n can be expressed

as a linear combination of the n matrices fQkgnk��� We
display the basis for the case n � ��
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In general� each Qk has at most �n non�zero entries�

In order to give a precise description of Bn�n� we intro�
duce the following notations�

De�nition �� Let w � �w�� � � � � wn�
t be an n�vector� De�

�ne the shift of w as ��w� � �w�� w
� � � � � wn� ��
t� De�ne

Tn�w� to be the n�by�n symmetric Toeplitz matrix with w
as the �rst column and Hn�w� to be the n�by�n Hankel
matrix with w as the �rst column and �wn� � � � � w��

t as the
last column�

Lemma �� Bn�n � fTn�w� � Hn���w�� j w �
�w�� � � � � wn�

t � IRng�
Proof� From �	��� we observe that every Qi �i �

	� � � � � �� is a sum of a Toeplitz matrix and a Hankel matrix�
In fact� by using Lemma 	� it is not di�cult to prove that

Qi � Tn�ei� �Hn���ei���

Here ei denotes the ith unit vector in IRn� Note that Tn���
and Hn������ are linear operators� Therefore� an n�by�
n matrix Bn belongs to Bn�n if and only if there exist
w�� � � � � wn � IR such that

Bn �

nX
j��

wjQj �

nX
j��

wj 
Tn�ej� �Hn���ej���

� Tn�
nX

j��

wjej� �Hn���

nX
j��

wjej��

� Tn�w� �Hn���w��

with w �
Pn

j�� wjej �
Now computing the optimal cosine transform approxi�

mation can be reformulated as solving the n�dimensional
minimization problem�

min
w��w������wn��IRn

kTn�w� �Hn���w�� �AnkF �

The minimum can be calculated by setting

�

�wi
kTn�w� �Hn���w�� �Ank�F � ��

for i � 	� � � � � n� For the sake of presentation� let us il�
lustrate the procedure of computing the minimum by con�
sidering the simple case n � �� By the de�nition of the
Frobenius norm� we express kTn�w��Hn���w���Ank�F in
terms of the matrix entries and then carry out the partial
derivative with respect to wi� Then� we see that w satis�es
the following linear system�
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We observe that the kth entry of the right hand side
vector in �	�� is obtained by adding those aij for which the
�i� j�th position of Qk is nonzero� For general n� let rn be
an n�vector with the k�th component given by


rn�k �
X

�Qk�i�j ��

ai�j � �	��



An cost of constructing rn
general O�n��
Toeplitz O�n�
banded O��bl � bu�n�

TABLE VII

Cost of Constructing rn�

If An has no special structure� then clearly by �	��� rn can
be computed in O�n�� operations because each Qi has only
O�n� non�zero entries� If An � 
ai�j � is a Toeplitz matrix
�correspond to H in ����� then the sum in �	�� can be com�
puted without explicit addition because summing ai�j for
constant value of jj � ij can be reduced to a scalar multi�
plication� Similarly� for banded matrix An with lower and
upper band width bl and bu� the cost of forming rn can be
reduced to O��bl � bu�n�� We summarize the construction
cost of rn in Table VII�

We now go back to the solution of the linear system
�	��� We �rst reorder the unknowns wi of w in such a way
that the odd index entries and even index entries appear
respectively in the upper half and lower half of the resulting
vector� For simplicity� this leads to the following de�nition�

De�nition �� Let Rn be the n�by�n permutation matrix
with the �i� j�th entry given by


Rn�i�j �

�

�

	 if 	 � i � dn� e and j � �i� 	�
	 if dn� e � i � n and j � �i� �dn� e�
� otherwise�

After permutation� �	�� becomes a block system�

�
BBBBBB�

� � � � � �
� 	� � � � �
� � 	� � � �
� � � 	� � �
� � � � 	� �
� � � � � 	�

�
CCCCCCA

�
BBBBBB�

w�

w


w�

w�

w�

w�

�
CCCCCCA

� R�r��

The following theorem and corollary prove that in gen�
eral if rn is known in advance� then the block system can
be solved in O�n� operations�

Theorem �� Let An � 
ai�j � be an n�by�n matrix and
c�An� be the minimizer of kBn�AnkF over all Bn � Bn�n�
Denote Ui�j to be the i�by�j matrix with all its entries being
one and if i is equal to j� then the matrix is just denoted by
Ui� Let e� to be the �rst unit vector of length dn� e� Then

c�An� � Tn�w� �Hn���w��

with

w � �
�n�R

t
n�

�nUn
�
� nIn

�
� ne�e

t
� ��nUn

���nUn
�

��n� 	�Un
�
� nIn

�

�
Rnrn

�	��

if n is even� and

w � �
�n�R

t
n�

��n� 	�Un��
�

� nIn��
�

� ne�e
t
� ��nUn��

�
�n��

���nUn��
�

�n��
�

�nUn��
�

� In��
�


Rnrn

if n is odd�
Proof� Here we just give the proof for the case n is

even� The proof for odd n is similar� To minimize kBn �
Ank�F over Bn�n� we set

�

�wi
kc�An��Ank�F � �� for i � 	� � � � � n�

We obtain a linear system that has the same structure as
that in �	��� Permutating the system by Rn yields�

nV �V Un
�

�Un
�
V t �nIn

�

�
Rnw � Rnrn�

Here V is an n
� �by�

n
� matrix given by

V � �In
�
� e�e

t
��

By direct veri�cation�

nV
�
�nUn

�
� nIn

�
� ne�e

t
�

�
� �V Un

�

���nUn
�

�
� �n�In

�
�

�
�Un

�
V t
� ���nUn

�

�
� �nIn

�

�
��n� 	�Un

�
� nIn

�

�
� �n�In

�
�

nV
���nUn

�

�
� �V Un

�

�
��n� 	�Un

�
� nIn

�

�
� ��

and

�Un
�
V t
�
�nUn

�
� nIn

�
� ne�e

t
�

�
� �nIn

�

���nUn
�

�
� ��

Therefore� we get�
nV �V Un

�

�Un
�
V t �nIn

�

�
�

�nUn
�
� nIn

�
� ne�e

t
� ��nUn

���nUn
�

��n� 	�Un
�
� nIn

�

�
� �n�In�

Combining together with the fact that Rn is orthogonal�
�	�� follows�
Before going on� let us �rst emphasize the relationship

between the �rst column of matrices B � Bn�n and their
eigenvalues� For any matrix B � Bn�n� we have B �
Cn�C

t
n where � is the eigenvalue matrix of B� If D denotes

the diagonal matrix whose diagonal is equal to the �rst
column of Ct

n and 	n denotes the n�vector of all ones� then
we have Ct

ne� � D	n� Therefore� the relation is given by

D��Ct
nBe� � �	n�

In particular if the �rst column of c�An� is known� we can
obtain the eigenvalue matrix � of c�An� in O�n logn� oper�
ations� Hence� the matrix�vector multiplication c�An�

��v
can be computed as v � Ct

nv� v � ���v� v � Cnv
which costs O�n logn� operations� The following corollary
gives the explicit formula for the entries of the �rst column



of c�An�� The proof follows directly from the expressions
�	�� and therefore we omit it�
Corollary �� Let An be an n�by�n matrix and c�An� be

the minimizer of kBn �AnkF over all Bn � Bn�n� Denote
by q the �rst column of c�An�� If so and se are de�ned
respectively to be the sum of the odd and even index entries
of rn� then we have� for n even�


q�� �
	

�n�
��n
rn�� � n
rn�� � �se�


q�i �
	

�n�
�n
rn�i � n
rn�i	� � �se� i � �� � � � � n� 	


q�n �
	

�n�
���nso � ��n� ��se � n
rn�n�

and for n odd�


q�� �
	

�n�
��n
rn�� � n
rn�� � �so�


q�i �
	

�n�
�n
rn�i � n
rn�i	� � �so� i � �� � � � � n� 	


q�n �
	

�n�
���nse � ��n� ��so � n
rn�n��

From Corollary 	 and Table VII� we see that c�An� can
be obtained in O�n�� operations for general matrix An and
O�n� operations for band matrix An and Toeplitz matrix
An�

VIII� Appendix B� Proof of Theorem �

Let A and AL be the ��point discretization matrices
of ��a�x� y�ux�x � �b�x� y�uy�y and the negation of the
Laplacian respectively� both with homogeneous Neumann
boundary condition� It follows immediately that Ann �
A� I� Similar to 
�� ������� we can prove that

cminAL � A � cmaxAL�

By noting that AL can be diagonalized by Cn�Cn� we can
prove similar to 
	�� equation �	��� that

cminAL � c��A� � cmaxAL�

Now for any � � � � �
cmax

and x � IRn� � we have

xt�A� cmin�I�x� � � cmin��x
tx

� xtAnnx
� xt�A� cmax�I�x� � � cmax��x

tx
�	��

and

xt�c��A� � cmax�I�x� � � cmax��x
tx

� xtc��Ann�x
� xt�c��A� � cmin�I�x� � � cmin��x

tx�
����

Since the inequality

min

�
a

c
�
b

d

�
� a� b

c� d
� max

�
a

c
�
b

d

�

holds for any a� b� c� d � � and the matrices A � cmin�I �
A � cmax�I � c��A� � cmax�I � c��A� � cmin�I � � � cmin��I

and � � cmax��I are positive de�nite� using �	�� and ����
we have

xtAnnx

xtc��Ann�x
� max

�
xt�A� cmax�I�x

xt�c��A� � cmin�I�x
�
 � cmax�

 � cmin�

�

� max

�
cmaxx

t�AL � �I�x

cminxt�AL � �I�x
�
 � cmax�

 � cmin�

�

� max

�
cmax
cmin

�
 � cmax�

 � cmin�

�
�� cmax

cmin
as � �� �

and

xtAnnx

xtc��Ann�x

 min

�
xt�A� cmin�I�x

xt�c��A� � cmax�I�x
�
 � cmin�

 � cmax�

�


 min

�
cminx

t�AL � �I�x

cmaxxt�AL � �I�x
�
 � cmin�

 � cmax�

�

� min

�
cmin
cmax

�
 � cmin�

 � cmax�

�
�� cmin

cmax
as � �� ��

Hence� Theorem 	 is proved�
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