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Abstract� The solution to the biharmonic equation in a simply connected region 
 in
the plane is computed in terms of the Goursat functions� The boundary conditions are
conformally transplanted to the disk with a numerical conformal map� A linear system is
obtained for the Taylor coe�cients of the Goursat functions� The coe�cient matrix of the
linear system can be put in the form I � K where K is the discretization of a compact
operator� K can be thought of as the composition of a block Hankel matrix with a diagonal
matrix� The compactness leads to clustering of eigenvalues and the Hankel structure yields
a matrix�vector multiplication cost of O
N logN�� Thus if the conjugate gradient method
is applied to the system then superlinear convergence will be obtained� Numerical results
are given to illustrate the spectrum clustering and superlinear convergence�

Key words� Biharmonic equation� numerical conformal mapping� Hankel matrices�
AMS subject classi�cations� 	�C	�� 	�A	�� ��E��
Abbreviated title� The Biharmonic Equation

�� Introduction� Boundary value problems for the biharmonic equation in two
dimensions arise in the computation of the Airy stress function for plane stress problems
�KK�� �Mik�� �Musk�� and in steady Stokes �ow of highly viscous �uids �MT� Chap� ����
�Poz�� Integral equations methods are a popular choice for the numerical solution of these
equations �GGMa�� �MG�� �K� and references there�� �Poz�� The application of conformal
mapping to this problem� though classical� is less well known �KK�� �Musk�� Unlike the
Laplace equation� the biharmonic equation is not preserved under conformal transplan�
tation� However� a biharmonic function and its boundary values can be represented in
terms of the analytic Goursat functions and this representation can be transplanted with a
conformal map to a computational region� such as a disk� an ellipse� or an annulus� where
the boundary value problem can be solved more easily�

In this paper� we consider simply�connected regions with analytic boundaries and use
the unit disk as our computational region� In our examples� the conformal map f from
the unit disk to the region is either known explictly or approximated numerically� The
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boundary conditions for the biharmonic function are then transplanted by f to the disk
and a linear system for the Taylor coe�cients of the Goursat functions in the disk is
obtained and solved e�ciently by conjugate�gradient�like methods� If the boundary of the
target region is smooth enough 
analytic in our examples�� the continuous problem can be
posed as a compact operator acting on some appropriate Banach space� This will lead to
a clustering of the spectrum and hence superlinear convergence�

We expect to be able to generalize this work to cases where the conformal map f is a
Faber series map from an ellipse� cross�shaped or spoke�like region as in �DE� and �DEP�� If
the target region has elongated sections� the conformal map from the disk may be severely
ill�conditioned and an ellipse or cross�shaped region may provide a better computational
region� In �GGMa� the Sherman�Lauricella equation is solved for spoke�like regions which
provide di�cult regions for plane stress and plane strain problems� We anticipate that
our Faber series methods may have advantages for such highly distorted regions� In cases
for which the target region is not too distorted� so that the map from the disk is not
too severely ill�conditioned� our method may also have some advantages� For instance�
if several boundary value problems have to be solved for the same region� so that the
conformal map only has to be computed once� our method� which is based on the fast
Fourier transform 
FFT�� will give accurate answers in O
N logN� for moderate sized N �
The methods in �GGMa� use the fast multipole method� which costs only O
N�� but with
a large constant� so that large N are required in practice for it to be faster than the FFT�
Below� we will use the FFT�based numerical conformal mapping method given in �Weg��
Introductions to numerical conformal mapping can be found in �Ga� and �He��

The outline of the paper is as follows� In section �� we discuss the solution of boundary
value problems for the biharmonic equation in terms of Goursat functions and the confor�
mal map from the disk to the plane region� In section 	� we discuss the special structure
of the exact linear system� We will see that the coe�cient matrix of the 
in�nite� linear
system is of the form I�HD where I is the identity matrix� D a diagonal matrix� and H is
a block Hankel matrix� 
A Hankel matrix is constant on the antidiagonals�� It will be seen
that HD actually can be represented as a compact operator with a one dimensional null
space� This system can be symmetrized and solved 
up to the null vector� using the conju�
gate gradient method� In section �� we formulate the discrete problem� We will show how
the conjugate gradient method is applied to the discrete system and how the matrix�vector
multiplication can be carried out in O
N logN�� In section �� we give several numerical
examples which illustrate the spectrum clustering� the superlinear convergence� and the
discretization error�

�� The biharmonic equation� Here we will follow the presentation in �KK� and
�Musk�� We wish to �nd the Airy stress function u for a simply connected region 
 with
a smooth boundary � in the ��plane� Then u satis�es the biharmonic equation�

��u � �

for � � � � i� � 
� The two fundamental boundary value problems in elasticity seek to
�nd u given the external stresses or external displacements on the boundary �� Both of
these problems amount to specifying

u� � G� and u� � G�
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on �� The function u can be represented as

u
�� � Re
��
�� � �
����

where �
�� and �
�� are analytic functions in 
 known as the Goursat functions� Letting
G � G� � iG�� the boundary conditions for the �rst fundamental problem become

�
�� � ���
�� � �
�� � G
��� � � � 
��

where �
�� � ��
��	 The second fundamental problem leads to similar conditions� For
simplicity� in this paper� we will only concentrate on the �rst boundary conditions 
���

We remark that �
�� and �
�� are not unique� In fact� if �
�� and �
�� represent any
solution of the problem� then so does �
�� �Ci� � 
 and �
�� � 
�� where C � R� 
 � C�
and 
� � C� Thus� the constants C and 
 must be speci�ed for uniqueness of �� These
constants are determined below�

The problem at this point is to �nd � and � analytic in 
 and satifying 
��� One
approach is to represent � and � as Cauchy�type integrals of a density function on �	 This
leads to the Sherman�Lauricella equation� a Fredholm integral equation for the density
function which can be solved e�ciently by the fast multipole method �GGMa�� In this
paper� we propose to solve it by using numerical conformal mapping coupled with the
conjugate gradient method�

Let � � f
z� be the conformal map from the unit disk to 
� �xing f
�� � � � 
	 Then
with d
z� �� f
z��f �
z�� �
z� �� �
f
z��� �
z� �� �
f
z��� and G
z� �� G
f
z��� equation

�� transplants to the disk as

�
z� � d
z���
z� � �
z� � G
z�� jzj � �	 
��

Let

�
z� �
�X
k��

akz
k and �
z� �

�X
k��

bkz
k	

Notice that the sum for � begins at k � �� This �xes the constant 
 mentioned above for
uniqueness by requiring �
�� � a� � �� After transplanting to the disk� the other constant
is determined by setting Im
a��f

�
��� � ��
The problem is to �nd the ak�s and the bk�s� For jzj � �� de�ne the Fourier series

d
z� �� f
z��f �
z� �
�X

k���

hkz
k� G
z� �

�X
k���

Akz
k	

Substituting into 
�� gives a linear system of equations for the ak�s and bk�s�

aj �
�X
k��

kakhk�j�� � Aj� j � �� �� 	� 	 	 	 
	�

bj �
�X
k��

kakhk�j�� � A�j � j � �� �� �� 	 	 	 
��

	



If 
	� is solved for the ak�s� then the bk�s can be easily computed from 
��� Thus� in this
paper� we will concentrate on an e�cient method for solving 
	��

There is also a moment condition to be satis�ed by the data� After transplantation
to the disk� this condition can be stated as Re�

R
jzj��

G
z�f �
z�dz� � �� This moment

condition will assure the existence of a solution� Our assumption is that all data studied
in this paper satisfy this equation�

Before proceeding� it should be noted that if our boundary data corresponds to G � �
then the only possible 
nonzero� choice for � is �
z� � Cif
z�� for some nonzero C �
R� This implies that the null space corresponding to the in�nite system in 
	� is one
dimensional and the eigenvector spanning this space is given by ak � ick� k � �� �� 	� � � �
where f
z� �

P�
k�� ckz

k	

�� Compact Operators� Taking real and imaginary parts of equation 
	� gives us

�j �
�X
k��

k
�k�j���k � 
k�j��
k� � Bj � j � �� �� 	� 	 	 	 
��


j �
�X
k��

k

k�j���k � �k�j��
k� � Cj � j � �� �� 	� 	 	 	 
��

where we have used the notation ak � �k � i
k� hk � �k � i
k� and Ak � Bk � iCk�
For visualization purposes� we combine equations 
�� and 
�� into a doubly in�nite matrix
equation in which the two sums are combined into a block Hankel matrix composed with
a diagonal matrix� In fact� 
�� and 
�� can be written as


I� �Hr��D����Hi��D�
 � B 
��


I� �Hr��D��
 �Hi��D�� � C 
��

so that

��
I� �
� I�

�
�

�
Hr�� Hi��

Hi�� �Hr��

��
D� �
� D�

���
�



�
�

�
B
C

�

��

where � � 
��� ��� 	 	 	�
T � 
 � 

�� 
�� 	 	 	�

T � B � 
B�� B�� 	 	 	�
T � C � 
C�� C�� 	 	 	�

T � I�
is the in�nite identity matrix� D� � diag
�� �� 	 	 	�� Hr�� is an in�nite Hankel matrix
generated by the �k� and Hi�� is an in�nite Hankel matrix generated by the 
k�

Now suppose 
�� 
� represents a solution to 
���
��� De�ne

x �

�
D

���
� �

D
���
� 


�
� r �

�
D

���
� B

D
���
� C

�
	

Then 
�� can be written as


I� �M��x � r 
���

�



where M� is given by

M� �

�
Mr�� Mi��

Mi�� �Mr��

�
�

�
D

���
� Hr��D

���
� D

���
� Hi��D

���
�

D
���
� Hi��D

���
� �D���

� Hr��D
���
�
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Note that M� is symmetric� We would now like to justify the formal manipulations above
and show that M� is a compact operator� This will require the following two preliminary
lemmas�

Lemma �� Let f be a conformal map from the unit disk to the region 
 with boundary ��
Let � be analytic and

f
ei���f �
ei�� �
�X

k���

hke
ik�	

Then there exists a C � � and R � � such that

jhkj � CRjkj	

Proof� Since � is analytic� f extends as a bounded� analytic function with f �
z� �� � for
jzj � ��R for some R � �� Let

f
z� �
�X
k��

ckz
k and ��f �
z� �

�X
j��

djz
k	

Then there is a c such that jckj� jdkj � cRk	 Further� we have that

f
ei���f �
ei�� �
�X
k��

�X
j��

ckdje
i�k�j��

�
�X
l��

�X
j��

cl�jdje
il� �

�X
l��

�X
j�l��

cj�ldje
�il�

�
�X
l��

�X
j��

cl�jdje
il� �

�X
l��

�X
j��

cjdl�je
�il� 	

And so

jhlj � j
�X
j��

cl�jdj j �
�X
j��

jcl�j jjdj j � cRl
�X
j��

R�j �
cRl

�� R�
� CRl� l � �	

Similarly

jh�lj � j
�X
j��

cjdl�j j � CRl� l � �	

�



Next we show that the entries of Mr�� and Mi�� also decay exponentially fast�

Lemma �� Under the assumptions of Lemma �� the 
j� k�th entries of Mr�� and Mi��

decay like crjj�kj for some c � � and r � ��

Proof� We will prove the case for Mr��� The case for Mi�� follows similarly� Let mk�j

denote the 
k� j�th entry of Mr��� Then we must have mk�j �
p
kj�k�j��� Therefore

jmk�j j �
p
kjjhk�j��j � C

p
kjRjk�jj	 
���

Let r � 
� �R��� � �� Since

lim
x��

�p
x


r

R
�x � ��

there exists an l� � � such that

p
lRl � rl� 	l � l�	

Let

c � max
��l�l�

f
p
l

R

r
�lg�

we then see that p
lRl � crl� 	l � �	

The lemma now follows directly from 
����

Lemma � gives us the following theorem and corollary�

Theorem �� Mr�� � l� 
 l� and Mi�� � l� 
 l� are compact operators where for y � l� �

Mr��y �
�X
k��

p
kj�k�j��yk� j � �� �� 	 	 	

Mi��y �

�X
k��

p
kj
k�j��yk� j � �� �� 	 	 	

Proof� We will prove the theorem for Mr��� As above� Mi�� follows similarly� De�ne the

�nite rank operators fMr�ng � fD���
n HnD

���
n g by

Mr�ny �
nX

k��

p
kj�k�j��yk� j � �� �� 	 	 	 � n

for all y � 
y�� y�� 	 	 	� � l�� The goal is to show that Mr�� can be approximated uniformly
by these �nite rank operators� 
Then� e�g�� a version of Theorem ���c �Con� p� ��� for

�



Banach spaces shows that Mr�� is itself compact� If A � 
akj� is an in�nite matrix� then
the induced l� operator norm is given by

jjAjjl� � sup
j

�X
k��

jakjj�

see� e�g�� �Con� p� ���� prob� ���  From the geometric decay of Lemma � we may write

�X
k��

jmk�j j � Crj
�X
k��

rk � C�r
j � j � �	

Consequently�

jjMr�� �Mr�njjl� � sup
n �X

k��

jmk�n��j�
�X
k��

jmk�n��j� 	 	 	
o

� C� supfrn��� rn��� 	 	 	g
� C�r

n�� 
 �	

Thus� Mr�� is compact as desired�

Corollary �� M� is compact on l� � l� where for x � 
x�� x�� � l� � l� �

M�

�
x�

x�

�
�

�
B�

�P
k��

p
kj�k�j��x

�
k �

�P
k��

p
kj
k�j��x

�
k

�P
k��

p
kj
k�j��x

�
k �

�P
k��

p
kj�k�j��x

�
k

�
CA 	 
���

The norm on l� � l� is given by

jjxjjl��l� � jjx�jjl� � jjx�jjl� 	

Proof�  From the notation of the problem� it is easily veri�ed that

jjM� �Mnjjl��l� � jjMr�� �Mr�njjl� � jjMi�� �Mi�njjl�

The result follows from Theorem ��

Next� we discuss the discretization of 
���� SinceM� is compact and the matrix�vector
multiplications can be performed rapidly� we will solve the discrete 
normal� equations
using the conjugate gradient method on the subspace orthogonal to the one dimensional
null space�

�� Discretization� The natural choice for discretization is to truncate the sums
given in 
��� to n� This will lead to �nite linear systems� However� in practice one

�



does not have the exact Fourier coe�cients� If the conformal map f is known explic�
itly� we approximate the hk�s by evaluating d
z� �� f
z��f �
z� at the N Fourier points�
z � eij��N � j � �� �� � � � � N � �� and taking the N�point FFT� In this case� the discrete
h�� � � � � hn� decay at a similar rate to the exact hk 
see �He� eq� �	����� p� ����� How�
ever� since the discrete Fourier coe�cients are N � periodic� hk � hk�N � the remaining
coe�cients hn�� � h�n��� � � � � hN�� � h�� do not decay geometrically� We just set
hk � �� k � n to insure geometric decay� When f is not known exactly� we use a numerical
approximation at the N Fourier points given by Wegmann�s method� as discussed in sec�
tion �� and again set hk � � for k � n��� � � � � N � �	 To avoid introducing more notation�
we now let hk� Ak� etc�� denote the discrete Fourier coe�cients�

The notation is similar to the in�nite dimensional case�

Dn � diag
�� �� 	 	 	 � n��

� � 
Re a�� 	 	 	 � Re an�
T � 
 � 
Im a�� 	 	 	 � Im an�

T �

B � 
Re A�� 	 	 	 � Re An�
T � C � 
Im A�� 	 	 	 � Im An�

T �

x �

�
D

���
n �

D
���
n 


�
� r �

�
D

���
n B

D
���
n C

�
�

and

Hn �

�
Hr�n Hi�n

Hi�n �Hr�n

�
	

Then analogously to the in�nite system we have

Mn �

�
Mr�n Mi�n

Mi�n �Mr�n

�
�

�
D

���
n Hr�nD

���
n D

���
n Hi�nD

���
n

D
���
n Hi�nD

���
n �D���

n Hr�nD
���
n

�
�

so that our problem is to solve

In �Mn�x � r	 
�	�

Recall that x is subject to a uniqueness condition� Since f �
�� � �� the condition
Im
a��f

�
��� � � implies xn�� � �� Clearly� the 
k� j�th entry of Mr�n and Mi�n are
respectively

p
kjRe
hk�j� and

p
kjIm
hk�j��

We have computed the eigenvalues of Mn for the examples in section � using MAT�
LAB� Note that if � is an eigenvalue of Mn� then �� is also an eigenvalue� We also �nd
that �� is an eigenvalue of Mn� The rest of the eigenvalues decay rapidly to �� The
decay is due to the compactness of M� shown in Corollary � of section 	� By �An�� the
spectrum of Mn is near to the spectrum of M� for large n� We solve the normal equa�
tions by conjugate gradient� since 
In �Mn�

� is positive semide�nite� In our examples� so
far� we have noticed that In �Mn is also positive semide�nite� but we have no proof of
this� in general� In these examples� we have used conjugate gradient directly on 
�	� with
some computational savings� 
�	� could also no doubt be solved e�ciently with MINRES�
In addtition� we have solved 
a truncated version� of the nonsymmetric system 
�� with
GMRES with very good results� We hope to address these issues further in future work�

�



Recall that our in�nite system 
��� has a one dimensional null space� The null space
is generated by the null vector�

v � 
�Im c���
p
�Im c�� 	 	 	 ��

p
kIm ck� 	 	 	 � Re c��

p
�Re c�� 	 	 	 �

p
kRe ck� 	 	 	�

T 	

In the discrete case� we �nd that for large n

v � 
�Im c���
p
�Im c�� 	 	 	 ��

p
nIm cn� Re c��

p
�Re c�� 	 	 	 �

p
nRe cn�

T

satis�es 
In �Mn�v � � to within discretization error using our discrete approximations
to the ck�s� It follows that our solution can be decomposed as

y � x� �v	

It is clear from the conjugate gradient algorithm that if the initial guess x��� is in v�

then subsequent iterates x�q� will be in v�� We take x��� � �� Conjugate gradient will
then �nd x � v� and imposing the uniqueness condition yn�� � � will give us �� By
the results above� 
In �Mn�

� restricted to v� is positive de�nite for su�ciently large n�
since the second smallest eigenvalue of I� � M� is bounded away from �� Therefore
conjugate gradient can be applied to the normal equations and the method will converge
superlinearly�

In addition� we note that the matrix�vector multiplication involving the matrix Mn

can be done e�ciently using FFTs� In fact� for any n�vector y� since Dn is diagonal�

D
���
n y can be computed in n operations� Moreover� the matrix�vector multiplication Hy�

where H is the Hankel matrix Hr�n or Hi�n� can be computed in O
N logN� by using
FFTs� The idea is to compute Ts � 
HJ�
Jy� where J is the reversion matrix with ones
on the anti�diagonal and T is a Toeplitz matrix 
constant along diagonals�� Next we imbed
T into a matrix C as follows

C �

�
T X
X T

�
�

where X is chosen to make C circulant� Now C can be decomposed as C � F �!F where
F is the N�point Fourier matrix and ! is a diagonal matrix containing the eigenvalues of
C� For more details on fast methods for Hankel and Toeplitz matrices see� e�g�� �CN��

�� Numerical examples� In examples 
i�� 
ii�� and 
iii� below� we choose �
�� � ���
and �
�� � �	 Then u
�� �� � �	 � �		 Note that� for the conformal map f
z� from the
disk� �
z� � 
f
z��� and the boundary values at the mesh points are given by G
z� �
�
Ref
z���� i�
Imf
z���	 The discretization error in the Tables is given by the sup norm

max
��j�N��

j�
ei��j�N �� �n
e
i��j�N�j�

where �n is our nth degree approximation to �	 For analytic curves� this error behaves
similarly to the discretization error for the conformal map which is O
RN � with R as given
in Lemma �� see �De� for a discussion of the accuracy of the conformal mapping methods�

�



We use the FFT method in �Weg� to �nd the approximate conformal map f	Wegmann
approximates f by solving a discrete interpolation problem on the unit disk� Find Pn��
z��
a polynomial of degree n � �� such that Pn��
e

i��j�N� � �� j � �� 	 	 	 � N � � with the
normalization that the Pn��
�� is �xed and the coe�cients of z and zn�� are real� He
computes this polynomial by applying a Newton method to �nd a discrete approximation
to the boundary correspondence� The linear systems may be solved by the conjugate
gradient method in O
N logN� per step� Quadratic convergence of the Newton iterations
and convergence of the polynomial to the conformal map as N increases for su�ciently
smooth � is proven� Numerical experiments indicate that this method is among the most
robust and reliable of the Fourier series methods on the disk �De��

For examples where the exact f is known� d � f�f � may be computed with either the
exact or the approximate f	 This seems to make little di"erence in the calculations if the
approximate f is su�ciently accurate� The timings for �nding the approximate f using
�Weg� are usually only slightly greater than the timings given in the Tables for solving the
boundary value problem for a given N	

In the Tables below� iter is the number of iterations required by conjugate gradient
for the residuals to be � ����		 The computations were done in double precision on the
WSU IBM ES���� Model ��� mainframe computer and some rough timings are given�

Figures � and � and some of our examples were also done in MATLAB with similar
results�� Stopping the iterations after the level of discretization error has been achieved
could further reduce the timings� though not dramatically for these examples of very fast
superlinear convergence� Note that as the minor�to�major axis ratio � of a region decreases
toward � 
that is� as R in Lemma � increases to ��� the convergence rate of the conjugate
gradient method decreases� In our examples below� R may be taken as the distance from
the origin to the nearest singularity of f and the connection with the minor�to�major
aspect ratio is known �De�� In a future paper we will show how the convergence rate of the
conjugate gradient method depends on the smoothness of the boundary �	

Other cases were also tried successfully� such as the simple examples in �KK�� If the
biharmonic function has too simple a Goursat representation� the iterations may converge
arti�cially fast� For instance� if u
�� �� � �� � ��� ��� then �
z� � f
z� and convergence
is achieved in one iteration if N is large enough� On the other hand� note that the ��to��
ellipse in �GGMa� Table 	� is a di�cult region for the conformal map from the disk and
would require large N �

Example �i�� inverted ellipse� Here � � 

�� � �
��ei� where �
�� �
q

�� 
�� ���sin��

for � � � � �� and � � � � �	 This map is derived by inverting the familiar Joukowski
map to the exterior of an ellipse� We have

f
z� �
��z

� � �� 
�� ��z�
	

See Table � for results� Notice how iter is roughly independent of N but increases with �
in our examples�

��



Table �� Inverted ellipse with exact map and conjugate gradient

� N discr� error iter CPU sec

�� 	� 	� � ���
 � ��
�� �� 	� � ����� 	 ��
�� ��� 	� � ����	 	 ��

�� �� 	� � ���� � ��
�� ��� 	� � ���� � ��
�� ��� 	� � ����� � �	

�� ��� 	� � ���� � �	
�� ��� 	� � ���� � �	
�� ��� 		 � ����� � ��

Example �ii�� arctanh� Here the conformal map is given by f
z� � log

��rz��
��rz��� � �
r � �� which maps the disk to increasingly elongated� cigar�shaped regions as r � �	
This map is perhaps the simplest example of a conformal map exhibiting the exponential
crowding �De�� Figure � shows roughly � outlying eigenvalues of 
In �Mn�

� for � � 	��	
Thus conjugate gradient for the normal equations takes about � iterations to converge as
one would expect� see Table � and Figure �� Also note the semilog plot in Figure � that
shows the superlinear convergence behavior of the residuals 
using MATLAB��

Table �� Arctanh regions with exact map and conjugate gradient

�
r� N discr� error iter CPU sec

��� 
��� 	� 	� � ���	 � ��
��� 
��� �� 	� � ���� � ��
��� 
��� ��� 	� � ����	 � ��

��� 
��� ��� 	� � ���� � ��
��� 
��� ��� 	� � ���
 � �	
��� 
��� ��� 	� � ����� � ��

��� 
���� ��� 	� � ���� �� ��
��� 
���� ���� 	� � ���� �	 ���
��� 
���� ���� 	� � ���
 �� ���
��� 
���� ���� 	� � ���� �� ���

Example �iii�� ellipse� Here � � 

�� � �
��ei� where �
�� � ��
p

�� 
�� ��� cos� � for
� � � � �� and � � � � �	 The exact map can be given in terms of an elliptic integral�

��



This case also exhibits exponential crowding �De�� We approximate the f with �Weg��

Table 	� Ellipses with approximate map and conjugate gradient

� N discr� error iter CPU sec

�� 	� 	� � ���� � ��
�� �� 	� � ���
 � ��
�� ��� 	� � ����� 	 ��
�� ��� 	� � ����� 	 �	

�� ��� 	� � ���� � �	
�� ��� 		 � ���
 � ��
�� ��� 	� � ����� 	 ��

�� ���� 	� � ���	 �� ���
�� ���� 	� � ����� � ���
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Figure captions

Figure �� Eigenvalue distribution for 
In �Mn�
� for the arctanh region� example 
ii��

with � � 	�� and N � ���	

Figure �� Convergence of residuals for � iterations of the conjugate gradient method
for the normal equations for the arctanh region� example 
ii�� with � � 	�� and N � ���	
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