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Abstract

Discretized ��D deconvolution problems arising� e�g�� in image restoration and seis�

mic tomography can be formulated as least squares computations� min kb�Txk�� where

T is often a large�scale rectangular Toeplitz�block matrix� We consider solving such

block least squares problems by the preconditioned conjugate gradient algorithm using

square nonsingular circulant�block and related preconditioners� constructed from the

blocks of the rectangular matrix T � Preconditioning with such matrices allows e�cient

implementation using the ��D or ��D Fast Fourier Transform �FFT	� Two block pre�

conditioners� related to ones proposed by T� Chan and J� Olkin for square nonsingular
Toeplitz�block systems� are derived and analyzed� We show that� for important classes

of T � the singular values of the preconditioned matrix are clustered around one� This

extends our earlier work on preconditioners for Toeplitz least squares iterations for ��D

problems�

It is well known that the solution of ill�posed deconvolution problems can be sub�

stantially improved by regularization to compensate for their ill�posed nature� We

show that regularization can easily be incorporated into our preconditioners� and we

report on numerical experiments on a Cray Y�MP� The experiments illustrate good

convergence properties of these FFT
based preconditioned iterations�
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� Introduction

In this paper we investigate conjugate gradient preconditioners for the iterative solution of
some large�scale structured least squares problems arising� for example� in ��D deconvolution�
Our aim is to provide computational algorithms� backed up by formal convergence analyses�
and to report on preliminary numerical experience with applying the algorithms to some
simulation problems in image restoration�
The preconditioned conjugate gradient �PCG method is an iterative method of funda�

mental importance for solving systems of linear equations� cf�� Golub and van Loan ��
��
When T is a rectangular matrix with full column rank� one can still use the CG algorithm
to �nd the solution to the least squares problem

minkb� Txk�� ��

This can be done by applying the algorithm to the normal equations in factored form�

T ��b� Tx � �� ��

which can be solved by conjugate gradients without explicitly forming the matrix T �T �
The convergence rate of the conjugate gradient algorithm depends on the singular values

of the least squares data matrix T � see Axelsson and Lindskog �
�� If the singular values
cluster around a �xed point� convergence will be rapid� Thus� to make the algorithm a
useful iterative method� one usually preconditions the system� The PCG algorithm then
solves �� by transforming the problem with a preconditioner C� applying the conjugate
gradient method to the transformed problem� and then transforming back� More precisely�
one can use the conjugate gradient method to solve

minkb� TC��yk��

with Cx � y� The version of the PCG algorithm we use is given in ��� and can be stated as
follows�

Algorithm �� PCG for Least Squares� Let x��� be an initial approximation to Tx � b�
and let C be a given preconditioner� This algorithm computes the solution� x� to the
least squares problem ���
r��� � b� Tx���

p��� � s��� � C��T �r���

�� � ks���k��
for k � �� �� �� � � �

q�k� � TC��p�k�

�k � �k�kq
�k�k��

x�k��� � x�k� � �kC
��p�k�

r�k��� � r�k� � �kq
�k�

s�k��� � C��T �r�k���

�k�� � ks�k���k��
�k � �k����k
p�k��� � s�k��� � �kp

�k�
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This approach is generally called the Preconditioned CGNR method� A variation of
CGNR is the LSQR method of Paige and Saunders ����� When the problem is properly
scaled� these two methods are mathematically equivalent� e�g�� ����
In this paper we consider the least squares problem ��� where the data matrix is a

rectangular matrix with square n�by�n Toeplitz blocks� Such matrices are said to have a
Toeplitz�block �TB structure� It is well�known that a matrix with a block�Toeplitz �BT
structure � i�e�� the blocks form a Toeplitz pattern can always be permuted into a matrix
that is Toeplitz�block� Thus we will concentrate on the TB form�
Toeplitz�block least squares problems occur in a variety of ��D applications� especially in

signal and image processing� cf�� Andrews and Hunt ���� Jain ���� and Oppenheim and Schafer
����� and sometimes in computerized geophysical tomography� cf�� Nolet ��	� and van der Sluis
and van der Vorst ����� A comparison of the non�preconditioned CGNR algorithm with ART
�Algebraic Reconstruction Techniques for seismic tomography applications� where T is not
necessarily Toeplitz� has been given by van der Sluis and van der Vorst �
��� They show that
the conjugate gradient method CGNR performs much better than ART for these seismic
applications� The general problems we are considering have the following characteristics�

� they are very large�

� they are structured�

� they may have singular values very close to ��

� the right�hand side is generally perturbed by noise�

A square matrix T � �tjk is said to be Toeplitz if tjk � tj�k� i�e�� T is constant along its
diagonals� An n�by�n matrix C is said to be circulant if it is Toeplitz and its diagonals cj
satisfy cn�j � c�j for � � j � n� �� Recently� we have shown how to precondition Toeplitz
least squares computations using square circulant matrices C� and have applied the methods
to solving ��D deconvolution problems� These methods are based upon application of the
Fast Fourier Transform� FFT� in �nding the eigenvalues of C and in performing the CGNR
iterations ���� By applying the FFT� all matrix�vector multiplications involving T and T �

and solutions to linear systems involving C and C� can be performed in at most O�m logn
operations� where T is m�by�n ����
The idea of using the preconditioned conjugate gradient method with circulant precon�

ditioners for solving square positive de�nite Toeplitz systems was �rst proposed by Strang
����� The application of circulant approximations to Toeplitz matrices has been used for
some time in image processing� e�g�� �	�� but not as preconditioners for conjugate gradient
iterations�
In this paper we consider the T� Chan ��� circulant approximation for a square Toeplitz

matrix� The circulant approximation is optimal with respect to the Frobenius norm� The
T� Chan preconditioner is de�ned for arbitrary square matrices A� and is constructed by
averaging the entries along certain pairs of diagonals of A� In particular� for a given generic
n�by�n matrix A� let C be the n�by�n circulant approximation of A as de�ned in T� Chan






���� i�e�� C is the minimizer of F �X � jjA � XjjF over all circulant matrices X� For the
special case where A � T � where T is Toeplitz� we note that the �j� 	th entry of C is given
by the diagonal cj�� where

ck �

�
�n� ktk � ktk�n

n
� � k � n�

cn�k � � �k � n�
�


Throughout this paper we will use the T� Chan approximations exclusively as a basic tool
to construct our preconditioners for Toeplitz�block least squares problems� Other circulant
preconditioners can perhaps be used in our work� by appropriately modifying the convergence
analysis material in x
� We emphasize that the T� Chan circulant preconditioner can also
be de�ned even when T is not Toeplitz� see ����
Recently� the use of circulant preconditioners was considered for Toeplitz least squares

problems by Nagy ���� and Nagy and Plemmons ��
�� In R� Chan� Nagy and Plemmons��� we
establish formal convergence results and provide applications when T has a ���D TB form��
More precisely� we consider kn�by�n matrices T of the form

T �

�
����
T�
T�
���
Tk

�
���� � �	

where each square block Tj is a Toeplitz matrix� Notice that by extending the Toeplitz
structure of the matrix T and padding the bottom rows with zeros� we may assume without
loss of generality that T is m�by�n with m � kn for some positive integer k� This padding
is only for convenience in constructing the preconditioner and does not alter the original
least squares problem� If T itself is a rectangular Toeplitz matrix� then each block Tj is
necessarily Toeplitz� For each block Tj� we construct a circulant approximation Cj� Then
our preconditioner is de�ned as a square circulant matrix C� such that

C�C �
kX

j��

C�
jCj�

Since each Cj is an n�by�n circulant matrix� it can be diagonalized by the Fourier matrix F �
i�e�

Cj � F ��jF

where �j is diagonal� see Davis ����� In particular� �j� � F
cj� where � is the vector of all
ones and 
cj is the �rst column of Cj�
Therefore the spectrum of Cj� j � �� � � �k� can be computed in O�n logn operations by

using the Fast Fourier Transform �FFT� Since

C�C � F �
kX

j��

���j�jF�

	



C�C is also circulant and its spectrum can be computed in O�kn logn operations� where T
is kn�by�n� Here we choose� as in ���� �
�� C to be the symmetric positive de�nite matrix
de�ned by

C � F ��
kX

j��

��j�j
�
�F� ��

Notice that to use the preconditioner C in Algorithm � we need only know its eigenvalues�
That is� we simply use the right�hand side of �� to solve linear systems involving C and C��
The construction is summarized in the following algorithm�

Algorithm �� Construction of the preconditioner for ��D problems� Let T be given
in �	� and let F denote the n�by�n discrete Fourier matrix� This algorithm computes
the eigenvalues of C given in �� and stores them in the diagonal matrix ��

Find the �rst column� 
cj� of Cj using �
� j � �� � � � � k�

Find �j from �j� � F
cj� using the FFT� j � �� � � � � k�

� � �
Pk

j���
�
j�j

�
� �

We show in ��� that the cost per iteration in the preconditioned conjugate gradient method
based on the use of � and F is of the order O�m logn where m � kn� As already mentioned
in the beginning� the convergence rate of the method depends on the distribution of the
singular values of the matrix TC��� which are the same as the square roots of the eigenvalues
of the matrix �C�C���T �T �We also show in ��� that if the generating functions of the blocks
Tj are ���periodic continuous functions and if one of these functions has no zeros� then the
singular values of the preconditioned matrix TC�� are clustered around �� It turns out that
the class of ���periodic continuous functions contains the Wiener class of functions� which
in turn contains the class of rational functions considered in Ku and Kuo �����
By using a standard error analysis of the conjugate gradient method� we then show in ���

that if the condition number ��T  of T is of O�n�� then the number of iterations required
for convergence is at most O�� logn � � where �  �� Since the number of operations
per iteration in the conjugate gradient method is of O�m logn� the total complexity of the
algorithm is therefore of O��m log� n�m log n� In the case when � � �� i�e�� if one block of
T is well�conditioned� the method converges in O�� steps� Hence the complexity is reduced
to just O�m logn operations for solving these Toeplitz least squares problems� In ��� we
also report on numerical experiments and applications of the method to ��D deconvolution
computations in signal restoration�
The outline of this paper is as follows� In x�� we de�ne the Toeplitz�block least squares

problem and suggest two preconditioners which are based on using either the ��D or the
��D FFT in the computations� Our preconditioners are related to those suggested by T�
Chan and J� Olkin ���� for the square nonsingular TB case� In x
� we provide a detailed
convergence analysis for the resulting preconditioned iterations under mild assumptions on
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the generating functions for the Toeplitz blocks� In x	� we discuss an application of our
methods in the area of ��D deconvolution computations arising in image restoration� Such
problems generally lead to very ill�conditioned least squares computations� due to the ill�
posed nature of associated inverse problems� In x�� we discuss the technique of regularization
when the given rectangular Toeplitz�block matrix is ill�conditioned� Numerical results and
some concluding remarks on future work are given in x��

� Construction of the ��D Preconditioners

We now derive two preconditioners for Toeplitz�block� i�e�� ��D� least squares problems� The
�rst is called the Level�� preconditioner� since it is based in part on circulant approximations
only at the Toeplitz�block level� The second� Level��� preconditioner is based on circulant
approximations at the Toeplitz�block level and again at a second� block�Toeplitz level � Each
preconditioner reduces to the one described in Algorithm � for the special case of ��D Toeplitz
least squares problems�
Let T be the kmn�by�mn matrix of the form

T �

�
����
T ���

T ���

���
T �k�

�
���� � ��

where each block T �i�� i � �� � � � � k� is a Toeplitz�block matrix� More precisely� T �i� can be
partitioned as

T �i� �

�
����

T
�i�
��� T

�i�
��� � � � T

�i�
��m

T
�i�
��� T

�i�
��� � � � T

�i�
��m

���
� � � � � �

���

T
�i�
m�� T

�i�
m�� � � � T

�i�
m�m

�
���� � i � �� � � � � k ��

where each T
�i�
���� � � �� � � m� is an n�by�n Toeplitz matrix� In particular� the ��� �th

entry of T
�i�
��� depends only on � � �� i�e�

�T
�i�
������� � �T

�i�
�������� � � �� � � m� � � �� � � n�

We denote T �i� given in �� as a TB��� m� n matrix and T given in �� as a general TB
�k�m� n matrix� If� moreover� T �i� is also a block�Toeplitz �BT matrix� i�e�

T
�i�
��� � T

�i�
���� � � �� � � m�

then we call T �i� in �� a block�Toeplitz matrix with Toeplitz�blocks� and denote it as a
BTTB��� m� n matrix� If each block T �i� in �� is BTTB��� m� n� then T in �� is BTTB

�



�k�m� n� Such a matrix has a column of k blocks T �i�� each of which is a block�Toeplitz ma�
trix with m blocks in each direction� and where each individual block is an n�by�n Toeplitz
matrix� In particular� n�by�n Toeplitz matrices are denoted by BTTB��� �� n and the
Toeplitz least squares matrix in �	 associated with ��D problems is BTTB�k� �� n� Similar
notation will be used for circulant�block and block�circulant matrices�
We �rst describe a preconditioner� to be called the Level�� preconditioner� which is

based upon an application of the ��D FFT and the computation of a resulting approximate
Cholesky factor of T �T � We will show how to construct an mn�by�mn preconditioning
matrix R � �Im � Fn

� �R�Im � Fn for Algorithm �� where �R is block upper triangular with
diagonal blocks� and Fn denotes the Fourier transform matrix of dimension n� Here� �
denotes the usual Kronecker product� It turns out that the actual preconditioner R is block
upper triangular with circulant blocks� Thus applying the preconditioner R in Algorithm �
involves application of the ��D FFT together with backsolves involving �R�
For an n�by�n Toeplitz block T

�i�
��� of T

�i�� we let c�T
�i�
��� denote the T� Chan ��� circulant

preconditioner of T���� as de�ned in �
� Using this notation and the Fourier transform
represented by the matrix Fn� we construct a �rst�level circulant block approximation c��T

�i�
to T �i� given by

c��T
�i� � �c�T

�i�
��� �

�
����

c�T
�i�
�  c�T

�i�
�� � � � c�T

�i�
��m

c�T
�i�
�  c�T

�i�
�  � � � c�T

�i�
��m

���
���

� � �
���

c�T
�i�
m�� c�T

�i�
m�� � � � c�T

�i�
� 

�
���� � ��

Notice that we can express c��T
�i� as

c��T
�i� � �Im � Fn

���i��Im � Fn� i � �� � � � � k�

where the subscripts on the matrices indicate the dimensions and � indicates the Kronecker
product� �We will drop the subscripts on these matrices in cases where their dimensions are
apparent� Here ��i� is the block matrix whose ��� � block entry is given by the diagonal
matrix

�
�i�
��� � Fc�T

�i�
���F

��

Then the preconditioner R that we seek satis�es

R�R � c��T
����c��T

��� � � � �� c��T
�k��c��T

�k� � �I � F �B�I � F �

where

B � �B��� �
kX
i��

���i����i��

Here� each B��� is a diagonal matrix� Observe that the matrix B is symmetric positive
de�nite�

�



Let �
v���� � � � � 
v�m��T be an mn�vector� where 
v�i� � �v
�i�
� � � � � � v

�i�
n �T � De�ne a permutation

matrix P by
P �
v���� � � � � 
v�m��T � �v

���
� � � � � � v

�m�
� � � � � � v���n � � � � � v�m�

n �T �

That is� P groups together all the �rst elements of each block vector� followed by all second
elements� etc� Then it is easy to see that P satis�es

P TBP � diag�B�� � � � � Bn�

where each Bi is an m�by�m symmetric positive de�nite matrix� Thus we can factor

P TBP � �RT �R�

where �R is the Cholesky factor of P TBP � which can be obtained by block factorization of
the m�by�m symmetric positive de�nite blocks Bi� Then we de�ne the Level�� preconditioner
R by

R � �I � F �P �RP T �I � F � ��

Notice that �R � P �RP T is block upper triangular with diagonal blocks� and hence R is
block upper triangular with circulant blocks� We also note that when T �i� is block�Toeplitz
with Toeplitz blocks� BTTB��� m� n� then each Bi is Toeplitz� Thus a fast Toeplitz algo�
rithm ��	� can be used to construct �R� The permutation matrix P in �� is for notational
convenience only� and no permutations need to be used in the actual implementation� The
Level�� preconditioner is thus formed by using the ��D Fourier transform and the Cholesky
algorithm� It is essentially a transform based approximate Cholesky factor of T �T �
The construction of our Level�� preconditioner for the TB�k�m� n matrix T is summa�

rized in the following algorithm�

Algorithm �� Construction of the Level�� preconditioner for ��D problems� Let T
be the TB�k�m� n	 matrix given as in �� with the T �i� given as in ��� let F denote
the n�by�n discrete Fourier matrix� � denote the vector of all ones� and let e� denote
the �rst unit vector� This algorithm computes the Level�� preconditioner R for T as
an approximate factor of T �T �

Find the �rst column� c�T
�i�
���e�� of c�T

�i�
��� using �
� for all �� � and i � �� � � � � k�

Find �
�i�
��� from �

�i�
���� � Fc�T

�i�
���e�� using the FFT� for all �� � and i � �� � � � � k�

Set ��i� � ��
�i�
��� and form B �

Pk
i����

�i����i��

Factor B � �R� �R� �R block upper triangular with diagonal blocks�

Set R � �I � F � �R�I � F �

In the following table� we write down the cost in the di�erent stages of forming the Level��
preconditioner R� for the cases where T is either block�Toeplitz �BT or block�Toeplitz with

�



Toeplitz blocks �BTTB� Of course R is kept in the factored form R � �I � F � �R�I � F �
Recall that T is kmn�by�mn�

Computations Order of Operations
�for i � �� � � � � k TB BTTB

c�T
�i�
���e� km�n kmn

��i� km�n logn kmn logn
B km�n km�n
�R m�n nm log�m

Table �� Order of operations for constructing the preconditioner R in Algorithm 
�

Observe that for any vector y� R��y can be computed by the formula R��y � �I � F �z�
using the FFT� where z � �R���I � F y can be computed using the FFT and block back
substitution with diagonal blocks� The computation of R��y is parallelizable and involves
O�mn� operations�
For the second� Level��� preconditioner� each matrix T �i� is approximated by the second�

level circulant preconditioner c��T
�i� related to the one proposed by T� Chan and Olkin ����

for square Toeplitz�block matrices� Then we stack the c��T
�i� together to get our circulant

approximation to T �

c��T  �

�
����
c��T

���
c��T

���
���

c��T
�k�

�
���� �

Since the matrix c��T  is of the type CB�k�m� n and is not square� it cannot be used as a
preconditioner in Algorithm � applied to the block Toeplitz least squares problem�
We now construct a square matrix C� the Level�� preconditioner� of size mn�by�mn such

that

C�C � c��T 
�c��T  �

kX
i��

c��T
�i��c��T

�i�� ���

From Chan and Jin ��� Theorem 
�� it follows that the matrix c��T
�i� we seek satis�es

c��T
�i� � �Fm � Fn

����Fm � FnT
�i��Fm � Fn

���Fm � Fn i � �� � � � � k� ���

where ��A� denotes the diagonal matrix whose diagonal is equal to the diagonal of the matrix
A� and F� denotes the Fourier matrix of size 	� �Again� we will drop the subscript for F� in
the following discussion�
Clearly� the matrix ���F � F T �i��F � F �� gives the eigenvalues of c��T

�i�� Adopting
the procedure used to construct our previous preconditioners� it follows from ��� that we
can de�ne the Level�
 preconditioner C to be

C � �F � F ���F � F � ���

�



where

� �

�
kX
i��

���F � F T �i��F � F ������F � F T �i��F � F ��

����

��


is a square diagonal matrix�
We next introduce an e�cient way of generating the diagonal matrix

���F � F T �i��F � F ���

For any T �i�� let c��T
�i� be the �rst�level circulant approximation to T �i� given by ��� where

c�T
�i�
��� is the T� Chan circulant preconditioner for T

�i�
���� see �
� In this notation� the �th

entry of the �rst column of c�T
�i�
��� is given by

�c�T
�i�
������� �

�

n

X
	�
���modn�

�T
�i�
����	�
 � � � � n� �� ��	

Now we apply another �rst�level circulant approximation �c� to c��T
�i� to get the second�

level circulant approximation c��T
�i� that we want� The matrix �c�fc��T

�i�g is obtained by

treating each block c�T
�i�
��� in c��T

�i� as an entry of a matrix and then applying formula �

to this �point� matrix� More precisely� we form the block�circulant matrix

�c�fc��T
�i�g �

�
����

�C
�i�
�

�C
�i�
�� � � � �C

�i�
�m��

�C
�i�
�

�C
�i�
� � � � �C

�i�
�m��

���
���

� � �
���

�C
�i�
m��

�C
�i�
m�� � � � �C

�i�
�

�
����

where in the notation ��	�

�C�i�
� �

�

m

X
������modm�

c�T
�i�
���� � � � � m� �� ���

Since each c�T �i�
��� is circulant� we see that the sums

�C�i�
� are circulant matrices� Moreover�

by their de�nition in ���� we see that

�C�i�
� � �C

�i�
��m� � � � � m�

In particular� we see that �c�fc��T
�i�g is then a block�circulant matrix with circulant blocks

of the form BCCB��� m� n� We note further that

c��T
�i� � �c�fc��T

�i�g�

see Chan and Jin ��� Theorem 
�� Thus the entries of c��T
�i� are given by formulas ��	 and

���� For our purposes� we need only �nd the �rst column of c��T
�i��

��



By ���� we see that the eigenvalues of c��T
�i� are given by the vector

���F � F T �i��F � F ��� � �F � F c��T
�i��F � F ���

Since �F � F �� � e�� we see that

���F � F T �i��F � F ��� � �F � F c��T
�i�e��

Thus the eigenvalues of c��T
�i� can be obtained by taking the ��D FFT of the �rst column

of c��T
�i�� which is given by ��	 and ���� Once we have the eigenvalues of each c��T

�i��
then � can be computed easily by ��
�
The construction of our Level�� BCCB preconditioner �i�e�� the eigenvalues of C for the

matrix T is summarized in the following algorithm�

Algorithm 	� Construction of the Level�� preconditioner for ��D problems� Let T be
the TB�k�m� n	 matrix given as in �� with the T �i� given as in �� and let F denote
the n�by�n discrete Fourier matrix� This algorithm computes the eigenvalues of the
BCCB preconditioner C given in ���� using the 
�D FFT� and stores them in the
diagonal matrix ��

Find the �rst column� 
c
�i�
� � of c��T

�i� using ��	� i � �� � � � � k�

Find the �rst column� 
c
�i�
� � of c��T

�i� using ���� i � �� � � � � k�

Find �i from �i� � �F � F 
c
�i�
� � using the 
�D FFT� i � �� � � � � k�

� � �
Pk

i�� �
�
i�i

�
� �

In the following table� we write down the cost in the di�erent stages of forming the
Level�� BCCB preconditioner C� for the cases where T is either block�Toeplitz �BT or
block�Toeplitz with Toeplitz blocks �BTTB� For implementation in Algorithm �� we need
only the eigenvalues of C together with the ��D FFT� Recall that T is kmn�by�mn�

Computations Order of Operations
�for i � �� � � � � k TB BTTB


c
�i�
� km�n kmn


c
�i�
� km�n kmn
�i kmn�logn � logm kmn�logn � logm
� kmn kmn

Table �� Order of operations for constructing the eigenvalues of C in Algorithm 	�

We note that for any vector y� by ���� C��y can be computed by the formula

C��y � �F � F �����F � F y

in O�kmn�logn � logm operations by using the ��D FFT�

��



� Convergence Analysis

In this section� we analyze the convergence rates of the methods in the case where all the
blocks T �i� in the matrix T are BTTB� For simplicity� we write

T �i� �

�
��������

T
�i�
� T

�i�
�� � � � T

�i�
��m T

�i�
��m

T
�i�
� T

�i�
�

� � � T
�i�
��m

���
� � � � � � � � �

���

T
�i�
m��

� � � � � � T
�i�
��

T
�i�
m�� T

�i�
m�� � � � T

�i�
� T

�i�
�

�
��������
� i � �� � � � � k�

where each T
�i�
	 � j�j � m� is a Toeplitz matrix by itself� We denote the entries of T

�i�
	 by

�T �i�
	 ���� � t

�i�
	����� � � �� � � n�

We assume that the double�index sequence formed by t
�i�
	�
 is absolutely summable for

each i� i�e�
�X

	���

�X

���

jt�i�	�
j � Ki �� i � �� � � � � k� ���

Thus we immediately have

jjT �i�jj�� � jjT �i�jj�jjT
�i�jj� � K�

i i � �� � � � � k� ���

We will analyze both the Level�� and Level�� preconditioners in the following sections� How�
ever� since the proof for the Level�� preconditioners basically covers most of that for the
Level�� preconditioners� we begin with the Level�� preconditioners �rst� The results for
Level�� preconditioners will come as corollaries�

��� Level�� Preconditioners

The following Lemma is proved in Chan and Jin ��� Theorem 	� for the case where T �i� is real
symmetric BTTB� Its generalization to general complex BTTB matrices is straightforward
and therefore we omit its proof here�

Lemma � Let T �i� satisfy ���� Then for all �  �� there exists Ni  �� such that for all
n  Ni and m  ��

T �i� � c��T
�i� � U

�i�
� � V

�i�
�

where
rank U

�i�
� � O�m

and
jjV

�i�
� jj� � ��

��



Thus T �i� and c��T
�i� are close� apart from a rank O�m perturbation� Next we will

show that c��T
�i� and c��T

�i� are also close� We use this fact for the purpose of analyzing
the convergence rate for the Level�� preconditioner�

Lemma � Let T �i� satisfy ���� Then for all �  �� there exists Mi  �� such that for all
m  Mi and n  ��

c��T
�i�� c��T

�i� � U
�i�
� � V

�i�
�

where
rank U

�i�
� � O�n

and
jjV

�i�
� jj� � ��

Proof
 We �rst recall that the �rst�level circulant preconditioner to T �i� is given by

c��T
�i� �

�
����

c�T
�i�
�  c�T

�i�
�� � � � c�T

�i�
��m

c�T
�i�
�  c�T

�i�
�  � � � c�T

�i�
��m

���
���

� � �
���

c�T
�i�
m�� c�T

�i�
m�� � � � c�T

�i�
� 

�
���� �

and that each block c�T
�i�
	  can be diagonalized by the Fourier matrix F � Thus

�I � F c��T
�i��I � F � �

�
����
�
�i�
� �

�i�
�� � � � �

�i�
��m

�
�i�
� �

�i�
� � � � �

�i�
��m

���
���

� � �
���

��i�
m�� ��i�

m�� � � � ��i�
�

�
���� � ���

where �
�i�
	 are diagonal matrices with their �th diagonal entries given by

���i�
	 ���� �

�

n

n��X

���n���

�n� j�jt�i�	�
e
���i
��n� � � � � n� ���

see for instance Chan and Yeung ���� Clearly� we have

j���i�
	 ����j �

n��X

���n���

jt�i�	�
 j� � � � � n� ���

Next we recall that c��T
�i� � �c��c��T

�i�� is a BCCB matrix and hence it is easy to show
that �cf� Chan and Jin ��� Lemma 	�

�I � F c��T
�i��I � F � � �I � F �c��c��T

�i���I � F �

� �c���I � F c��T
�i��I � F ���

�




By applying formula ��� to the matrix in ���� we get

�c���I � F c��T
�i��I � F ��

�

�
����

�
�i�
�

m��
m
�
�i�
�� �

�
m
�
�i�
m�� � � � �

m
�
�i�
��m �

m��
m
�
�i�
�

m��
m
�
�i�
� � �

m
�
�i�
��m �

�i�
� � � � �

m
�
�i�
��m �

m��
m
�
�i�
�

���
���

� � �
���

m��
m
�
�i�
�� �

�
m
�
�i�
m��

m��
m
�
�i�
�� �

�
m
�
�i�
m�� � � � �

�i�
�

�
���� �

Thus

�I � F c��T
�i��I � F � � �I � F c��T

�i��I � F �

� �I � F c��T
�i��I � F � � �c���I � F c��T

�i��I � F ��

�
�

m

�
��������

� �
�i�
�� � �

�i�
m�� � � � �

�i�
��m � �

�i�
� �

�i�
��m � �

�i�
�

�
�i�
� � �

�i�
��m �

� � � �
�i�
��m � �

�i�
�

���
� � � � � � � � �

���

�
�i�
�� � �

�i�
m��

� � �
� � � �

�i�
�� � �

�i�
m��

�
�i�
�� � �

�i�
m�� �

�i�
�� � �

�i�
m�� � � � �

�i�
� � �

�i�
��m �

�
��������
�

For all �  �� since the sequence ft
�i�
	�
g is absolutely summable� there exist �Mi  � and

Mi  � �Mi such that X
	Mi�j	j

X
j
j��

jt�i�	�
j � � ���

and
�

Mi

X
j	j� 	Mi

j�j
X
j
j��

jt�i�	�
j � �� ���

With this given Mi� we write

�I � F c��T
�i��I � F � � �I � F c��T

�i��I � F � � U
�i�
� � V

�i�
� �

where U
�i�
� is obtained by retaining the last nMi rows and columns of the matrix

�I � F c��T
�i��I � F � � �I � F c��T

�i��I � F � ��


and setting all other entries to zeros� Thus V
�i�
� contains the �n�m �Mi��by��n�m �Mi�

principal submatrix of ��
 with the other entries being zeros�

Clearly� rankU
�i�
� � nMi � O�n� It remains to show that jjV

�i�
� jj� � �� Since the principal

submatrix of V
�i�
� is still a block�Toeplitz matrix� it is easy to check that

jjV
�i�
� jj� �

X
j	j�Mi

j�j

m
jj��i�

	 jj� �
X

Mi�j	j�m

m� j�j

m
jj��i�

	 jj��

�	



By using ���� ��� and ���� we therefore have

jjV �i�
� jj� �

X
j	j�Mi

j�j

m

X
j
j�n

jt�i�	�
j�
X

Mi�j	j�m

m� j�j

m

X
j
j�n

jt�i�	�
j � ���

for all m  Mi and n  ��
Similarly� we can show that jjV �i�

� jj� � ��� Therefore

jjV
�i�
� jj�� � jjV

�i�
� jj�jjV

�i�
� jj� � 	���

Combining Lemmas � and �� we immediately get

Corollary � Let T �i� satisfy ���� Then for all �  �� there exist Mi� Ni  �� such that for
all m  Mi and n  Ni�

T �i� � c��T
�i� � �U �i� � �V �i�

where
rank �U �i� � O�m �O�n

and
jj �V �i�jj� � ��

Using the Corollary� we are able to show that the singular values of T �i� and c��T
�i� are

close�

Theorem � Let T �i� satisfy ���� Then for all �  �� there exist Ni�Mi  �� such that for
all m  Mi and n  Ni�

T �i��T �i� � c��T
�i��c��T

�i� � U �i� � V �i�

where U �i� and V �i� are Hermitian matrices with

rank U �i� � O�m �O�n

and
jjV �i�jj� � ��

Proof
 By Corollary �� we have

T �i��T �i� � c��T
�i��c��T

�i�

� T �i���T �i� � c��T
�i� � �T �i� � c��T

�i��c��T
�i�

� T �i���T �i� � c��T
�i�� �T �i� � c��T

�i���T �i� � c��T
�i� � �T �i� � c��T

�i��T �i�

� T �i��� �U �i� � �V �i�� � �U �i� � �V �i��� �U �i� � �V �i� � � �U �i� � �V �i��T �i�

� U �i� � V �i��

��



Here

U �i� � T �i�� �U �i� � �U �i��T �i� � �U �i�� �U �i� � �U �i�� �V �i� � �V �i�� �U �i�

� �U �i���T �i� � �U �i� � �V �i� � �T �i� � �V �i�� �U �i�

and
V �i� � �V �i��T �i� � T �i�� �V �i� � �V �i�� �V �i��

It is clear that both U �i� and V �i� are Hermitian matrices� Moreover we have� by Corollary
� again� rank U �i� � O�m �O�n and

jjV �i�jj� � ��jjT
�i�jj� � ���

By ���� we then have
jjV �i�jj� � ��Ki � ���

Using the facts that for the Level�� preconditioner C�

T �T � C�C �
kX
i��

fT �i��T �i� � c��T
�i��c��T

�i�g

and that k is independent of m and n� we immediately have

Corollary � Let T �i� satisfy ��� for i � �� � � � � k� Then for all �  �� there exist M�N  ��
such that for all m  M and n  N �

T �T � C�C � U � V

where U and V are Hermitian matrices with

rank U � O�m �O�n ��	

and
jjV jj� � �� ���

Our next task is to show that C�C is uniformly invertible for large m and n� Again let
T �i� satisfy ���� De�ne

f �i��x� y �
�X

	���

�X

���

t�i�	�
e
�i	xe�i
y� 	x� y 
 ��� ���� ���

Notice that since ft
�i�
	�
g is absolutely summable� the function f �i��x� y is well�de�ned and

indeed continuous on ��� ���� and ���periodic in each direction�

��



Lemma � Let T �i� satisfy ���� De�ne the corresponding function f �i��x� y as in ���� If

min
x�y�
�����

jf �i��x� yj � �  �� ���

then for su�ciently large m and n� c��T
�i� is invertible with

jjc��T
�i���jj� � ����

Proof
 We �rst recall that �c���I � F c��T
�i��I � F �� is a block�circulant matrix� Hence it

can be block�diagonalized by �F � I� More precisely� we have

�F � F c��T
�i��F � F � � �F � I�c���I � F c��T

�i��I � F ���F � I�

�

�
����
 

�i�
� �

 �i�
�

� � �

�  
�i�
m��

�
���� �

where �cf ���

 
�i�
� �

�

m

m��X
	���m���

�m� j�je���i	��m��i�
	 � � � � � m�

Since  
�i�
� are diagonal matrices� the eigenvalues of �F � F c��T

�i��F � F � �and hence

of c��T
�i� are given by

����f�F � F c��T
�i��F � F �g

� � 
�i�
� ����

�
�

m

m��X
	���m���

�m� j�j���i�
	 ����e

���i	��m

�
�

m

�

n

m��X
	���m���

n��X

���n���

t�i�	�
e
���i	��me���i
��n�

Notice that the last expression can be written in terms of the Fej!er sum of f �i��x� y
evaluated at the point �����m� ����n� see Chan and Yeung ���� More precisely� we have

�����c��T
�i� � �m���n���f

�i��x� y��
���

m
�
���

n
� � � � � m� � � � � n�

where �m���n���f
�i���x� y denotes the �m� �� n� � Fej!er sum� �also called the �C� � sum�

evaluated at the point �x� y� see Zygmund �
�� p�
���� Since f �i��x� y is continuous on

��



��� ����� the Fej!er sum converges uniformly to f �i��x� y on ��� ����� see Zygmund �
�� p�
�	��
In particular� by ���

j�����c��T
�i�j � j�m���n���f

�i���x� yj � ���  �

for m and n su�ciently large� Since c��T
�i� can be diagonalized by the unitary matrix

�F � F � it is clear that

����fc��T
�i��c��T

�i�g � j�����c��T
�i�j� � �����  �

for m and n su�ciently large�

Corollary � Let T �i� satisfy ��� for i � �� � � � � k� De�ne the corresponding functions
f �i��x� y as in ���� If one of the f �i��x� y satis�es ���� then for su�ciently large m
and n� C�C is invertible with

jj�C�C��jj � K� ���

for some constant K independent of m and n�

Proof
 Let f ����x� y be the function that satis�es ���� Then by ��� and Lemma 
� we
have

jj�C�C��jj � jj�c��T
����c��T

������jj � jjc��T
�����jj� � ������

Now we are ready to prove the main Theorem for the Level�� preconditioner C�

Theorem � Let T �i� satisfy ��� for i � �� � � � � k� If one of the f �i��x� y as de�ned in ���
satis�es ���� then for all �  �� there exist M�N  �� such that for all m  M and n  N �
at most O�m �O�n eigenvalues of the matrix

�C�C���T �T � I

have absolute values larger than �� Thus at most O�m �O�n of the singular values of the
preconditioned matrix

TC��

lie outside the interval ��� �� � � ��

Proof
 By Corollary �� we have

�C�C���T �T � I � �C�C���T �T � C�C � �C�C���U � V �

Therefore the spectra of the matrices

�C�C���T �T � I and �C�C�����U � V �C�C����

��



are the same� However� by ��	� we have

rank
	
�C�C����U�C�C����



� O�m �O�n

and by ���� ��� and ���� we have

jj�C�C����V �C�C����jj� � jjV jj�jj�C
�C��jj� � K��

Thus by applying Cauchy"s interlace theorem �see Wilkinson �
�� to the Hermitianmatrix

�C�C����U�C�C���� � �C�C����V �C�C�����

we see that its eigenvalues are clustered around zero except for at most O�m�O�n outlying
ones�

Using standard error analysis of the conjugate gradient method� we see that the method
will converge in at most O�m �O�n steps for n and m su�ciently large�

��� Level�� Preconditioners

By substituting Lemma � for Corollary � in the proof of Theorem � and using the fact that

T �T � R�R �
kX
i��

fT �i��T �i� � c��T
�i��c��T

�i�g�

we get� instead of Corollary �� the following result�

Lemma 	 Let T �i� satisfy ��� for i � �� � � � � k� Then for all �  �� there exist M�N  ��
such that for all m  M and n  N �

T �T �R�R � U � V

where U and V are Hermitian matrices with rank U � O�m and jjV jj� � ��

However to get similar results as in Theorem � for the Level�� preconditioner� we need
to bound the smallest singular value of R away from zero as we did in ���� Unfortunately�
the conditions on f �i��x� y in Theorem � are not su�cient for getting such a bound� For a

counter�example� consider T with only one block T ��� where T
���
� � I� the identity matrix

and T
���
j � �� the zero matrix� for j �� �� with m  �� Then the smallest singular value of

R�R is zero whereas C�C is still well�conditioned� One remedy to this situation is to restrict
our class of matrices T �i� from general complex matrices to Hermitian matrices� Suppose
there exists an 	� � � 	 � k� such that f ����x� y is real�valued� Then clearly T ��� is Hermitian
and we can show that

f
���
min � �����T

��� � f ���
max� � � � � m� � � � � n�

��



where f
���
min and f

���
max denote the minimum and maximum values of f ���� see for instance Jin

����� We remark that this result is a ��dimensional generalization of a similar result found
in Grenander and Szeg#o ��	��
Using Theorem � in Chan and Jin ���� we then have

�����c��T
��� � f ���

min� � � � � m� � � � � n�

Thus if additionally f ��� is a positive function� i�e� f
���
min � �  �� then using arguments

similar to those used in Corollary 
� we have

jj�R�R��jj � K

for some constant K independent of m and n� Using this result instead of ��� in the proof
of Theorem �� we then have our main Theorem for the Level�� preconditioner�

Theorem � Let T �i� satisfy ��� for i � �� � � � � k� If one of the f �i��x� y as de�ned in ���
is a positive function� then for all �  �� there exist M�N  �� such that for all m  M and
n  N � at most O�m eigenvalues of the matrix

�R�R���T �T � I

have absolute values larger than �� Thus at most O�m of the singular values of the precon�
ditioned matrix TR�� lie outside the interval ��� �� � � ��

Using a standard error analysis of the conjugate gradient method� we see that the PCG
method� with the Level�� preconditioner� will converge in at most O�m steps for n and m
su�ciently large�

� Image Restoration Computations

In this section we consider possible applications of our methods to ill�conditioned inverse
problems arising in image restoration� Image restoration refers to the removal or minimiza�
tion of degradations �or blur in an image using a priori knowledge about the degradation
phenomena� It is important to recover the information in a blurred image� for example� �i
in remote sensing� details about the photographed terrain should be clari�ed� �ii in medical
imaging� the diagnosis is based on the clarity of the x�ray radiographs taken� and �iii in
space activities� images transmitted to earth by unmanned or manned spacecraft need to
be analyzed� When the quality of the recorded images is degraded by blurring and noise�
important information remains hidden and cannot be directly interpreted without numerical
processing�
Here we will apply our preconditioned Toeplitz iterative least squares schemes to im�

age restoration �deblurring computations� We remark that the presentation of the image
restoration problem given here is brief� The interested reader can �nd more thorough dis�
cussions on this topic in Andrews and Hunt ��� and Jain �����

��



We begin with a mathematical model of the image restoration problem� The image of an
object can be modeled as

g��� � � s

�Z �

��

Z �

��

h��� ���� �f��� �d�d�

�
� ���� �

where g��� � is the recorded �or degraded image� f��� � is the ideal �or original image�
the vector ���� � represents additive noise and sf�g represents the nonlinear characteristics
of the device which senses and records the image� The function h��� ���� � is called the
point spread function �PSF and represents the degradation of the image� Typically the
nonlinearity sf�g is either neglected� or linearized ���� resulting in a model given by

g��� � �

Z �

��

Z �

��

h��� ���� �f��� �d�d� � ���� �� ���

In the digital implementation of ���� the integral is discretized using some quadrature rule�
to obtain the discrete scalar model

g�i� j �
NX
k��

NX
l��

h�i� j� k� lf�k� l � ��i� j�

Writing this in matrix�vector notation� we obtain the linear algebraic form of the image
restoration problem�

g � Hf � �� �
�

where g� � and f are N�$vectors and H is an N�  N� matrix� This is the square image
formulation� Often the discretization is chosen so that g is much larger than f � In this case�
H is a rectangular M��by�N� matrix with M  N �
The image processing problem can be stated as follows� Given the observed image g� the

matrix H �which represents the degradation and� possibly� the statistics of the noise vector
�� compute an approximation to the original signal f �
Some remarks on the linear algebraic model �
� are needed� Firstly� notice that the

addition of the nonzero noise vector �� which is modeled as a random process� may imply
that there is no unique solution to �
�� Secondly� the matrix H is usually ill�conditioned
and� hence� extremely sensitive to noise ���� Thus one cannot consider the noise vector �
insigni�cant and simply solve Hf � g� As we will see in x�� one method to overcome this
ill�conditioning is to use a method of regularization� This has been shown �e�g�� �	� to be
an e�ective method for solving signal and image restoration problems�
Finally� observe that the sizes of the arrays in �
� can become quite large� For example�

in low resolution imagery� N � ���� Thus the matrixH is ��� �
���� �
�� In high resolution
imagery� N is typically on the order of ���� which implies the matrix H has dimensions on
the order of ���  ��� ���� The sizes of typical image restoration problems make the use
of iterative methods of solution almost essential �	�� These remarks indicate that if H has
no special structure then the signal restoration problem can be nontrivial and extremely

��



complicated to solve� But in many cases� fortunately� H has a TB or a BTTB structure�
allowing for more e�cient methods�
Writing the PSF as h��� ���� � provides the most general description of the imaging

system� This representation allows the PSF to vary with position in both the image and
object planes� In this case the PSF is said to be spatially variant� If we assume the PSF
is spatially variant� then the matrix H in �
� has no special structure� Thus computing a
solution to �
�� in this case� can be very expensive�
In many cases� though� the PSF acts uniformly across the image and object planes� That

is� the PSF is independent of position and� hence� becomes a function of only � � � and
� � �� In this case the PSF is said to be spatially invariant� and is written as

h��� ���� � � h�� � �� � � ��

Thus the image model ��� is written as

g��� � �

Z �

��

Z �

��

h�� � �� � � �f��� �d�d� � ���� �� �
�

where the integral in �
� is a �$dimensional convolution� The inverse problem of recovering
f is thus a ��D deconvolution problem� In the discrete implementation� �
� becomes

g � Hf � �

where the matrix T � H is now a block�Toeplitz matrix with Toeplitz blocks i�e�� BTTB� The
image restoration problem� with a spatially invariant PSF� can be reduced to solving an ill�
conditioned BTTB system using a regularization method to be discussed in x�� By applying
the preconditioned conjugate gradient algorithm with the Level�� or Level�� preconditioner
derived in x�� a solution to the space invariant signal restoration problem may be e�ciently
computed�

� Preconditioned Regularized Least Squares

In this section we consider solving least squares problems ��� where the rectangular matrix
T comes from an ill�posed inverse problem � such as ��D deconvolution� and is thus very ill�
conditioned� Such problems arise in many applications� such as signal and image restoration�
as discussed in x	� Often� the ill�conditioned nature of T results from discretization of ill�
posed problems in partial di�erential and integral equations ����� Here for example� the
problem of estimating an original image from a blurred and noisy observed image is an
important case of an inverse problem� and was �rst studied by Hadamard ���� in the inversion
of certain integral equations� Because of the ill�conditioning of T � naively solving Tx � b will
lead to extreme instability with respect to perturbations in b� The method of regularization
can be used to achieve stability for these problems ����
In classical Tikhonov regularization ����� stability is attained by introducing a stabilizing

operator �called a regularization operator which restricts the set of admissible solutions�

��



Since this causes the regularized solution to be biased� a scalar �called a regularization
parameter is introduced to control the degree of bias� More speci�cally� the regularized
solution is computed as

mink


b
�

�
�


T
�L

�
x��k�� �
�

where � is the regularization parameter and the pn matrix L is the regularization operator�
The standard least squares solution to ��� given by x � T yb� is useless for these problems

because it is dominated by rapid oscillations due to the errors� Hence in �
�� one adds a
term kLxk� in order to smooth the solution x� Choosing L as a kth di�erence operator
matrix forces the solution to have a small kth derivative� For example� the �nd di�erence
operator L has the banded rectangular Toeplitz form�

L �

�
������������

�
�� �
� �� �

� �� �
� � � � � � � � �

� �� �
� ��

�

�
������������
�

The regularization parameter � controls the degree of smoothness �i�e�� degree of bias
of the solution� and is usually small� Choosing � is not a trivial problem� In some cases
a priori information about the signal and the degree of perturbations in b can be used to
choose � ���� or generalized cross�validation techniques may be used� e�g�� ���� If no a priori
information is known� then it may be necessary to solve �
� for several values of � �����
Recent analytical methods for choosing an optimal parameter � are discussed by Reeves and
Mersereau ����� Other regularization schemes for ill�posed problems are discussed by Hanke
����� and by Hanke� Nagy and Plemmons �����
Based on the discussion above for Tikhonov regularization� the regularization operator

L is usually chosen to be the identity matrix or some discretization of a di�erential operator
�	� ���� In problems arising in ��D applications� the matrix T will have a block structure�
In this case the regularization operator L is often chosen to be the identity matrix� the
Laplacian� or a discretization of a ��D di�erentiation operator ���� Hence� if T has the
Toeplitz�block form �	� then the matrix

�T �


T
�L

�

retains this structure� with the addition of one block �or two blocks if L has more rows than
columns� Since �T has the block structure �	� we can form Level�� and Level�� precondi�
tioners for �T and use Algorithm � for least squares problems to solve �
�� Notice that if L

�




is chosen to be the identity matrix� then the Level�� preconditioner for �T can be constructed
by simply adding � to each of the eigenvalues of the preconditioner C for T �
In addition� the last block in �T �i�e�� �I has singular values �� Due to the remarks at

the end of x
� if each block in T has an appropriate generating function� and if � is not too
small� then ��T  � O��� It follows then� based on the analytical results for these problems
given is x
� that �
� may be solved e�ciently by our methods�

� Numerical Tests and Final Comments

In this section we report on some numerical experiments using both the Level�� and Level��
preconditioners in the conjugate gradient algorithm for solving Toeplitz least squares prob�
lems of the form ��� The good performance of our preconditioners is illustrated using test
generating sequences from ���� as well as an ill�conditioned problem arising in image restora�
tion simulations� All numerical examples were performed on the Cray Y�MP at the North
Carolina Supercomputing Center�

Example �
 In this example we consider matrices of the form

T �

�
���
T ���

T ���

T ���

T ��

�
��� �

where each T �i�� i � �� �� 
� 	� is a BTTB��� m� n matrix� The diagonals of the T �i� are given
by the generating sequences

�� t
�j�
k � �

�j����jkj����������j��� � j � �� k � �������� � � � �

�� t
�j�
k � �

�j�������jkj����������j��� � j � �� k � �������� � � � �

�
 t
�j�
k � �

�j��������jkj������
� j � �� k � �������� � � � �

�	 t
�j�
k � �

�j��������jkj������
� j � �� k � �������� � � � �

These generating functions come from Chan and Jin ���� They note that the sequences ��
and �	 are absolutely summable� while �� and �
 are not� The right hand side vector b
is chosen to be the vector of all ones and the zero vector is the initial guess� The stopping
criteria we use is ks�j�k��ks

���k� � ��
��� where s�j� is the �normal equations residual after j

iterations�
The convergence results for this example are given in Table 
� which shows the numbers of

iterations required for the PCG algorithm to converge using no preconditioner and our Level�
� and Level�� preconditioners� for several values of m and n� We can see from Table 
 that�
for this problem� our preconditioners accelerate the convergence rate of the PCG algorithm
quite signi�cantly� Moreover� as m and n increase� the number of iterations for the Level��

�	



preconditioner remains essentially constant� while the number of iterations increases very
slowly for the Level�� preconditioner� But if no preconditioner is used� then the number of
iterations increases dramatically with m and n�

m � n kmn mn no prec� Level�� Level��

� ��� �	 �	 � ��
�� ���	 ��� �� � �


� 	��� ���	 ��� � ��
�	 ��
�	 	���  ��� � ��

Table �� Number of iterations for Example ��

In Tables 	� � and � we show the cpu timings on the Cray Y�MP using four processors�
for the PCG method with no preconditioner� the Level�� preconditioner and the Level�� pre�
conditioner� respectively� The timings per iteration were done by taking an average over �
iterations� We remark that the code for performing the preconditioned linear system solves�
for both the Level�� and Level�� preconditioners� may not be optimal� Thus� it may not be
fair to compare the timings for the Level�� and Level�� preconditioned systems with each
other� But these tables do show� for this problem� that we gain excellent timing speed�ups
using our preconditioners� Finally� in Table � we summarize the numerical results for Exam�
ple �� and in Figure � we plot the convergence history of the PCG using no preconditioner
and both the Level�� and Level�� preconditioners for the case 	��� ���	 size problem�

kmnmn initial� time time%iter� total time

��� �	 
�	� ���� ���� ���� ���� ���
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��
 ���� 
��� ���

	��� ���	 ���� ��� ���� ��� 	��� ���

��
�	 	��� ���	 ��� ��
� ��� �

Table 	� CPU timings �in seconds for Example �� using no preconditioner�
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Table �� CPU timings �in seconds for Example �� using the Level�� preconditioner�
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Table �� CPU timings �in seconds for Example �� using the Level�� preconditioner�

no prec� Level�� Level��
kmnmn its� time its� time its� time

��� �	 �	 ���� ��� � ���� ���� �� ���
 ����
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 ���
 ���
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�
� ���
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�	 	���  ��� � � ��
� ��� �� ���� ���

Table � Summary of numerical results for example ��
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Figure �
 Convergence history for the 	��� ���	 problem in Example ��

Example �
 In this example we apply our PCG methods to a simulated image restoration
problem with a spatially invariant point spread function� Recall that� in this case� the image
restoration problem can be modeled as the discrete problem

g � Hf � ��

where H is a BTTB matrix� f represents the true image� g represents the blurred� noisy
image� and � represents the noise�

��



The ��D simulation provided in this example is constructed as follows� First� we generate
the known �	 �	 image shown in Figure �� and consider the spatially invariant discretized
PSF matrix H de�ned by

hi�j�k�l �

�
expf������i� j� � �k � l�g �� � i� j� k � l � ��
� otherwise

� �



In the image processing community this is known as a Gaussian PSF� and can be used to
model aberrations in a lens with �nite aperture ��� ���� The matrix H for this example is
	��� 	����
We construct the observed image by forming the vector g � Hf � �� where H is the

	���  	��� BTTB matrix de�ned by equation �

� f is a vector formed by row ordering
�see ���� the original image in Figure �� and � is a vector with random entries chosen from
a normal distribution with a mean of ��� and a variance of ���� The condition number of
H in this example is O����� The noise vector � is scaled so that the noise to signal ratio�
k�k��kHfk�� was ��

��� By unstacking the vector g �again using row ordering� we obtain
the blurred noisy image� shown also in Figure ��
Our goal is� given g and H� to recover an approximation to the original image f � Because

of the ill�conditioning of H� we use the method of Tikhonov regularization described in x� to
stabilize the problem and to obtain a reasonable solution� Here we use the identity matrix
as the regularization operator� and � � ��� as the regularization parameter� The parameter
� was chosen based on several runs�
To test the e�ectiveness of our methods� we used the PCG method with our precondi�

tioners� and with no preconditioner� and used the relative normal equations residual norm
of ���� as a stopping tolerance� The results for this simulated image restoration problem
are summarized in Table �� and Figures 
$��

no prec� Level�� Level��

iterations ��� 
� 	�
CPU time �sec� ������ ��	��� ������

Table �� Convergence results for the simulated image restoration in Example ��

From these experiments� we notice that the restorations after just a few iterations of the
preconditioned computations are fairly good� except for some edge artifacts� In contrast�
the restoration obtained when no preconditioner is used are not very good until several
iterations are completed� It is also interesting to note that after just a few iterations� the
restorations obtained from the Level�� preconditioned system are very good� except for some
edge artifacts which appear only in one direction �i�e�� on two edges� Moreover� the Level�
� preconditioned system also produces good restorations after only a few iterations� but
with edge artifacts in two directions �i�e�� on all four edges� This is due to the fact that
the Level�� preconditioner approximates T at one level or one direction only� whereas the
Level�� preconditioner approximates T at two levels or both directions� see Chan and Jin ����

��



It should be pointed out that only preliminary experiments with applying the precondi�
tioners have been reported in this paper� The results thus far look promising� and we intend
to test our methods on actual image restoration problem in the next phase of our work�
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Figure �a
 Original simulated image�

Figure �b
 Blurred� noisy image�

Figure �
 Restoration after � iterations with Level�� preconditioner and no regularization�
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Figure 	a
 Restoration after � iterations using no preconditioner�

Figure 	b
 Restoration after � iterations using the Level�� preconditioner�

Figure 	c
 Restoration after � iterations using the Level�� preconditioner�
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Figure �a
 Restoration using no preconditioner ���� iterations�

Figure �b
 Restoration using the Level�� preconditioner �
� iterations�

Figure �c
 Restoration using the Level�� preconditioner �	� iterations�


�



References

��� J� Abbiss and P� Earwicker� Compact operator equations� regularization and super�
resolution� in Mathematics in Signal Processing� Clarendon Press� Oxford� �����

��� H� Andrews and B� Hunt� Digital Image Restoration� Prentice�Hall� Englewood Cli�s�
NJ� �����

�
� O� Axelsson and G� Lindskog� On the rate of convergence of the preconditioned conjugate
gradient algorithm� Numer� Math� V	� ������ pp� 	��$��
�

�	� J� Biedmond� R� Lagendijk and R� Mesereau� Iterative methods for image deblurring�
Proc� of the IEEE� V�� ������ pp� ���$��
�

��� A� Bj#orck� Least squares methods� in Handbook of Numerical Methods� ed� P� Ciarlet
and J� Lions� Elsevier%North Holland Vol� �� �����

��� R� Chan� X� Jin� A family of block preconditioners for block systems� SIAM J� Sci�
Statist� Comput�� to appear�

��� R� Chan and M� Yeung� Circulant preconditioners constructed from kernels� SIAM J�
Numer� Anal�� to appear�

��� R� Chan� J� Nagy and R� Plemmons� Circulant preconditioned Toeplitz least squares
iterations� preprint� ������

��� T� Chan� An optimal circulant preconditioner for Toeplitz systems� SIAM J� Sci� Statist�
Comput�� V� ������ pp� ���$����

���� T� Chan and J� Olkin� Circulant preconditioners for Toeplitz�block matrices� Numerical
Algorithms� to appear�

���� P� Davis� Circulant Matrices� John Wiley & Sons� Inc�� New York� �����

���� L� Eld!en� An algorithm for the regularization of ill�conditioned� banded least squares
problems� SIAM J� Sci� Statist� Computing� V� ����	� pp� �
����	�

��
� G� Golub and C� van Loan� Matrix Computations� The Johns Hopkins University Press�
Baltimore� MD� �nd Edition� �����

��	� U� Grenander and G� Szeg#o� Toeplitz Forms and Their Applications� �nd Ed�� Chelsea
Pub� Co�� New York� ���	�

���� C� Groetsch� The Theory of Tikhonov Regularization for Fredholm Equations of the
First Kind � Pittman Publishing� Boston� ���	�

���� J� Hadamard� Lectures on the Cauchy Problem in Linear Partial Di�erential Equations�
Yale University Press� New Haven� CT� ���
�


�



���� M� Hanke� Accelerated Landweber iterations for the solution of ill�posed problems� Nu�
merische Math�� V�� ������ pp� 
	�$
�
�

���� M� Hanke� J� Nagy and R� Plemmons Preconditioned iterative regularization methods�
preprint ������

���� A� K� Jain� Fundamentals of Digital Image Processing� Prentice�Hall� Engelwood Cli�s�
NJ �����

���� X� Jin� Circulant Preconditioners for Second Order Partial Di�erential Equations� Ph�D�
thesis� University of Hong Kong�

���� T� Ku and C� Kuo� Design and analysis of Toeplitz preconditioners� IEEE Trans� Acoust�
Speech Signal Process�� to appear�

���� J� Nagy� Toeplitz Least Squares Computations� Ph�D� thesis� North Carolina State Uni�
versity�

��
� J� Nagy and R� Plemmons� Some fast Toeplitz least squares algorithms� Proc� SPIE Con�
ference on Advanced Signal Processing Algorithms� Architectures� and Implementations
II� V����� San Diego� CA� July �����

��	� G� Nolet� Editor� Seismic Tomography� Reidel Press� Dordrecht� �����

���� A� Oppenheim and R� Schafer� Discrete�Time Signal Processing� Prentice Hall� Engle�
wood Cli�s� NJ �����

���� C� Paige and M� Saunders� LSQR An algorithm for sparse linear equations and least
squares problems� ACM Trans� on Meth� Software� V� ������ pp� 	
$���

���� S� Reaves and R� Mersereau� Optimal regularization parameter estimation for image
reconstruction� Proc� SPIE Conference on Image Processing Algorithms and Techniques
II� V�	�� ������ pp����$�
��

���� G� Strang� A proposal for Toeplitz matrix calculations� Stud� Appl� Math�� V�	 ������
pp� ���$����

���� A� van der Sluis and H� Van der Vorst� Numerical solution of large sparse systems
arising from tomographic problems� in G� Nolet� Editor� Seismic Tomography� Reidel
Press� Dordrecht� �����

�
�� A� van der Sluis and H� Van der Vorst� SIRT� and CG�type methods for the iterative
solution of sparse least squares problems� Lin� Alg� and Applic�� V�
� ������ pp� ���$

���

�
�� J� Wilkinson� The Algebraic Eigenvalue Problem� Clarendon Press� Oxford� �����







�
�� A� Zygmund� Trigonometric Series� Volume II � �nd Ed�� Cambridge University Press�
�����


	


