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Reactive Robot Navigation Using Quasi-Conformal
Mappings and Control Barrier Functions

Gennaro Notomista , Member, IEEE, Gary P. T. Choi , and Matteo Saveriano , Senior Member, IEEE

Abstract— This article presents a robot control algorithm
suitable for safe reactive navigation tasks in cluttered envi-
ronments. The proposed approach consists of transforming the
robot workspace into the ball world, an artificial representa-
tion where all obstacle regions are closed balls. Starting from
a polyhedral representation of obstacles in the environment,
obtained using exteroceptive sensor readings, a computationally
efficient mapping to ball-shaped obstacles is constructed using
quasi-conformal (QC) mappings and Möbius transformations.
The geometry of the ball world is amenable to provably safe
navigation tasks achieved via control barrier functions (CBFs)
employed to ensure collision-free robot motions with guarantees
both on safety and on the absence of deadlocks. The perfor-
mance of the proposed navigation algorithm is showcased and
analyzed via extensive simulations and experiments performed
using different types of robotic systems, including manipulators
and mobile robots.

Index Terms— Constrained control, mobile robots, optimal
control, robot control.

I. INTRODUCTION

SAFETY of dynamical systems (DSs) is receiving increas-
ingly more attention, thanks to recently developed

theoretical and computational tools that allow us to formu-
late several safety-critical controllers as convex optimization
control policies. Applications include robot collision avoid-
ance [1], energy-aware systems [2], and safe learning [3], [4].
Safety is intended as the forward invariance property of a
subset of the state space of the DS describing the system. That
is, a system is safe with respect to a set S if the trajectory of
the state, x(t), satisfies x(t0) ∈ S H⇒ x(t) ∈ S ∀t ≥
t0. This notion of safety has been employed to formulate
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problems of safe motion planning for autonomous systems [5],
navigation [6], [7], and autonomy [8], [9]. More recently,
safe reinforcement learning problems have been formulated
leveraging such a control-theoretic notion of safety [10], [11],
[12], [13].

At the motion planning stage, safety constraints have been
considered, which typically result in nonconvex problem
formulations (e.g., [3], [14]). The recently developed control
barrier function (CBF) [15] gained popularity also, thanks
to the low computational complexity of convex optimization
formulations, as well as their ability to encode a large variety
of safety specifications. Nevertheless, the low computational
complexity comes at the cost of a reactive controller synthesis
approach, as opposed to planning-like strategies (see, e.g.,
[16] for a recent work trying to unify reactive and predictive
techniques). When such reactive controllers are employed,
it has been shown that the presence of competing objectives
(more specifically, stability and safety) may generate undesired
and asymptotically stable equilibrium points [17]. This phe-
nomenon is particularly critical as undesirable asymptotically
stable equilibria exist even in the presence of convex unsafe
regions (e.g., obstacles).

The presence of undesirable equilibrium points arises in
robot navigation and path planning problems, where robots
have to navigate around obstacles to reach a desired goal.
Over the past several decades, different approaches for robot
navigation and path planning via mathematical transformations
have been proposed [18], [19], [20], [21], [22] (see [23] for
a survey). For instance, Sarkar et al. [24] developed a method
for greedy routing in sensor networks using Ricci flow. Loizou
[6] and Constantinou and Loizou [25] tackled the navigation
problem by mapping a star world to a domain called the
point world. Vlantis et al. [26] developed a method for robot
navigation by transforming a real workspace into a punctured
disk using harmonic maps. Methods for motion planning using
Schwarz–Christoffel mappings were proposed in [27] and [28].
Fan et al. [29] proposed an iterative scheme for constructing
conformal navigation transformations that map a complex
workspace to a multiply connected circle domain.

In our recent work [30], we presented an approach to
mitigate the problem of undesirable asymptotically stable
equilibria in the case of multiple nonconvex unsafe regions.
The control algorithm consists of mapping the system state
space with possibly nonconvex unsafe regions, to a space
where unsafe regions are either closed balls or the complement
of open balls. A safety-preserving controller is computed
in the ball world and mapped, via an appropriately defined
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Fig. 1. Approach proposed in this article to ensure the safety of DSs
in the presence of multiple nonconvex unsafe regions consists of mapping
the state space—the polyhedral world—to a ball world, where obstacles are
closed balls or the complement of open balls. In the ball world, obstacles are
transformed by changing their centers and radii, by means of the inputs ρ̇∗i
and q̇∗j . This lets the mapped state z, and hence the real state x , to remain
safe.

diffeomorphism, into the controller for the robot moving in the
real world. The algorithm is formulated as a convex quadratic
program (QP) regardless of the number and the convexity of
unsafe regions. Fig. 1 pictorially illustrates this idea.

In this article, we design a computationally efficient reac-
tive navigation policy for robotic systems which, thanks to
the novel application of computational geometric tools to
optimization-based robot control, significantly extends the
range of applicability of the idea proposed in [30]. More
concretely, the proposed control algorithm improves on [30]
in the following ways.

1) We employ QC mappings to be able to represent obstacle
regions in the real world—which will be referred to as the
polyhedral world—of which we do not have an analytical
expression.

2) We show how to compose Partial QC mappings in such
a way as to get a diffeomorphism between the poly-
hedral world and the ball world, where controllers are
synthesized.

3) We particularize the implementation of the developed
algorithm for specific classes of systems modeling a
large number of mobile robots employed in practical
applications, namely systems near-identity diffeomorphic
to single integrators, feedback linearizable systems, and
differentially flat systems.

4) We report the results of extensive simulations and
experiments with real robotic platforms to discuss the
advantages and limitations of the proposed approach in
terms of tradeoffs between robustness and computational
complexity.

Compared to the work in [30], these contributions allow
for the implementation of reactive controllers which, based
on constrained-optimization-based formulations, guarantee a
safe execution of robotic tasks, while preventing undesired
equilibrium points from appearing and practically preventing
the existence of deadlocks. Furthermore, we highlight how
our proposed algorithm is amenable to be combined with
existing tracking control techniques (based on, e.g., feedback
linearization and differential flatness).

The remainder of the article is organized as follows.
In Section II, we review the background and related work
on robot navigation. In Section III, we describe our pro-

posed safety-preserving algorithm leveraging QC mappings
and convex optimization problems. Numerical validation and
comparisons are presented in Section IV. In Section V,
we present both simulation and real experimental results for
robotics applications. We conclude our work and discuss
possible future directions in Section VI.

II. BACKGROUND AND RELATED WORK

A. Problem Definition

In this article, we consider robotic systems modeled by a
control-affine DS

ẋ = f (x)+ g(x)u (1)

where x ∈ Rn is the robot state, u ∈ Rm is the robot control
input, and f : Rn

→ Rn and g : Rn
→ Rn×m are locally

Lipschitz continuous vector fields. The robots have to reach a
desired goal in the environment, and this behavior is assumed
to be achieved via a given control policy

û : Rn
× R→ Rm .

This way

ẋ = f (x)+ g(x)û(x, t) (2)

where t denotes the time variable, makes the state x evolve to
reach a desired goal state.

A computationally efficient safety-preserving control design
for control affine DSs is based on the use of CBF [15], which
results in a convex optimization control policy. The collision-
free set—the safe set—is defined as the zero-superlevel set of
a continuously differentiable function h, that is, the safe set
S is defined as S = {x ∈ Rn

: h(x) ≥ 0}. Then, if it exists,
the following controller guarantees the collision-free motion
of the robot:

u⋆(x, t) = arg min
u
∥u − û(x, t)∥2

s.t. L f h(x)+ Lgh(x)u ≥ −α(h(x)) (3)

where L f h(x) = (∂h/∂x) f (x) and Lgh(x) = (∂h/∂x)g(x)

denote the Lie derivatives of h in the direction of the vector
fields f and g, respectively, and α : R → R is a class
K function, that is, a continuous, monotonically increasing
function, with α(0) = 0.

For robot navigation tasks, the safe set S is straightforwardly
computable when the environment and the obstacles are balls.
Therefore, the approach we take in this article to devise a
reactive robot navigation policy consists of the following steps.

1) Reconstructing the polyhedral world from readings of
exteroceptive sensors mounted on the robot.

2) Mapping the polyhedral world to a ball world, where the
workspace and the obstacles are closed balls.

3) Solving for a robot control input that guarantees the
collision-free motion of the robot in the ball world.

4) Mapping the robot control input from the ball world to
the polyhedral world and sending it to the robot.

This is achieved by changing the position and size of the
obstacles in the ball world, which, in turn, changes the diffeo-
morphism between the free space in the polyhedral world and
the free space in the ball world. We then leverage this diffeo-
morphism and its Jacobian to compute the input for the robot
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in the polyhedral (real) world that ensures its collision-free
motion without introducing undesired equilibrium points.

To this end, let z denote the robot state in the ball world
and φ : Rn

→ Rn the mapping from the polyhedral world to
the ball world, namely z = φ(x) ∈ Rn (see Fig. 1). Assuming
φ is continuously differentiable and invertible, we can write
the robot dynamics in the ball world as follows:

ż =
∂φ

∂x
ẋ =

∂φ

∂x
f (x)+

∂φ

∂x
g(x)u

=
∂φ

∂x

(
f ◦ φ−1)︸ ︷︷ ︸
=: fz

(z)+
∂φ

∂x

(
g ◦ φ−1)︸ ︷︷ ︸
=:gz

(z)u. (4)

As the algorithm is implemented on real systems at discrete
time stamps, we can relax the differentiability assumption
and approximate derivatives with finite differences, by always
keeping the theoretical guarantees of the CBF. Having defined
the CBF h whose zero-superlevel set is the collision-free set,
we can solve for the robot controller u∗ as follows:

u⋆(x, z, t) = arg min
u
∥u − û(x, t)∥2

s.t. L fz h(z)+ Lgz h(z)u ≥ −α(h(z)). (5)

In Section II-B, we show how to build a diffeomorphism
φ starting from a polyhedral description of the obstacles.
The resulting function, together with its inverse and Jacobian,
is locally Lipschitz continuous and bounded. As a result, the
optimal solution to (5) is locally Lipschitz continuous [31].

B. Building Mappings Between Real and Ball Worlds

In the ball world, obstacles are mapped to convex sets
(balls), which result in zero-measure sets of initial conditions
from which deadlocks arise [17]. More importantly, for the
approach we propose in this article, ball world obstacles can
be parameterized by their position and radius. These two
parameters will be controlled in our algorithm to ensure the
safe motion of the robot in the polyhedral world. To build a
computationally tractable diffeomorphism between the polyhe-
dral and the ball world, we leverage QC mappings composed
using the navigation functions in [19]. In the following, we will
briefly recall the definition of the latter for the case of star-
shaped obstacles—which results in an analytic expression of
the function—while Section III is devoted to the definition
and properties of the QC mappings, which allow us to obtain
a mapping from the polyhedral world (where obstacles are
polyhedrons) to the ball world.

Consider that the robot state is evolving in the
n-dimensional manifold Mn . To build an analytic diffeomor-
phism between the real world (containing star-shape obstacles)
and the ball world, we will compose a number of real-valued
analytic functions, denoted by βi :Mn

→ R, for which 0 is a
regular value. The robot workspace will be denoted by W ⊂
Mn , a connected and compact n-dimensional submanifold of
Mn such that

W◦ ⊂
{

x ∈Mn
: β0(x) > 0

}
∂W ⊂

{
x ∈Mn

: β0(x) = 0
}

(6)

are its interior and boundary, respectively. It is assumed that
M static obstacles are present in the workspace W . As will
be explained in the following, the mapping between the
polyhedral and the ball world is updated at each iteration.
Therefore, while the motion of the obstacles is not considered
explicitly, it is accounted for implicitly. These are denoted by
Oi (where i = 1, 2, . . . , M) and correspond to the interior of
a connected and compact n-dimensional submanifold of Mn

such that

Ōi ⊂W◦ ∀i
W \ Ōi ⊂

{
x ∈Mn

: βi (x) > 0
}

∂Ōi ⊂
{

x ∈Mn
: βi (x) = 0

}
Ōi ∩ Ō j = ∅ ∀i ̸= j. (7)

With these definitions, the safe space S (or free space) is given
by

S =W \
M⋃

i=1

Oi . (8)

In the ball world, both the robot workspace and the obstacles
are balls. Then, an explicit representation of them can be as
follows:

Ô0 =

q ∈ Rm
: ρ2

0 − ∥q − q0∥
2︸ ︷︷ ︸

β̂0(q)

< 0


Ôi =

q ∈ Rm
: ∥q − qi∥

2
− ρ2

i︸ ︷︷ ︸
β̂ i (q)

< 0

 (9)

where Ô0 is the representation of the robot workspace W◦,
and qi and ρi , i = 1, . . . , M , denote the center and the radius
of the i th obstacle, respectively. Thus, the safe space in the
ball world is

Ŝ =
{
q ∈ Rn

: β̂0(q) ≥ 0, β̂1(q) ≥ 0, . . . , β̂M(q) ≥ 0
}
. (10)

The functions βi are not easy to obtain in the case of
generic shapes of the obstacles. In the proposed approach,
however, obstacles are conveniently mapped to balls, making
the expression of such functions analytic and simple.

Following the procedure described in [19], we now describe
how to obtain an analytic diffeomorphism between the real
and the ball world in the case of star-shaped obstacles in the
plane. The following is a parameterized example of such a
diffeomorphism:

φλ(x)

=

M∑
i=0

σi,λ(x) (ρi bi (x)+ qi )︸ ︷︷ ︸
φi (x) := i th

obstacle diffeomorphism

+σg,λ(x)
((

x − xg
)
+ qg

)
)

(11)

where

bi (x) =
∥x − xi∥

ri (θ)

[
cos θ

sin θ

]
(12)
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with θ = ̸ (x − xi ), xi is the center of the obstacle, and ri is
the function describing how the radius changes as a function
of the angle θ . The functions σi,λ are defined as follows:

σi,λ =
γgβ̄ i

γgβ̄ i + λβi
, i = 0, . . . , M

σg,λ = 1−
M∑

i=0

σi,λ (13)

with γg = ∥x − xg∥
2 and β̄ i =

∏M
j=0
j ̸=i

β j . Finally, xg and

qg are goal points in the real and ball world, respectively,
which in the context of the algorithm presented in this article
can be set to an arbitrary point in the safe space in the real
and ball world, respectively. Notice that, given the structure
of the analytic diffeomorphism φ, the point xg is mapped to
qg . While this approach works well for obstacles that can be
accurately described by star-shaped sets, obtaining a mapping
for obstacles described by generic polyhedrons is challenging.
In Section III, we will introduce QC mappings and show
how to employ them to construct a transformation from a
polyhedral to a ball world.

III. SAFE ROBOT NAVIGATION ALGORITHM

A. Full QC Mapping

In this section, we develop a fast method for mapping a
polyhedral world to a ball world using conformal mappings
and QC mappings. Conformal mappings are angle-preserving
mappings that have been commonly used for shape trans-
formations. More specifically, let φ : C → C be a map
on the complex plane with φ(z) = uφ(x, y) + i vφ(x, y),
where z = x + iy and uφ, vφ are real-valued functions and
i is the imaginary number with i2

= −1. φ is conformal
if its derivative φ′(z) is nonzero everywhere and it satisfies
the Cauchy–Riemann equations (∂uφ/∂x) = (∂vφ/∂y) and
(∂uφ/∂y) = −(∂vφ/∂x). While conformal mappings can
preserve the local geometry under transformations, most of the
existing conformal mapping algorithms require a considerable
amount of computation and hence are not suitable for real-time
robot navigation. Here, we consider a generalization of con-
formal mappings called the QC mappings, which are planar
homeomorphisms that map small circles to small ellipses with
bounded eccentricity [32]. Mathematically, a QC mapping
φ : �1 → �2 from a planar domain �1 ⊂ C to another planar
domain �2 ⊂ C is an orientation-preserving homeomorphism
that satisfies the Beltrami equation (∂φ/∂ z̄) = µ(z)(∂φ/∂z)
for some complex-valued function µ with ∥µ∥∞ < 1.
We propose a fast QC mapping method based on a recent
conformal parametrization algorithm [33] with modifications.
Specifically, since the safety-preserving algorithm does not
require the mapping in this step to be perfectly conformal,
we can relax the conformality requirement of the algorithm
in [33] by simplifying certain procedures, thereby producing
a QC mapping more efficiently.

Let S ⊂ C be a planar polyhedral domain with k polygonal
holes, and denote the boundary as ∂S = 00 − 01 − · · · −

0k , where 00 is the outer boundary and 01, . . . , 0k are the
inner boundaries. We first fill all k holes and obtain a simply

connected domain S̃. We can then compute a disk harmonic
map ϕ : S̃ → D by solving the Laplace equation

1ϕ = 0 (14)

subject to a circular boundary constraint ϕ(00) = ∂D, where
1 is the Laplace–Beltrami operator defined on S̃ discretized
using the cotangent formulation [34] (see [35] for more
details). Next, we remove the filled regions and transform the
k holes in ϕ(S) into k circles such that the center of each
circle is the centroid of the corresponding hole and the area
of the circle equals that of the hole (here we remark that
alternatively, one may also map the k holes to k circles based
on some prescribed centers and radii). Finally, we obtain a
QC map ϕ̃ : S → D using the linear Beltrami solver (LBS)
method [36], [37] subject to the updated circular boundary
constraints. More specifically, ϕ̃ is obtained by solving the
generalized Laplace equation

∇ · (A · ∇ϕ̃) = 0 (15)

subject to the updated boundary constraints for all 0 j , where

A =

 (Re(µϕ)−1)
2
+(Im(µϕ))

2

1−|µϕ |
2 −

2 Im(µϕ)
1−|µϕ |

2

−
2 Im(µϕ)
1−|µϕ |

2
(Re(µϕ)+1)

2
+(Im(µϕ))

2

1−|µϕ |
2

 (16)

and µϕ = (ϕz̄/ϕz) is the Beltrami coefficient of the disk
harmonic map ϕ. This completes the proposed fast method for
mapping the polyhedral world to the ball world. In the discrete
case, note that both (14) and (15) are nv × nv sparse linear
systems, where nv is the number of vertices in the polyhedral
domain S . In other words, the Full QC method only requires
solving two linear systems without any iterations and hence
is highly efficient. Also, the resulting QC map φ has bounded
distortion as guaranteed by QC theory.

B. Partial Conformal Mapping

In the proposed method above, the entire polyhedral world
is mapped to a ball world by solving linear systems. However,
in some cases, it may be desirable to have an even more
efficient method for mapping only part of the polyhedral world
to a partial ball world, where the computation of the mapping
should be as simple as possible for facilitating real-time
navigation. Here, we develop an algorithm for conformally
mapping a polygonal hole in the polyhedral world to the unit
disk and everything outside the hole to the exterior of the unit
disk. To achieve this, we adopt a similar strategy as in [38]
and utilize the geodesic algorithm [39], which consists of a
series of analytic maps on the complex plane.

Denote the boundary vertices of the polygonal hole as
p1, p2, . . . , pn (in anticlockwise order). We first consider the
following mapping:

ϕ0(z) =

√
z − p2

z − p1
(17)

with the branching (−1)1/2
= i , which maps p1 to∞, p2 to 0,

and the interior of the polygon to the right half-plane. We then
construct a sequence of mappings ϕ1, . . . , ϕn−2 such that the
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remaining pi ’s are mapped to the imaginary axis one by one
via their compositions

ϕ j (z) =

√√√√√ Re ξ j

|ξ j |
2 z

1+Im ξ j

|ξ j |
2 zi

2

− 1 (18)

where ξ j = (ϕ j−1 ◦ ϕ j−2 ◦ · · · ◦ ϕ0)(p j ), with the branching
(−1)1/2

= −i . Next, we apply the following analytic map:

ϕn−1(z) =

(
z

1− z
(ϕn−2◦ϕn−3◦···◦ϕ0)(p1)

)2

(19)

which enforces the interior of the polygon to be in the upper
half-plane while keeping p1 to be mapped to ∞. The Cayley
transform

ϕn(z) =
z − i
z + i

(20)

can then be applied to map the real axis to the unit circle, the
upper half-plane to the interior of the unit disk, and the lower
half-plane to the exterior of the disk. Next, we normalize the
transformation and ensure that∞ remains fixed by applying a
reflection with respect to the unit circle η(z) = (1/z), followed
by a Möbius transformation that shifts ∞ to 0:

τ(z) =
z − (η ◦ ϕn ◦ · · · ◦ ϕ0)(∞)

1− (η ◦ ϕn ◦ · · · ◦ ϕ0)(∞)z
. (21)

Finally, we apply an inverse reflection η−1(z) = (1/z) = η(z).
Altogether, the composition of the above-mentioned map-

pings 9 = η−1
◦ τ ◦ η ◦ ϕn ◦ · · · ◦ ϕ0 maps the polygonal hole

to the unit disk and everything outside the hole to the exterior
of the unit disk. Note that 9 is fully analytic and does not
require any equation solving.

C. Convex Optimization Formulation

In this section, we develop the main optimization-based
controller, which is designed to move the positions of the
obstacles as well as their radii so that the robot in the ball
world moves in a collision-free fashion. Leveraging the diffeo-
morphism built using the techniques recalled in the previous
section, the motion of the robot in the ball world is mapped
into the motion of the robot in the polyhedral (real) world
(see also the Appendix for more implementation details). It is
important to remark that the motion of the obstacles in the
ball world is artificial and does not correspond to the motion
of the obstacles in the polyhedral world. While the approach
proposed in this article is capable of accounting for the latter,
for the sake of clarity we do not consider it in this work.

As the ball world is a mathematical representation of the
real robot workspace, it can be freely deformed and modified
to ensure the robot never collides with the obstacles present
in the environment and with the boundary of the latter. This
approach can be interpreted as a robot-avoidance paradigm,
as opposed to the more traditional obstacle-avoidance one.
In these settings, obstacles in the ball world are displaced from
their positions and shrunk with respect to their initial radii so
that the following conditions are satisfied in the ball world:

(C1) The robot does not collide with the obstacles.

(C2) The obstacles do not collide with each other.
(C3) The obstacles do not exit the environment.
(C4) The obstacles do not overlap with the goal point

qg used to build the mapping between real and ball
worlds.

Condition (C1) is directly related to safety: If the robot is kept
in the safe set in the ball world, so is the case in the polyhedral
world. Therefore, having the obstacles move away from the
robot in the ball world will result in the robot avoiding the
obstacles in the polyhedral world. Conditions (C2)–(C4) are
introduced to always obtain a valid mapping between real
and ball worlds by satisfying the assumptions introduced in
Section III-B. Given the simple geometry of the ball world,
where every object is a ball, constraint satisfaction for the
obstacles can be efficiently enforced through the use of CBF.

In this article, we are going to enforce constraints on the
obstacles by leveraging CBF. To do so, we need to define the
dynamics of the obstacle motion. We choose to control both
the position of the center of each obstacle, q j , via its velocity,
uq j , as well as the radius of each obstacle, ρ j , via the radius
rate of change uρ j . Therefore, we can define the following
single integrator obstacle dynamical model:{

q̇ j = uq j

ρ̇ j = uρ j .
(22)

We are now ready to present the CBF employed to enforce
Conditions (C1)–(C4) introduced above.

a) CBF for Condition (C1): The objective of keeping the
robot at position q away from obstacle j can be enforced by
defining formally the CBF h j := β̂ j , that is,

h j
(
q j , ρ j

)
= ∥q j−q∥2

− ρ2
j . (23)

The following inequality constraint on uq j and uρ j can be
defined to enforce the positivity of h j [15]:[
−2
(
q j − q

)T 2ρ j

]
︸ ︷︷ ︸

=:AC1, j

[
uq j

uρ j

]
≤ −2

(
q j − q

)Tq̇ + α
(
h j
(
q j , ρ j

))︸ ︷︷ ︸
=:bC1, j

.

(24)

This constraint on the control inputs uq j and uρ j will be
enforced in an optimization program formulated to synthesize
the controller to move and deform the obstacles in the ball
world.

b) CBF for Condition (C2): To make the obstacles not
collide with each other, we can proceed to define the following
CBF:

h jk
(
q j , qk, ρ j , ρk

)
= ∥q j − qk∥

2
−
(
ρ j + ρk

)2 (25)

and corresponding inequality constraint for the inputs to the
obstacles

[
−2
(
q j − qk

)T 2
(
q j − qk

)T 2
(
ρ j + ρk

)
2
(
ρ j + ρk

)]︸ ︷︷ ︸
=:AC2, jk


uq j

uqk

uρ j

uρk


≤ α

(
h jk
(
q j , qk, ρ j , ρk

))︸ ︷︷ ︸
=:bC2, jk

. (26)
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c) CBF for Condition (C3): To prevent the obstacle
from exiting the environment, we can proceed similarly to
the previous two cases and define the following CBF for each
obstacle j :

h j0
(
q j , ρ j

)
=
(
ρ0 − ρ j

)2
− ∥q j − q0∥

2 (27)

resulting in the following constraint on uq j and uρ j :[
2
(
q j − q0

)T 2
(
ρ0 − ρ j

)]︸ ︷︷ ︸
=:AC3, j

[
uq j

uρ j

]
≤ α

(
h j0
(
q j , ρ j

))︸ ︷︷ ︸
=:bC3, j

. (28)

d) CBF for Condition (C4): Finally, the nonoverlapping
condition between any of the obstacles and the goal of the
analytic diffeomorphism can be obtained with the following
CBF:

h jg
(
q j , ρ j

)
= ∥q j − qg∥

2
− ρ2

j (29)

from which the following constraint on uq j and uρ j follows:[
−2
(
q j − qg

)T 2ρ j

]
︸ ︷︷ ︸

=:AC4, j

[
uq j

uρ j

]
≤ α

(
h jg
(
q j , ρ j

))︸ ︷︷ ︸
=:bC4, j

. (30)

At this point, to select the control input for the obstacles,
we formulate the following QP:

minimize
uq ,uρ

∥uq − ûq∥
2
+ κ∥uρ − ûρ∥

2

subject to

AC1, j

AC3, j

AC4, j

[uq j

uρ j

]
≤

bC1, j

bC3, j

bC4, j

 ∀ j = 1, . . . , M

AC2, jk


uq j

uqk

uρ j

uρk

 ≤ bC2, jk ∀ j, k = 1, . . . , M, j > k

(31)

where uq and uρ are the stacked obstacle velocity and radius
change rate, respectively,

uq =
[
uT

q1
. . . uT

qM

]T
uρ =

[
uρ1 . . . uρM

]T (32)

and ûq and ûρ are the stacked nominal control inputs for the
velocity and the radius change rate of the obstacles defined as
follows to keep the original positions q j (0) and radius ρ j (0)

if possible:

ûq, j = K p
(
q j (0)− q j (t)

)
ûρ, j = K p

(
ρ j (0)− ρ j (t)

)
(33)

where K p > 0 is a controller gain. The parameter κ determines
the relative weight between the change of position and the
change of radius of the obstacles and can be chosen to
prioritize one over the other. In [30], it is shown that the
QP in (31) is always feasible, regardless of the number of
obstacles, their relative position to the robot, and the boundary
of the environment.

Algorithm 1 summarizes the required steps to execute the
safe robot navigation algorithm. The symbol (⋆) denotes a

Algorithm 1 Safety With Multiple Obstacles
Require: φ, 1t , α, κ , K p, qi (t0) and ρi (t0), i = 0, . . . , M

1: k = 0
2: while true do
3: k ← k + 1
4: q̇(k)

= L f φ
(k)(x (k))+ Lgφ

(k)(x (k))u(k)

5: Compute ûq and ûρ ▷ (33)
6: Compute u∗q and u∗ρ ▷ (31)
7: q(k+1)

i ← q(k)
i + u∗qi1t, i = 0, . . . , M

8: ρ
(k+1)
i ← ρ

(k)
i + u∗ρi1t, i = 0, . . . , M

9: Update φ(k+1)

10: ẋ (k)
=

∂φ(k+1)−1

∂q
q̇(k)

11: Compute u(k+1) to track ẋ (k)
▷ (⋆)

12: Apply u(k+1)

13: end while

Fig. 2. Full QC mapping (using the inverse mapping to transform the states).
In each panel, the left box is the polyhedral (real) world, and the right circle is
the ball world. Notice the motion of the obstacles in the ball world to prevent
the state of the robot mapped into the ball world from colliding with them at
each point in time.

step which, depending on the properties of the system to
control, can be executed in different ways. In the Appendix,
we illustrate how to implement step (⋆) for three classes of
DSs which encompass a large variety of, yet not all, robotic
systems.

IV. VALIDATION AND COMPARISONS

This section presents an evaluation and a comparison
between different variants of the proposed approach. We start
by comparing the Partial Conformal and the Full QC map-
pings, then highlighting the tradeoff between computational
complexity and robustness of the approach. Then, we will
illustrate the difference between mapping the state of the
system between polyhedral and ball world, rather than the
control input. The discussion in this section will serve as a
guide to the choice of algorithm employed in Section IV.

A. Partial Conformal Versus Full QC Mapping

We provide a simulation comparison between the Par-
tial Conformal (see Section III-B) and the Full QC (see
Section III-A) mappings. To this end, we consider the
dynamics

ẋ = −Ax + u =
[

60 0
0 10

](
xg − x

)
(34)
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Fig. 3. Partial conformal mapping (λ = 10 000). In each panel, the left box
is the polyhedral (real) world, and the right circle is the ball world. Notice
the motion of the obstacles in the ball world to prevent the state of the robot
mapped into the ball world from colliding with them at each point in time.

Fig. 4. Partial conformal mapping for different values of λ. In each panel,
the left box is the polyhedral (real) world, and the right circle is the ball
world.

where the 2-D state vector is defined as x = [x1, x2]
T, the

goal state is xg = −[0.25, 2]T, and u = Axg . We consider a
navigation scenario where the state of the dynamics (34) has to
reach xg starting from x(0) = [2, 2]T while avoiding obstacles
that dynamically appear in the state space (the triangle and
the square in Fig. 3). The navigation task is successfully
completed using either the Partial (see Fig. 3) or the Full (see
Fig. 2) mapping. The Partial is computationally more efficient
than the Full mapping, with computational time increasing
only when adding new obstacles. However, the Partial mapping
is a proper QC mapping only for certain values of λ. Indeed,
as shown in Fig. 3, the state in the ball world exhibits a
discontinuous behavior when new obstacles are added. The
jump can be reduced by reducing the effect of the obstacle at
larger distances, that is, by increasing λ as shown in Fig. 4,
but this requires manual tuning of λ at run-time which makes
the approach application specific. On the other hand, updating
the Full mapping at each iteration is computationally more
expensive (see Section IV-B), but it always generates a proper
QC mapping, and, therefore, smooth state trajectories (see
Fig. 2).

Fig. 5. (a) Computational complexity of Harmonic Map [26] and the
proposed Full QC for different domain approximations. Note the logarithmic
scale on the time axis. (b) Mesh domain approximation with 144 (left)
and 10 070 (right) triangles. (c) Polyhedral worlds of increasing complexity
considered in this comparison.

B. Computation Versus Robustness Tradeoff

In this experiment, we evaluate the computational time of
the proposed Full QC mapping, and compare it against the
Harmonic Map approach presented in [26]. We consider the
same box domain (polyhedral world) of Section IV-A contain-
ing two obstacles (a box and a triangle, as shown in Fig. 5).
Given this domain, we create a triangular mesh using the
built-in MATLAB1 function generateMesh. The function
accepts as input the maximum element size hmax that we
sample from the vector [0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6].
As shown in Fig. 5, the value of hmax affects the number
of triangles in the mesh, for example, for hmax = 0.6, the
mesh contains 144 triangles. The Harmonic Map approach
approximates the domain and the boundary of each obstacle
with a set of points (boundary points). To make the two
approaches comparable, we compute the number of boundary
points for each value of hmax and use it to compute the Har-
monic Map. For each value of hmax (or number of boundary

1Registered trademark.
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points), we compute the Full QC mapping ten times and report
statistics in Fig. 5. Results are obtained using MATLAB 2018b
on a laptop equipped with an Intel i7 7th generation CPU and
16 GB of DDR4 RAM.

Fig. 5(a) shows the computation time obtained with Har-
monic Map and Full QC approaches in the polyhedral domains
shown in Fig. 5(c). We observe that the computation time of
both Harmonic Map and Full QC is almost independent of
the number of obstacles, while it increases with the number
of boundary points/triangles used to approximate the domain.
For all the considered resolutions, our approach is about one
order of magnitude more efficient than the Harmonic Map,
which makes it possible to use the Full QC in dynamic sce-
narios as the one considered in Section IV-A. Fig. 5(b) shows
the tradeoff between computational complexity (number of
triangles) and robustness margin (size of triangles). Fast com-
putation requires fewer triangles. However, having a too-coarse
mesh may result in a significant loss of representation details.
As shown in the left panels of Fig. 5(b), with 144 mesh
elements, the triangular obstacle is poorly approximated both
in the real and the ball worlds. A practical solution could be
to set the number of triangles (or, equivalently, hmax) based on
the controller loop time and then set the desired error bounds
based on the size of the triangles. This will introduce more
errors, which can be accounted for in the safety constraints by
increasing the safety margin accordingly. Alternatively, one
can create a course mesh and refine it locally around the
obstacles.

C. State Mapping Versus Input Mapping

The safe robot navigation algorithm requires mapping back
and forth the state and the control input from the real to the
ball world (see Appendix). These mappings can be realized in
two ways: 1) using the Jacobian of the transformation and its
inverse to map control inputs; or 2) using the transformation
(QC mapping) to map states.

To compare the two approaches, we consider the same setup
used in Section IV-A. Mapping the state of the robot from the
ball world to the polyhedral world (see Fig. 2) is effective only
for dynamics with specific properties like differential flatness
or feedback linearizability (see Appendix). Instead, mapping
control inputs using the Jacobian and its inverse is a more
general approach that does not require further assumptions on
the dynamics beyond smoothness. Results obtained with this
approach are shown in Fig. 6. In the considered scenario, both
approaches can successfully complete the navigation task.

When it comes to numerical implementation, the two
approaches exhibit different behaviors. In particular, the
approach proposed to compute the QC mapping ensures a
certain level of smoothness. However, the mapping, espe-
cially close to the obstacle boundary, can be significantly
deformed. Since the Jacobian is numerically computed using
finite differences, this may result in a close to singular Jacobian
matrix, and, as a consequence, in an almost unbounded inverse
mapping. To prevent these issues, we used a varying-step
numerical approach to compute derivatives, but this comes at
an extra computational cost. On the other hand, mapping the

Fig. 6. Full QC input mapping (using the mapping Jacobian to transform
inputs). In each panel, the left box is the polyhedral (real) world, and the right
circle is the ball world. As for the previous simulations, notice the motion of
the obstacles in the ball world to prevent the state of the robot mapped into
the ball world from colliding with them at each point in time.

Fig. 7. Results obtained with the Full QC mapping in a cluttered office
workspace. Blue/red bullets indicate start/goal positions.

state only requires the mapping and its inverse that are smooth
everywhere in the state space.

D. Cluttered Office Workspace

In this experiment, we demonstrate that the Full QC
approach can be used to navigate cluttered domains with
a complex boundary. To this end, we construct a cluttered
office workspace (see Fig. 7) similar to the one used in [26],
[29]. This domain is designed to reproduce a realistic office
workspace, and it is complex to navigate as it contains ten
objects of different shapes and sizes and has complex bound-
aries. As shown in Fig. 7, the Full QC approach can navigate
the office from different initial to different final positions.

V. ROBOTICS APPLICATIONS

This section presents experimental results in typical robotics
applications, both in simulation and on real devices.

A. Avoiding Low-Manipulability Areas

In this simulation, we consider a planar two-link manip-
ulator that has to move its end-effector between two points
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Fig. 8. Workspace of an RR planar manipulator. The blue dot is the starting
point, the yellow dot is the goal, and the green dots are regions of low
manipulability (µ < 0.1).

(blue and yellow dots in Fig. 8) while avoiding a region of
low manipulability (the region within the purple boundary).
The manipulator has two links of equal length, that is, l1 =

l2 = 0.5 m. The joint ranges are limited to q1, q2 ∈ [q, q] =
[−π, π] rad. Given a joint configuration q = [q1, q2]

⊤, and the
corresponding manipulator Jacobian J (q), the manipulability
is computed as

µ = kµ

√
det
(
J (q)J⊤(q)

)
(35)

where the gain kµ is used to reduce the manipulability while
approaching the joint limits, and it is computed as

kµ = 1− exp

−100
2∏

i=1

(
qi − q

)
(q − qi )(

q − q
)2

. (36)

The region of low manipulability (green dots in Fig. 8)
is computed by uniformly sampling (50 × 50 grid) the con-
figuration space of the robot, computing the manipulability
µ at each point using (35), and marking the point as low
manipulability if µ < 0.1. Then, we create the boundary of the
polyhedral world (orange circle in Fig. 8) as a circle of radius
0.98 m. This is enough to exclude low-manipulability con-
figurations corresponding to the manipulator fully stretched.
Other low-manipulability areas2 (purple boundary in Fig. 8)
are considered as an obstacle to be avoided. As shown in
Fig. 9, using the Full QC mapping and only reducing the
obstacle’s radius in the ball world, the safe reactive robot
navigation algorithm successfully executes the task (reach a
goal joint configuration) while preserving safety (avoid low-
manipulability regions).

B. Avoiding Forbidden Areas With a Pan–Tilt Camera

We consider a surveillance task where a pan–tilt camera has
to scan the space between two configurations (blue and green

2This boundary is computed using the built-in MATLAB® function
boundary.

Fig. 9. Avoiding low-manipulability areas with the Full QC mapping. In each
panel, the left circle is the polyhedral (real) world, representing the robot’s
workspace, and the right circle is the ball world. Notice the motion of the
obstacles in the ball world to prevent the state of the robot mapped into the
ball world from colliding with them at each point in time.

Fig. 10. Avoiding forbidden areas with a pan–tilt camera performing a
surveillance task. In each panel, the left rectangle is the xy plane, the middle
square is the pan–tilt angles (the polyhedral world), and the circle is the ball
world. Also, in this figure, the motion of the obstacles in the ball world is
what prevents the state of the robot mapped into the ball world from colliding
with them at each point in time.

dots in Fig. 10) while avoiding two forbidden areas (purple
triangle and yellow polygon in Fig. 10). In practice, inspecting
inside the forbidden areas may correspond to privacy-violating
areas, for example, if the area contains the windows of a
private building.

The considered pan–tilt camera has three links, namely l0 =

0 m and l1 = l2 = 1 m. Also, in this case, the joint ranges are
limited to q1, q2 ∈ [q, q] = [−π, π] rad. Given the pan–tilt
angles q = [q1, q2]

⊤, the 3-D position of the camera (end-
effector) is computed as

p =

x
y
z

 =
 l1 + l2 sin(q2)

l2 sin(q1) cos(q2)

l0 − l2 cos(q1) cos(q2)

. (37)

The inverse mapping from position p to joint angles q can be
computed as

q =
[

q1
q2

]
=

 atan2(y, l0 − z)

atan2

(
x − l1

l2
,

√(
y2
+ (l0 − z)2)

l2
2

). (38)

The forbidden areas in Fig. 10 are defined in task space.
To obtain the polyhedral world in Fig. 10, we map the forbid-
den areas to the configuration space using (38). The polyhedral
world is then mapped into the ball world using the Full
QC mapping. Results in Fig. 10 show that the proposed
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Fig. 11. Snapshots of the Robotarium experiments. (a) Results obtained without mapping the free space in the polyhedral world to the free space in a ball
world. The controller preserves only the safety. (b) Results obtained using the Partial Conformal mapping. The controller preserves both safety and stability.

safe robot navigation algorithm successfully executes the task
(reach a goal Cartesian position) while preserving safety (avoid
forbidden areas). The experiment also shows that the proposed
approach can be combined with other smooth mappings [in
this case, the inverse kinematics in (38)] to solve specific
problems.

C. Navigation in the Robotarium

In this experiment, we consider a mobile robot that has to
navigate between two points while avoiding a concave obstacle
(see Fig. 11). Experiments are performed inside the Robotar-
ium [40]. Using the traditional CBF-QP formulation directly
in the polyhedral world generates an undesired equilibrium
point [see Fig. 11(a)], which is eliminated using the proposed
approach [see Fig. 11(b)].

VI. CONCLUSION

In this article, we presented a computationally efficient
approach for safe reactive robot navigation that exploits QC
mappings and CBFs. QC mappings are used to compute
a smooth mapping between the state space of the robot,
containing possibly multiple and nonconvex unsafe regions,
into a space where the unsafe regions are either closed balls
or the complement of open balls. QC mappings allow us to
have mild assumptions on the shape of the unsafe regions and,
importantly, do not require an analytical representation of the
unsafe regions. We presented and analyzed two versions of
the proposed mapping, a Partial and a Full one. The Full
mapping updates the entire workspace at each iteration of
the control loop, while the Partial mapping computes the
transformation for each unsafe region independently and then
combines them. The Full mapping is computationally more
intensive, but the resulting mapping is guaranteed to be a
diffeomorphism. On the contrary, Partial mapping is more
efficient—the mapping can be locally updated as novel unsafe
regions appear or disappear, but it requires careful tuning
of a parameter to ensure a proper diffeomorphic mapping.
Given the mapping, we design a controller in a ball world—a
transformed robot workspace where all obstacles are closed
balls—that shifts and shrinks unsafe ball-shaped regions to
ensure safe navigation, relying on the CBF formalism. The
controller and the two mapping strategies have been validated
through simulated and real experiments, showing promising
results.

Our future research will focus on improving the efficiency
of the Full QC mapping. A possibility is to consider meshes of

different granularity, that is, coarse in the free space and fine
close to unsafe regions. We also plan to test our algorithm
in the presence of partial occlusions, moving obstacles, and
dynamic models of robotic systems. Finally, although our
proposed algorithm applies to a large variety of DS models,
we are interested in extending it to design a computationally
efficient safety layer for existing tracking controllers.

APPENDIX

This section shows how the reactive navigation strategy
developed in this article can be applied to a large variety of
robotic systems.

A. Dynamics (Near-Identity) Diffeomorphic to a Single
Integrator

For systems that are diffeomorphic (resp. near-identity
diffeomorphic) to a single integrator [41], one can apply
a (nonlinear) change of coordinates to the state such
the transformed state (resp. part of the state) has linear
dynamics. As an example of a system near-identity diffeo-
morphic to a single integrator, consider the following unicycle
dynamics: 

ṗx = v cos θ

ṗy = v sin θ

θ̇ = ω

(39)

where px and py are the positions of the unicycle, θ its
orientation, and v and ω are the longitudinal and angular
velocity inputs, respectively. Using the change of coordinates

z =
[

px

py

]
+ l
[

cos θ

sin θ

]
leads to

ż =
[

cos θ −l sin θ

sin θ l cos θ

][
v

ω

]
. (40)

The dynamics of z may be controlled using single-integrator
dynamics to achieve the desired ẋ (k) in Step 10 of Algorithm 1,
from which v and ω can be computed using (40) to control the
unicycle dynamics. This approach was taken in Section V-C
to implement the safe robot navigation algorithm using a
differential drive robot.
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B. Feedback Linearizable Dynamics

For feedback linearizable system dynamics [42], one can
apply a (nonlinear) change of coordinates y = T (x) such that
there exists a (nonlinear) feedback control law that cancels
the nonlinearities of the system. The feedback linearized
dynamics are represented by a chain of integrators. As far
as the application of the approach presented in this article is
concerned, this class of systems represents a generalization of
systems (near-identity) diffeomorphic to a single integrator.
Step 11 in Algorithm 1 can be executed by designing a
stabilizing state-feedback controller with a feedforward term
equal to the desired ẋ (k), given in Step 10 of Algorithm 1.

C. Differentially Flat Dynamics

For differentially flat systems, there exists an output
thereof—the flat output—such that their state and input can
be determined from the output without integration [43]. This
way, we can proceed similarly to the case of feedback lineariz-
able dynamics and design a stabilizing flat-output-feedback
controller with a feedforward term equal to the desired ẋ (k),
given in Step 10 of Algorithm 1.
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