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Abstract

We consider the solution of least squares problems min ||b — T'z||2 by the precon-
ditioned conjugate gradient method, for m-by-n complex Toeplitz matrices T' of rank
n. A circulant preconditioner C is derived using the T. Chan optimal preconditioner
on n-by-n Toeplitz row blocks of T'. For Toeplitz T' that are generated by 2m-periodic
continuous complex-valued functions without any zeros, we prove that the singular
values of the preconditioned matrix TC~! are clustered around 1, for sufficiently large
n. We show that if the condition number of T is of O(n®), @ > 0, then the least
squares conjugate gradient method converges in at most O(alogn + 1) steps. Since
each iteration requires only O(mlogn) operations using the FFT, it follows that the
total complexity of the algorithm is then only O(amlog?n 4+ mlogn). Conditions for
superlinear convergence are given and regularization techniques leading to superlinear
convergence for least squares computations with ill-conditioned Toeplitz matrices aris-
ing from inverse problems are derived. Numerical examples are provided illustrating
the effectiveness of our methods.
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1 Introduction

The conjugate gradient (CG) method is an iterative method for solving Hermitian positive
definite systems Az = b, see for instance Golub and van Loan [21]. When A is a rectangular
m-by-n matrix of rank n, one can still use the CG algorithm to find the solution to the least

squares problem
min [|b — Ax||s. (1)

This can be done by applying the algorithm to the normal equations in factored form,
A*(b— Azx) =0, (2)

which can be solved by conjugate gradients without explicitly forming the matrix A*A, see
Bjorck [7].

The convergence of the conjugate gradient algorithm and its variations depends on the the
singular values of the data matrix A, see Axelsson [5]. If the singular values cluster around
a fixed point, convergence will be rapid. Thus, to make the algorithm a useful iterative
method, one usually preconditions the system. The preconditioned conjugate gradient (PCG)
algorithm then solves (1) by transforming the problem with a preconditioner M, applying
the conjugate gradient method to the transformed problem, and then transforming back.
More precisely, one can use the conjugate gradient method to solve

min [|b — AM_1y||2,

and then set x = M ly.

In this paper we consider the least squares problem (1), with the data matrix A = T,
where 7' is a rectangular m-by-n Toeplitz matrix of rank n. The matrix T = (¢;;) is said
to be Toeplitz if t;, = t; , i.e., T is constant along its diagonals. An n-by-n matrix C' is
said to be circulant if it is Toeplitz and its diagonals ¢; satisfy ¢, j =c_;for 0 <j <n —1.
Toeplitz least squares problems occur in a variety of applications, especially in signal and
image processing, see for instance Andrews and Hunt [3], Jain [24] and Oppenheim and
Schafer [28].

Recall that the solution to the least squares problem

min ||b — Tx||, (3)

can be found by the preconditioned conjugate gradient method by applying the method to
the normal equations (2) in factored form, that is, using 7" and T* without forming 7*7. The
preconditioner M considered in this paper is given by an n-by-n circulant matrix M = C,
where C*C' is then a circulant matrix that approximates 777

The version of the PCG algorithm we use is given in [7] and can be stated as follows.



Algorithm PCG for Least Squares. Let (9 be an initial approzi-
mation to T'x = b, and let C' be a given preconditioner. This algorithm

computes the least squares solution, x, to T'r = b.
r0 —p — 720
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The idea of using the preconditioned conjugate gradient method with circulant precondi-
tioners for solving square positive definite Toeplitz systems was first proposed by Strang [30],
although the application of circulant approximations to Toeplitz matrices has been used for
some time in image processing, e.g., [6] . The convergence rate of the method was analyzed
in R. Chan and Strang [9] for Toeplitz matrices that are generated by positive Wiener class
functions. Since then, considerable research have been done in finding other good circulant
preconditioners or extending the class of generating functions for which the method is effec-
tive, see T. Chan [17], R. Chan [10], Tyrtyshnikov [32], Tismenetsky [31], Huckle [23], Ku
and Kuo [25], R. Chan and Yeung [13], T. Chan and Olkin [18], R. Chan and Jin [12] and
R. Chan and Yeung [14].

Recently, the idea of using circulant preconditioners has been extended to non-Hermitian
square Toeplitz systems by R. Chan and Yeung [15] and to Toeplitz least squares problems
by Nagy [26] and Nagy and Plemmons [27]. The main aim of this paper is to formalize
and establish convergence results, and to provide applications, in the case where 7T is a
rectangular Toeplitz (block) matrix.

For the purpose of constructing the preconditioner, we will see that by extending the
Toeplitz structure of the matrix 7" and, if necessary, padding zeros to the bottom left-hand
side, we may assume without loss of generality that m = kn for some positive integer k.
This padding is only for convenience in constructing the preconditioner and does not alter
the original least squares problem. In the material to follow, we consider the case where k
is a constant independent of n. More precisely, we consider in this paper, kn-by-n matrices
T of the form

T
|

e (4)
p



where each square block T} is a Toeplitz matrix. Notice that if T itself is a rectangular
Toeplitz matrix, then each block 7} is necessarily Toeplitz.

Following [26, 27], for each block T}, we construct a circulant approximation C;. Then
our preconditioner is defined as a square circulant matrix C, such that

k
C*C =Y _C;C;.
j=1

Notice that each C; is an n-by-n circulant matrix. Hence they can all be diagonalized by
the Fourier matrix F, i.e.
C; = FAFF

where A; is diagonal, see Davis [19]. Therefore the spectrum of C;, j = 1,---k, can be
computed in O(nlogn) operations by using the Fast Fourier Transform (FFT). Since

k
C*C'=F Y (AA))F,

J=1

C*C is also circulant and its spectrum can be computed in O(knlogn) operations. Here we
choose, as in [26, 27],

1

C=F() AA)7F". (5)

The number of operations per iteration in Algorithm PCG for Least Squares depends
mainly on the work of computing the matrix-vector multiplications. In our case, this amounts

to computing products:
Ty, Tz, C7ly, C™y

for some n-vectors y and m-vectors z. Since
k
1
CTly=F(>_ NA)T2Fy,
j=1

the products C~'y and C~*y can be found efficiently by using the FFT in O(nlogn) opera-
tions. For the products T'y and Tz, with T" in block form with k& n-by-n blocks Tj, we have
to compute n products of the form 7w where T} is an n-by-n Toeplitz matrix and w is an
n-vector. However the product T;w can be computed using the FF'T by first embedding T}
into a 2n-by-2n circulant matrix. The multiplication thus requires O(2n log(2n)) operations.
It follows that the operations for computing Ty and T*z are of the order O(mlogn), where
m = nk. Thus we conclude that the cost per iteration in the preconditioned conjugate
gradient method is of the order O(mlogn).

As already mentioned in the beginning, the convergence rate of the method depends
on the distribution of the singular values of the matrix 77C~! which are the same as the
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square roots of the eigenvalues of the matrix (C*C)~!(T*T). We will show, then, that if the
generating functions of the blocks T} are 2m-periodic continuous functions and if one of these
functions has no zeros, then the spectrum of (C*C)~!(T*T) will be clustered around 1, for
sufficiently large n. We remark that the class of 27-periodic continuous functions contains
the Wiener class of functions which in turn contains the class of rational functions considered
in Ku and Kuo [25].

By using a standard error analysis of the conjugate gradient method, we then show that
if the condition number k(7T") of T is of O(n®), then the number of iterations required for
convergence, for sufficiently large n, is at most O(alogn + 1) where a > 0. Since the
number of operations per iteration in the conjugate gradient method is of O(mlogn), the
total complexity of the algorithm is therefore of O(amlog?n + mlogn). In the case when
a =0, i.e. T is well-conditioned, the method converges in O(1) steps. Hence the complexity
is reduced to just O(mlogn) operations, for sufficiently large n. On the other hand, the
superfast direct algorithms by Ammar and Gragg [2] require O(n log® n) operations for n-by-
n Toeplitz linear systems. The stability of fast direct methods has been studied by Bunch
8].

The outline of the paper is as follows. In §2, we construct the circulant preconditioners
C for the Toeplitz least squares problem and study some of the spectral properties of these
preconditioners. In §3, we show that the iteration matrix TC'~! has singular values clustered
around 1. In §4, we then establish the convergence rate of the preconditioned conjugate
gradient method when applied to the preconditioned system, and indicate when it is super-
linear. In §5, we discuss the technique of regularization when the given Toeplitz matrix 7" is
ill-conditioned. Numerical results and concluding remarks are given in §6.

2 Properties of the Circulant Preconditioner

In this section, we consider circulant preconditioners for least square problems and study
their spectral properties. We begin by recalling some results for square Toeplitz systems.

For simplicity, we denote by C,, the Banach space of all 2r-periodic continuous complex-
valued functions equipped with the supremum norm ||-||. As already mentioned in §1, this
class of functions contains the Wiener class of functions. For all f € Cy,, let

1 [ .
ap = 2—/ f(0)e %049, k=0,+1,42, -,
™ -7

be the Fourier coefficients of f. Let A be the n-by-n complex Toeplitz matrix with the
(4, k)th entry given by a;_5. The function f is called the generating function of the matrix
A.

For a given n-by-n matrix A, we let C' be the n-by-n circulant approximation of A as
defined in T. Chan [17], i.e. C' is the minimizer of F'(X) = ||A — X||r over all circulant
matrices X. For the special case where A is Toeplitz, the (j, £)th entry of C is given by the



diagonal c¢;_, where

<k
" pskem (6)

(n — k)ay + kag_,
Cr — {
Cntk 0< -k <n.

The following three Lemmas are proved in R. Chan and Yeung [15]. The first two give
the bounds of ||A||; and ||C||2 and the last one shows that A — C has clustered spectrum for
certain Toeplitz matrices A.

Lemma 1 Let f € Cy,. Then we have

1Al < 20[fllw <00, n=1.2,---. 0
If moreover f has no zeros, i.e.
min_|f(6)[ > 0,
oe[—m,m]

then there exists a constant ¢ > 0 such that for all n sufficiently large, we have
1Az > c. (8)
Lemma 2 Let f € Cyr. Then we have
1C]l2 < 2[[flloo <00, n=1,2,---. (9)

If moreover f has no zeros, then for all sufficiently large n, we also have

_ 1
I 1||2§2||?||oo<00- (10)

Lemma 3 Let f € Cor. Then for all € > 0, there exist N and M > 0, such that for all
n >N,

A-C=U+V
where

rank U < M
and
V]l < e

Now let us consider the general least squares problem (3) where T is an m-by-n matrix
with m > n. For the purpose of constructing the preconditioner, we assume that m = kn,
without loss of generality, since otherwise the final block 7} can be extended to an n x n
Toeplitz matrix by extending the diagonals and padding the lower left part with zeros. (This
modification is only for constructing the preconditioner. The original least squares problem
(3) is not changed.) Thus we can partition 7" as (4), without loss of generality. We note that
the solution to the least square problem (3) can be obtained by solving the normal equations

T*Tx =T,
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in factored form, where
k
T =) T
7j=1

Of course one can avoid actually forming 77T for implementing the conjugate gradient
method for the normal equations [7].

We will assume in the following that £ is a constant independent of n and that each square
block T, j = 1,-- -,k is generated by a generating function f; in Cy,. Following Nagy [26],
and Nagy and Plemmons [27], we define a preconditioner for 7" based upon preconditioners
for the blocks Tj.

For each block T}, let C; be the corresponding T. Chan’s circulant preconditioner as
defined in (6). Then it is natural to consider the square circulant matrix

k
CrC'=> CiC; (11)
7j=1

as a circulant approximation to T*T [27]. Note, however, that C' is computed (or applied)
using the equation (5). Clearly C' is invertible if one of the Cj is. In fact, using Lemma 2,
we have

Lemma 4 Let f; € Cor for j =1,2,---, k. Then we have

k
ICIE <4 1Ifill < oo, n=1,2-. (12)

j=1

If moreover one of the f;, say fe, has no zeros, then for all sufficiently large n, we also have

. 1
[(C*C) 1||2§4||E||§o<00- (13)

Proof: Equation (12) clearly follows from (11) and (9). To prove (13), we just note that
C7Cj are positive semidefinite matrices for all j =1, -, k, hence

)\min(C*C) Z Amin(CZCZ)a

where Apmin(+) denotes the smallest eigenvalue. Thus by (10), we then have

* 1) — £ \— - 1
1(C*C) 2 < [I(C7C) 1||2:||C,_;1||§§4IIEIIZO. =



3 Spectrum of TC™!

In this section, we show that the spectrum of the matrix
(C*C)~N(T*T)

is clustered around 1. It will follow then, that the singular values of TC ! are also clustered
around 1, since (C*C)~Y(T*T) is similar to (TC~')*(TC~'). We begin by analyzing the
spectrum of each block.

Lemma 5 For 1 < j <k, if f; € Cor, then for all € > 0, there exist N; and M; > 0, such
that for all n > Nj,
17T, — CiC; =U; +V;

where U; and V; are Hermitian matrices with
rank Uj S Mj

and
Vil <e.

Proof: We first note that by Lemma 3, we have for all ¢ > 0, there exist positive integers
N; and M; such that for all n > Nj,
T~ C;=U;+V;
where rank U; < M; and ||Vj||, < e. Therefore,
T;T; = C5C;

= T;(T; = C5) + (T; = C3)°C;

= T;(T; = C) = (T; = )" (T = Cj) + (T; = €)'

= T{(0;+ T5) — O+ V) (@ + V) + (T + T5)'T,
Uj + V}

Here

and . . o
Vi = VT4 T - T
It is clear that both U; and V; are Hermitian matrices. Moreover we have rank U; < 2M;

and
Vill2 < 2€]|Tj]|2 + €.

8



By (7), we then have
1Villa < 4e||filloo +2¢%. O

Using the facts that

k
T°T — C*C =) (T;T; — C;Cy)
7=1

and that £ is independent of n, we immediately have

Lemma 6 Let f; € Cor for j =1,---k. Then for all € > 0, there exist N and M > 0, such
that for alln > N, o
™"Tr—-CcC=U+V

where U and V are Hermitian matrices with
rank U < M (14)
and

V]2 <e. (15)

We now show that the spectrum of the preconditioned matrix
(c*C)~N(T*T)

is clustered around 1. We note that this is equivalent to showing that the spectrum of
(C*C)™Y(T*T) — I, where I is the n-by-n identity matrix, is clustered around zero.

Theorem 1 Let f; € Cor for all j = 1,--- k. If one of the f;, say fe, has no zeros, then
for all e > 0, there exist N and M > 0, such that for alln > N, at most M eigenvalues of

the matriz
(C*Cy (T*T) - I

have absolute values larger than €.

Proof: By Lemma 6, we have
(C*CY HT*T) — I = (C*C)"Y(T*T — C*C) = (C*C) 1 (U + V).
Therefore the spectra of the matrices
(C*C)Y™MT*T) =1 and (C*C)~V2(U +V)(C*C)™/?
are the same. However, by (14), we have

rank {(O*O)‘I/Zﬁ(C*C)‘l/Q} <M
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and by (15) and (13), we have
. . 1
[(C*C) 2V (C*C) 2l < [IVIIIICC) M2 < 46||E||<2>o7

where € replaces the € specified in (15). Thus by applying Cauchy’s interlace theorem (see
Wilkinson [33]) to the Hermitian matrix

(C*C)fl/QU(C*O)fl/Z + (0*0)71/2‘7(0*61)71/2,

we see that its spectrum is clustered around zero. Hence the spectrum of the matrix
(C*C)"Y(T*T) is clustered around 1. O

From Theorem 1, we have the desired clustering result; namely, if f; € Cy, for all j =
1,---,k and if one of the f; has no zeroes, then the singular values of the preconditioned
matriz TC~! are clustered around 1.

4 Convergence Rate of the Method

In this section, we analyze the convergence rate of Algorithm PCG for Least Squares, for our
circulant preconditioned Toeplitz matrix TC~!. We show first that the method converges,
for sufficiently large n, in at most O(«logn + 1) steps where O(n®) is the condition number
of T". We begin by noting the following error estimate of the conjugate gradient method.

Lemma 7 Let G be a positive definite matriz and x be the solution to Gx = b. Let x; be
the jth iterant of the ordinary conjugate gradient method applied to the equation Gx =b. If
the eigenvalues {8} of G are such that

0<01 <o <0 <71 < 0pg1 oo g <72 < Ongg1 < oo < 0,

o N — J—p—4q p §— O
I — zolle <7+ ) sebns H( o ) 1o

3
(%) =
Y1

Proof: It is well-known that an error estimate of the conjugate gradient method is given by
the following minimax inequality:

then

—_

—_

Here

v

and ||v]|a = v*Go.

le—zille _
W Alle o Pi(6
o —aolle = "2, PO
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where P; is any jth degree polynomial with constant term 1, see Axelsson and Barker [4].
To obtain an upper bound, we first use linear polynomials of the form (§ — dx)/dx that pass
through the outlying eigenvalues d;, 1 < k < pand n—q¢+ 1 < k < n to minimize the
maximum absolute value of P; at these eigenvalues. Then we use a (j — p — ¢)th degree
Chebyshev polynomial 7;_,_, to minimize the maximum absolute value of P; in the interval
[0p+1,0n—g]. Then we get

|z — zj|a [72—1-71}1 g (5—5k) - (516_‘5)
=56 g max :
|z —zolle = 7T e — ] debnnl H Or k?H]Jrl O

k=1

Equation (16) now follows by noting that for § € [y, 2], we always have

og‘s’“_(sgl, n—q+1<k<n.
Ok
and that . :
_|_ - _ 1 J—P—q
Ty [72 ’71] <9 <’Y > ’
Y2 =M v+1
see Axelsson and Barker [4]. O
For the system
(C*C) YT*T)x = (C*C) 'T™*b, (17)

the iteration matrix G is given by
G = (C*C)"VA(T*T)(C*C) V2

By Theorem 1, we can choose vy =1 — € and 75 = 1 + €. Then p and ¢ are constants that
depend only on € but not on n. By choosing € < 1, we have

y—=1 1-v1-¢é

y4+1 €

< €.

In order to use (16), we need a lower bound for &, 1 < k < p. We first note that

— * T — * C 5 *
Gl = (T T) ()l < %H(T 7).

If one of the f, has no zeros, then by (8), we have for n sufficiently large
IT[13 > [|T2]]3 > ¢

for some ¢ > 0 independent of n. Combining this with (12), we then see that for all n
sufficiently large,
|G ]2 < &+ K(T*T) < én®,
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for some constant ¢ that does not depend on n. Therefore,

1

—— >en™ Y 1<k<n.
e =" =t

(Sk Z mzinég =
Thus for 1 <k <pand d € [1 —¢,1+ €], we have,

0 — O o
0< < cn™.
Ok

Hence (16) becomes
||£U — x]”G < Cpnpaﬁjfpfq.
|z = zolla
Given arbitrary tolerance 7 > 0, an upper bound for the number of iterations required to
make
|z — =;lle

<T
||z — wolla

is therefore given by

, logc+ aplogn — lo
]Ozp—l—q—p 8 lz(j)geg gT:O(alogn—i—l).

Since by using FFTs, the matrix-vector products in Algorithm PCG for Least Squares can
be done in O(mlogn) operations for any n-vector v, the cost per iteration of the conjugate
gradient method is of O(mlogn). Thus we conclude that the work of solving (17) to a given
accuracy 7 is O(amlog® n + mlogn) when o > 0, and for sufficiently large n.

The convergence analysis given above can be further strengthened. For 71" an m-by-n
matrix of the form (4) with m = kn, let A\piy(T;7;) = O(n=%) for j = 1,---k. By Lemma
1, we already know that

Anin( T3 T5) < Amax(T5T3) < 20115
therefore o; > 0. By the Cauchy interlace theorem, we see that

k
Amin(T*T) =D Aain(T;T;) = O(n%),

j=1
where
o= Ir;,in a; > 0.
Therefore i
W(T*T) < % < O(mo).

In the case when one of the o; = 0, i.e. the block T} is well-conditioned independent of
n, we see that the least squares problem is also well-conditioned, so that x(7T) = O(1).
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When at least one a; = 0, i.e., k(T) = O(1), the number of iterations required for
convergence is of O(1). Hence the complexity of the algorithm reduces to O(mlogn), for
sufficiently large n. We remark that in this case, one can show further that the method
converges superlinearly for the preconditioned least squares problem due to the clustering
of the singular values for sufficiently large n (See R. Chan and Strang [9] or R. Chan [11]
for details). In contrast, the method converges just linearly for the non-preconditioned case.
This contrast is illustrated very well in the section on numerical tests.

5 Preconditioned Regularized Least Squares

In this section we consider solving least squares problems (3), where the rectangular ma-
trix 7" is ill-conditioned. Such systems arise in many applications, such as signal and image
restoration, see [3, 24, 28]. Often, the ill-conditioned nature of T results from discretiza-
tion of ill-posed problems in partial differential and integral equations. Here for example,
the problem of estimating an original image from a blurred and noisy observed image is
an important case of an inverse problem, and was first studied by Hadamard [22] in the
inversion of certain integral equations. Because of the ill-conditioning of 7', naively solving
Tx = b will lead to extreme instability with respect to perturbations in b. The method of
regularization can be used to achieve stability for these problems [7]. Stability is attained by
introducing a stabilizing operator (called a regularization operator) which restricts the set of
admissible solutions. Since this causes the regularized solution to be biased, a scalar (called
a regularization parameter) is introduced to control the degree of bias. More specifically, the
regularized solution is computed as

win| | o = | 7 |l (19

where 1 is the regularization parameter and the p X n matrix L is the regularization operator.

The standard least squares solution to (3), given by # = TTb, is useless for these problems
because it is dominated by rapid oscillations due to the errors. Hence in (18), one adds a term
min ||Lz||? to (3) in order to smooth the solution z. Choosing L as a kth difference operator
matrix forces the solution to have a small kth derivative. The regularization parameter p
controls the degree of smoothness (i.e., degree of bias) of the solution, and is usually small.
Choosing p is not a trivial problem. In some cases a priori information about the signal and
the degree of perturbations in b can be used to choose p [1], or generalized cross-validation
techniques may be used, e.g., [7]. If no a priori information is known, then it may be
necessary to solve (18) for several values of p [20]. Recent analytical methods for choosing
an optimal parameter ;1 are discussed by Reeves and Mersereau [29].

Based on the discussion above, the regularization operator L is usually chosen to be the
identity matrix or some discretization of a differentiation operator [6, 20]. Thus L is typically
a Toeplitz matrix. Hence, if T has the Toeplitz block form (4), then the matrix

r-[5]
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retains this structure, with the addition of one block (or two blocks if L is a difference
operator with more rows than columns). Since 7" has the block structure (4), we can form
the circulant preconditioner C' for T and use the PCG algorithm for least squares problems
to solve (18).

Notice that if L is chosen to be the identity matrix, then the circulant preconditioner
for T can be constructed by simply adding p to each of the eigenvalues of the circulant
preconditioner for 7'. In addition, the last block in T (i.e., ) has singular values z. Thus,
due to the remarks at the end of §4, if each block in T is generated by a function in Car, and

if 4 # 0, then x(T) < O(p™") for all n. Tt follows then, for these problems, that (18) can be
solved in O(mlogn) operations, for sufficiently large n.

6 Numerical Tests

In this section we report on some numerical experiments which use the preconditioner C'
given by equation (5) in §1 for the conjugate gradient algorithm PCG for solving Toeplitz
and block Toeplitz least squares problems. Here the preconditioner C'is based on the T. Chan
optimal preconditioner C;, for each block T; of T', as in §2. The experiments are designed to
illustrate the performance of the preconditioner on a variety of problems, including some in
which one or more Toeplitz blocks are very ill-conditioned.

For all numerical tests given in this section we use the stopping criteria ||s)||5/||s® ], <
10~7, where sV) is the (normal equations) residual after j iterations, and the zero vector
is our initial guess. (Observe that the value ||s")||, is computed as part of the conjugate
gradient algorithm.) All experiments were performed using the Pro-Matlab software on
our workstations. The machine epsilon for Pro-Matlab on this system is approximately
2.2 x 10716,

To describe most of the Toeplitz matrices used in the examples below, we use the following
notation. Let the m-vector ¢ be the first column of 7', and the n-vector r’ be the first row
of . Then

T = Toep(c, r).

The right hand side vector b is generally chosen to be the vector of all ones.

Example 1: In this example we construct m xn Toeplitz matrices generated by a positive
function in the Wiener class, varying the number of rows and columns and fixing the number
of blocks in the block form (4) to k£ = 3. This example is a rectangular generalization of test
data used by Strang [30], and is defined as follows. Let

C(i):1/2i717 i=1,...,m and T(j):1/2j717 J=1...,n

The convergence results for this example is shown in Table 1, which shows the number
of iterations required for Algorithm PCG to converge using 7" (i.e. no preconditioner) and
our C. We can see from Table 1 that the use of our preconditioner does accelerate the
convergence rate of the CG algorithm for this problem. Moreover, for this example the
number of iterations remains essentially constant as m and n increase.
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In Figure 1 we plot the singular values of 7' and T'C!. The plot of the singular value
distributions shows that the preconditioner clusters the singular values very well for this
example.

Figure 1. Singular values for 7" and 7C~"! in Example 1.

Example 2: In this example we use the following three generating functions in the
Wiener class to construct a 3n x n block Toeplitz matrix.

from R. Chan and Yeung [15],

(1) Example (a [
(g =1+ +/=1(j =1+, j=12,...,n

)
)=

c1(g) =m(
(i7) Example (b) from R. Chan and Yeung [15],
02() (|Z_1|+1) 7 i=1,2,...n,

n
ra(j) = vV=1(lj - 1| DT =120
(i77) Example (f) from R. Chan and Yeung [15],
cs3(1) = r3(1) = £t
ca(j) = ra(j) = 419 V(5T — o) G =23,
The matrix 7" is defined as
=1/, 15, T4,

where T} =Toep(cy,71), To =Toep(ca, r2) and T3 =Toep(cs, r3). For n x n systems R. Chan
and Yeung [15] show that sy (T3) = O(n*), while T} and Ty are well-conditioned. They also
show that T. Chan’s preconditioner works well for 77 and 75, but not well for T5.
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In Table 1 we show the convergence results for this example, using no preconditioner and
C as a preconditioner, for several values of m and n. Figure 2 shows the singular values of T’
and TC ! for m = 210 and n = 70. These results illustrate the good convergence properties
using the preconditioner C' for this example containing an ill-conditioned block. Moreover,
our computations verify the fact that xo(7") remains almost constant as n increases from 40
to 80.

Figure 2. Singular values for T and TC~! in Example 2.

Example 3: In this example we form a 2n x n block Toeplitz matrix using generating
functions from R. Chan and Yeung [15] which construct ill-conditioned n x n Toeplitz ma-
trices. Here T} = T35 and thus both blocks of T" are ill-conditioned. The generating function,
which is in the Wiener class, is:

Example (c¢) from R. Chan and Yeung [15],

c(1)=ri(1)=0
a()=r()= -1+ " +V=1Li-U+1) ", j=2..,n

Using the above generating functions, we let

TT - [Tla TQ]Ta

where T} = Ty =Toep(cy,r1).

In Table 1 we show the convergence results for this example, using no preconditioner and
C as a preconditioner, for several values of m and n. Figure 3 shows the singular values of T’
and TC~! for m = 140 and n = 70. These results illustrate the good convergence properties
of C' for this example even though it contains all ill-conditioned blocks.
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Figure 3. Singular values for 7" and 7C~"! in Example 3.

Example 1 (m = 3n) | Example 2 (m = 3n) | Example 3 (m = 2n)
n || no prec. | with prec. || no prec. | with prec. || no prec. | with prec.
40 33 7 96 14 29 11
50 36 7 126 14 33 15
60 41 7 155 13 44 13
70 41 7 167 13 52 12
80 44 7 186 13 65 14

Table 1. Numbers of iterations for convergence in Examples 1 - 3.

Example 4: Here we consider an application to 1-dimensional image or signal recon-
struction computations. In this example we construct the 100 x 100 Toeplitz matrix 7',
whose 7, j entry is given by

bij = { %g(o.lf),xi — ) i)ftllze;vs/"]iLeT > (19)
where
i=1,2,...,100,
and . )
9(0,7) = 5= exp(— )

Matrices of this form occur in many image restoration contexts as a “prototype problem”
and are used to model certain degradations in the recorded image [20, 24]. Due to the
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bandedness of 7' its generating function is in the Wiener class. The condition number of T’
is approximately 2.4 x 106.

Because of the ill-conditioning of T', the system Tx = b will be very sensitive to any
perturbations in b, see §5. To achieve stability we regularize the problem using the identity
matrix as the regularization operator. Eldén [20] uses this approach to solve a linear system
by direct methods with the same data matrix 7" defined in (19). To test our preconditioner
we will fix g = 0.01, where p is chosen based on some tests made by Eldén.

Let
~ T - b
AT
Then 7 is simply a block Toeplitz matrix. Thus we can apply our preconditioner C', and
the PCG algorithm, to solve (18). The convergence results for solving Tz = b and Te=b
with no preconditioner and Tx =b using C' as a preconditioner are shown in Table 2. The
singular values of T" and TC-!, and the convergence history for solving T'x = b and Tz =b
using our preconditioner C' are shown in Figure 4. These results indicate that the PCG

algorithm with our preconditioner C' may be an effective method for solving this regularized
least squares problem.

~

‘ n HT&::b‘Tx:l; TC 'z =b
1100 [| > 100 | 54 | 14 ]

Table 2.Numbers of iterations for convergence in Example 4.

In summary, we have shown how to construct circulant preconditioners for the efficient
solution of a wide class of Toeplitz least squares problems. The numerical experiments
given collaborate our convergence analysis. Examples 1 and 2 both illustrate superlinear
convergence for the PCG algorithm preconditioned by C', even when in Example 2 the matrix
T contains an ill-conditioned block. In addition, even though the matrix 7" in Example 3
contains all ill-conditioned blocks, the scheme works well for the computations we performed.

Example 4 illustrates the applicability of the circulant PCG method to regularized least
squares problems. The example comes from 1-dimensional signal restoration. 2-dimensional
signal or image restoration computations often lead to very large least squares problems
where the coefficient matrix is block Toeplitz with Toeplitz blocks. Block circulant precon-
ditioners for this case are considered elsewhere [16].

In this paper we have used the T. Chan [17] optimal preconditioner for the Toeplitz
blocks. Other circulant preconditioners such as ones studied by R. Chan [11], Huckle [23],
Ku and Kuo [25], Strang [30], Tismenetsky [31], or Tyrtyshnikov [32], can be used, but the
class of generating functions may need to be restricted for the convergence analysis to hold.
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Figure 4. Singular values and convergence history for T and TC~'.
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