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Abstract Video clips are made up of many still frames. Most of the times, the
frames are small perturbations of their neighboring frames. Recently,
we proposed a framelet-based algorithm to enhance the resolution of
any frames in a video clip by solving it as a super-resolution image
reconstruction problem. In this paper, we extend the algorithm to video
enhancement, where we compose a high-resolution video from a low-
resolution one. An experimental result of our algorithm on a real video
clip is given to illustrate the performance.
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Introduction

High-resolution images are useful in remote sensing, surveillance, mili-
tary imaging, and medical imaging, see for instances Mather04; LKC00;
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CZ03. However, high-resolution images are more expensive to obtain
compared to low-resolution ones which can be obtained from an array of
inexpensive low-resolution sensors. Therefore, there has been much in-
terest in reconstructing high-resolution images from low-resolution ones
that are small perturbation of each other, see KS93; NKS95; SS96;
EST97; YP03; MMK03. One approach is based on the maximum like-
lihood technique using the expectation maximization algorithm to seek
the high resolution image CHA96. Another approach is the regular-
ization method in HBBAW98 which was based on the total squared
error between the observed low-resolution images and the predicted low-
resolution images. The predicted images are the results of projecting
the high-resolution image estimate through the observation model. The
framelet algorithm proposed in CRSS1; CRSS2 is different from these
methods. It applies the unitary extension principle in RS97 to form a
system of tight frame filters. In this approach, there is only matrix-
vector multiplication, and no need for solving a minimization problem.
Recently, it was shown that this framelet algorithm, which is an itera-
tive algorithm, indeed converges to a minimizer of a variational problem
CCS08.

Video clips are made up of many still frames (about 25 to 30 frames
per second), and the scene usually does not change much from one frame
to the next. Thus given a reference frame, its nearby frames can be
considered as its small perturbations, and we can make use of them to get
a high-resolution image of the reference frame. More precisely, consider
a sequence of frames {fk}Kk=−K in a video clip, where k increases with
the time when the frame fk is taken. Let f0 be the reference frame we
want to enhance its resolution. The frames {fk}k 6=0 can be considered
as small spatial perturbations of f0. Then, we can use the framelet
algorithm proposed in CRSS1 to improve the resolution of f0. Such a
still enhancement algorithm is given in CSX07.

The goal of this paper is to extend the algorithm in CSX07 to video
enhancement, where high-resolution video streams are constructed from
low-resolution ones. The paper is organized as follows. In Section 1,
we introduce the framelet algorithm for the high-resolution image re-
construction given in CRSS1. In Section 2, we describe the algorithm
proposed in CSX07 for enhancing video stills. Then in Section 3, we
extend it to video enhancement and apply the resulting algorithm on a
real video to enhance the video resolution. Conclusion is given in Section
4.

In this paper, we use bold-face characters to indicate vectors. If f
represents an image f(x, y), f represents the column vector constructed
by raster scanning of f row by row.



A Framelet-Based Algorithm for Video Enhancement 3

Figure 1.1. The model of obtaining g by interlacing pixels from gi,j .
(

� :
g0,0 pixels; � : g0,1 pixels; N : g1,0 pixels; △: g1,1 pixels.

)

1. High-Resolution Image Reconstruction

The Model

Here we briefly recall the high-resolution image reconstruction model
introduced in BB98. For more details, please refer to the paper. Let h
be a piecewise continuous function measuring the intensity of a scene.
An image of h at sampling resolution T can be modeled by the integral

h(n1, n2) ≡
1

T 2

∫ (n2+
1
2
)T

(n2−
1
2
)T

∫ (n1+ 1
2
)T

(n1−
1
2
)T

h(x, y)dxdy, n1, n2 ∈ Z. (1.1)

Here (n1, n2) are the pixel locations. High-resolution image reconstruc-
tion refers to the construction of an image with sampling resolution T by
using K2 low-resolution images of sampling resolution KT , where K is
a positive integer. In this paper, we only consider K = 2. Larger value
of K can be considered similarly, but with more complicated notations.

When K = 2, we are given four low-resolution images, g0,0, g0,1, g1,0, g1,1

of sampling resolution 2T , sampling at

gi,j(n
′
1, n

′
2) =

1

4T 2

∫ (2(n′

2+ 1
2
)+j)T

(2(n′

2−
1
2
)+j)T

∫ (2(n′

1+ 1
2
)+i)T

(2(n′

1−
1
2
)+i)T

h(x, y)dxdy, (1.2)

where i, j = 0, 1. The locations (0, 0), (0, 1), (1, 0) and (1, 1) are the
sensor positions.

A straightforward way to form an image g of sampling resolution T
is to interlace the four low-resolution images, i.e.

g(n1, n2) = gi,j(n
′
1, n

′
2), (1.3)

where i = n1 mod 2, j = n2 mod 2, n′
1 = ⌊n1/2⌋, n′

2 = ⌊n2/2⌋, see
Figure 1.1. The function g is called the observed high-resolution image.
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Note that g is not equal to the desired image h in (1.1) but is a good
approximation of it. If we assume h(x, y) is constant in the sampling
region

[(n1 − .5)T, (n1 + .5)T ) × [(n2 − .5)T, (n2 + .5)T ),

for all n1, n2 ∈ Z, (i.e. h(x, y) ≡ h(n1, n2) there), then by (1.1)–(1.3),
we can easily prove that

g(n1, n2) =
1

4
[
1

4
h(n1 − 1, n2 − 1) +

1

2
h(n1 − 1, n2) +

1

4
h(n1 − 1, n2 + 1)

+
1

2
h(n1, n2 − 1) + h(n1, n2) +

1

2
h(n1, n2 + 1)

+
1

4
h(n1 + 1, n2 − 1) +

1

2
h(n1 + 1, n2) +

1

4
h(n1 + 1, n2 + 1)].

In matrix form, it is
g = H0,0h, (1.4)

where H0,0 = H0 ⊗H0 with H0 being the matrix representation of the
discrete convolution (i.e. Toeplitz form) with kernel h0 = [1/4, 1/2, 1/4].

To obtain a better high-resolution image than g, one will have to
solve h from (1.4). It is an ill-posed problem where many methods are
available. One approach is the framelet method in CRSS1 that we are
going to describe next.

Framelet-Based HR Image Reconstruction

Here we briefly recall the algorithm in CRSS1 and refer the reader
to the paper for more details. The convolution kernel h0 is a low-pass
filter. By applying the unitary extension principle in RS97, h0 together
with the following high-pass filters form a tight framelet system:

h1 =
[

√
2

4
, 0,−

√
2

4

]

, h2 = [−1

4
,
1

2
,−1

4
]. (1.5)

Define
Hi,j = Hi ⊗Hj, 0 ≤ i, j ≤ 2,

where Hi is the discrete convolution matrix with kernel hi. The perfect
reconstruction formula for the framelet systems gives

h =
2

∑

i,j=0

H∗
i,jHi,jh,

see CRSS1. Based on (1.4) and substituting H0,0h by g, we have

h = H∗
0,0g +

2
∑

i, j = 0
(i, j) 6= (0, 0)

H∗
i,jHi,jh. (1.6)
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Figure 1.2. The operator Tv defined recursively with T0 = I , the identity.

Images are usually contaminated with noise, which are of high-frequency
in nature. Since except for H0,0 the others filter matrices are all high-
pass, the noise is magnified in the second term of (1.6). We can use
a threshold operator Dλ to remove the noise. The iteration, in matrix
terms, thus becomes

h(n+1) = H∗
0,0g +

2
∑

i, j = 0
(i, j) 6= (0, 0)

H∗
i,jDλ(Hi,jh

(n)), n = 0, 1, . . . ,

where h(0) is the initial guess. Here we use Donoho’s soft thresholding
operator Donoho95:

Dλ(x) = (tλ(x1), · · · , tλ(xL))⊤,

where tλ(x) = sgn(x)max(|x| − λ, 0), λ = 2σ
√

log L, L is the length of
the vector x, and σ is the variance of the noise estimated numerically
by the method in Donoho95.

However, to avoid too many high-frequency components being re-
moved, we use wavelet packets to further decompose the high-frequency
components before doing the thresholding. In essence, we replace the
operator Dλ by the recursively-defined Tv shown in Figure 1.2. The op-
erator Tv will first decompose w until the level v and then threshold
all the coefficients except the low-frequency ones on level v. In matrix
terms, we have

h(n+1) = H∗
0,0g +

2
∑

i, j = 0
(i, j) 6= (0, 0)

H∗
i,jTv(Hi,jh

(n)), n = 0, 1, . . . . (1.7)

HR Reconstruction with Displacement Errors

Before we can apply the algorithm in Section 1.0 to improve video
quality, there is one problem we have to overcome. In enhancing videos,
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the frames in the video may not be aligned exactly by length T as in
(1.3) or in Figure 1.1. For example, relative to the reference frame, a
nearby frame may have moved in the x-direction by a distance of ℓT
where ℓ = n + r, with n ∈ Z and |r| < 1. In that case, if we want to
apply the algorithm in the last section, we can first shift the frame back
by nT = (n/2)(2T ) and then consider the shifted frame as a displaced
frame of the reference frame with displacement error equals r/2. The
displacement error can then be corrected by framelet systems as follows.
We refer the readers to CRSS1 for more details.

Define the 2D downsampling and upsampling matrices Di,j = Dj⊗Di

and Ui,j = Uj⊗Ui, where Di = IM ⊗e⊤i and Ui = IM ⊗ei (i = 0, 1), IM

is the identity of size M , e0 = (1, 0)⊤ and e1 = (0, 1)⊤. Here M -by-M
is the resolution of the low-resolution frame. Then we have

gi,j = Di,jg and g =

1
∑

i,j=0

Ui,jgi,j. (1.8)

As mentioned above, in practice, what we obtained is a shifted version
of gi,j , i.e. we have g̃i,j(·, ·) ≡ gi,j(·+ ǫx

i,j, ·+ ǫy
i,j), where 0 ≤ |ǫx

i,j| < 0.5,

0 ≤ |ǫy
i,j | < 0.5, 0 ≤ i, j ≤ 1. The parameters ǫx

i,j and ǫy
i,j are called the

displacement errors. As in (1.4) and (1.8), the observed low-resolution
image g̃i,j can be considered as the down-sample of h after it has passed
through a filter corresponding to the 2D framelet filter matrix H =

H(ǫy
i,j) ⊗ H(ǫx

i,j), where H(ǫ) denotes the 1D filter
1

2
[
1

2
− ǫ, 1,

1

2
+ ǫ].

More precisely, we have
g̃i,j = Di,jHh.

Then gi,j can be obtained from g̃i,j via

gi,j = Di,jH0,0h = Di,j [H − (H −H0,0)]h = g̃i,j −Di,j(H −H0,0)h.

Hence we have

g =

1
∑

i,j=0

Ui,jgi,j =

1
∑

i,j=0

Ui,j[g̃i,j −Di,j(H −H0,0)h] = g̃ − (H −H0,0)h.

(1.9)
Substituting (1.9) into (1.7), we arrive at the 2D image resolution en-
hancement formula:

h(n+1) = H∗
0,0[g̃ − (H −H0,0)h

(n)] +
2

∑

i, j = 0
(i, j) 6= (0, 0)

H∗
i,jTv(Hi,jh

(n)). (1.10)

We depict this algorithm graphically in Figure 1.3.
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Figure 1.3. Framelet-based resolution enhancement algorithm for 2D images, see
(1.10).

2. Resolution Enhancement for Video Clips

Video clips consist of many still frames. Each frame can be consid-
ered as perturbations of its nearby frames. Therefore, we may generate
higher resolution images of any frame in the video by exploiting the high
redundancy between the nearby frames. More precisely, consider a se-
quence of frames {fk}Kk=−K in a given video clip, where k increases with
the time when the frame fk is captured. We aim to improve the resolu-
tion of the reference frame f0 by incorporating information from frames
{fk}k 6=0. Without loss of generality, we can assume that f0 is the low-
resolution image at the (0,0) sensor position without any displacement
error.

An algorithm for video still enhancement is given in CSX07 which is
an adaptation of the algorithm in (1.10). Basically, we have to tackle
the following issues:

1 for each frame fk, we have to estimate its sensor position and
displacement errors with respect to f0, and

2 it may be that not all low-resolution images at all sensor positions
are available in the video.

Here we recall the ways we handled these issues in CSX07.

Estimating the Motion Parameters

For computational efficiency, we assume that the frames {fk}k 6=0 are
related to f0 by an affine transform, i.e.

fk(Rkx− rk) ≈ f0(x), k 6= 0,

where x are the coordinates of the pixels in the region of interest. Denote

Rkx− rk ≡
[

c
(k)
0 c

(k)
1

c
(k)
3 c

(k)
4

]

x +

[

c
(k)
2

c
(k)
5

]

=

[

c
(k)
0 c

(k)
1 c

(k)
2

c
(k)
3 c

(k)
4 c

(k)
5

]

[

x

1

]

.

(1.11)
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Our task is to estimate the parameters {ck}5k=0 that minimize the dif-
ference between fk and f0, that is,

(c
(k)
0 , c

(k)
1 , · · · , c(k)

5 ) = argmin
∑

j∈I

[fk(Rkxj − rk)− f0(xj)]
2,

where I is the index set of pixels in the region of interest, which may
be the entire image or part of the image. Many methods can be used
to solve this minimization problem, such as the Levenberg-Marquardt
iterative nonlinear minimization algorithm S96.

With Rk and rk, we can compute the sensor position (sx
k, sy

k) with
sx
k, s

y
k ∈ {0, 1} and the displacement errors (ǫx

k, ǫy
k) for the frame fk with

respect to f0. Since fk(Rkx−rk) = fk(Rk(x−R−1
k rk)), it can be viewed

as a translation of f0 with displacement vector −R−1
k rk. Our task is to

write

R−1
k rk = uk +

1

2

[

sx
k

sy
k

]

+
1

2

[

ǫx
k

ǫy
k

]

. (1.12)

Then, f̂k(x) ≡ fk(Rk(x − uk)) can be considered as the low-resolution
image gsx

k
,s

y

k
with displacement errors (ǫx

k, ǫy
k) at sensor position (sx

k, sy
k).

The algorithm is as follows.

Algorithm 1. (f̂(x), sx, sy, ǫx, ǫy)← (f, f0): locate the frame f against
the reference frame f0.

1 Compute [r̃1, r̃2] = R−1r.

2 Let u ≡ [⌊r̃1 +
1

4
⌋, ⌊r̃2 +

1

4
⌋]⊤, then [d1, d2] ≡ [r̃1, r̃2] − u⊤ has

entries in [−1

4
,
3

4
).

3 Let [sx, sy] ≡ [⌊2d1 +
1

2
⌋, ⌊2d2 +

1

2
⌋], then sx, sy ∈ {0, 1}.

4 Let [ǫx, ǫy] ≡ [2d1 − sx, 2d2 − sy], then |ǫx|, |ǫy | <
1

2
and (1.12)

holds.

5 f̂(x) ≡ f(R(x− u)).

We use Figure 1.4 to illustrate how the algorithm resolves the displace-
ment in the horizonal direction. It is similar for the vertical direction.
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Figure 1.4. Resolve the horizonal displacement in Algorithm 1. First we compute
the total displacement r̃1. Then write r̃1 = u1 + d1 where d1 ∈ [−1/4, 3/4). Then the

sensor location sx = ⌊2d1 +
1

2
⌋ and the displacement error ǫx = 2d1 − sx.

The Video Still Enhancement Algorithm

After passing a frame f through Algorithm 1, we then have the
(sx, sy)th low-resolution image with displacement error (ǫx, ǫy), i.e.

f̂(·) = g̃sx,sy(·, ·) = gsx,sy(·+ ǫx, ·+ ǫy).

But in the algorithm for image enhancement (1.10) (see also Figure 1.3),
we assume not one, but a complete set of low-resolution images {g̃i,j}1i,j=0
at every sensor position. To compensate for the missing low-resolution
images, our idea is to generate them by downsampling the current high-
resolution approximation h of f0 with zero displacement error, i.e.

gi,j =

{

f̂ −Di,j(H −H0,0)h, (i, j) = (sx, sy),
Di,jH0,0h, (i, j) 6= (sx, sy).

(1.13)

We use an alternate direction approach to obtain the high-resolution
image h. In the m-th outer iteration step, we let gsx,sy = f̂−Dsx,sy(H−
H0,0)h

(0)
m , where h

(0)
m = hm−1. Then, we iterate h

(n)
m with respect to n as

shown in Figure 1.5, which is in fact a modification of Figure 1.3. When

it converges, we set h
(0)
m+1 = hm. Once we get an update hm, we will

go into the next outer iteration; see Figure 1.6. The complete alternate
direction algorithm is as follows.

Algorithm 2. h← Update (h, f̂ , sx, sy, ǫx, ǫy): Update the high resolu-

tion image h by a frame f̂ with parameters (sx, sy, ǫx, ǫy).

1 Initialize h0 = h, and set m = 0.
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Figure 1.5. Inner iteration of Algorithm 2. Here, we fix the low-resolution image
gsx,sy , and compensate the missing ones gi,j by downsampling H0,0h

(n)
m . Then we

have g =
∑1

i,j=0 Ui,jgi,j as in (1.9) with gi,j substituted by (1.13). We iterate h
(n)
m

w.r.t. n until it converges; then we set hm = h
(n)
m .

Figure 1.6. Outer iteration of Algorithm 2. We update the high resolution image h

by a frame f̂ with parameters (sx, sy, ǫx, ǫy).

2 If PSNR(Dsx,syHhm, f̂ ) < 50dB, set h
(0)
m+1

= hm, and m = m+1;
otherwise, output h = hm, stop.

3 Iterate h
(n)
m w.r.t. n until convergence (see Figure 1.5):

(a) gi,j =

{

f̂ −Dsx,sy(H −H0,0)h
(0)
m , (i, j) = (sx, sy),

Di,jH0,0h
(n)
m , (i, j) 6= (sx, sy).

(b) g =
1

∑

i,j=0
Ui,jgi,j.

(c) h
(n+1)
m = H∗

0,0g +
2
∑

i, j = 0
(i, j) 6= (0, 0)

H∗
i,jTv(Hi,jh

(n)
m ).

4 Set hm = h
(n)
m after converge, and go back to step 2.
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Figure 1.7. Resolution enhancement for video clips (in the dotted-lined box it is used
to determine if f̂k is good enough to update h).

In Figure 1.7, we give the algorithm for the video still enhancement.
Given a reference frame f0, we use a sequence of 2K frames {fk}Kk=−K

that are taken just before and after the reference frame f0. The step in
the dotted-lined box is to determine if the shifted frame f̂k is close enough
to f0 or else we discard the frame. In the experiments, we set p = 25dB.
Initially, we estimate h by bilinear interpolation on f0, and then use the
new information from good frames to update h. The advantage of our
algorithm is that based on the rule shown in the dotted-lined box it only
chooses the good candidate frames to enhance the resolution, and there
is no need to determine the number of frames to be used in advance.

3. Video Enhancement Algorithm

Since video streams are made up of frames, and we can now improve
the resolution of each frame in a video stream, we can compose these
high-resolution frames together to generate a higher resolution video of
the given video stream. More precisely, we can apply our algorithm in
Figure 1.7 to the frames {fk}Kk=−K to enhance f0, and then apply the

algorithm again to frames {fk}K+1
k=−K+1 to enhance f1, etc. Then, by

combining the enhanced frames, we obtain a high-resolution video.
In this section, we test this idea for a video clip which is filmed by us

by moving our camera over a calendar. The video clip is in .avi format
with size 520× 480, and can be downloaded at VIDEO. We first try the
video still enhancement algorithm in CSX07 to enhance the resolution
of a frame in the video. In the seven seconds of the video, we choose
the 60th frame f60 as our reference frame, see Figure 1.8 (a). In Figure
1.8(b), we show a part of the reference frame f60 (the area enclosed by
the box in Figure 1.8 (a)) that we try to improve the resolution on.
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(a) (b)

Figure 1.8. (a) The reference frame f60, and (b) a part of f60 .

We let K = 10, that is, we use the 50th to the 70th frames to im-
prove the resolution of f60. The alignment parameters for this clip are
listed in Table 1.1, which shows that frames f52 and f54 are discarded.
Figure 1.9(a) gives the first guess of the high-resolution image of f60 by
the bilinear interpolation. The result from our algorithm (i.e. Figure
1.7) is shown in Figure 1.9(b). Clearly the calendar by our method is
much clearer than that by the bilinear interpolation. Moreover some
numbers, such as “16” and “18”, which are clearly discernible now, are
very difficult to read from the video clip or just by bilinear interpolation.

The results clearly show that the video still enhancement algorithm
(Figure 1.7) is working. Next we extend it to video enhancement. Our
aim is to obtain a high-resolution video for the image in Figure 1.8(b).
We will use the video still enhancement algorithm (Figure 1.7) repeatedly
to enhance all frames in {fk}63k=40. More precisely, frames {fk}ℓ+10

k=ℓ−10 will
be used to improve the resolution of frames fℓ, with 40 ≤ ℓ ≤ 63. The
enhanced stills are put back together to get a higher-resolution video
with 24 frames. The original clip and the resulting clips are given in
VIDEO. Because the new one has higher resolution, it is 4 times in size
and is much clearer.
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Table 1.1. Alignment Results from Our Algorithm

Frame Index (sx, sy) (ǫx, ǫy) f0(x) ≈ f(Rx + r)

61 (1,0) ( 0.119, 0.036) Yes
59 (1,0) ( 0.246,-0.066) Yes
62 (0,0) ( 0.368, 0.186) Yes
58 (0,0) ( 0.272,-0.126) Yes
63 (1,0) (-0.139, 0.086) Yes
57 (1,0) ( 0.334,-0.214) Yes
64 (1,0) ( 0.323,-0.194) Yes
56 (0,0) (-0.134,-0.381) Yes
65 (0,0) (-0.349, 0.164) Yes
55 (0,1) ( 0.454, 0.448) Yes
66 (0,0) ( 0.421, 0.181) Yes
54 · · · · · · No
67 (1,0) (-0.219, 0.236) Yes
53 (0,1) (-0.323, 0.323) Yes
68 (1,0) ( 0.313, 0.232) Yes
52 · · · · · · No
69 (0,0) ( 0.096, 0.204) Yes
51 (0,0) ( 0.292,-0.500) Yes
70 (0,0) ( 0.485, 0.186) Yes
50 (0,1) ( 0.062, 0.301) Yes

4. Conclusion

In this paper, we give a short survey of the framelet algorithm pro-
posed in CSX07 for high-resolution still enhancement from video clips.
We then extend it to video enhancement. Simulation results show that
our framelet algorithm can reveal information that is not discernible in
the original video clips or by simple interpolation of any particular frame
in the video.

By modification of the motion estimation equation (1.11), our framelet
algorithm can also be extended to more complicated motions. So far,
we have not yet make use of the sparsity of the tight-frame coefficients
across frames. How to make use of it is an interesting topic for our future
work.
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