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Temporal imaging of biological epithelial structures
yields shape data at discrete-time points, leading
to a natural question: how can we reconstruct
the most likely path of growth patterns consistent
with these discrete observations? We present a
physically plausible framework to solve this inverse
problem by creating a framework that generalizes
quasi-conformal maps to quasi-conformal flows. By
allowing the spatio-temporal variation of the shear
and dilation fields during the growth process, subject
to regulatory mechanisms, we are led to a type of
generalized Ricci flow. When guided by observational
data associated with surface shape as a function of
time, this leads to a constrained optimization problem.
Deploying our data-driven algorithmic approach to
the shape of insect wings, leaves and even sculpted
faces, we show how optimal quasi-conformal flows
allow us to characterize the morphogenesis of a range
of surfaces.

1. Introduction
Morphogenesis, the process by which organisms generate
and regulate their shape, involves a complex interplay
between biochemical and physical factors. A key goal
is to identify the biophysical factors—and how they
interact with biochemical signalling—that drive the
local deformations and flows during morphogenesis [1].
However, often we do not obtain the local growth and

2025 The Author(s) Published by the Royal Society. All rights reserved.
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Figure 1. Quasi-conformal flows for morphodynamics. (A) Images of growing structures do not provide the correspondence
between points at different times t (normalized by dividing with the total duration T). We need to infer the (Lagrangian)
trajectory of points computationally. (B) Quasi-conformal (QC) maps and flows are useful for accomplishing this, since they
describe systems that deform smoothly with anisotropic growth, where infinitesimal circles deform into infinitesimal ellipses
over time due to the action of scaling, shear and rotation fields. (C) An illustration of the geometry of deforming surfaces. Each
surface, for t > 0, is given as the functionX (w, t) :Ωt ∈ R

2. Our task is to find a suitable registrationw(z, t) that allows us
to infer the true growth patterns shown in panel (A) by constructing the function X(z, t)≡X (w(z, t), t). Here n̂(z, t) is the
unit normal to the surface at time t.

flow patterns of cells from experiments, which require live imaging. Thus, a key mathematical
challenge is to infer the local growth patterns from snapshots of growing structures taken at
different developmental stages, possibly from different individuals, and learn the dynamical laws
that generate these structures. This requires us to determine the mapping (or flow) rules that
connect points on the different snapshots of the growing structure.

One way to address this correspondence problem is through the use of conformal maps
between planar domains or two-dimensional surfaces embedded in three dimensions. These
maps do not distort angles [2–5]. For example, given two simply connected regions in the plane,
by the Riemann mapping theorem, a unique (up to Möbius transformations) conformal map
exists between them and can be used to determine the correspondence between all points in the
interior domains given their boundary curves. This mathematical fact has been put to use to
study growing leaves [6], insect wings [7] and other biological systems [8,9]. However conformal
maps—which generate isotropic growth, mapping infinitesimal circles to rescaled infinitesimal
circles—are inadequate to describe biological morphogenesis where anisotropic growth—which
distorts angles and maps infinitesimal circles to infinitesimal ellipses (figure 1A)—is the rule
rather than the exception [10,11].

For nearly a century, a generalization of conformal maps known as quasi-conformal maps
that do account for dilation, shear and rotation (figure 1B) has been known [12], although
it is only recently that they have been deployed to study morphogenesis, e.g. to allow for
planar deformations that minimize elastic distortions while also accounting for the presence of
landmarks (points whose mapping is given a priori) [13,14]. When combined with different types
of regularizations, e.g. minimizing squared gradients of the Beltrami fields [13] or restrictions to
smooth Teichmüller maps [14], it has been possible to study both the phylogeny and ontogeny of
wing shapes using two-dimensional quasi-conformal maps. In parallel, the field of computational
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quasi-conformal mappings has grown rapidly with applications to complex three-dimensional
shapes, such as teeth, faces, etc. [15,16].

As we gain the ability to monitor growing systems and extract their shape over time
continuously, it is natural to ask whether one can take advantage of the temporal structure
of the growth process by considering flows (instead of maps between discrete times points),
which give smooth transformations of a shape into another shape over time [17,18]. To this end,
we consider k-quasi-conformal flows, which have been studied previously [19–22], in place of
K-quasi-conformal maps that deform (infinitesimal) circles to ellipses with eccentricity bounded
by the value K, but not in the context here, i.e. to compress, and quantify biological shape changes.
As shown below, k-quasi-conformal flows can be considered as the dt → 0 limit of a sequence of
(1 + kdt)-quasi-conformal maps.

Due to the limited resolution of spatio-temporal live-tracking of points, the prescribed data
often are not sufficient to uniquely determine a quasi-conformal map and, therefore, additional
criteria are required. Common criteria are minimal distortion [23] and minimal spatial variation
[13] mappings. However, growing structures (including leaves and electrochemical interfaces) are
governed by dynamical processes that couple the curvature, mechanical strain and other fields.
Here, in addition to considering minimal distortion and spatial variation flow, we find optimal
quasi-conformal flows that fit the prescribed data to a dynamical equation that takes the form of a
geometric partial differential equation, similar to a generalized Ricci flow. Our approach is a step
towards blending data-driven and physics-based approaches, since it allows us to automate the
process of the discovery of growth laws and predict growth patterns from incomplete data.

This paper is organized as follows. In §2, we discuss the geometry and kinematics relevant
to evolving surfaces, and define the cost function that will be minimized in the following
sections. Section 3 will discuss the discretization and numerical implementation, and §4 will
present experiments performed on various natural and synthetic examples of flowing surfaces.
We conclude our work and discuss future directions in §5.

2. Formulation of quasi-conformal flowmodels
This section introduces the formalism for optimal quasi-conformal flows and defines the cost
function that we use in the following sections.

(a) Geometry of surface and quasi-conformal maps
We start with a smooth one parameter family (flow) of surfaces X̃ (w, t̃), which are embedded in
R

3 with parametrization w ∈ Ωt ⊂ R
2 and time t̃ ∈ [0, T] (figure 1C). We normalize lengths so that

X (w, t) ≡ X̃ (w, t)/
√
A, where A is the area of X̃ (w, 0), and normalize time so that t ≡ t̃/T ∈ [0, 1].

Our goal is to find a registration—a correspondence between points on the surfaces across time—
as a coordinate system z = z1 + iz2 ∈ Ω0 ⊂ R

2 and a family of maps w(z, t) that gives a common
parametrization of the surface across time, X(z, t) ≡X (w(z, t), t) : Ω0 → R

3. Thus, for a fixed z, the
function X(z, t) gives the trajectory of the ‘same’ point evolving over time (orange dashed curve
in figure 1C) and our task is to obtain these trajectories.

For notational convenience, we will express the coordinate vector as z ≡ zi (i = 1, 2), and define
derivative operators as ∂i ≡ ∂/∂zi. Furthermore, we will use the Einstein summation convention,
where pairs of repeated indices in an expression are summed over. Using this notation and the
chain rule, a tangent vector to the surface that connects two infinitesimally separated points zi
and zi + dzi at time t can be written as dX(z, t) = ∂iX(z, t) dzi.

To describe the kinematics of growing surfaces, it is useful to consider how angles and lengths
change as the surface evolves. The length squared of the line segment connecting the points zi
and zi + dzi is given by

d�2(t) = |dX(z, t)|2 = gij(z, t) dzi dzj and gij(z, t) ≡ ∂iX(z, t) · ∂jX(z, t), (2.1)
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where gij(z, t) gives the components of the metric tensor in the zi coordinate system. Using the
metric tensor, we can define lengths of (and therefore angles between) line segments on the
surface at time t. The inverse of the metric is denoted (with upper indices) as gij(z, t), and satisfies
gij(z, t)gjk(z, t) = δik, where δik is the Kronecker delta.

Next, we describe the metric changes in terms of rotations, dilation and shear of the tangent
plane. To facilitate this, we consider the Cartesian coordinates on the plane tangent to the surface
X(z, 0) at z, which we denote as z̃. The Jacobian of the transformation between z̃ and z is given
by Ji(z) ≡ ∂iz̃(z) and the initial metric is given by gij(z, 0) = J�

i (z) · Jj(z), where � (as a subscript
or superscript) indicates a vector or matrix transpose. We will also denote the inverse Jacobian
Ji(z) so that Ji

�(z)Jj(z) = δij and Ji(z)J�
i (z) = I2, where I2 is the two-dimensional identity matrix. As

the surface evolves over time, the tangent plane at X(z, 0) will be convected by the flow and will
undergo rotation, dilation and shear that we explicitly account for using a polar decomposition
of the deformation gradient of the tangent plane followed by a coordinate transform—using the
Jacobian Ji(z)—which leads to the following expression for the metric tensor at time t:

gij(z, t) = ω(z, t)J�
i (z)R�(z, t)E(z, t)R(z, t)Jj(z) (2.2)

and

R(z, t) ≡
⎛
⎝cos[θ (z, t)] − sin[θ (z, t)]

sin[θ (z, t)] cos[θ (z, t)]

⎞
⎠ , E(z, t) ≡

⎛
⎜⎝

K(z, t) 0

0
1

K(z, t)

⎞
⎟⎠ . (2.3)

Here the scalar ω(z, t) > 0 is the conformal factor giving the dilation of the transformation, the
dilatation K(z, t) ≥ 1 is the ratio of major to minor axes of an ellipse at time t that started as an
infinitesimal circle on X(z, 0)—which is the square root of the ratio between the components
of E(z, t), since the metric gives the squared length of infinitesimal line segments. The two-
dimensional rotation matrix R(z, t) gives the direction of the major axes of the ellipse in the
tangent plane at z, with θ (z, t) ∈ [0, π ) being uniquely determined when K(z, t) > 1 (figure 1). The
Beltrami coefficient [12] of this transformation is then given by

μ(z, t) = K(z, t) − 1
K(z, t) + 1

exp[−2iθ (z, t)]. (2.4)

The inverse metric corresponding to equation (2.2) can be written as

gij(z, t) = 1
ω(z, t)

Ji
�(z)R�(z, t)E−1(z, t)R(z, t)Jj(z), (2.5)

an expression which can be checked by direct multiplication with the metric in equation (2.2) and
using the properties of the inverse Jacobian.

In addition to length, the curvature of line segments on the surface will be a useful measure of
its geometry. For a curve on the surface tangent to the line segment connecting the points zi and
zi + dzi, whose length is given in equation (2.1), the normal curvature is defined as the projection
of the curvature of the curve in space (κ) in the direction of the unit normal to the surface n̂(z, t).
Thus, we write

κN ≡ κ · n̂(z, t) = bij(z, t)
dzi

d�

dzj

d�
and bij(z, t) ≡ n̂(z, t) · ∂k∂jX(z, t), (2.6)

where we defined the curvature tensor bij(z, t). At a given point on the surface, the principal
directions (directions of maximum and minimum normal curvatures) will be denoted as κ̂1(z, t)
and κ̂2(z, t), with corresponding principal curvatures κ1(z, t) and κ2(z, t). From the principal
curvatures, we can define the mean curvature H(z, t) ≡ [κ1(z, t) + κ2(z, t)]/2 and Gaussian
curvature K(z, t) ≡ κ1(z, t)κ2(z, t).

(b) Quasi-conformal flows
In this section, we consider the temporal rate of change of the quantities defined in the previous
section. Since we assume that the trajectories of points X(z, t) are smooth in time, we define the
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velocity field as
V(z, t) ≡ Ẋ(z, t) = V‖(z, t) + V⊥(z, t) n̂(z, t), z ∈ Ω0, (2.7)

where the over dot denotes a partial derivative with respect to time, and we have split the velocity
into a component that is parallel to the surface, and a component along the surface normal
n̂(z, t). For points along the boundary of an open surface, we define the unit tangent vector to
the boundary as τ̂ (z, t) and write

V‖(z, t) = Vτ (z, t)τ̂ (z, t) + V∂ (z, t)n̂∂ (z, t), n̂∂ (z, t) ≡ τ̂ (z, t) × n̂(z, t), z ∈ ∂Ω0. (2.8)

The components of the velocity normal to the surface and normal to the boundary curve, V⊥(z, t)
and V∂ (z, t), will be independent of registration since changing the registration w(z, t) at time t
can only move the points parallel to the surface X(z, t) [24]. Therefore, the task of finding the
registration w(z, t) given a flow of surfaces X (w, t) is equivalent to finding V‖(z, t) given the
perpendicular velocities V⊥(z, t) and V∂ (z, t).

Next, we consider the rate of change of the metric, or strain rate tensor, which can be found by
taking the time derivative of equation (2.1),

ġij(z, t) = ∂iX(z, t) · ∂jV(z, t) + ∂iV(z, t) · ∂jX(z, t). (2.9)

Note that, for a fixed registration, the coordinate z represents a Lagrangian (material) coordinate
system and therefore the time derivative of the metric tensor is still a tensor with the same
rank. The rate of change of the metric may also be found by taking the time derivative of the
decomposition given in equation (2.2) and using the chain rule, yielding

ġij = ω̇

ω
gij + K̇ ω

K
J�

i R� E σZ R Jj + ω J�
i [Ṙ�R, R� E R]Jj, σZ ≡

(
1 0
0 −1

)
, (2.10)

where [O1,O2] ≡O1O2 − O2O1, for any matrices O1 and O2 and the dependence on (z, t) has
been suppressed for simplicity. The first term in this equation is due to the time derivative of the
conformal factor ω(z, t). The second term comes from the derivative of the matrix E(z, t), which is
given by

Ė(z, t) =

⎛
⎜⎝

K̇(z, t) 0

0
−K̇(z, t)
K2(z, t)

⎞
⎟⎠= K̇(z, t)

K(z, t)

⎛
⎜⎝

K(z, t) 0

0
−1

K(z, t)

⎞
⎟⎠= K̇(z, t)E(z, t)σZ

K(z, t)
. (2.11)

The third term in equation (2.10) comes from taking times derivatives of the rotation matrix R(z, t)
and its transpose and exploiting the relation R(z, t)R�(z, t) = I2, to replace

Ṙ(z, t)R�(z, t) = −R(z, t)Ṙ�(z, t) �⇒ Ṙ(z, t) = −R(z, t)Ṙ�(z, t)R(z, t). (2.12)

Lastly, using equation (2.3), we have that Ṙ�(z, t)R(z, t) = θ̇ (z, t)Σ2, where Σ2 = iσY is the two-
dimensional Levi–Civita symbol and σY is a Pauli matrix. The three terms in equation (2.10)
represent changes in the metric due to scalings, shears and rotations, respectively. Using
equation (2.10), we calculate the dilation and shear rates as:

D(z, t) ≡ 1
2

Tr[ġij(z, t)] ≡ 1
2

gij(z, t)ġij(z, t) = ω̇(z, t)
ω(zt)

(2.13)

and

S2(z, t) ≡ 1
2

Tr[ġ
ij
(z, t)2] =

(
K̇(z, t)
K(z, t)

)2

+ [K2(z, t) − 1]2 θ̇2(z, t)
K2(z, t)

, (2.14)

where ġ
ij
(z, t) is the traceless part of the strain rate tensor which, after multiplying by the inverse

metric in equation (2.5), is given by (see electronic supplementary material, text, Section S1)

ġi
j
≡ gkjġ

ik
(z, t) = Ji

�R�
[

K̇
K

σZ + θ̇ (E−1Σ2E − Σ2)

]
RJj, (2.15)
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where we suppressed the dependence on (z, t) in this equation for simplicity. Here, the two terms
follow from the last two terms in equation (2.10), which are traceless. Squaring this expression
and taking the trace leads to equation (2.14) as shown in the electronic supplementary material.

Note that D(z, t)—which may be positive or negative depending on whether the local area is
expanding or contracting—and S(z, t)—which is always positive—are instantaneous quantities,
depending only on the change in the metric at time t, while ω(z, t), K(z, t) and θ (z, t) depend on the
initial surface, with ω(z, 0) = 1 and K(z, 0) = 1. Note that S(z, 0) = K̇(z, 0), which implies that S(z, 0)
is the rate of growth of the dilatation K(z, t) at t = 0. We define k-quasi-conformal flows as ones for
which S(z, t) ≤ k, which therefore can be thought of as a sequence of (1 + k dt)-quasi-conformal
maps. Using equation (2.14), it can be shown (see electronic supplementary material, Section S1)
that the map generated by a k-quasi-conformal flow at t = 1 will satisfy K < ek, consistent with the
results of Reimann [19].

The quantities described so far in this section are intrinsic (depending on the metric) and do
not quantify changes in embedding. For example, when unrolling a cylinder into a flat sheet, the
strain rate tensor would vanish, ġij(z, t) = 0. To account for changes in embedding that do not
stretch the surface (isometric deformations), we follow Jermyn et al. [25] and define the bending
strain as the rate of change of the unit normal, ṅ(z, t) ≡ ∂n̂(z, t)/∂t, to write a bending-like term in
the cost function as

Cbend[w(z, t)] = A3

∫
dt dA ṅ2(z, t), (2.16)

where the area element is defined using the determinant of the metric, g(z, t), as dA≡
dz1 dz2

√
g(z, t) and A3 is a dimensionless constant.

(c) Flow rules
Next, we consider the criteria by which a quasi-conformal flow is uniquely selected from the
many possible ones that fit the given data X (w, t). In addition to common choices that focus
on the parsimony of the mapping—such as minimizing an energy that measures the extent of
the distortion and its spatial variation—we incorporate dynamical processes that generate and
regulate morphogenetic flows into our framework. For concreteness, we consider shapes that
may be generated from a combination of Ricci flows [26] and mean curvature flows [27], which
may be relevant for growing leaves, beaks and bacterial cell shapes [28–31]. To accomplish this,
we define a growth strain tensor which is the difference between the strain rate tensor ġij and
the predicted value based on the dynamical law, which can be written as an expansion involving
terms proportional to the metric and curvature tensors [32],

Gij(z, t) = 1
2

ġij(z, t) − λ1 gij(z, t) − λ2 H(z, t)bij(z, t) − λ3 K(z, t)gij(z, t), (2.17)

where bij(z, t) is the curvature tensor given in equation (2.6), H(z, t) is the mean curvature, and
K(z, t) is the Gaussian curvature. Here, the dimensionless parameters λ� are independent of z but
may depend on time. If the flow X (w, z) is in fact generated by the dynamical law, there exists
a registration w(z, t) such that Gij(z, t) = 0. For such flows, the λ1 term gives exponential rate of
expansion or contraction, the λ2 term is related to the mean curvature flow, while the λ3 term is
related to the Ricci flow [32].

To find a quasi-conformal flow that is as close to satisfying Gij(z, t) = 0 as possible, we add a
term quadratic in Gij(z, t) to the cost function:

Cviscous[w(z, t)] =
∫

dt dARijkl
1 (z, t) Gij(z, t) Gkl(z, t). (2.18)

Assuming distortions at different locations and along different axes are penalized symmetrically—

homogeneity and isotropy—the tensor Rijkl
1 (z, t) must satisfy

Rijkl
1 (z, t) ≡

(
A1 − B1

2

)
gij(z, t)gkl(z, t) + B1 gik(z, t)gjl(z, t), (2.19)
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where A1 and B1 are dimensionless constants—which are analogous to the (scaled) bulk and
shear moduli, respectively, in elasticity theory, with Gij playing the role of the stress tensor in
this analogy [33]. Note that when setting λ1 = λ2 = λ3 = 0, equation (2.18) measures the extent of
the distortion, since Gij(z, t) reduces to the strain rate ġij(z, t)/2 in that case. Subtracting B1/2 in
equation (2.19) then ensures that only A1 couples to the trace of ġij(z, t) since the integrand of
equation (2.18) will be (A1D2 + 0.5B1S2) when λ1 = λ2 = λ3 = 0.

Furthermore, to obtain best-fitting quasi-conformal flows that are as uniform as possible, we
will add the following term—analogous to the Dirichlet energy [34]—to the cost

Cgrad[w(z, t)] =
∫

dt dARijkl
2 (z, t) ∇mGij(z, t)∇mGkl(z, t), (2.20)

where all repeated indices summed over, ∇i is the covariant derivative compatible with the metric

gij(z, t), and ∇ i ≡ gij(z, t)∇j [35]. The tensor Rijkl
2 (z, t) is defined analogously to equation (2.19),

Rijkl
2 (z, t) ≡

(
A2 − B2

2

)
gij(z, t)gkl(z, t) + B2 gik(z, t)gjl(z, t), (2.21)

where A2 and B2 are constants.

(d) Imposing (soft) constraints
Since our goal is to find an optimal quasi-conformal flow that coincides with the given data
X (w, t), we need to impose constraints that fix the computed flow to the data. As mentioned
after equation (2.8), this amounts to fixing the components of the velocity field that are normal to
the surface and its boundary curve, while allowing the tangent components of the velocity field
to vary. We constrain the normal components by adding the following terms to the cost function
being minimized:

Cnormal [w(z, t)] = Cn

∫
X

dt dA[V⊥(z, t) − V̄⊥(z, t)]2 (2.22)

and
Cboundary [w(z, t)] = Cb

∫
∂X

dt ds[V∂ (z, t) − V̄∂ (z, t)]2, (2.23)

where V̄⊥(z, t) and V̄∂ (z, t) are the registration independent normal displacements that are
prescribed by the given data, and Cn, Cb are dimensionless constants. Note that the first integral
is over the area of the surface, while the second is over its boundary curve.

Landmarks are points for which we know the trajectory a priori, either from experiments or
other considerations [36]. If we take z� as the coordinate of a given landmark point, whose
velocity is given by V̄�(t), we account for landmark constraints by adding the following to the
cost function:

Clandmark [w(z, t)] = CL

∫
dt
∑

�

[V(z�, t) − V̄�(t)]2, (2.24)

where CL is a dimensionless constant and we sum over all landmarks.
We are now in a position to define the cost function that will be used for the rest of the paper

to be
Ctotal [w(z, t)] = Cviscous + Cgrad + Cbend + Cnormal + Cboundary + Clandmark, (2.25)

where the individual terms are defined in equations (2.16)–(2.20) and the dimensionless
parameters we choose are A1, B1, A2, A3, and the constraints will be enforced by choosing Cn =
Cb = CL = 105 for all models (see table 1 for a summary of the terms and equations).

In general, the choice of parameters will depend on the context of a particular application. To
demonstrate our approach, we will consider four different choices of parameters in this paper
(table 2).

— Almost-conformal (B1 = 1, all other parameters zero), which generates an as-conformal-
as-possible fit to the flow;
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Table 1. The terms and equations in the models for quasi-conformal flows. The growth strain, defined in equation (2.17), is
the difference between the strain rate tensor ġij(z, t) and the value predicted from the geometric flow, where bij(z, t) is the
curvature tensor given in equation (2.6),H(z, t) is the mean curvature andK(z, t) is the Gaussian curvature.Cviscous penalizes
non-zero growth strain tensor Gij(z, t) given in equation (2.17), while Cgrad penalizes its spatial variations. The bending energy
Cbend penalizes changes in the shape that do not stretch the surface and the last three costs enforce the constraints from data.
In practice, the constraints are enforced by choosing Cn = Cb = CL = 105.

terms equations

growth strain (equation (2.17)) Gij(z, t)= 1
2 ġij(z, t) − λ1 gij(z, t) − λ2 H(z, t)bij(z, t) − λ3 K(z, t)gij(z, t)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

viscous cost (equation (2.18)) Cviscous [w(z, t)]=
∫
dt dA( (A1 − B1

2

)
Tr[Gij]2 + B1Tr[G2ij]

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

spatial gradient cost (equation (2.20)) Cgrad [w(z, t)]=
∫
dt dA( (A2 − B2

2

)
Tr[∇kGij]2 + B2Tr[∇kG2ij]

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

bending cost (equation (2.16)) Cbend [w(z, t)]= A3
∫
dt dA ṅ2(z, t)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

enforcing normal displacement
(equation (2.22))

Cnormal [w(z, t)]= Cn
∫
Xt

dt dA[V⊥(z, t) − V̄⊥(z, t)]2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

enforcing boundary displacements
(equation (2.23))

Cboundary [w(z, t)]= Cb
∫

∂Xt
dt ds[V∂ (z, t) − V̄∂ (z, t)]2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

enforcing landmark velocities
(equation (2.24))

Clandmark [w(z, t)]= CL
∫
dt
∑

�[V(z�, t) − V̄�(t)]2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

overall cost function (equation (2.25)) C[w(z, t)]= Cviscous + Cgrad + Cbend + Cnormal + Cboundary + Clandmark
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2. The parameter choices for different quasi-conformal flowmodels. The almost-conformal model (B1 = 1, and all other
parameters zero) generates a fit to the flow that is as conformal as possible. The viscousmodel (A1 = B1 = A3 = 1, and all other
parameters zero) generates a minimal distortion fit to the flow. The almost-uniformmodel (A2 = B2 = 1, all other parameters
zero) minimizes the spatial variation of the flow in space. The geometric model (A1 = B1 = 1, solve forλ1, λ2, λ3 �= 0, and all
other parameters zero) fits the flow to a dynamical equation, which is a geometric flow in the example considered in this paper.

��������models
parameters

A1 B1 A2 B2 A3 λ1, λ2, λ3

almost-conformal 0 1 0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

viscous 1 1 0 0 1 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

almost-uniform 0 0 1 1 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

geometric 1 1 0 0 0 fitted
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

— viscous (A1 = B1 = A3 = 1, and all other parameters zero), which generates a minimal
distortion fit to the flow;

— almost-uniform (A2 = B2 = 1, and all other parameters zero), which minimizes the
variation of the flow in space; and

— geometric (A1 = B1 = 1, solve for λ1, λ2, λ3 �= 0, and all other parameters zero), which fits
the flow to a dynamical equation, which in this paper is a geometric flow parametrized
by λ1, λ2 and λ3 (which are solved for during our fitting procedure).

Note that (Cn, Cb, CL) are much larger than other model parameters since they enforce
constraints from the registration-independent component of the velocity field that can be
extracted from the given data. The choice of parameters corresponding to the viscous model
minimizes the quadratic viscous term equation (2.18) along with the bending term (2.16) subject
to the constraints. Under this choice of parameters (including λi = 0), we look for a velocity field
that makes the rate of change of the metric (strain rate) and the normal (bending rate) as small as
possible, which is why we refer to this as a viscous fit to the data. On the other hand, if we only
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Figure 2. Surface registration with optimal quasi-conformal flows. This figure illustrates the workflow in our approach: We
first choose a model type from those shown in table 2, which gives us a fixed choice of parameters in the cost function. The
flow is then broken up into discrete-time steps tN , triangulating each surface and pre-computing geometric quantities that do
not depend on the variable being optimized (the velocity field V), such as the unit normal to the surface n̂, unit normal to the
boundary curve n̂∂ , and the curvature tensor b. The component of the velocity normal to the surface V̄⊥ and boundary curve
V̄∂ , in addition to the velocity of the landmark points V̄� are fixed from the input data (see also figure 3 for an illustration of
these quantities). The velocity V is calculated for each vertex at time t = tN before moving to the next time step.

want an as-conformal-as-possible fit to the flow, then we set A1 = A3 = 0 since in that case we only
need to minimize the values of S(z, t), while D(z, t) and ṅ(z, t) can have arbitrary values. Lastly,
the almost-uniform case minimizes the spatial variations of G(z, t) given by equation (2.20).

3. Computational procedure
In this section, we describe how we compute and minimize the cost function defined in
equation (2.25). We start by pre-processing input data and determining mesh connectivity and
curvature, which are quantities that do not vary throughout the minimization process. We then
compute the registration-dependent quantities that characterize the distortion of the shape data
over time and across space. Lastly, we will describe how we minimize the cost function to obtain
an optimal velocity field and post-process the results (figure 2).

(a) Data preparation and mesh pre-processing
In this section, we describe how we pre-processed the various datasets to obtain a sequence of
triangulations T (tN) ≡ {F , E ,V(tN)} at (equally spaced) time points tN , with 1 ≤ N ≤ Nmax = 30.
The connectivity of each triangulation, which is fixed over time, is defined by the faces fM ∈F (a
list of triplets of indices, where 1 ≤ M ≤ Mmax) and edges eL ∈ E (a list of pairs of indices, where
1 ≤ L ≤ Lmax). The list of vertex positions, which vary across time, is denoted as V(tN).

To study the growth of two-dimensional insect wings, we considered the Manduca sexta
(tobacco hawk moth) and Junonia coenia (buckeye butterfly) wing data from Nijhout et al. [37].
For each species, two-dimensional triangular meshes were constructed based on the wing images
at the larval, prepupal, pupal and adult stages using the distmesh package [38]. An initial
registration between each pair of consecutive stages was then computed using a variation of the
mapping method in [14], where the boundary correspondence was obtained using the curvature-
guided matching method in [14] and the interior correspondence was obtained using the smooth
quasi-conformal mapping formulation in [9]. After getting the initial registration between the four
stages above, we then applied the Piecewise Cubic Hermite Interpolating Polynomial (pchip)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

21
 M

ay
 2

02
5 



10

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A481:20240527

..........................................................

Figure 3. Geometric quantities used in our computational procedure. (A) Illustrates the surface normal n̂, in addition to the
principal directions (κ̂ 1, κ̂ 2) and curvatures (κ1,κ2) at the same point. The vector n̂∂ is normal to both the boundary curve and
n̂. The corresponding normal velocity components V⊥ and V∂ , defined by equations (2.7) and (2.8), are illustrated on the lower
right. The figure also illustrates the velocity V� of the landmark point shown in red. (B) Shows the vertex positions Pi(fM, tN),
i = 0, 1, 2 for the triangle fM at consecutive time points tN and tN+1. The face index satisfies 1≤ M≤ Mmax and the time index
satisfies 1≤ N ≤ Nmax. The edge vectors Ei(fM, tN) shown in red are defined in equation (3.2). (C) The centroid positions of each
triangle, P̄(fM, tN) which are averages of the vertex positions of the triangle are indicated for two consecutive triangles fM and
fM+1. The displacement vectors starting at the centroid of triangle M and ending at the midpoint of edge eL are indicated by
UL(Mα), whereα ∈ {1, 2, 3} indicates the component of the vector inR

3. The parenthesis (Mα) represents a multi-index, thus
expressing UL(Mα) as an Lmax × 3 ∗ Mmax matrix.

function in MATLAB to get a flow of wing shapes with smooth growth over 30 time steps, which
then served as the starting point for our subsequent analysis.

To study the growth of three-dimensional plant leaves using the proposed method, we
considered the persea americana (avocado) leaf dataset from Derr & Bastien [39]. Each leaf scan
consists of about 100 tracked points in R

3. To create a triangular mesh for each scan, we first
used the principal component analysis (pca) function in MATLAB to project the points onto
the two-dimensional plane and constructed a two-dimensional Delaunay triangulation using
the MATLAB delaunay function, with sharp triangles at the boundary removed. The planar
triangulation then induced a triangulation on the set of three-dimensional points, resulting in
a triangulated leaf mesh. Next, we further applied the Taubin smoothing [40] and the Loop
subdivision [41] to obtain a smooth, refined mesh with about 400 vertices.

(b) Computation of geometric quantities
After pre-processing the meshes, we consider geometric quantities that are independent of the
registration—gauge invariant quantities as described in [24]—which allows us to pre-compute
these quantities, thus reducing the time per function call during the optimization procedure.
These quantities include (figures 2 and 3) the normal vector to the surface n̂, the normal vector
to the boundary curve n̂∂ , and the principal curvatures κ1 and κ2 along with the corresponding
principal directions κ̂1 and κ̂2.

The boundary normal vector n̂∂ was calculated using the MATLAB LineNormals2D

package [42]. For surfaces in R
3, we computed the surface normal n̂, principal curvatures
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κ1, κ2, mean curvature H= (κ1 + κ2)/2 and Gaussian curvature K= κ1κ2 using the MATLAB
patchcurvature package [43]. The tangent and normal vectors of the boundaries of open
surfaces were calculated using the MATLAB frenet_robust package [44].

(c) Discretizing the growth and bending strains
In this section, we describe how we calculate the bending strain, defined in equation (2.16),
and the growth strain tensor, defined in equation (2.17), as summarized in algorithm 1 (see also
electronic supplementary material, Section S2 for a concrete example of the calculation).

Algorithm 1. Discretize the growth and bending strains. (See equations (2.16)–(2.17)).

Input: Triangulations T (tN). (See §3a.)
Output: The discretized growth G(fM, tN) and bending ṅ(fM, tN) strains.
for 1 ≤ N < Nmax do

for 1 ≤ M < Mmax do
� Compute basis edges Ei(fM, tN), and Ei(fM, tN+1). (See equation (3.2)).
� Compute the discrete metric Q‖(fM, tN). (See equations (3.6) and (3.7)).
� Compute the velocity gradient, δiV(fM, tN). (See equation (3.5)).
� Compute the discretized strain rate J (fM, tN). (See equation (3.8)).
� Compute the discretized growth strain tensor G(fM, tN). (See equation (3.10)).
� Compute the discretized bending strain ṅ(fM, tN). (See equation (3.11)).

end for
end for

For a given triangle at time tN , labelled with face index fM ∈F and spanned by the three
vertices with positions P0(fM, tN), P1(fM, tN), and P2(fM, tN), the triangle centroid will approximate
the smooth surface at the point z = zM so that (figure 3B)

X(zM, tN) ≈ P̄(fM, tN) ≡ P0(fM, tN) + P1(fM, tN) + P2(fM, tN)
3

. (3.1)

At the same point (z = zM), the tangent plane will be spanned by the two edge vectors (shown in
red in figure 3C):

E1(fM, tN) ≡ P1(fM, tN) − P0(fM, tN) and E2(fM, tN) ≡ P2(fM, tN) − P0(fM, tN), (3.2)

which point along the edges of the triangle and correspond to the tangent vectors, ∂iX(zM, tN) ∼
Ei(fM, tN).1 To compute the strain rate given in equation (2.9), we approximate the velocities of the
vertices of the triangle (labelled by index i = 0, 1, 2), along with its centroid velocity, by

Vi(fM, tN) ≡ Pi(fM, tN+1) − Pi(fM, tN)
tN+1 − tN

(3.3)

and

V̄(fM, tN) ≡ V0(fM, tN) + V1(fM, tN) + V2(fM, tN)
3

, (3.4)

where the second equation defined the centroid velocity for face fM. To calculate the strain rate
tensor, we need the spatial gradient of the velocity field, ∂iV(zM, tN), which we approximate by

1This will be an (approximate) equality in local coordinate system z that parametrized a point on the triangle using X(zM, tN) =
P0(fM, tN) + z1E1(fM, tN) + z2E2(fM, tN), where 0 ≤ z1, z2 ≤ 1 and z1 + z2 ≤ 1 (see electronic supplementary material, Section S2
for details).
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its finite difference analogue,

∂iV(zM, tN) ∼ δiV(fM, tN) ≡ Ei(fM, tN+1) − Ei(fM, tN)
tN+1 − tN

, i = 1, 2, (3.5)

where δi indicates a spatial finite difference. While the two vectors E1(fM, tN) and E2(fM, tN) span
the plane tangent to the triangle labelled by index fM, it will be convenient as in the continuum
case to introduce the dual basis, denoted as Ei(fM, tN) ∼ ∂ iX(zM, tN), which are defined as the (row)
vectors in R

3 satisfying

Ei(fM, tN) · Ej(fM, tN) = δi
j and Ei(fM, tN) ⊗ Ei(fM, tN) = Q‖(fM, tN), (3.6)

where ⊗ gives a direct product between the two vectors in R
3 and Q‖(fM, tN) is a (3 × 3) projection

matrix onto the plane of the triangle indexed by fM and represents an approximation of the metric
tensor in the orthonormal frame spanning the plane of the triangle:

T ij(zM, tN) gij(zM, tN) ≈ Q‖(fM, tN) and T ij ≡ [∂ iX(zM, tN) ⊗ ∂ jX(zM, tN)]. (3.7)

Since it is composed of products of the Jacobian ∂ iX(zM, tN), the factor T ij(zM, tN) transforms
rank-two tensors from the local coordinate basis corresponding to the (arbitrary) coordinate
system z to a tensor in the embedding Cartesian space, R

3—this will turn out to be very useful
when computing the gradient cost in the next section. The fact that the two expressions for
Q‖(fM, tN) given in equations (3.6) and (3.7) are the same can be checked by multiplying Q‖(fM, tN)
with an arbitrary vector (field) in R

3 and showing that in both cases it functions as a projection
operator onto the tangent plane to the surface (or triangle in the discrete setting).

Using equations (3.5)–(3.7) and (2.9), we define the discrete strain rate using the time derivative
(or finite difference) of Q‖,

T ij(zM, tN) ġij(zM, tN) ≈ J (fM, tN)

≡ Q‖(fM, tN)[δiV(fM, tN) ⊗ Ei(fM, tN) + Ei(fM, tN) ⊗ δiV(fM, tN)]Q‖(fM, tN), (3.8)

where the approximate equality follows by evaluating both expressions on the left and right of
J (fM, tN)—which is a scalar with respect to the coordinate transformations on the surface and
therefore can be evaluated in any coordinate system without loss of generality—in the particular
coordinate system that parametrizes the triangle as X(zM, tN) = P0(fM, tN) + z1 E1(fM, tN) +
z2 E2(fM, tN), as shown in electronic supplementary material, Section S2.

The last ingredient we need to compute the growth strain, given in equation (2.17), will be
the curvature tensor. Using the previously computed principal curvatures and directions, the
curvature tensor is written as

T ij(zM, tN) bij(zM, tN) ≈ B(fM, tN) ≡ κ1 κ̂1 ⊗ κ̂1 + κ2 κ̂2 ⊗ κ̂2, (3.9)

where the dependence of the principal curvatures and directions on (fM, tN) has been suppressed
to simplify the expression. The equivalence of the left- and right-hand sides of equation (3.9)
follows since both expressions describe a symmetric matrix whose eigenvalues are (0, κ1, κ2) in
the normal and two principal directions, respectively.

Next, we can calculate the discrete growth strain, which following equation (2.17) is given by

T ij(zM, tN) Gij(zM, tN) ≈ G(fM, tN)

≡ J (fM, tN) − λ1 Q‖(fM, tN) − λ2 H(fM, tN) B(fM, tN) − λ3 K(f , tN)Q‖(fM, tN). (3.10)

In addition to the growth strain, we will need the bending strain, which is the time derivative
of the normal vector used in equation (2.16). We calculate this using the (finite) difference between
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the normal vector to each triangle at two consecutive time points:

n̂(fM, tN) ≡ E1(fM, tN) × E2(fM, tN)
||E1(fM, tN) × E2(fM, tN)|| and ṅ(fM, tN) ≡ n̂(fM, tN+1) − n̂(fM, tN)

tN+1 − tN
. (3.11)

The growth and bending strains calculated in this section will be used in computing the total cost
below, which also includes the gradient (Dirichlet energy) contributions that we turn to next.

(d) Discretizing the growth strain gradient
Having calculated the growth strain tensors G(fM, tN) in equation (3.10), we proceed to estimate
the discrete gradient, denoted as δαG(fM, tN), where α ∈ {1, 2, 3} indicates the direction of the
derivative in R

3. Our strategy will be to compute the gradient of G(fM, tN) as tensors in the
embedding space (R3) and exploiting the relation (see electronic supplementary material, Section
S1 for a derivation) between the covariant derivative of a tensor and the gradient in the Euclidean
space R

3 [45–47]. The steps are summarized in algorithm 2.

Algorithm 2. Discretizing the growth strain gradient. (See equation (2.20).)

Input: Triangulations T (tN) and the growth strains G(fM, tN). (See algorithm 1.)
Output: The discrete growth strain δG(fM, tN). (See equation (3.15).)
for 1 ≤ N < Nmax do

for all faces f and all edges e in the triangulation T (tN) do
� Calculate the finite difference matrix �LM. (See equation (3.12).)
� Calculate the face-displacement vectors UL(Mα). (See equation (3.12).)
� Calculate the pseudoinverse U+

(Mα)L. (See equation (3.13).)
� Find the gradient stiffness matrix, Mf1f2 . (See equation (3.14).)
� Find the discrete growth strain δG(fM, tN). (See equation (3.15).)

end for
end for

To estimate the gradient ∇αG(zM, t), we consider a pair of triangles (fM and fM+1 in figure 3C)
connected by edge eL and denote the vector pointing from the centroid of triangle fM towards the
midpoint of the edge as UL(Mα). On the other hand, for the second triangle in the pair, we have
UL(M+1 α) will point from the midpoint of the edge eL towards its centroid, as shown in figure 3C.
Lastly, when fM is a triangle not contained in the pair connected by edge eL, UL(M+1 α) = 0. We
also define the finite difference matrix, �LM, which equals �LM = −1 for the first triangle in the
pair connected by edge eL, �L M+1 = 1 for the other, and zero otherwise. Therefore, using a finite
difference approximation, we have the relation∑

(Mα)

UL(Mα) ∇αG(fM, tN) ≈
∑
M

�LM G(fM, tN), (3.12)

which expresses the fact that, for each edge eL, dotting the gradient with the two displacement
vectors connecting the triangle centroids (figure 3C) should give the difference G(fM+1, tN) −
G(fM, tN). Taking UL(Mα) as a matrix whose rows are labelled by the edges L and columns are
labelled by the multi-index (Mα), the above linear equation can be solved to give the gradient of
the growth strain tensor as

∇αG(zM, tN) ≈ δαG(fM, tN) ≡
∑
M1,L

U+
(Mα)L �LM1 G(fM1 , tN), (3.13)

where U+
(Mα)L is the pseudoinverse of the matrix UL(Mα). This allows us to compute the gradient

squared term in the cost function using the following matrix:

M2
M1M2

≡
∑

L1,L2,(Mα)

δAM�L1M1 U+
(Mα)L1

U+
(Mα)L2

�L2M2 , (3.14)
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where δAM is the area of triangle fM. The matrix defined by equation (3.14)) is positive definite
since it has the form of a matrix times its transpose, and therefore we may formally write its
square root as MM1M2 . The advantage of introducing the matrix MM1M2 is that it depends on
the triangulation T (tN), and can be precomputed so that during optimization, calculating the
discrete growth strain gradient is done by the following matrix multiplication (see electronic
supplementary material, Section S1),

δG(fM, tN) ≡ 1

δA1/2
M

∑
M1

MMM1 G(fM1 , tN). (3.15)

Thus, during optimization, only the growth strain G(fM, tN) needs to be computed, and
the gradient term follows my matrix multiplication, which enables significantly faster
implementation of the algorithm—through vectorization [48]—using the packages JAX and
numpy in python [49,50]. Once obtained, the quantity δG(fM, tN) is used to compute the gradient
contribution to the cost function in a manner similar to that used in computing the viscous term,
as we show next (see also electronic supplementary material, Section S1).

(e) Discretizing and minimizing the total cost
Having calculated the growth strain along with its gradients, we now proceed to calculate the
total cost function defined in equation (2.25) by adding up all the different contributions. Using
equation (3.11), the bending contribution to the cost is

Cbend = A3

Mmax∑
M=1

Nmax∑
N=1

δtN δAM[ṅ(fM, tN) · ṅ(fM, tN)], (3.16)

where δAM is the area of the triangle fM at time t = tN , δtN ≡ tN+1 − tN , and we sum over all
triangles and time steps. We compute the contribution of triangle fM, at time tN , to the viscous
cost defined in equation (2.18) through

Cviscous =
Mmax∑
M=1

Nmax∑
N=1

δtN δAM

((
A1 − B1

2

)
Tr[G(fM, tN)]2 + B1Tr[G(fM, tN)2]

)
. (3.17)

The gradient cost defined in equation (2.20) is calculated (see electronic supplementary
material, Section S1) as in equation (3.17) with G(fM, tN) replaced with δG(fM, tN):

Cgrad =
Mmax∑
M=1

Nmax∑
N=1

δtN δAM

((
A2 − B2

2

)
Tr[δG(fM, tN)]2 + B2Tr[δG(fM, tN)2]

)
. (3.18)

The soft constraints forcing the normal velocities, defined in equations (2.22) and (2.23), can be
calculated as

Cnormal = Cn

Mmax∑
M=1

Nmax∑
N=1

δtN δAM[n̂(fM, tN) · V(fM, tN) − V̄⊥(fM, tN)]2 (3.19)

and

Cboundary = Cb

Lmax∑
L=1

Nmax∑
N=1

δtN δLL[n̂∂ (eL, tN) · V(eL, tN) − V̄∂ (eL, tN)]2, (3.20)

where equation (3.20) is summed over the boundary edges e ∈ E∂ with lengths given by LL.
The last contribution we must add is the landmark constraint given in equation (2.24)

Clandmark = CL
∑

�

Nmax∑
N=1

δtN[V∗(tN) − V̄�(tN)]2, (3.21)

where, as before, � indexes the landmark vertices, V∗(tN) is the velocity of the landmark vertex,
while V̄∗(tN) is the prescribed landmark velocity.
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Figure 4. Optimal two-dimensional quasi-conformal flows for a disc undergoing simple shear. The starting point is a disc
undergoing expansion by a factor of 3/2 in the horizontal direction, while shrinking by the same factor in the vertical, with area
conserved at all times. To infer the possible growth patterns, we run the optimization with three different parameter choices
given in table 2: almost-conformal (A1 = 1, all other parameters zero), viscous (A1 = B1 = A3 = 1, and all other parameters
zero) and almost-uniform (A2 = B2 = 1, and all other parameters zero). HereD is the dilation rate given in equation (2.13),
and S is the shear rate given in equation (2.14). The triangles are colour-coded according to the normalized dilation rate,
D̃ ≡D/max(D,S), while the length of the yellow line segments represents the magnitude of normalized shear rate,
S̃ ≡ S/max(D,S), and their direction is along the largest eigen direction of the strain rate tensor. The last column shows
the maximum and mean dilation and shear rates plotted against normalized time for the different registrations in each row.

Finally, we can sum up the contributions to get the total cost as in equation (2.25),

Ctotal [T (tN)] = Cviscous + Cgrad + Cbend + Cnormal + Cboundary + Clandmark. (3.22)

(f) Minimization and post-processing
To speed up the computation and minimization of equation (3.22), we use the package JAX for
just-in-time (JIT) compilation and automatic differentiation [50]. We use the limited memory
BFGS [51] to find the optimal velocity field for each vertex at each time step TN . Once an
optimal velocity field is obtained, it can be used to analyse the resulting deformation fields:
For each triangle fM and time tN , we calculate the growth strain tensor using the velocity field
as explained in the previous sections. To visualize the growth strain tensor G(fM, tN)—that
resulted from the minimization procedure—we calculate its eigenvalues and eigenvectors. One
eigenvalue will be zero, with corresponding eigenvector normal to the triangle, while the other
two (G1(fM, tN),G2(fM, tN)) will be in the plane of the triangle. The sum of the eigenvalues will
be the dilation rate, D(fM, tN) ≡ G1(fM, tN) + G2(fM, tN), while the difference gives the shear rate,
S(fM, tN) ≡ |G1(fM, tN) − G2(fM, tN)|. The dilation rate D(fM, tN) is represented using a colour code
(figure 4), while the shear rate S(fM, tN) is illustrated using the length of line segments that point
along the eigenvector corresponding to the largest eigenvalue of G(fM, tN).

When post-processing our results, we perform a smoothing step by applying a Gaussian
filter to the dilation and shear rates. This is done in Mathematica [52] by using the function
GraphDistanceMatrix that calculates the geodesic distances dM1,M2 (tN) between the centroids of
triangles fM1 and fM2 in the mesh T (tN) (represented as a weighted graph with edge weights given
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by their lengths). Smoothing of a quantity Q(fM, tN) is then given by

Qsmooth (fM1 , tN) = 1
N (M1)

Mmax∑
M2=1

exp

(
−

d2
M1,M2

(tN)

2d̄2

)
Q(fM2 , tN), (3.23)

where d̄ is the smoothing length scale of the filter, which we take as 10% the maximum distance
between any two triangles and N (M1) ≡∑Mmax

M2=1 exp (−d2
M1,M2

(tN)/2d̄2) is the filter normalization
factor.

4. Experimental results
To demonstrate the effectiveness of our proposed framework, we consider different classes of
surfaces starting from simple two-dimensional shapes with and without landmarks to more
complex closed or open surfaces in three dimensions.

(a) Two-dimensional shapes without landmarks
Planar shapes are a special example of surfaces with boundary that are confined to the plane.
In this case, all normal displacements vanish, V̄⊥(z, t) = 0, and the first term of equation (2.22)
is minimized by setting V⊥(z, t) = 0 everywhere. We start by studying the deformation of a disc
undergoing simple shear, shrinking by a factor of 1.5 in the vertical direction and expanding by
the same factor in the horizontal direction over the course of 30 discrete time steps (figure 4).

We perform three different minimizations, corresponding to the almost-conformal, viscous,
and almost-uniform models described in table 2. The almost-conformal model minimizes the
shear rate (absolute difference in eigenvalues of the strain rate tensor) and will therefore find
a nearly conformal fit to the flow (figure 4). The viscous model minimizes a combination of
shear and dilation rates (sum of eigenvalues of the strain rate tensor), while the almost-uniform
model favours a strain rate tensor that is uniform in space. Line segments in the third row of
figure 4 point in the same direction and have the same length, indicating a constant shear rate,
while the dilation rate is zero everywhere. Note that the almost-uniform fit to the flow recovers
the constant simple shear transformation that was used to generate this test example, while the
almost-conformal and viscous fits predict a completely different growth pattern. Interestingly, as
shown in the second row of figure 4, the viscous fits produce domains with distinct orientations
and where the dilation rate changes from position (expansion) to negative (contraction).

(b) Two-dimensional shapes with landmarks
In this section, we assume that a subset of the vertices of the mesh are given as landmarks, points
where a trajectory xp(t) is given a priori (e.g. by florescent labeling). These trajectories are enforced
in the minimization procedure by adding the corresponding cost as described in equation (2.24)
and implemented as described in equation (3.21). We perform the same three minimizations as in
the previous section (table 2).

Figure 5 shows the results of our analysis performed on M. sexta (tobacco hawk moth) data,
which were taken from Nijhout et al. [37]. For the almost-conformal model, we observe that
the more landmarks we have, the less conformal—as determined by higher values of S/D
shown in figure 5 compared with electronic supplementary material, figure S1. In addition, the
inferred growth patterns depend on the assumed model, just as in the disc example (figure 4).
For example, in the absence of landmark constraints (electronic supplementary material, figure
S1), the almost-conformal model contains area shrinking (green regions) and expansion (purple
regions), while the viscous and almost-uniform models contain only area expansion. Interestingly,
we observe that the proximal and distal parts of the wing behave differently in all models with
a wave of expansion moving from the proximal to the distal direction over time (see electronic
supplementary material, Movie S1).
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Figure 5. Optimal two-dimensional quasi-conformal flows for M. sexta (tobacco hawk moth) wings registration with
landmarks. Images of growingM. sextawings are taken fromNijhout et al. [37]. To infer the possible growth patterns,we run the
optimization with three different parameter choices given in table 2: almost-conformal, viscous and almost-uniform (see the
caption of figure 4 for details). See also electronic supplementary material, Movie S1 for the full quasi-conformal flow process.

The corresponding results for J. coenia (buckeye butterfly) wing data, also taken from Nijhout
et al. [37], are shown in figure 6 (see also electronic supplementary material, figure S2 and Movie
S2). By comparing the growth patterns obtained with and without landmarks along with the
different choice of parameters, we gain insights into the likely growth patterns during insect
wing development. For example, for butterfly wings (J. coenia), the growth pattern is dominated
by isotropic dilation, with S <D across all models (see figure 6 and electronic supplementary
material, figure S2). Even in the almost-uniform model, where S is not minimized (only its spatial
gradients), the calculated growth patterns exhibit low shear (S <D), which further decreases
when landmarks are included. Furthermore, by noting that the curves for max(D) and mean(D)
are nearly equal, we see that the spatial variation of D are small. In other words, the butterfly wing
grows predominantly but not entirely by uniform scaling (isometric growth). On the other hand,
moth wings (M. sexta) exhibit much higher shear rates, which increase further when landmarks
are included (figure 5 and electronic supplementary material, figure S1). their wings change shape
significantly. This can be expected since, as figure 5 shows, the moth wings grow more along the
proximal–distal axis compared with the anterior–posterior axis (allometric growth).

(c) Closed surfaces in three dimensions
For surfaces embedded in three dimensions, vertices may move in all three directions, but their
movement is constrained by the contributions to the cost function given in equations (2.22)
and (2.23), which enforce the displacement of each vertex to be parallel to the surface and the
boundary curve. For closed surfaces (our analysis should work independent of the topology of
the surface as long as the flow is smooth), we do not need to enforce boundary displacements
and we may run the same three registration models as before (almost-conformal, viscous, almost-
uniform). The first example (electronic supplementary material, figure S3) is a sphere expanding
in one direction by a factor of 1.5 and contracting in the other two to preserve volume in the
course of 30 times steps. We see that the conformal model (first row in electronic supplementary
material, figure S3) generates nearly conformal flows (small shear rates), where expansion is
initially concentrated at the poles of the sphere while contraction dominates in the equator.

The second example we consider (see figure 7 and electronic supplementary material, Movie
S3) is a head deforming into a sphere with a linear interpolation in the course of 30 time steps.
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Figure 6. Optimal two-dimensional quasi-conformal flows for J. coenia (buckeye butterfly) wing registration with landmarks.
Images of growing J. coenia wings are taken from Nijhout et al. [37]. To infer the possible growth patterns, we run the
optimization with three different parameter choices given in table 2: almost-conformal, viscous and almost-uniform (see the
caption of figure 4 for details). See also electronic supplementary material, Movie S2 for the full quasi-conformal flow process.

Unlike the first example (electronic supplementary material, figure S3), the almost-conformal
model when deforming the head does not reduce the shear rate to zero (orange curve in the
first row of figure 7), which happens at sharp features on the mesh, where it becomes harder
to estimate the normal vector and tangent plane to the surface. On the other hand, the uniform
model leads to a smoother pattern of dilation and shear rates (both in direction and magnitude),
including at sharp features.

(d) Surfaces with boundary in three dimensions
We test our algorithm on a persea americana (avocado) leaf dataset [39], using almost-conformal,
viscous and almost-uniform models (table 2). We see from the results shown in figure 8 (see also
electronic supplementary material, Movie S4), that the conformal model leads to low values of
the mean shear rate, and therefore a nearly conformal flow. However, it still leads to non-zero
shear rate near the tips of the leaf, where the margin deviates from a smooth curve. As before,
the inferred growth pattern depends strongly on the model assumed (almost-conformal, viscous
or almost-uniform). Therefore, we now explore how modelling the dynamics generating a given
flow can help us better recover the growth patterns.

To validate our algorithm, we generate a synthetic dataset involving a cylinder deforming
according to the Ricci flow—a solution to Gij = 0, where Gij is given in equation (2.17)
and λ1 = λ2 = 0, and λ3 = 0.007—as given by the following equation (illustrated in electronic
supplementary material, figure S5):

r(z3) = (r0 + r1 sin(kz3)eλt)r̂(φ) +
(

z3 − r1

r0k
cos(kz3)[eλt − 1]

)
L0ẑ3. (4.1)
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Figure 7. Optimal three-dimensional quasi-conformal flows for closed surfaces. Here we consider a head mesh evolving
towards a sphere. We run the optimization with three different parameter choices given in table 2: almost-conformal, viscous
and almost-uniform (see the caption of figure 4 for details). See also electronic supplementary material, Movie S3 for the full
quasi-conformal flow process.

Here z3 ∈ [0, 1] is the vertical coordinate increasing along the length of the cylinder, φ ∈ [0, 2π ] is
the azimuthal coordinate, r̂ and ẑ3 are cylindrical basis vectors, λ = 1 is a growth rate (multiplied
by the duration of the flow T), r0 = 0.16 is the unperturbed cylinder radius, r1 = 0.1r0 is the initial
amplitude of the deformation, and L0 = 1 is the initial height of the cylinder.

To determine whether the dynamical equation Gij = 0 explains the given flow of surfaces
X(z, t), we minimize the cost function in equation (2.25) using the geometric model parameters
given in the last row of table 2, where λ1, λ2, λ3 �= 0, and comparing it to a viscous model (having
the same A1, B1 but with λ1 = λ2 = λ3 = 0). In addition, we perform separate fits for the Ricci
(λ1 = λ2 = 0, λ3 �= 0) and Mean (λ1 = λ3 = 0, λ2 �= 0) curvature flows. We find that, as expected, the
geometric and Ricci fits, when applied to the growing cylinder dataset, significantly reduce the
growth cost (electronic supplementary material, figures S4 and S5), especially for early times, as
expected since the dataset was generated using equation (4.1), which is an approximate solution
to the Ricci flow, assuming small deviations from a cylinder. Furthermore, the Ricci fit recovers
the value λ3 ≈ 0.007 (with less than 3% error).

The last row of figure 8 shows the results for a growing leaf. While we obtain a correlation
between curvature and dilation rate, the minimum growth cost Cviscous is not significantly
reduced in the geometric model. This implies that while growth rate may be correlated with
curvature in leaves, the equation Gij = 0 is not sufficient to explain the entire growth pattern,
some of which may be prescribed in-plane growth that is not curvature-dependent or is triggered
by movement of the mid-vain as described in [39]. Furthermore, when we compared the flow
inferred by each model to known landmark velocities on the leaf, we found that the Ricci or mean
curvature flows are closest to the actual landmark flow compared with other models, followed by
the nearly conformal model (see electronic supplementary material, figure S6 for more details).
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Figure 8. Optimal three-dimensional quasi-conformal flows using geometric flows for growing leaves. Leaf data were taken
from Derr & Bastien [39] and processed as described in the text and figure 2. We run the optimization with four different
parameter choices given in table 2: almost-conformal, viscous, almost-uniform and geometric (see the caption of figure 4 for
details). See also electronic supplementary material, Movie S4 for the full quasi-conformal flow process. The plot on the lower
right gives the magnitude of the growth cost, which is defined as η(t)≡ 〈D(z, t) + S(z, t)〉/2, where the angle brackets
represent averaging over the area of the surface. The purple curve represents the viscous model, while black represents the
geometric model.

(e) Computational cost
As we described above, in our proposed framework we can consider different models, including
the almost-conformal, viscous and almost-uniform models. It is natural to ask how the
computational cost of the algorithm scales with the input mesh size for each of these models.
In electronic supplementary material, figure S7, we consider running the models with various
meshes with different number of vertices and recording the run time per simulation step. We see
that the almost-conformal and viscous models exhibit comparable computational cost, while the
almost-uniform model is more computationally expensive due to the gradient cost computations.

(f) Comparison with other methods
In electronic supplementary material, figure S8, we compare our quasi-conformal flow model
with the usual quasi-conformal mapping method [14] and the thin-plate splines mapping method
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[53]. More specifically, for both methods, we only use the initial and final time points of the dataset
and compute a landmark-based mapping between them. We can then use the mapping result to
infer the intermediate state of the growth process. It can be observed that both the landmark-based
quasi-conformal mapping method and the thin-plate splines method are unable to capture the
intermediate growth patterns of the insect wing shape, and thus unable to interpolate between
the initial and final shapes in a biologically consistent manner. This shows the importance of using
the proposed quasi-conformal flow method in the study of the temporal developmental processes
underlying morphogenesis.

5. Conclusion
In this paper, we have extended the notion of K-quasi-conformal maps to k-quasi-conformal flows
for modelling the continuous growth process of biological shapes.

From a biological perspective, understanding the growth and form of shapes is a central
problem in biology. The flexibility of our proposed framework allows us to infer growth patterns
using a wide range of models with different properties, thereby paving a new way for unveiling
the growth dynamics of different biological structures. In addition, besides the almost-conformal,
viscous, almost-uniform, and geometric models considered in our current framework, we plan
to apply our method to larger datasets to study the dynamics underlying growth processes
associated with different biological structures, for example, those that involve nonlocal feedback
between mechanical stress and growth [30,54].

From a mathematical perspective, it is worth noting that an optimal quasi-conformal flow2

between two shapes generally differs from a linear temporal interpolation of an optimal quasi-
conformal map between two shapes. Therefore, the use of quasi-conformal flows is important to
capture the spatio-temporal variation of the shear and dilation fields during the growth process
and opens important mathematical questions with applications to morphodynamics. Considering
k-quasi-conformal flows leads to interesting mathematical problems, for example, a Teichmüller
map (a K-quasi-conformal map with minimal K) between two surfaces may be distinct from the
map generated by a k-quasi-conformal flow—S(z, t) ≤ k = K/T with minimal k—connecting them.
Our framework, especially equation (2.14), can help elucidate such questions by connecting the
quantities relevant to quasi-conformal maps, such as K(z, t), to those related to flows, such as
S(z, t) as given in equation (2.14).

From an algorithmic perspective, we have proposed a unifying framework for inferring
growth patterns using a diverse set of criteria, including local geometric distortions, spatial
variations, and fits to dynamical equations, such as geometric flows. Specifically, we can
effectively fit different models to a sequence of observed data by considering different
combinations of the cost functions described in our work. As demonstrated by our experimental
results on different two- and three-dimensional shapes, including insect wings, plant leaves and
other open or closed surfaces, our framework is useful whenever a growing structure—in nature
or industry—is observed but the identities of individual points are not tracked over time (except
possibly for a small set of landmarks).

Our approach depends on minimal finite difference approximations—for example, see
equations (3.5)–(3.8)—valid up to first order in δtN , and is therefore best suited to situations with
dense sampling of the growth process. The cost function equation (2.25) can be thought of as
a Riemannian metric [17] that gives lengths of paths (or flows) in the space of parametrized
surfaces. Therefore, extending our methods beyond the first-order approximations in time
amounts to higher-order interpolations of these geodesics. While such geodesics flows have been
calculated in the past for special cost functions [56], the advantage of the current approach is
greater flexibility in choosing the cost function.

2Since our flows minimize integral measures, given in equation (2.25), generalizations of quasi-conformal flows to flows of
finite distortion [55]—for example, by requiring that S(z, t) is square integrable, but not uniformly bounded by k—maybe
more suitable to describe our flows.
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Analogously, in the spatial domain, our computations rely on decomposing the displacements
into components that are tangent and normal to the surface and its boundary. Such decomposition
may not be well behaved for irregular meshes with sharp features. These potential limitations
may be overcome by following the philosophy of discrete differential geometry, aiming to develop
methods robust for discrete meshes [57,58]. Therefore, it will be fruitful to define discrete quasi-
conformal flows in future iterations.

Another direction for future work is the comparison of hard and soft constraints to enforce
landmark and normal displacements that are taken from the input data. The advantages of soft
constraints are ease of implementation and tunability of the relative importance of input data
compared with model prediction. This is analogous to optimal filters used in control theory to
tune the relative importance of measurement data versus model predictions based on the strength
of the noise from each source (measurement uncertainty and model error), or equivalently, the role
of priors and data in the context of inference problems. More generally, there is much to be gained
by combining the power of geometrical approaches that harness the structured information in
morphodynamics with data-driven computational models that are efficient and fast, and this
paper takes a step in this direction.
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