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Abstract

We consider the solution of least squares problems min jjb � Txjj� by the precon�

ditioned conjugate gradient method� for m�by�n complex Toeplitz matrices T of rank

n� A circulant preconditioner C is derived using the T� Chan optimal preconditioner

on n�by�n Toeplitz row blocks of T � For Toeplitz T that are generated by ���periodic

continuous complex�valued functions without any zeros� we prove that the singular

values of the preconditioned matrix TC�� are clustered around �� for su�ciently large

n� We show that if the condition number of T is of O�n�	� � � 
� then the least

squares conjugate gradient method converges in at most O�� logn � �	 steps� Since
each iteration requires only O�m log n	 operations using the FFT� it follows that the

total complexity of the algorithm is then only O��m log� n�m log n	� Conditions for

superlinear convergence are given and regularization techniques leading to superlinear

convergence for least squares computations with ill�conditioned Toeplitz matrices aris�

ing from inverse problems are derived� Numerical examples are provided illustrating

the e�ectiveness of our methods�
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� Introduction

The conjugate gradient �CG	 method is an iterative method for solving Hermitian positive
de
nite systems Ax � b� see for instance Golub and van Loan �
��� When A is a rectangular
m�by�n matrix of rank n� one can still use the CG algorithm to 
nd the solution to the least
squares problem

min kb� Axk�� ��	

This can be done by applying the algorithm to the normal equations in factored form�

A��b� Ax	 � �� �
	

which can be solved by conjugate gradients without explicitly forming the matrix A�A� see
Bjorck ����

The convergence of the conjugate gradient algorithm and its variations depends on the the
singular values of the data matrix A� see Axelsson ���� If the singular values cluster around
a 
xed point� convergence will be rapid� Thus� to make the algorithm a useful iterative
method� one usually preconditions the system� The preconditioned conjugate gradient �PCG	
algorithm then solves ��	 by transforming the problem with a preconditioner M � applying
the conjugate gradient method to the transformed problem� and then transforming back�
More precisely� one can use the conjugate gradient method to solve

minkb� AM��yk��

and then set x � M��y�
In this paper we consider the least squares problem ��	� with the data matrix A � T �

where T is a rectangular m�by�n Toeplitz matrix of rank n� The matrix T � �tjk	 is said
to be Toeplitz if tjk � tj�k� i�e�� T is constant along its diagonals� An n�by�n matrix C is
said to be circulant if it is Toeplitz and its diagonals cj satisfy cn�j � c�j for � � j � n� ��
Toeplitz least squares problems occur in a variety of applications� especially in signal and
image processing� see for instance Andrews and Hunt ���� Jain �
�� and Oppenheim and
Schafer �
���

Recall that the solution to the least squares problem

minkb� Txk� ��	

can be found by the preconditioned conjugate gradient method by applying the method to
the normal equations �
	 in factored form� that is� using T and T � without forming T �T � The
preconditioner M considered in this paper is given by an n�by�n circulant matrix M � C�
where C�C is then a circulant matrix that approximates T �T �

The version of the PCG algorithm we use is given in ��� and can be stated as follows�






Algorithm PCG for Least Squares� Let x��� be an initial approxi�

mation to Tx � b� and let C be a given preconditioner� This algorithm

computes the least squares solution� x� to Tx � b�
r��� � b� Tx���

p��� � s��� � C��T �r���

�� � ks���k��
for k � �� �� 
� � � �

q�k� � TC��p�k�

�k � �k�kq�k�k��
x�k��� � x�k� � �kC

��p�k�

r�k��� � r�k� � �kq
�k�

s�k��� � C��T �r�k���

�k�� � ks�k���k��
�k � �k����k
p�k��� � s�k��� � �kp

�k�

The idea of using the preconditioned conjugate gradient method with circulant precondi�
tioners for solving square positive de
nite Toeplitz systems was 
rst proposed by Strang �����
although the application of circulant approximations to Toeplitz matrices has been used for
some time in image processing� e�g�� ��� � The convergence rate of the method was analyzed
in R� Chan and Strang ��� for Toeplitz matrices that are generated by positive Wiener class
functions� Since then� considerable research have been done in 
nding other good circulant
preconditioners or extending the class of generating functions for which the method is e�ec�
tive� see T� Chan ����� R� Chan ����� Tyrtyshnikov ��
�� Tismenetsky ����� Huckle �
��� Ku
and Kuo �
��� R� Chan and Yeung ����� T� Chan and Olkin ����� R� Chan and Jin ��
� and
R� Chan and Yeung �����

Recently� the idea of using circulant preconditioners has been extended to non�Hermitian
square Toeplitz systems by R� Chan and Yeung ���� and to Toeplitz least squares problems
by Nagy �
�� and Nagy and Plemmons �
��� The main aim of this paper is to formalize
and establish convergence results� and to provide applications� in the case where T is a
rectangular Toeplitz �block	 matrix�

For the purpose of constructing the preconditioner� we will see that by extending the
Toeplitz structure of the matrix T and� if necessary� padding zeros to the bottom left�hand
side� we may assume without loss of generality that m � kn for some positive integer k�
This padding is only for convenience in constructing the preconditioner and does not alter
the original least squares problem� In the material to follow� we consider the case where k
is a constant independent of n� More precisely� we consider in this paper� kn�by�n matrices
T of the form

T �

�
����

T�
T�
���
Tk

�
���� � ��	

�



where each square block Tj is a Toeplitz matrix� Notice that if T itself is a rectangular
Toeplitz matrix� then each block Tj is necessarily Toeplitz�

Following �
�� 
��� for each block Tj� we construct a circulant approximation Cj� Then
our preconditioner is de
ned as a square circulant matrix C� such that

C�C �
kX

j��

C�
jCj�

Notice that each Cj is an n�by�n circulant matrix� Hence they can all be diagonalized by
the Fourier matrix F � i�e�

Cj � F�jF
�

where �j is diagonal� see Davis ����� Therefore the spectrum of Cj� j � �� � � �k� can be
computed in O�n logn	 operations by using the Fast Fourier Transform �FFT	� Since

C�C � F

kX
j��

���
j�j	F

��

C�C is also circulant and its spectrum can be computed in O�kn logn	 operations� Here we
choose� as in �
�� 
���

C � F �
kX

j��

��
j�j	

�

�F �� ��	

The number of operations per iteration in Algorithm PCG for Least Squares depends
mainly on the work of computing the matrix�vector multiplications� In our case� this amounts
to computing products�

Ty� T �z� C��y� C��y

for some n�vectors y and m�vectors z� Since

C��y � F �
kX

j��

��
j�j	

� �

�F �y�

the products C��y and C��y can be found e�ciently by using the FFT in O�n logn	 opera�
tions� For the products Ty and T �z� with T in block form with k n�by�n blocks Tj� we have
to compute n products of the form Tjw where Tj is an n�by�n Toeplitz matrix and w is an
n�vector� However the product Tjw can be computed using the FFT by 
rst embedding Tj
into a 
n�by�
n circulant matrix� The multiplication thus requires O�
n log�
n		 operations�
It follows that the operations for computing Ty and T �z are of the order O�m logn	� where
m � nk� Thus we conclude that the cost per iteration in the preconditioned conjugate
gradient method is of the order O�m logn	�

As already mentioned in the beginning� the convergence rate of the method depends
on the distribution of the singular values of the matrix TC�� which are the same as the

�



square roots of the eigenvalues of the matrix �C�C	���T �T 	� We will show� then� that if the
generating functions of the blocks Tj are 
	�periodic continuous functions and if one of these
functions has no zeros� then the spectrum of �C�C	���T �T 	 will be clustered around �� for
su�ciently large n� We remark that the class of 
	�periodic continuous functions contains
the Wiener class of functions which in turn contains the class of rational functions considered
in Ku and Kuo �
���

By using a standard error analysis of the conjugate gradient method� we then show that
if the condition number 
�T 	 of T is of O�n�	� then the number of iterations required for
convergence� for su�ciently large n� is at most O�� logn � �	 where � � �� Since the
number of operations per iteration in the conjugate gradient method is of O�m logn	� the
total complexity of the algorithm is therefore of O��m log� n �m logn	� In the case when
� � �� i�e� T is well�conditioned� the method converges in O��	 steps� Hence the complexity
is reduced to just O�m logn	 operations� for su�ciently large n� On the other hand� the
superfast direct algorithms by Ammar and Gragg �
� require O�n log� n	 operations for n�by�
n Toeplitz linear systems� The stability of fast direct methods has been studied by Bunch
����

The outline of the paper is as follows� In x
� we construct the circulant preconditioners
C for the Toeplitz least squares problem and study some of the spectral properties of these
preconditioners� In x�� we show that the iteration matrix TC�� has singular values clustered
around �� In x�� we then establish the convergence rate of the preconditioned conjugate
gradient method when applied to the preconditioned system� and indicate when it is super�
linear� In x�� we discuss the technique of regularization when the given Toeplitz matrix T is
ill�conditioned� Numerical results and concluding remarks are given in x��

� Properties of the Circulant Preconditioner

In this section� we consider circulant preconditioners for least square problems and study
their spectral properties� We begin by recalling some results for square Toeplitz systems�

For simplicity� we denote by C�� the Banach space of all 
	�periodic continuous complex�
valued functions equipped with the supremum norm jj � jj�� As already mentioned in x�� this
class of functions contains the Wiener class of functions� For all f � C��� let

ak �
�


	

Z �

��

f��	e�ik�d�� k � ������
� � � � �

be the Fourier coe�cients of f � Let A be the n�by�n complex Toeplitz matrix with the
�j� k	th entry given by aj�k� The function f is called the generating function of the matrix
A�

For a given n�by�n matrix A� we let C be the n�by�n circulant approximation of A as
de
ned in T� Chan ����� i�e� C is the minimizer of F �X	 � jjA � XjjF over all circulant
matrices X� For the special case where A is Toeplitz� the �j� 
	th entry of C is given by the

�



diagonal cj�� where

ck �

�
�n� k	ak � kak�n

n
� � k � n�

cn�k � � �k � n�
��	

The following three Lemmas are proved in R� Chan and Yeung ����� The 
rst two give
the bounds of jjAjj� and jjCjj� and the last one shows that A�C has clustered spectrum for
certain Toeplitz matrices A�

Lemma � Let f � C��� Then we have

jjAjj� � 
jjf jj� ��� n � �� 
� � � � � ��	

If moreover f has no zeros� i�e�

min
�������	

jf��	j � ��

then there exists a constant c � � such that for all n su�ciently large� we have

jjAjj� � c� ��	

Lemma � Let f � C��� Then we have

jjCjj� � 
jjf jj� ��� n � �� 
� � � � � ��	

If moreover f has no zeros� then for all su�ciently large n� we also have

jjC��jj� � 
jj �
f
jj� ��� ���	

Lemma � Let f � C��� Then for all � � �� there exist N and M � �� such that for all

n � N �

A� C � U � V

where

rank U �M

and

jjV jj� � ��

Now let us consider the general least squares problem ��	 where T is an m�by�n matrix
with m � n� For the purpose of constructing the preconditioner� we assume that m � kn�
without loss of generality� since otherwise the 
nal block Tk can be extended to an n 	 n
Toeplitz matrix by extending the diagonals and padding the lower left part with zeros� �This
modi
cation is only for constructing the preconditioner� The original least squares problem
��	 is not changed�	 Thus we can partition T as ��	� without loss of generality� We note that
the solution to the least square problem ��	 can be obtained by solving the normal equations

T �Tx � T �b�

�



in factored form� where

T �T �
kX

j��

T �
j Tj�

Of course one can avoid actually forming T �T for implementing the conjugate gradient
method for the normal equations ����

We will assume in the following that k is a constant independent of n and that each square
block Tj� j � �� � � � � k is generated by a generating function fj in C��� Following Nagy �
���
and Nagy and Plemmons �
��� we de
ne a preconditioner for T based upon preconditioners
for the blocks Tj�

For each block Tj� let Cj be the corresponding T� Chan�s circulant preconditioner as
de
ned in ��	� Then it is natural to consider the square circulant matrix

C�C �
kX

j��

C�
jCj ���	

as a circulant approximation to T �T �
��� Note� however� that C is computed �or applied	
using the equation ��	� Clearly C is invertible if one of the Cj is� In fact� using Lemma 
�
we have

Lemma 	 Let fj � C�� for j � �� 
� � � � � k� Then we have

jjCjj�� � �
kX

j��

jjfjjj�� ��� n � �� 
� � � � � ��
	

If moreover one of the fj� say f�� has no zeros� then for all su�ciently large n� we also have

jj�C�C	��jj� � �jj �
f�
jj�� ��� ���	

Proof
 Equation ��
	 clearly follows from ���	 and ��	� To prove ���	� we just note that
C�
jCj are positive semide
nite matrices for all j � �� � � � � k� hence

�min�C
�C	 � �min�C

�
�C�	�

where �min��	 denotes the smallest eigenvalue� Thus by ���	� we then have

jj�C�C	��jj� � jj�C�
�C�	

��jj� � jjC��
� jj�� � �jj �

f�
jj��� �

�



� Spectrum of TC��

In this section� we show that the spectrum of the matrix

�C�C	���T �T 	

is clustered around �� It will follow then� that the singular values of TC�� are also clustered
around �� since �C�C	���T �T 	 is similar to �TC��	��TC��	� We begin by analyzing the
spectrum of each block�

Lemma � For � � j � k� if fj � C��� then for all � � �� there exist Nj and Mj � �� such
that for all n � Nj�

T �
j Tj � C�

jCj � Uj � Vj

where Uj and Vj are Hermitian matrices with

rank Uj �Mj

and

jjVjjj� � ��

Proof
 We 
rst note that by Lemma �� we have for all � � �� there exist positive integers
Nj and Mj such that for all n � Nj�

Tj � Cj � �Uj � �Vj

where rank �Uj �Mj and jj �Vjjj� � �� Therefore�

T �
j Tj � C�

jCj

� T �
j �Tj � Cj	 � �Tj � Cj	

�Cj

� T �
j �Tj � Cj	� �Tj � Cj	

��Tj � Cj	 � �Tj � Cj	
�Tj

� T �
j � �Uj � �Vj	� � �Uj � �Vj	

�� �Uj � �Vj	 � � �Uj � �Vj	
�Tj


 Uj � Vj�

Here

Uj � T �
j
�Uj � �U�

j Tj � �U�
j
�Uj � �U�

j
�Vj � �V �

j
�Uj

� �U�
j �Tj � �Uj � �Vj	 � �Tj � �Vj	

� �Uj

and
Vj � �V �

j Tj � T �
j
�Vj � �V �

j
�Vj�

It is clear that both Uj and Vj are Hermitian matrices� Moreover we have rank Uj � 
Mj

and
jjVjjj� � 
�jjTjjj� � ���

�



By ��	� we then have
jjVjjj� � ��jjfjjj� � 
��� �

Using the facts that

T �T � C�C �
kX

j��

�T �
j Tj � C�

jCj	

and that k is independent of n� we immediately have

Lemma � Let fj � C�� for j � �� � � �k� Then for all � � �� there exist N and M � �� such
that for all n � N �

T �T � C�C � �U � �V

where �U and �V are Hermitian matrices with

rank �U �M ���	

and

jj �V jj� � �� ���	

We now show that the spectrum of the preconditioned matrix

�C�C	���T �T 	

is clustered around �� We note that this is equivalent to showing that the spectrum of
�C�C	���T �T 	� I� where I is the n�by�n identity matrix� is clustered around zero�

Theorem � Let fj � C�� for all j � �� � � � � k� If one of the fj� say f�� has no zeros� then

for all � � �� there exist N and M � �� such that for all n � N � at most M eigenvalues of

the matrix

�C�C	���T �T 	� I

have absolute values larger than ��

Proof
 By Lemma �� we have

�C�C	���T �T 	� I � �C�C	���T �T � C�C	 � �C�C	��� �U � �V 	�

Therefore the spectra of the matrices

�C�C	���T �T 	� I and �C�C	����� �U � �V 	�C�C	����

are the same� However� by ���	� we have

rank
n
�C�C	���� �U�C�C	����

o
� M

�



and by ���	 and ���	� we have

jj�C�C	���� �V �C�C	����jj� � jj �V jj�jj�C�C	��jj� � ���jj �
f�
jj���

where �� replaces the � speci
ed in ���	� Thus by applying Cauchy�s interlace theorem �see
Wilkinson ����	 to the Hermitian matrix

�C�C	���� �U�C�C	���� � �C�C	���� �V �C�C	�����

we see that its spectrum is clustered around zero� Hence the spectrum of the matrix
�C�C	���T �T 	 is clustered around �� �

From Theorem �� we have the desired clustering result� namely� if fj � C�� for all j �
�� � � � � k and if one of the fj has no zeroes� then the singular values of the preconditioned

matrix TC�� are clustered around ��

� Convergence Rate of the Method

In this section� we analyze the convergence rate of Algorithm PCG for Least Squares� for our
circulant preconditioned Toeplitz matrix TC��� We show 
rst that the method converges�
for su�ciently large n� in at most O�� logn��	 steps where O�n�	 is the condition number
of T � We begin by noting the following error estimate of the conjugate gradient method�

Lemma 
 Let G be a positive de�nite matrix and x be the solution to Gx � b� Let xj be
the jth iterant of the ordinary conjugate gradient method applied to the equation Gx � b� If
the eigenvalues f�kg of G are such that

� � �� � ��� � �p � �� � �p�� � ��� � �n�q � �� � �n�q�� � ��� � �n�

then

jjx� xjjjG
jjx� x�jjG � 


�
� � �

� � �

	j�p�q

� max
��������	

�
pY

k��

�
� � �k
�k

	

� ���	

Here

� 

�
��
��

	 �

�

� �

and jjvjjG 
 v�Gv�

Proof
 It is well�known that an error estimate of the conjugate gradient method is given by
the following minimax inequality�

jjx� xjjjG
jjx� x�jjG � min

Pj

max
k�������n

jPj��k	j�

��



where Pj is any jth degree polynomial with constant term �� see Axelsson and Barker ����
To obtain an upper bound� we 
rst use linear polynomials of the form �� � �k	��k that pass
through the outlying eigenvalues �k� � � k � p and n � q � � � k � n to minimize the
maximum absolute value of Pj at these eigenvalues� Then we use a �j � p � q	th degree
Chebyshev polynomial Tj�p�q to minimize the maximum absolute value of Pj in the interval
��p��� �n�q�� Then we get

jjx� xjjjG
jjx� x�jjG � Tj�p�q

�
�� � ��
�� � ��

���
max

����� ���	

�
pY

k��

�
� � �k
�k

	 nY
k�n�q��

�
�k � �

�k

	

�

Equation ���	 now follows by noting that for � � ���� ���� we always have

� � �k � �

�k
� �� n� q � � � k � n�

and that

Tj�p�q

�
�� � ��
�� � ��

���
� 


�
� � �

� � �

	j�p�q

�

see Axelsson and Barker ���� �

For the system

�C�C	���T �T 	x � �C�C	��T �b� ���	

the iteration matrix G is given by

G � �C�C	�����T �T 	�C�C	�����

By Theorem �� we can choose �� � � � � and �� � � � �� Then p and q are constants that
depend only on � but not on n� By choosing � � �� we have

� � �

� � �
�

��p
�� ��

�
� ��

In order to use ���	� we need a lower bound for �k� � � k � p� We 
rst note that

jjG��jj� � jj�T �T 	���C�C	jj� � jjCjj��
jjT jj��


�T �T 	�

If one of the f� has no zeros� then by ��	� we have for n su�ciently large

jjT jj�� � jjT�jj�� � c

for some c � � independent of n� Combining this with ��
	� we then see that for all n
su�ciently large�

jjG��jj� � �c � 
�T �T 	 � �cn��

��



for some constant �c that does not depend on n� Therefore�

�k � min
�

�� �
�

jjG��jj� � cn��� � � k � n�

Thus for � � k � p and � � ��� �� � � ��� we have�

� � � � �k
�k

� cn��

Hence ���	 becomes
jjx� xjjjG
jjx� x�jjG � cpnp��j�p�q�

Given arbitrary tolerance � � �� an upper bound for the number of iterations required to
make jjx� xjjjG

jjx� x�jjG � �

is therefore given by

j� 
 p� q � p log c � �p logn� log �

log �
� O�� logn� �	�

Since by using FFTs� the matrix�vector products in Algorithm PCG for Least Squares can
be done in O�m logn	 operations for any n�vector v� the cost per iteration of the conjugate
gradient method is of O�m logn	� Thus we conclude that the work of solving ���	 to a given
accuracy � is O��m log� n�m logn	 when � � �� and for su�ciently large n�

The convergence analysis given above can be further strengthened� For T an m�by�n
matrix of the form ��	 with m � kn� let �min�T

�
j Tj	 � O�n��j 	 for j � �� � � �k� By Lemma

�� we already know that

�min�T
�
j Tj	 � �max�T

�
j Tj	 � 
jjf jj���

therefore �j � �� By the Cauchy interlace theorem� we see that

�min�T
�T 	 �

kX
j��

�min�T
�
j Tj	 � O�n��	�

where
� � min

j
�j � ��

Therefore


�T �T 	 � �max�T
�T 	

�min�T �T 	
� O�n�	�

In the case when one of the �j � �� i�e� the block Tj is well�conditioned independent of
n� we see that the least squares problem is also well�conditioned� so that 
�T 	 � O��	�

�




When at least one �j � �� i�e�� 
�T 	 � O��	� the number of iterations required for
convergence is of O��	� Hence the complexity of the algorithm reduces to O�m logn	� for
su�ciently large n� We remark that in this case� one can show further that the method

converges superlinearly for the preconditioned least squares problem due to the clustering
of the singular values for su�ciently large n �See R� Chan and Strang ��� or R� Chan ����
for details	� In contrast� the method converges just linearly for the non�preconditioned case�
This contrast is illustrated very well in the section on numerical tests�

� Preconditioned Regularized Least Squares

In this section we consider solving least squares problems ��	� where the rectangular ma�
trix T is ill�conditioned� Such systems arise in many applications� such as signal and image
restoration� see ��� 
�� 
��� Often� the ill�conditioned nature of T results from discretiza�
tion of ill�posed problems in partial di�erential and integral equations� Here for example�
the problem of estimating an original image from a blurred and noisy observed image is
an important case of an inverse problem� and was 
rst studied by Hadamard �

� in the
inversion of certain integral equations� Because of the ill�conditioning of T � naively solving
Tx � b will lead to extreme instability with respect to perturbations in b� The method of
regularization can be used to achieve stability for these problems ���� Stability is attained by
introducing a stabilizing operator �called a regularization operator	 which restricts the set of
admissible solutions� Since this causes the regularized solution to be biased� a scalar �called
a regularization parameter	 is introduced to control the degree of bias� More speci
cally� the
regularized solution is computed as

mink
�
b
�

�
�
�

T
�L

�
x��	k�� ���	

where � is the regularization parameter and the p	n matrix L is the regularization operator�
The standard least squares solution to ��	� given by x � T yb� is useless for these problems

because it is dominated by rapid oscillations due to the errors� Hence in ���	� one adds a term
minkLxk� to ��	 in order to smooth the solution x� Choosing L as a kth di�erence operator
matrix forces the solution to have a small kth derivative� The regularization parameter �
controls the degree of smoothness �i�e�� degree of bias	 of the solution� and is usually small�
Choosing � is not a trivial problem� In some cases a priori information about the signal and
the degree of perturbations in b can be used to choose � ���� or generalized cross�validation
techniques may be used� e�g�� ���� If no a priori information is known� then it may be
necessary to solve ���	 for several values of � �
��� Recent analytical methods for choosing
an optimal parameter � are discussed by Reeves and Mersereau �
���

Based on the discussion above� the regularization operator L is usually chosen to be the
identity matrix or some discretization of a di�erentiation operator ��� 
��� Thus L is typically
a Toeplitz matrix� Hence� if T has the Toeplitz block form ��	� then the matrix

�T �

�
T
�L

�

��



retains this structure� with the addition of one block �or two blocks if L is a di�erence
operator with more rows than columns	� Since �T has the block structure ��	� we can form
the circulant preconditioner C for �T and use the PCG algorithm for least squares problems
to solve ���	�

Notice that if L is chosen to be the identity matrix� then the circulant preconditioner
for �T can be constructed by simply adding � to each of the eigenvalues of the circulant
preconditioner for T � In addition� the last block in �T �i�e�� �I	 has singular values �� Thus�
due to the remarks at the end of x�� if each block in T is generated by a function in C��� and
if � �� �� then 
� �T 	 � O����	 for all n� It follows then� for these problems� that ���	 can be
solved in O�m logn	 operations� for su�ciently large n�

� Numerical Tests

In this section we report on some numerical experiments which use the preconditioner C
given by equation ��	 in x� for the conjugate gradient algorithm PCG for solving Toeplitz
and block Toeplitz least squares problems� Here the preconditioner C is based on the T� Chan
optimal preconditioner Ci� for each block Ti of T � as in x
� The experiments are designed to
illustrate the performance of the preconditioner on a variety of problems� including some in
which one or more Toeplitz blocks are very ill�conditioned�

For all numerical tests given in this section we use the stopping criteria ks�j�k��ks���k� �
���
� where s�j� is the �normal equations	 residual after j iterations� and the zero vector
is our initial guess� �Observe that the value ks�j�k� is computed as part of the conjugate
gradient algorithm�	 All experiments were performed using the Pro�Matlab software on
our workstations� The machine epsilon for Pro�Matlab on this system is approximately

�
	 ������

To describe most of the Toeplitz matrices used in the examples below� we use the following
notation� Let the m�vector c be the 
rst column of T � and the n�vector rT be the 
rst row
of T � Then

T � Toep�c� r	�

The right hand side vector b is generally chosen to be the vector of all ones�

Example �
 In this example we constructm	n Toeplitz matrices generated by a positive
function in the Wiener class� varying the number of rows and columns and 
xing the number
of blocks in the block form ��	 to k � �� This example is a rectangular generalization of test
data used by Strang ����� and is de
ned as follows� Let

c�i	 � ��
i��� i � �� � � � � m and r�j	 � ��
j��� j � �� � � � � n�

The convergence results for this example is shown in Table �� which shows the number
of iterations required for Algorithm PCG to converge using T �i�e� no preconditioner	 and
our C� We can see from Table � that the use of our preconditioner does accelerate the
convergence rate of the CG algorithm for this problem� Moreover� for this example the
number of iterations remains essentially constant as m and n increase�

��



In Figure � we plot the singular values of T and TC��� The plot of the singular value
distributions shows that the preconditioner clusters the singular values very well for this
example�

Figure �� Singular values for T and TC�� in Example ��

Example �
 In this example we use the following three generating functions in the
Wiener class to construct a �n	 n block Toeplitz matrix�

�i	 Example �a	 from R� Chan and Yeung �����

c��j	 � r��j	 � �jj � �j� �	��	� �
p���jj � �j� �	��	�� j � �� 
� � � � � n�

�ii	 Example �b	 from R� Chan and Yeung �����

c��i	 � �ji� �j� �	��	�� i � �� 
� � � � � n�
r��j	 �

p���jj � �j� �	��	�� j � �� 
� � � � � n�

�iii	 Example �f	 from R� Chan and Yeung �����

c���	 � r���	 �
�


	�

c��j	 � r��j	 � ����	�j���� ��

�j����
� �

�j����
	� j � 
� �� � � � � n�

The matrix T is de
ned as
T T � �T T

� � T
T
� � T

T
� ��

where T� �Toep�c�� r�	� T� �Toep�c�� r�	 and T� �Toep�c�� r�	� For n	 n systems R� Chan
and Yeung ���� show that 
��T�	 � O�n�	� while T� and T� are well�conditioned� They also
show that T� Chan�s preconditioner works well for T� and T�� but not well for T��

��



In Table � we show the convergence results for this example� using no preconditioner and
C as a preconditioner� for several values of m and n� Figure 
 shows the singular values of T
and TC�� for m � 
�� and n � ��� These results illustrate the good convergence properties
using the preconditioner C for this example containing an ill�conditioned block� Moreover�
our computations verify the fact that 
��T 	 remains almost constant as n increases from ��
to ���

Figure �� Singular values for T and TC�� in Example 
�

Example �
 In this example we form a 
n 	 n block Toeplitz matrix using generating
functions from R� Chan and Yeung ���� which construct ill�conditioned n 	 n Toeplitz ma�
trices� Here T� � T� and thus both blocks of T are ill�conditioned� The generating function�
which is in the Wiener class� is�

Example �c	 from R� Chan and Yeung �����
c���	 � r���	 � �

c��j	 � r��j	 � �jj � �j� �	��	� �
p���jj � �j� �	��	�� j � 
� � � � � n�

Using the above generating functions� we let

T T � �T�� T��
T �

where T� � T� �Toep�c�� r�	�
In Table � we show the convergence results for this example� using no preconditioner and

C as a preconditioner� for several values of m and n� Figure � shows the singular values of T
and TC�� for m � ��� and n � ��� These results illustrate the good convergence properties
of C for this example even though it contains all ill�conditioned blocks�

��



Figure �� Singular values for T and TC�� in Example ��

Example � �m � �n	 Example 
 �m � �n	 Example � �m � 
n	
n no prec� with prec� no prec� with prec� no prec� with prec�
�� �� � �� �� 
� ��
�� �� � �
� �� �� ��
�� �� � ��� �� �� ��
�� �� � ��� �� �
 �

�� �� � ��� �� �� ��

Table �� Numbers of iterations for convergence in Examples � � ��

Example 	
 Here we consider an application to ��dimensional image or signal recon�
struction computations� In this example we construct the ��� 	 ��� Toeplitz matrix T �
whose i� j entry is given by

tij �



� if ji� jj � ��
�

�
g������ xi � xj	 otherwise�

���	

where

xi �
�i

��
� i � �� 
� � � � � ����

and

g��� �	 �
�



p
	�

exp�� ��

���
	�

Matrices of this form occur in many image restoration contexts as a �prototype problem 
and are used to model certain degradations in the recorded image �
�� 
��� Due to the

��



bandedness of T its generating function is in the Wiener class� The condition number of T
is approximately 
��	 ����

Because of the ill�conditioning of T � the system Tx � b will be very sensitive to any
perturbations in b� see x�� To achieve stability we regularize the problem using the identity
matrix as the regularization operator� Eld!en �
�� uses this approach to solve a linear system
by direct methods with the same data matrix T de
ned in ���	� To test our preconditioner
we will 
x � � ����� where � is chosen based on some tests made by Eld!en�

Let

�T �

�
T
�I

�
and �b �

�
b
�

�
�

Then �T is simply a block Toeplitz matrix� Thus we can apply our preconditioner C� and
the PCG algorithm� to solve ���	� The convergence results for solving Tx � b and �Tx � �b
with no preconditioner and �Tx � �b using C as a preconditioner are shown in Table 
� The
singular values of T and �TC��� and the convergence history for solving Tx � b and �Tx � �b
using our preconditioner C are shown in Figure �� These results indicate that the PCG
algorithm with our preconditioner C may be an e�ective method for solving this regularized
least squares problem�

n Tx � b �Tx � �b �TC��x � �b

��� � ��� �� ��

Table ��Numbers of iterations for convergence in Example ��

In summary� we have shown how to construct circulant preconditioners for the e�cient
solution of a wide class of Toeplitz least squares problems� The numerical experiments
given collaborate our convergence analysis� Examples � and 
 both illustrate superlinear
convergence for the PCG algorithm preconditioned by C� even when in Example 
 the matrix
T contains an ill�conditioned block� In addition� even though the matrix T in Example �
contains all ill�conditioned blocks� the scheme works well for the computations we performed�

Example � illustrates the applicability of the circulant PCG method to regularized least
squares problems� The example comes from ��dimensional signal restoration� 
�dimensional
signal or image restoration computations often lead to very large least squares problems
where the coe�cient matrix is block Toeplitz with Toeplitz blocks� Block circulant precon�
ditioners for this case are considered elsewhere �����

In this paper we have used the T� Chan ���� optimal preconditioner for the Toeplitz
blocks� Other circulant preconditioners such as ones studied by R� Chan ����� Huckle �
���
Ku and Kuo �
��� Strang ����� Tismenetsky ����� or Tyrtyshnikov ��
�� can be used� but the
class of generating functions may need to be restricted for the convergence analysis to hold�

��



Figure 	� Singular values and convergence history for T and �TC���
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