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Abstract. Image inpainting is a fundamental problem in image processing and has many applications. Motivated
by the recent tight frame based methods on image restoration in either the image or the transform domain, we propose
an iterative tight frame algorithm for image inpainting. We consider the convergence of this framelet-based algorithm
by interpreting it as an iteration for minimizing a special functional. The proof of the convergence is under the
framework of convex analysis and optimization theory. We also discuss the relationship of our method with other
wavelet-based methods. Numerical experiments are given to illustrate the performance of the proposed algorithm.
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1. Introduction. The problem of inpainting [2] occurs when part of the pixel data in a picture
is missing or over-written by other means. This arises for example in restoring ancient drawings,
where a portion of the picture is missing or damaged due to aging or scratch; or when an image is
transmitted through a noisy channel. The task of inpainting is to recover the missing region from the
incomplete data observed. Ideally, the restored image should possess shapes and patterns consistent
with the given data in human vision. Therefore we need to extract information such as edges and
texture from the observed data to replace the corrupted part in such a way that it would look natural
for human eyes. Many useful techniques have been proposed in recent years to address the problem,
see, for example, [1, 2, 3, 9, 11, 12, 13, 14, 15, 26, 27, 29, 38].

The mathematical model for image inpainting can be stated as follows. We will denote images
as vectors in RN by concatenating their columns. Let the original image f be defined on the domain
Ω = {1, 2, · · · , N} and the nonempty set Λ ( Ω be the given observed region. Then the observed
(incomplete) image g is

g(i) =

{
f(i) + ε(i), i ∈ Λ,

arbitrary, i ∈ Ω \ Λ,
(1.1)

where ε(i) are the noise terms. The goal is to find f from g. When ε(i) = 0 for all i ∈ Λ, we
require that f(i) = g(i) and f is just the solution of an interpolation problem. Otherwise, we seek a
smooth solution f that satisfies |f(i)−g(i)| ≤ ε(i) for all i ∈ Λ. In both cases, variational approaches
will penalize some cost functionals (which normally are weighted function norms of the underlying
solution) to control the roughness of the solution, see for instance [2, 13, 39].

Motivated by the ideas in [7, 8, 10] for high-resolution image reconstruction problems, we pro-
posed in [9] an iterative algorithm based on wavelet tight frames for image inpainting. The algorithm
is also similar in spirit to those in [27, 29]. It first transforms the current guess into the framelet
domain, then performs thresholding and transforms it back to the image domain; and finally the
pixels belonging to Λ are replaced by the known data g on Λ to get a better approximation of f .
The algorithm is efficient and gives 2 to 3 dB improvement in PSNR when compared to variational
approaches such as those given in [11, 12]. In this paper, we simplify the algorithm in [9] to obtain
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a new but similar algorithm. By interpreting the new algorithm as an iteration for minimizing a
special functional, we prove its convergence under Combettes and Wajs’s framework of the proxi-
mal forward-backward splitting [16]. We also show that the minimization problem that it converges
to is related to the Besov norm of the underlying solution. Additionally, in the wavelet coefficient
domain, our method minimizes a functional with a weighted `1 regularization term. Therefore, our
method is related to the sparse approximation of images by wavelets. The ability to approximate
images sparsely is an important characteristic of wavelets, see [33]. Inpainting algorithms related to
`1 minimization were also proposed in, e.g., [18, 26, 27, 29, 38]. We will compare some of them with
our method. We remark that the technique we used can also be adapted to prove the convergence of
our algorithm in [9] under additional assumptions on the tight frames.

The outline of the paper is as follows. In Section 2, we give some preliminaries of framelets and
examples of framelets used in this paper. In Section 3, we introduce our framelet-based inpainting
algorithm and show that it is equivalent to an alternate direction minimization. In Section 4, we
prove the convergence of the algorithm and the existence of the minimizers using the theory in [16].
In Section 5, we explain why our algorithm works and its relationship with other wavelet-based
methods. In Section 6, we compare our method with other methods numerically. Conclusions are
given in Section 7. Finally in Section 8, we provide the convergence proof of the algorithm in [9].

2. Framelets. In this section, we present some preliminaries of tight framelets. For simplicity,
we only present the univariate framelets and the framelets for two variables can be constructed
by tensor product of univariate framelets. Tight frames in finite dimensional space derived from
framelets and their matrix forms are also given. Those who are familiar with the notions of framelets
may skip most of this section.

2.1. Framelets in L2(R). A system X ⊂ L2(R) is called a tight frame of L2(R) if

f =
∑

g∈X

〈f, g〉g, ∀f ∈ L2(R). (2.1)

This is equivalent to

‖f‖22 =
∑

g∈X

|〈f, g〉|2, ∀f ∈ L2(R), (2.2)

where 〈·, ·〉 and ‖ ·‖2 = 〈·, ·〉1/2 are the inner product and norm of L2(R). It is clear that an orthonor-
mal basis is a tight frame, since the identities (2.1) and (2.2) hold for arbitrary orthonormal bases
in L2(R). Hence tight frames are generalization of orthonormal bases that bring in the redundancy
which is often useful in applications such as denoising, see e.g. [17].

Recall that a wavelet (or affine) system X(Ψ) is defined to be the collection of dilations and shifts
of a finite set Ψ ⊂ L2(R), i.e.,

X(Ψ) = {2k/2ψ(2kx− j) : ψ ∈ Ψ, k, j ∈ Z},
and the elements in Ψ are called the generators. When X(Ψ) is also a tight frame for L2(R), then
ψ ∈ Ψ are called (tight) framelets, following the terminology used in [19]. To construct compactly
supported framelet systems, one starts with a compactly supported refinable function φ ∈ L2(R) with
a refinement mask (low-pass filter) ζφ such that φ satisfies the refinement equation: φ̂(2·) = ζφφ̂. Here
φ̂ is the Fourier transform of φ, and ζφ is a trigonometric polynomial with ζφ(0) = 1. A multiresolution
analysis (MRA) from this given refinable function can be formed, see [20, 32] for details.

The compactly supported framelets Ψ are defined in the Fourier domain by ψ̂(2·) = ζψφ̂ for some
trigonometric polynomials ζψ, ψ ∈ Ψ. The unitary extension principle (UEP) of [37] asserts that the
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Fig. 2.1. Piecewise linear framelets.
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system X(Ψ) generated by a finite set Ψ forms a tight frame in L2(R) provided that the masks ζφ

and {ζψ}ψ∈Ψ satisfy:

ζφ(ω)ζφ(ω + γπ) +
∑

ψ∈Ψ

ζψ(ω)ζψ(ω + γπ) = δγ,0, γ = 0, 1 (2.3)

for almost all ω in R. The sequences of Fourier coefficients of ζψ, as well as ζψ itself, are called
framelet masks or high-pass filters. The construction of framelets Ψ essentially is to design, for
a given refinement mask ζφ, framelet masks {ζψ}ψ∈Ψ such that (2.3) holds. For a given φ with
refinement mask ζφ, as shown in [19, 22], it is easy to construct ζψ, ψ ∈ Ψ, whenever ζφ satisfies

|ζφ|2 + |ζφ(·+ π)|2 ≤ 1.

Furthermore, the framelets can be constructed to be symmetric as long as φ is symmetric. In
particular, one can construct tight framelet systems from B-splines. Here, we give two examples
which will be used in our numerical simulations.

The first example is derived from piecewise linear B-spline whose refinement mask is h0 =
1
4 [1, 2, 1]. The two corresponding framelet masks are

h1 =
√

2
4

[1, 0,−1], h2 =
1
4
[−1, 2,−1].

The associated refinable function and framelets are given in Fig. 2.1. The second example is from
piecewise cubic B-spline whose refinement mask is h0 = 1

16 [1, 4, 6, 4, 1]. The four framelet masks are

h1 =
1
8
[1, 2, 0,−2,−1], h2 =

√
6

16
[−1, 0, 2, 0,−1], h3 =

1
8
[−1, 2, 0,−2, 1], h4 =

1
16

[1,−4, 6,−4, 1].

The associated refinable function and framelets are given in Fig. 2.2. According to our experience, in
actual implementation, we choose piecewise linear framelet for the simplicity of the masks and speed,
or piecewise cubic when the smoothness of the framelet is desirable. Construction of tight framelets
from B-splines of high orders can be found in [37].

The refinement and framelet masks can be used to derive fast decomposition and reconstruction
algorithms similar to the orthonormal wavelet case as detailed in [19], see also [6].

2.2. Frames in RN . Since images are finite dimensional, we describe briefly here how to convert
the framelet decomposition and reconstruction to finite dimension frames. Let A be a K-by-N
(K ≥ N) matrix whose rows are vectors in RN . The system, denoted by A again, consisting of all
the rows of A, is a tight frame for RN if for any arbitrary vector x in RN

‖x‖22 =
∑

y∈A
|〈x,y〉|2.
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Fig. 2.2. Piecewise cubic framelets.
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Here and in the following, if not specified, 〈·, ·〉 and ‖ · ‖2 = 〈·, ·〉1/2 are the inner product and
norm of finite dimensional Euclidean spaces. We note that the above equation is equivalent to
the perfect reconstruction formula x =

∑
y∈A〈x,y〉y. The matrix A is called the analysis (or

decomposition) operator, and its adjoint A∗ is called the synthesis (or reconstruction) operator. The
perfect reconstruction formula can be rewritten as x = A∗Ax. Hence A is a tight frame if and only
if A∗A = I. Unlike the orthonormal case, we emphasize that AA∗ 6= I in general.

In the following, we derive A from the masks associated with any given framelet system. For a
given filter h = {h(j)}J

j=−J , let the matrix S(h) be the convolution operator with filter h under the
Neumann (symmetric) boundary condition:

S(h) =




h(0) · · · h(−J) 0
...

. . . . . . . . .

h(J)
. . . . . . . . . h(−J)
. . . . . . . . .

...
0 h(J) · · · h(0)




+




h(1) h(2) · · · h(J) 0
h(2) . . . . . . . . . h(−J)

... . . . . . . . . .
...

h(J) . . . . . . h(−2)
0 h(−J) · · · h(−2) h(−1)




, (2.4)

which is a Toeplitz-plus-Hankel matrix, see [8, 9, 36] for details. In our numerical simulations in
Section 6, we use a multi-level tight frame system corresponding to the tight framelet decomposition
without down sampling. This is the same as the decomposition under the quasi-affine system intro-
duced in [37] which is called the undecimated framelet. To introduce it, we recall that for a given
filter h = {h(j)}J

j=−J , the filters h(`) at level ` corresponding to the decomposition without down
sampling is

h(`) = {h(−J), 0, · · · , 0︸ ︷︷ ︸
2`−1−1

, h(−J + 1), 0, · · · , · · · , 0, h(−1), 0, · · · , 0︸ ︷︷ ︸
2`−1−1

, h(0),

0, · · · , 0︸ ︷︷ ︸
2`−1−1

, h(1), 0, · · · , · · · , 0, h(J − 1), 0, · · · , 0︸ ︷︷ ︸
2`−1−1

, h(J)}.

Given the low and high-pass filters {hi}r
i=0, let H(`)

i ≡ S(h(`)
i ). Then the multi-level decomposition
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operator up to level L (without down-sampling) is given by

A =




∏L−1
`=0 H(L−`)

0

H(L)
1

∏L−1
`=1 H(L−`)

0
...

H(L)
r

∏L−1
`=1 H(L−`)

0
...
...

H(1)
1
...

H(1)
r




:=
[ A0

A1

]
, (2.5)

where A0 =
∏L−1

`=0 H(L−`)
0 , and A1 consists of the remaining blocks of A.

The unitary extension principle asserts that

A∗A = A∗0A0 +A∗1A1 = I. (2.6)

Then, up to a dilation, the discrete image f is the coefficients f(i) = 〈f, φ(· − i)〉, where φ is the
refinable function associated with the framelet system, and 〈·, ·〉 is the inner product in L2(R). The
sub-matrix A0 represents the low-pass filter, i.e., A0f are the coefficients 〈f, 2−L/2φ(2−L · −j)〉 at a
prescribed coarsest level L. The sub-matrix A1 represents band-pass and high-pass filters, i.e., A1f
are the framelet coefficients 〈f, 2−l/2ψi(2−l · −j)〉, 1 ≤ i ≤ r, for 0 ≤ l ≤ L. We denote the numbers
of rows in the sub-matrices A0 and A1 to be K0 and K1 respectively. It is clear that K0 + K1 = K.

3. Framelet-based Inpainting Algorithm. In this section, we introduce our framelet-based
inpainting algorithm and show that it is equivalent to an alternate direction minimization procedure.

3.1. Inpainting Algorithm. Let PΛ be the diagonal matrix with diagonal entries 1 for the
indices in Λ and 0 otherwise. The starting point of our framelet inpainting algorithm is the identities
(2.6) and

f = PΛf + (I − PΛ)f . (3.1)

Substituting the known data PΛg = PΛf and (2.6) into (3.1), we obtain

f = PΛg + (I − PΛ)A∗Af .

Thus, the most straightforward way for framelet inpainting is to iterate as

fn+1 = PΛg + (I − PΛ)A∗Afn. (3.2)

But this iteration converges in one step for any initial guess, i.e., fn+1 = fn for all n ≥ 1. The
information contained in Λ does not propagate into Ω \ Λ.

Since images that can be modeled as piecewise smooth functions have sparse approximation via a
nonlinear approximation scheme under the framelet system, see [4, 31], it motivates us to incorporate
into (3.2) a thresholding operator Tλ to obtain the framelet inpainting algorithm:

fn+1 = PΛg + (I − PΛ)A∗Tλ(Afn).
5



Here

Tλ([β1, β2, . . . , βK ]T ) ≡ [tλ1(β1), tλ2(β2), . . . , tλK
(βK)]T (3.3)

with λ = [λ1, λ2, . . . , λK ]T , and tλi
(·) is the soft-thresholding function [23]:

tλi(βi) ≡
{

sgn(βi)(|βi| − λi), if |βi| > λi,

0, if |βi| ≤ λi.
(3.4)

Note that by using the soft-thresholding instead of the hard-thresholding normally used in nonlinear
approximation scheme, we can obtain the desire minimization property in each iteration as we will see
in Lemma 3.1. Besides, the thresholding operator Tλ also plays two other important roles, namely,
removing noises in the image and perturbing the frame coefficients Afn so that information contained
in the given region can permeate into the missing region.

Let the thresholding parameters be

λ = (ν1, ν2, · · · , νK)T , (3.5)

where νi > 0 for i = 1, · · · ,K. The whole algorithm is given as follows:
Algorithm 1.
(i) Set an initial guess f0.
(ii) Iterate on n until convergence:

fn+1 = PΛg + (I − PΛ)A∗Tλ(Afn). (3.6)

(iii) Let f? to the output of Step (ii). If ε(i) = 0 for all i ∈ Λ in (1.1), we set f? to be the
solution (to the interpolation problem); otherwise, since Tλ can remove the noise, we set
f¦ = A∗Tλ(Af?) to be the solution (to the inpainting-plus-denoising problem).

We remark that Algorithm 1 was first proposed in [9], where we required νi = 0, for all 1 ≤
i ≤ K0 in (3.5), i.e., we did not threshold the low-pass framelet coefficients. This is a standard
practice in image denoising, since this component contains no noise after passing a very long low-
pass filter A0. However, since the thresholding here also plays a role of perturbing the framelet
coefficients to allow information flow, thresholding the low-pass component can help to permeate
the information. Furthermore, as the original data will be placed back at each iteration, the loss
of the low frequency information in the original data can be placed back. As we will see in the
numerical tests in Section 6, there are very small differences in the inpainted results between the two
different choices of thresholding parameters. However, the proof of the convergence of Algorithm 1
is much simpler, and will be given in the next section. The convergence proof of the algorithm in [9]
requires additional assumptions on A. For completeness, we also provide the convergence proof of
the algorithm in [9], see Section 8.

We now re-formulate Algorithm 1 as an iteration for minimizing a special functional. Then we
prove its convergence in Section 4.

3.2. Algorithm 1 as Alternate Direction Minimization. In this subsection, we show that
(3.6) in Algorithm 1 is equivalent to an alternate direction minimization procedure. To see this,
we start with two minimization problems. The first one is the well-known equivalence between the
soft-thresholding and a minimization of a functional.

Lemma 3.1. The soft-thresholding operator Tλ defined by (3.3) satisfies

Tλ(β) = arg min
α∈RK

{1
2
‖β − α‖22 + ‖diag(λ)α‖1}, (3.7)
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where β ∈ RK , λ ∈ RK
+ and diag(λ) is a diagonal matrix with the diagonal being the vector λ.

Proof. It follows from [16] that tλi
defined in (3.4) satisfies

tu(b) = arg min
a∈R

{1
2
(b− a)22 + u|a|}, b, u ∈ R, and u ≥ 0. (3.8)

Since the minimization problem in (3.7) can be decoupled into disjoint 1-D minimization problems
of the form (3.8), Tλ(β) defined in (3.3) is a minimizer of the minimization problem in (3.7).

The second minimization problem is the projection of a vector onto the set:

C = {y : PΛy = PΛg}.
The set C is convex since it is the inverse image of PΛg by PΛ. The projection of a vector x onto C,
denoted by PC(x), can be defined as the minimizer of the constrained optimization problem:

PC(x) = arg min
y∈C

1
2
‖x− y‖22.

Lemma 3.2. The projection PC(x) satisfies
(a) PC(x) = PΛg + (I − PΛ)x, and
(b) PC(x) = arg miny{ 1

2‖x− y‖22 + ιC(y)}, where ιC is the indicator function of C defined by

ιC(y) ≡
{

0, y ∈ C,

+∞, y 6∈ C.
(3.9)

Proof. For part (a), we note that for any vector z ∈ C, we have

‖z− x‖22 =
∑

i∈Λ

(zi − xi)2 +
∑

i∈Ω\Λ
(zi − xi)2 =

∑

i∈Λ

(gi − xi)2 +
∑

i∈Ω\Λ
(zi − xi)2

≥
∑

i∈Λ

(gi − xi)2 = ‖PΛg + (I − PΛ)x− x‖22.

On the other hand, we note that

PΛ(PΛg + (I − PΛ)x) = PΛg.

It implies that the vector PΛg + (I − PΛ)x ∈ C. Therefore, the closest vector to x in C is PΛg +
(I − PΛ)x. Part (b) is straightforward by the definition of ιC.

We now rewrite (3.6) in Algorithm 1 using the above results. By Lemma 3.1, we have

αn ≡ Tλ(Afn) = arg min
α
{1
2
‖Afn − α‖22 + ‖diag(λ)α‖1}.

Substituting the definition of αn into (3.6) and using Lemma 3.2, (3.6) can be rewritten as

fn+1 = PΛg + (I − PΛ)A∗αn = PC(A∗αn) = arg min
f
{1
2
‖A∗αn − f‖22 + ιC(f)}.

Hence we see that our framelet-based inpainting algorithm (3.6) can be reformulated as a frequency-
spatial alternate minimization:

{
αn = arg minα{ 1

2‖Afn − α‖22 + ‖diag(λ)α‖1},
fn+1 = arg minf{ 1

2‖A∗αn − f‖22 + ιC(f)}. (3.10)

This shows that the sequences {fn} and {αn} are uniquely determined by each other. Furthermore,
{fn} converges if and only if {αn} does, because the operators TλA and PCA∗ are all continuous.
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4. Convergence Analysis of Algorithm 1. This section is devoted to showing the conver-
gence of Algorithm 1, i.e., both the sequences {fn} and {αn} in (3.10) converge. We show in Section
4.1 that limn→∞{fn} ≡ f? exists and is a minimizer of

min
f∈C

{min
α
{1
2
‖Af − α‖22 + ‖diag(λ)α‖1}}. (4.1)

In Section 4.2, we show that α¦ ≡ Tλ(Af?) is a minimizer of

min
α
{1
2
‖PΛ(A∗α)− PΛg‖22 +

1
2
‖(I − AA∗)α‖22 + ‖diag(λ)α‖1}. (4.2)

4.1. Convergence of fn. In this subsection, we show that the iteration (3.6) in Algorithm 1,
which is equivalent to (3.10), converges to a minimizer of (4.1). The proof uses proximal forward-
backward splitting in convex analysis developed in [16].

Let us recall two basic definitions by Moreau in convex analysis [30, 34, 35]. For any proper,
convex, lower semi-continuous function ϕ which takes its values in (−∞,+∞], its proximal operator
is defined by

proxϕ(x) ≡ arg min
y
{1
2
‖x− y‖22 + ϕ(y)}, (4.3)

and its envelope is a function defined by

1ϕ(x) ≡ min
y
{1
2
‖x− y‖22 + ϕ(y)}. (4.4)

By Lemma 2.5 in [16], the function 1ϕ(x) is convex and differentiable, and its gradient is

∇ (
1ϕ(x)

)
= x− proxϕ(x). (4.5)

We now state the main convergence theorem in [16] for the finite dimensional case.
Theorem 4.1. Consider the minimization problem

min
f
{F1(f) + F2(f)}, (4.6)

where F1 with range (−∞,+∞] is a proper, convex, lower semi-continuous function, and F2 with
range in R is a proper, convex, differentiable function with a 1/b-Lipschitz continuous gradient.
Assume a minimizer to (4.6) exists and b > 1/2. Then for any initial guess f0, the iteration (called
the proximal forward-backward splitting):

fn+1 = proxF1
(fn −∇F2(fn)) (4.7)

converges to a minimizer of F1(f) + F2(f).
To apply the theorem, we define ξ(β) ≡ ‖diag(λ)β‖1, F1(f) ≡ ιC(f), and F2(f) ≡ (1ξ ◦A)(f). By

(3.9) and (4.4),

min
f
{F1(f) + F2(f)} = min

f∈C
{(1ξ ◦ A)(f)} = min

f∈C
{1‖diag(λ)(Af)‖1}

= min
f∈C

{min
α
{1
2
‖Af − α‖22 + ‖diag(λ)α‖1}}, (4.8)
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which is just the minimization problem (4.1). Note that both F1 and F2 are proper, convex and lower
semi-continuous. Substituting (4.3) in (3.10) and using A∗A = I, Algorithm 1 becomes:

fn+1 = proxιC(A∗αn) (4.9)
= proxιC(A∗proxξ(Afn))
= proxιC(fn −A∗Afn +A∗proxξ(Afn))
= proxιC(fn −A∗(Afn − proxξ(Afn))). (4.10)

Since by (4.5) and the chain rule,

∇F2(f) = ∇(1ξ ◦ A)(f) = A∗(Af − proxξ(Af)), (4.11)

clearly (4.10) is just the forward-backward splitting (4.7). Thus to show that (4.10), which is equiv-
alent to Algorithm 1, converges to (4.1), we need to show that the conditions in Theorem 4.1 hold.

Lemma 4.2. The functions ιC with range in (−∞,+∞] and 1ξ ◦ A with range in R are proper,
convex, and lower semi-continuous. Moreover, the latter function is differentiable with a 1-Lipschitz
continuous gradient.

Proof. Since C is a closed non-empty convex set, it is obvious that ιC(f) takes its values in
(−∞,+∞] and is a proper, convex, and lower semi-continuous function. Since ξ(β) has range in R,
by its definition so is 1ξ(Af). Because ξ is proper, convex, and lower semi-continuous, by Lemma 2.5
in [16], 1ξ ◦ A is convex and differentiable, and its gradient is given in (4.11). It remains to prove
that the gradient is 1-Lipschitz continuous. To this end, we note that by Lemma 2.4 in [16],

‖(x− proxϕ(x))− (y − proxϕ(y))‖2 ≤ ‖x− y‖2
for any convex and lower semi-continuous ϕ. Applying this observation and (4.11), we have

‖∇(1ξ ◦ A)(x)−∇(1ξ ◦ A)(y)‖2 = ‖A∗(Ax− proxξ(Ax))−A∗(Ay − proxξ(Ay))‖2
≤ ‖A∗‖2‖(Ax− proxξ(Ax))− (Ay − proxξ(Ay))‖2
≤ ‖A∗‖2‖A(x− y)‖2 ≤ ‖x− y‖2,

which says that 1ξ ◦ A has a 1-Lipschitz continuous gradient.
It remains to show the existence of a minimizer of minf{F1(f) + F2(f)}.
Lemma 4.3. Let A be a tight frame system. Then the minimization problem (4.1) has at least

one minimizer.
Proof. By Proposition 3.1(i) in [16], a minimizer of minf{ιC(f)+1ξ(Af)} exists if {ιC(f)+1ξ(Af)}

is coercive, i.e., whenever ‖f‖2 → +∞, {ιC(f) + 1ξ(Af)} → +∞. To prove this, let νmin = minK
i=1 νi

and νmax = maxK
i=1 νi, where νi are defined in (3.5). By the definition of ξ and (4.4),

{ιC(f) + 1ξ(Af)} ≥ 1ξ(Af) = 1‖diag(λ)(Af)‖1 = min
α
{1
2
‖Af − α‖22 + ‖diag(λ)α‖1}. (4.12)

By Lemma 3.1, the minimizer is precisely Tλ(Af). Therefore,

{ιC(f) + 1ξ(Af)} ≥ 1
2
‖Af − Tλ(Af)‖22 + ‖diag(λ)Tλ(Af)‖1

≥ ‖diag(λ)Tλ(Af)‖1 =
K∑

i=1

νi|tνi(Af)i| ≥ νmin

K∑

i=1

|tνi(Af)i|

≥ νmin

K∑

i=1

(|(Af)i| − νi) ≥ νmin‖Af‖1 − νminνmaxK
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≥ νmin‖Af‖2 − νminνmaxK = νmin‖f‖2 − νminνmaxK.

Clearly if ‖f‖2 → +∞, then {ιC(f) + 1ξ(Af)} → +∞.
Combining everything together, we have the convergence of Algorithm 1.
Theorem 4.4. Let A be a tight frame system. Then iteration (3.6) in Algorithm 1 converges to

a minimizer of the minimization problem (4.1) for any initial guess f0.
Proof. We have shown that (3.6) is equivalent to (4.7). By Theorem 4.1 and Lemmas 4.2 and

4.3, (4.7) converges to a minimizer of (4.6), which by (4.8) is just (4.1).
This shows that Algorithm 1 converges for any tight frames. They include the tight frames derived

from framelets or other wavelet masks discussed in Section 2. Furthermore, if one chooses to use the
framelet or wavelet decomposition with down sampling, Algorithm 1 still converges. However, when
an orthonormal wavelet is used, since it is not symmetric (except for the Haar wavelet), symmetric
boundary conditions like that in (2.4) implies A∗A 6= I. In that case, one can use the periodic
boundary conditions instead to obtain the corresponding tight frame system A (see [6] for details),
so that Algorithm 1 can again be applied and converges. But we note that periodic boundary
conditions are usually inferior to symmetric ones, see [36].

When the soft-thresholding operator Tλ is replaced by another shrinkage operator which is a
proximity operator, Algorithm 1 can still be rewritten as an alternative iteration similar to (3.10).
Hence, the convergence can be proved similarly. Examples of shrinkage operators minimizing the
`p-norm, 1 ≤ p < 2, of the framelet or wavelet coefficients are given in [6, 18].

4.2. Convergence of αn. In this subsection, we show that the limit of the sequence {αn} ≡
{Tλ(Afn)} is a minimizer of (4.2). We note that by (4.3) and (4.9), the iteration for αn in (3.10) can
be written as

αn+1 = proxξ(Afn+1) = proxξ[AproxιC(A∗αn)].

Since by (4.9) and (3.6), proxιC(A∗αn) = fn+1 = PΛg + (I − PΛ)A∗αn; and P2
Λ = PΛ, we obtain

αn+1 = proxξ[APΛg +A(I − PΛ)A∗αn]
= proxξ[αn − αn +APΛg +AA∗αn −APΛA∗αn]
= proxξ[αn − ((I − AA∗)αn +APΛ(PΛA∗αn − PΛg))].

Since (I − AA∗) is the projection operator onto the kernel of A∗, (I − AA∗)2 = (I − AA∗). Hence

αn+1 = proxξ[αn − ((I − AA∗)2αn +APΛ(PΛA∗αn − PΛg))]

= proxξ[αn −∇(
1
2
‖PΛA∗αn − PΛg‖22 +

1
2
‖(I − AA∗)αn‖22)].

Let F3(α) ≡ ξ(α) and F4(α) ≡ 1
2‖PΛA∗α−PΛg‖22 + 1

2‖(I − AA∗)α‖22. The above iteration becomes
another proximal forward-backward splitting (c.f. (4.7)):

αn+1 = proxF3
(αn −∇F4(αn)). (4.13)

Next we show that F3 and F4 also satisfy the conditions on F1 and F2 in Theorem 4.1 too.
Lemma 4.5. The function ξ(α) has range in (−∞,+∞] and is proper, convex, and lower semi-

continuous. The function 1
2‖PΛA∗α − PΛg‖22 + 1

2‖(I − AA∗)α‖22 has range in R, and is proper,
convex and differentiable. Moreover, its gradient is 1-Lipschitz continuous.

Proof. Since both functions are norms for some affine transforms of α, they are proper, convex
and continuous functions taking values in R. Moreover, the latter one is differentiable since 2-norms

10



are differentiable. Therefore, the only thing remaining to prove is that the gradient of the latter
function is 1-Lipschitz continuous. We show it by direct calculation:

‖∇[
1
2
‖PΛA∗α− PΛg‖22 +

1
2
‖(I − AA∗)α‖22]−∇[

1
2
‖PΛA∗α′ − PΛg‖22 +

1
2
‖(I − AA∗)α′‖22]‖2

= ‖[(I − AA∗)α +APΛ(PΛA∗α− PΛg)]− [(I − AA∗)α′ +APΛ(PΛA∗α′ − PΛg)]‖2
= ‖(I − A(I − PΛ)A∗)(α− α′)‖2 ≤ ‖I − A(I − PΛ)A∗‖2‖α− α′‖2 ≤ ‖α− α′‖2.

The last inequality follows from the fact that ‖I − A(I − PΛ)A∗‖2 ≤ 1 since (I − PΛ)2 = (I − PΛ)
and ‖A(I − PΛ)‖ < 1.

Now we can prove that αn converges to a minimizer of (4.2).
Theorem 4.6. Let αn = Tλ(Afn) in (3.6). Then αn converges to a minimizer of the minimiza-

tion problem (4.2) for any initial guess α0.
Proof. Since by Theorem 4.4, the sequence {fn} converges, the sequence {αn} ≡ {Tλ(Afn)}

converges too. By (4.13), the limit α¦ of {αn} satisfies

α¦ = proxF3
(α¦ −∇F4(α¦)).

This, together with Lemma 4.5 and Proposition 3.1(iii)(b) in [16], implies that the limit α¦ is a
minimizer of minα{F3(α) + F4(α)}, which is equivalent to saying that it is a minimizer of (4.2).

5. Remarks on Algorithm 1. Here we give some insights and remarks on Algorithm 1.

5.1. Why Algorithm 1 Is Good. Algorithm 1 can be understood as finding α¦ first. Then,
if there are no noise, i.e. ε(i) = 0 for all i ∈ Λ in (1.1), the solution to the interpolation problem is
given by f? = PΛg + (I − PΛ)A∗α¦, otherwise, the inpainting-plus-denoising solution is A∗α¦. We
note that PΛf? = PΛg whereas ‖PΛ(A∗α)−PΛg‖22 is one of the terms being minimized in (4.2). We
now explain the purpose of each term in (4.1) and (4.2).

Assume that the true solution is a piecewise smooth function, then it can be sparsely approxi-
mated in the framelet domain, see e.g. [4, 31]. Therefore, solving the problem in the framelet domain
is usually more efficient. To increase the sparsity, one likes to minimize the term ‖diag(λ)α‖1, the
weighted `1-norm of frame coefficient of the approximation solution, among all possible solutions, see
[5, 18, 24]. Therefore we have this term in (4.1) and (4.2).

We also like to choose a proper α¦ so that the roughness of the solution is under control. In
other words, the penalty function should somehow also link to the true solution via some function
norms. It is shown from framelet theory (see e.g. [4, 31]) that the (weighted) `1-norm of the canonical
framelet coefficient sequence of a function is equivalent to its Besov norm in the space Bσ

1,1 under
some mild conditions on the framelets. Hence, we also require α¦ to be close to some canonical
coefficient sequence, i.e. to the range of A, so that we can be sure that the (weighted) `1-norm of
α¦ is approximately linked to the Besov norm of the true function. Thus we also need to penalize
the distance between α¦ and the range of A. Note that (I − AA∗) is the projection operator onto
the kernel of A∗, i.e. the orthogonal complement of the range of A. In other words, the term
‖(I − AA∗)α‖22 in (4.2) exactly penalizes the distance of α¦ to the range of A.

Lastly we also require A∗α¦ and g to be close within the noise level on Λ, and hence we also
have the term ‖PΛ(A∗α¦)− PΛg‖22 in (4.2). Notice that artifacts are not only occurring because of
the difference between PΛ(A∗α¦) and PΛg, it can also be generated from the difference between Af?

and α¦ in the framelet domain, and hence there is also the term ‖Af? − α¦‖22 in (4.1).
Putting everything together, we see that the limits of Algorithm 1, i.e. f? and α¦, balance the

sparsity and closeness to the given data together with the smoothness of the solution.
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5.2. Relation to Other Wavelet-Based Methods. From the above discussions, our method
is related to the sparse representation of wavelets for images. To have sparse representation, a
minimization of the 0-norm, the number of non-zero coefficients, should be sought. However, there
are several reasons why ‖Dα‖1, where α is the wavelet coefficient and D is a diagonal matrix, is a
good approximation, see [5, 18, 24].

When there is no noise, the sparse representation of wavelet requires us to solve the problem
{

minα ‖Dα‖1,
s.t. PΛ(A∗α) = PΛg.

(5.1)

It is the method proposed in [38], where a linear programming is applied to find the solution. When
noise is present in the observed data PΛg, we replace the equality constraint in (5.1) by an inequality
constraint and solve

{
minα ‖Dα‖1,
s.t. ‖PΛ(A∗α)− PΛg‖2 ≤ σ2,

where σ2 is the noise level. If we use the Lagrange multiplier method to solve it, we have

min
α

{‖PΛ(A∗α)− PΛg‖22 + ρ‖Dα‖1
}

, (5.2)

where 1/ρ is the Lagrange multiplier. The minimization problem is solved in [27] by the iteration
{

αn = Tλ(αn−1 +A(PΛg − PΛfn)),
fn+1 = A∗αn.

(5.3)

The above iteration is similar to the parallel shrinkage algorithm in [25]. We note that when A
is an orthogonal basis, Algorithm 1 and (5.3) are the same and coincide with the method in [18]
proposed for general linear inverse problem. It was already pointed out in [18] that the iteration for
general linear inverse problem is the same as the algorithm proposed in [21], which was derived in
the framework of an expectation-maximization (EM) approach to a maximum penalized likelihood
solution in [28]. However, Algorithm 1 is motivated by the deblurring method in [7, 8, 10] and (5.3)
is derived from EM method and sparse representation. Here we have unified the two methods from
the viewpoint of minimization of functionals when A is a tight frame. Recall that our method (3.6)
converges to a minimizer of (4.2) in the framelet domain. Comparing (4.2) with (5.2), we see that
there is an extra term 1

2‖(I − AA∗)α‖22 in (4.2), which forces the limit of our method to be close to
the range of A. The role of the term has been explained in Section 5.1. In Section 6, we will compare
our method with (5.3).

5.3. Redundancy. Tight frames are different from orthonormal wavelets because tight frames
are redundant. What does the redundancy bring us here? We start with a sort of philosophical point
of view on the algorithm and then give some quantitative analysis on the error being reduced. Assume
that some blocks of pixels are missing in a given image and we like to solve the inpainting problem
in the framelet domain as mentioned before. Since the framelets used are compactly supported, the
coefficients of those framelets whose supports fall in the missing blocks are missing and the coefficients
of those framelets whose supports overlap with the missing blocks are inaccurate. The main step
of Algorithm 1 perturbs the frame coefficients Afn by thresholding so that information contained in
the available coefficients will permeate into the missing framelet coefficients. Here, the redundancy
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is very important, since the available coefficients contain information of the missing coefficients only
if the system is redundant.

We note that applying the thresholding operator on the framelet coefficients is a very important
step in Algorithm 1 in order to remove the noise and perturb the coefficients. However, it also brings
in new errors and artifacts. To explain how the numerical errors and artifacts introduced by the
thresholding can be reduced by the redundancy of the system A, we take the computed solution f?

as an example. Our computed solution f? that interpolates the given data satisfies

f? = PΛg + (I − PΛ)A∗TλAf?.

That is, on Λ, A∗TλAf? is replaced by g. But since PΛg = PΛf? = PΛA∗Af?, we are actually
replacing PΛA∗TλAf? by PΛA∗Af?, which generates artifacts. Hence to reduce the artifacts, we
require that the norm of

PΛA∗Af? − PΛA∗TλAf? = PΛA∗(Af? − TλAf?) = PΛA∗(Af? − α¦)

should be small.
Clearly the smaller the norm of A∗e := A∗(Af? − α¦) is, the smaller the artifact is. Note that

the reconstruction operator A∗ can eliminate the error components sitting in the kernel of A∗. In
fact, since A∗ projects all sequences down to the orthogonal complement of the kernel of A∗, which
is the range of A, the component of e in the kernel of A∗ does not contribute. The redundant system
reduces the errors as long as the component of e in the kernel of A∗ is not zero. Since larger the
kernel of A∗ is, the more redundant the frame is. The higher the redundancy is, the more the errors
reduces in general. To increase the redundancy, we use undecimated tight framelet system (i.e. no
down sampling in the decomposition). In contrast, if A is not a redundant system but an orthonormal
system, then the kernel of A∗ is just {0}. In this case, ‖A∗e‖ = ‖e‖.

6. Numerical Comparisons. In this section, we compare Algorithm 1, which minimizes both
(4.1) and (4.2), with the wavelet-based method (5.3), which minimizes (5.2). For comparisons with
the variational methods, we refers the readers to [9]. Throughout the test, the framelet system we
used is the 2D version of the multilevel piecewise linear or cubic B-spline tight framelet system A in
(2.5), with different parameters L. The thresholding parameters defined in (3.5) are chosen as

λ = c · (2−L/2, · · · , 2−L/2

︸ ︷︷ ︸
N

, 2−L/2, · · · , 2−L/2

︸ ︷︷ ︸
2mN

, · · · , 2−`/2, · · · , 2−`/2

︸ ︷︷ ︸
2mN

, · · · , 2−1/2, · · · , 2−1/2

︸ ︷︷ ︸
2mN

)T , (6.1)

where c is a parameter to be determined, and m = 1 or 2 for the piecewise linear or cubic B-spline
framelet respectively. The powers of 2 inside the parentheses in (6.1) are the normalization factors
from the usage of the quasi (undecimated) frame system (see e.g. [37]). When c is larger, i.e., the
thresholding level is larger, the information will permeate faster. However, bigger c means there are
less details in the recovered image and bigger jumps between Λ and Ω \ Λ. Therefore, one has to
choose proper c to compromise between the information permeating speed and the details of the
recovered image. We tune c in (6.1) manually such that the solutions are the best in the sense of
peak signal-to-noise ratio (PSNR). The iteration is stopped when ‖fn+1 − fn‖2/‖g‖2 ≤ 10−4. We
choose the initial guess to be the cubic interpolation of the observed image g.

Our first test image is a 256×256 synthetic piecewise smooth image with squares, circles, straight
lines, sharp edges, and smooth regions. The framelet system is the piecewise linear B-spline framelet
and the coarsest decomposition level is chosen L = 4. Figure 6.1 shows the results when there
is no noise, i.e. ε(i) = 0 for all i ∈ Λ in (1.1). Since there is no noise in the known data, the
interpolation solution f? is better in the sense of PSNR than the inpainting-plus-denoising solution
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Fig. 6.1. From left to right: (a) Image covered by texts; (b) f? (PSNR = 32.54dB, iter=112); (c) f¦ (PSNR =
32.45dB, iter=112); and (d) the restoration by (5.3) (PSNR=30.56dB, iter=98).

(a) (b) (c) (d)

Fig. 6.2. From left to right: (a) Image contaminated by white Gaussian noise with standard deviation 5
(SNR=30.63dB), and covered by texts; (b) f? (PSNR = 30.46dB, iter=78); (c) f¦ (PSNR = 31.65dB, iter=78)
and (d) the restoration by (5.3) (PSNR=29.44dB, iter=98).

(a) (b) (c) (d)

f¦ (see Algorithm 1 (iii) for their definitions). Figure 6.2 shows the results when white Gaussian with
standard deviation 5 is added to the observed image. In this case, since the noise ε is not zero and
the soft-thresholding operator can remove noise, the inpainting-plus-denosing solution f¦ is better
than the interpolation solution f?. In fact, one can see the visual difference between them in Figure
6.2. Moreover, f¦ is also much better than the results obtained by (5.3). In both Figures 6.1 and 6.2,
the vertical edge and the left part of the horizontal edge are blurred in the restoration by (5.3), but
are well preserved by Algorithm 1. The numbers of iterations required to converge are also reported
in the captions in the figures. We see that both algorithms converges in moderate small numbers of
iterations.

Next, we compare the two methods for the real image peppers of size 256 × 256. The framelet
system is the piecewise cubic B-spline framelet and the coarsest decomposition level is L = 4. Figure
6.3 shows the results when there is no noise, while Figure 6.4 shows the results when white Gaussian
noise with standard deviation 5 is added. From the two figures, we see that for the real image, the
two methods give very similar results, and Algorithm 1 is slightly better. Again, we see that both
algorithms converges in moderate small numbers of iterations.

Then, we illustrate the results when the two inpainting algorithms are applied to digital zooming
which are widely used in digital cameras. Here the odd-odd indexed pixels of the original image are
taken to obtain the down-sampled given image. The computed results are shown in Figure 6.5. Again,
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Fig. 6.3. From left to right: (a) Image covered by texts; (b) f? (PSNR = 33.85dB, iter=80); (c) f¦ (PSNR =
33.85dB, iter=80); and (d) the restoration by (5.3) (PSNR=33.84dB, iter=70).

(a) (b) (c) (d)

Fig. 6.4. From left to right: (a) Image contaminated by white Gaussian noise with standard deviation 5
(SNR=28.60dB), and covered by texts; (b) f? (PSNR = 31.24dB, iter=115); (c) f¦ (PSNR = 31.28dB, iter=115);
and (d) the restoration by (5.3) (PSNR=31.27dB, iter=84).

(a) (b) (c) (d)

the two methods give similar results, but that by Algorithm 1 is slightly better. For the iteration
numbers, though they are several times of those for the above examples, they are still moderate small
compared to the image size.

Finally, Algorithm 1 is compared with the inpainting algorithm in [9], where the low-pass coeffi-
cients are not thresholded, i.e., the thresholding parameters are chosen as

λ = c · (0, · · · , 0︸ ︷︷ ︸
N

, 2−L/2, · · · , 2−L/2

︸ ︷︷ ︸
2mN

, · · · , 2−`/2, · · · , 2−`/2

︸ ︷︷ ︸
2mN

, · · · , 2−1/2, · · · , 2−1/2

︸ ︷︷ ︸
2mN

)T . (6.2)

The results of the algorithm in [9] are shown in Figure 6.6. We see that the PSNR differences between
Algorithm 1 and the algorithm in [9] are small, especially for the real image. The corresponding results
of (5.3) with thresholding parameters being (6.2) are also shown in Figure 6.6. We see that for both
choices of thresholding parameters Algorithm 1 always gives better PSNR results than (5.3).

In summary, for all the examples, the minimizer of (4.2), where there is a term to penalize the
distance of α¦ to the range of A, is better than the minimizer of (5.2). This is due to the relationship
between the function smoothness and the `1 norm of the coefficient in the range of A for piecewise
smooth functions as explained in Section 5.1. The improvement is more significant for synthetic
piecewise smooth images.
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Fig. 6.5. From left to right: (a) Image contaminated by white Gaussian noise with standard deviation 5
(SNR=28.59dB), and then down-sampled; (b) f? (PSNR = 27.28dB, iter=454); (c) f¦ (PSNR = 27.28dB, iter=454);
and (d) the restoration by (5.3) (PSNR=27.24dB, iter=354).

(a) (b) (c) (d)

Fig. 6.6. The results using the thresholding parameter chosen as in (6.2) for both Algorithm 1 and iteration
(5.3). From left to right: (a) f¦ (PSNR=31.92dB, iter=79) for the degraded image in Fig. 6.2(a); (b) the restoration
by (5.3) (PSNR=29.82dB, iter=80) for the degraded image in Fig. 6.2(a); (c) f¦ (PSNR = 31.28dB, iter=115) for
the degraded image in Fig. 6.4(a); and (d) the restoration by (5.3) (PSNR=31.27dB, iter=84) for the degraded image
in Fig. 6.4(a).

(a) (b) (c) (d)

7. Conclusions and Perspectives. In this paper, we give an analysis of a framelet-based
algorithm motivated by [6, 8, 9, 10, 29]. By interpreting it as a proximal forward-backward splitting
iteration in [16], we prove the convergence of the algorithm. We further prove that the limit minimizes
a cost functional that balances the sparsity, regularity and fidelity of the solution. Analytical and
numerical comparisons with the framelet-based method presented in [27] are also given to illustrate
the effectiveness of our method.

Under the setting of [16], it is difficult to establish the convergence rate of our algorithm. Our
next research project will be to find it. It is also interesting to extend the convergence results to
infinite dimensional setting.

8. Appendix. In this appendix, we show that Algorithm 1 converges even if we set

λ = (0, · · · , 0︸ ︷︷ ︸
K0

, νK0+1, · · · , νK)T , (8.1)

where νi > 0 for i = K0 + 1, · · · ,K. This is the algorithm proposed in [9].
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8.1. Convergence Proof. Since the proof of Theorem 4.1 and Lemma 4.2 are still valid, it
remains to show the existence of a minimizer of minf{F1(f) + F2(f)}.

Lemma 8.1. Let A be a tight frame system that satisfies one of the following conditions:
(i) 1 is not an eigenvalue of A∗0A0; or
(ii) 1 is a simple eigenvalue of A∗0A0, and the corresponding eigenvector u satisfies PΛu 6= 0,

where A0 is defined in (2.5). Then the minimization problem (4.1) has at least one minimizer.
Proof. Following the proof of Lemma 4.3, we need to show that {ιC(f)+ 1ξ(Af)} is coercive. Let

νmin = minK
i=K0+1 νi and νmax = maxK

i=K0+1 νi. Then as in the proof of Lemma 4.3 (see (4.12)), we
have

{ιC(f) + 1ξ(Af)} ≥ 1
2
‖Af − Tλ(Af)‖22 + ‖diag(λ)Tλ(Af)‖1

≥ ‖diag(λ)Tλ(Af)‖1 =
K1∑

i=1

νK0+i|tνK0+i
(A1f)i| ≥ νmin

K1∑

i=1

|tνK0+i
(A1f)i|

≥ νmin

K1∑

i=1

(|(A1f)i| − νK0+i) ≥ νmin‖A1f‖1 − νminνmaxK1

≥ νmin‖A1f‖2 − νminνmaxK1. (8.2)

First we consider the case when the condition (i) is satisfied. Since 1 is not an eigenvalue of
A∗0A0, the matrix (I −A∗0A0) is nonsingular. Let µ1 be the smallest eigenvalue of (I −A∗0A0). Then
µ1 > 0. For any f ∈ RN , using (2.6), we get

‖A1f‖22 = f∗A∗1A1f = f∗(I − A∗0A0)f ≥ µ1‖f‖22. (8.3)

By (8.2) and (8.3), we have

{ιC(f) + 1ξ(Af)} ≥ νmin‖A1f‖2 − νminνmaxK1 ≥ νmin
√

µ1‖f‖2 − νminνmaxK1.

Therefore, whenever ‖f‖2 → +∞, {ιC(f) + 1ξ(Af)} → +∞.
Next we consider the case when the condition (ii) is satisfied. Let V be the subspace orthogonal

to the unit eigenvector u corresponding to the eigenvalue 1 of A∗0A0, i.e., V = {v : uT v = 0}. Since
A∗0A0 has a simple eigenvalue 1, (I−A∗0A0) has a simple eigenvalue 0. Furthermore, the null space of
(I−A∗0A0) is one dimensional and spanned by u. Therefore, for an arbitrary f , it can be decomposed
into f = v + au with v ∈ V, and

‖A1f‖22 = f∗A∗1A1f = f∗(I − A∗0A0)f ≥ µ2‖v‖22, (8.4)

where µ2 > 0 is the second smallest eigenvalue of (I − A∗0A0). Since PΛu 6= 0, there exists at least
one index i0 ∈ Λ such that u(i0) is nonzero. Let C = min{

√
3

2 , |u(i0)|
4 }. Then 0 < C < 1. As long as

‖f‖2 ≥ 4|g(i0)|
|u(i0)| , we have the following two cases:

• If ‖v‖2 ≥ C‖f‖2, then by (8.2) and (8.4),

{ιC(f) + 1ξ(Af)} ≥ νmin‖A1f‖2 − νminνmaxK1 ≥ νmin
√

µ2‖v‖2 − νminνmaxK1

≥ νmin
√

µ2C‖f‖2 − νminνmaxK1.

• If ‖v‖2 < C‖f‖2, then |a| > √
1− C2‖f‖2. Therefore,

|f(i0)| = |v(i0) + au(i0)| ≥ |a||u(i0)| − |v(i0)|
>

√
1− C2‖f‖2|ui0 | − C‖f‖2 = (

√
1− C2|ui0 | − C)‖f‖2
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≥
(√

1− (
√

3/2)2|ui0 | −
|u(i0)|

4

)
‖f‖2

=
|u(i0)|

4
‖f‖2 ≥ |g(i0)|. (8.5)

It implies that f cannot be in C, hence

{ιC(f) + 1ξ(Af)} = +∞ ≥ νmin
√

µ2C‖f‖2 − νminνmaxK1.

Therefore, in both cases, once ‖f‖2 ≥ 4|g(i0)|
|u(i0)| , it holds that

{ιC(f) + 1ξ(Af)} ≥ νmin
√

µ2C‖f‖2 − νminνmaxK1.

Hence, ‖f‖2 → +∞ implies {ιC(f) + 1ξ(Af)} → +∞.
Combining everything together, we can prove the convergence of Algorithm 1 with threshold

(8.1). The proof is similar to the one in Theorem 4.4, and hence is omitted.
Theorem 8.2. Assume that one of the conditions (i) and (ii) in Lemma 8.1 holds. Then

iteration (3.6) in Algorithm 1 converges to a minimizer of the minimization problem (4.1) for any
initial guess f0.

8.2. Examples of Tight Frames. Next we discuss what kind of tight framelet systems will
satisfy the assumptions in Lemma 8.1. First we study the eigenvalues of the matrices defined in (2.4).

Lemma 8.3. For any symmetric sequence h = {h(j)}J
j=−J , the eigenvectors of the matrix S(h)

defined in (2.4) are the columns of the discrete cosine transform (DCT) matrix. Moreover, the
corresponding eigenvalues are ĥ(iπ/N) for 0 ≤ i ≤ N − 1, where ĥ(θ) =

∑J
j=−J h(j)e−jθ

√−1.
Proof. Sine the sequence h is symmetric, by Theorem 3.2 in [36], the matrices S(h) can be

diagonalized by the DCT matrix C defined by

C(i, j) =

√
2− δi,0

N
cos

(
(2j + 1)iπ

N

)
, 0 ≤ i, j ≤ N − 1,

where δi,0 is the Kronecker delta. Moreover, by (3.3) in [36], the eigenvalues µi of S(h) are given by
the formula µi = [CS(h)e1](i)/[Ce1](i) for 0 ≤ i ≤ N − 1, where e1 is the first column of the identity
matrix. By direct calculations, we obtain

µi =
1

cos(iπ/2N)

N∑

j=1

[h(j) + h(j − 1)] cos
(

(2j − 1)iπ
2N

)

=
1

cos θi




J+1∑

j=1

h(j − 1) cos[(2j − 1)θi] +
J∑

j=1

h(j) cos[(2j − 1)θi]




=
1

cos θi


h(0) cos θi +

J∑

j=1

h(j) cos[(2j + 1)θi] +
J∑

j=1

h(j) cos[(2j − 1)θi]




= h(0) +
J∑

j=1

h(j)
(

cos[(2j + 1)θi] + cos[(2j − 1)θi]
cos θi

)

= h(0) +
J∑

j=1

h(j) cos(2jθi) =
J∑

j=0

h(j) cos(2jθi) =
J∑

j=−J

h(j)e−2jθi

√−1,
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where θi = iπ/(2N).
With this, we can show that Algorithm 1 converges for symmetric tight framelet systems.
Proposition 8.4. Consider the tight frame system A given in (2.5) with a symmetric refinement

mask. Assume that

{θ ∈ (0, π) : |ζφ(θ)|2 = 1} = ∅. (8.6)

Then, condition (ii) in Lemma 8.1 holds.
Proof. Since the refinement mask is symmetric, we may assume (up to the multiplication of an

exponential) that ζφ is an even function. This, together with |ζφ(0)|2 = 1, (8.6), and Lemma 8.3,
implies that (H0)∗H0 has a simple eigenvalue 1, and the corresponding eigenvector is 1, the vector
of all ones. Clearly PΛ1 6= 0.

Recall A0 ≡
∏L−1

`=0 H(L−`)
0 . Let (µ(`)

i )2 be the eigenvalues of (H(`)
0 )∗H(`)

0 . Since the matrices H(`)
0

for ` = 1, · · · , L can all be diagonalized by the same DCT matrix, the eigenvalues of A∗0A0 are given
by

L∏

`=1

(µ(`)
i )2 =

L∏

`=1

∣∣∣∣ζφ

(
2`−1 iπ

N

)∣∣∣∣
2

, for 0 ≤ i < N − 1,

which equal 1 if and only if (µ(`)
i )2 = 1 for all `. This is obviously true when i = 0 whose corresponding

eigenvector is 1. Assume that there is another i 6= 0 that satisfies the condition, then

iπ

N
, 2

iπ

N
, · · · , 2L−1 iπ

N
∈ {θ : |ζφ(θ)|2 = 1}

which contradicts (8.6). Therefore, 1 is a simple eigenvalue of A∗0A0 whose corresponding eigenvector
is 1, and PΛ1 6= 0.

The lemma shows that Algorithm 1 converges if the symmetric tight framelet systems derived
from B-splines, or more general, the pseudo-splines of type II introduced in [22] are used.

Acknowledgment: We would like to thank the referees for providing us with valuable and de-
tailed comments, and insightful suggestions which have brought great improvements to many aspects
of this manuscript. In particular, we would like to thank one of the referees for providing part of the
proof of Lemma 8.1.
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