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S1 Construction of the infinitesimal rigidity matrix

In the main text, we provided the explicit formulas for the partial derivatives of each edge constraint in the
infinitesimal rigidity matrix A. Here, we give the explicit formulas for the partial derivatives of the other
constraints in A.

For each diagonal (no-shear) constraint, suppose vi3 = (xi3 , yi3 , zi3) and vi1 = (xi1 , yi1 , zi1). We can
explicitly derive the partial derivatives of gd as follows:

∂gd
∂xi3

= − ∂gd
∂xi1

= 2(xi3 − xi1), (S1)

∂gd
∂yi3

= − ∂gd
∂yj1

= 2(yi3 − yi1), (S2)

∂gd
∂zi3

= − ∂gd
∂zi1

= 2(zi3 − zi1), (S3)

and the partial derivatives of gd with respect to all other variables are 0. This shows that each row of A
associated with a diagonal constraint has at most 6 non-zero entries.

Lastly, for each quad planarity constraint added to the system, suppose vij = (xij , yij , zij ) where
j = 1, 2, 3, 4. We can explicitly derive the partial derivatives of gp as follows:

∂gp
∂xi1

=− (yi2 − yi1)(zi4 − zi1) + (yi4 − yi1)(zi2 − zi1) + (yi3 − yi1)(zi4 − zi1)

− (yi4 − yi1)(zi3 − zi1)− (yi3 − yi1)(zi2 − zi1) + (yi2 − yi1)(zi3 − zi1),

(S4)

∂gp
∂yi1

= (xi2 − xi1)(zi4 − zi1)− (xi4 − xi1)(zi2 − zi1)− (xi3 − xi1)(zi4 − zi1)

+ (xi4 − xi1)(zi3 − zi1) + (xi3 − xi1)(zi2 − zi1)− (xi2 − xi1)(zi3 − zi1),

(S5)

∂gp
∂zi1

=− (xi2 − xi1)(yi4 − yi1) + (xi4 − xi1)(yi2 − yi1) + (xi3 − xi1)(yi4 − yi1)

− (xi4 − xi1)(yi3 − yi1)− (xi3 − xi1)(yi2 − yi1) + (xi2 − xi1)(yi3 − yi1),

(S6)
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∂gp
∂xi2

=− (yi3 − yi1)(zi4 − zi1) + (yi4 − yi1)(zi3 − zi1), (S7)

∂gp
∂yi2

= (xi3 − xi1)(zi4 − zi1)− (xi4 − xi1)(zi3 − zi1), (S8)

∂gp
∂zi2

=− (xi3 − xi1)(yi4 − yi1) + (xi4 − xi1)(yi3 − yi1), (S9)

∂gp
∂xi3

= (yi2 − yi1)(zi4 − zi1)− (yi4 − yi1)(zi2 − zi1), (S10)

∂gp
∂yi3

= (xi4 − xi1)(zi2 − zi1)− (xi2 − xi1)(zi4 − zi1), (S11)

∂gp
∂zi3

= (xi2 − xi1)(yi4 − yi1)− (xi4 − xi1)(yi2 − yi1), (S12)

∂gp
∂xi4

= (yi3 − yi1)(zi2 − zi1)− (yi2 − yi1)(zi3 − zi1), (S13)

∂gp
∂yi4

=− (xi3 − xi1)(zi2 − zi1) + (xi2 − xi1)(zi3 − zi1), (S14)

∂gp
∂zi4

= (xi3 − xi1)(yi2 − yi1)− (xi2 − xi1)(yi3 − yi1), (S15)

and the partial derivatives of gp with respect to all other variables are 0. This shows that each row of A
associated with a quad planarity constraint has at most 12 non-zero entries.

Altogether, the infinitesimal rigidity matrix A is a sparse matrix and all entries of it can be explicitly
expressed in terms of the vertex coordinates of the origami structure.

S2 Changing the geometry of the origami structure

It is noteworthy that the calculation of the infinitesimal rigidity matrix A involves the vertex coordinates of
the Miura-ori structure. As discussed in [1], changing the geometric parameters of the Miura-ori structure,
such as the angles γ and θ, does not affect the rigidity percolation. It is natural to further ask whether the
explosive percolation transition will be affected by the geometry of the Miura-ori structure. To address this
question, we changed the origami geometry and repeated the simulations with the two prescribed selection
rules.

In Fig. S1(a), we show the geometry of Miura-ori structure used in the simulations in the main text
(with the angle parameters γ = π/4 and θ = cos−1

√
2/3) and the simulation results for m = n = L = 10

and k = 1, 2, 4, 8, 16, 32 based on the two selection rules. Then, we changed the angle parameters to be
γ = π/3 and θ = π/3 and repeated the simulations (500 simulations for each L and each k as in the main
text). As shown in Fig. S1(b), the geometry of the Miura-ori structure is significantly different from the
original one. Nevertheless, for both the Most Efficient selection rule and the Least Efficient selection rule, the
simulation results are highly consistent with the ones obtained under the original setup. Specifically, it can
be observed that increasing the number of choices k from 1 to 32 gives a highly similar trend in the increase
of the sharpness of the transition of the probability P of getting a 1-DOF structure. In Fig. S1(c), we further
considered another set of angle parameters γ = π/6 and θ = π/6 for the Miura-ori geometry and repeated the
simulations. Again, one can see that the simulation results are highly consistent with the above-mentioned
ones.

From the above additional experiments, we conclude that the explosive rigidity percolation transition is
independent of the geometry of the Miura-ori structure.
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(a)

(c)

(b)

Figure S1: Comparing the explosive rigidity percolation in origami with different geometric
parameters. (a) The results for γ = π/4 and θ = cos−1

√
2/3. (b) The results for γ = π/3 and θ = π/3. (c)

The results for γ = π/6 and θ = π/6. For each set of geometric parameters, we consider a 10× 10 Miura-ori
structure (left), the rigidity percolation simulation result based on the Most Efficient selection rule with
different number of choices k, and the simulation result based on the Least Efficient rule (right). Here, ρ
is the density of the planarity constraints explicitly imposed and P is the probability of getting a 1-DOF
structure.

S3 Additional analysis of the square case

Note that in the main text, we presented the change in the normalized DOF d̃ for different problem sizes
and different selection rules. One can also visualize the change in the actual (unnormalized) DOF d as ρ
increases. In Fig. S2, we show the change in d for L = 5, 10, 15, 20, 25, 30 and k = 1, 2, 4, 8, 16, 32 under
different selection rules. Again, it can be observed that d decreases linearly at small ρ, which can be explained
by the fact that adding each quad planarity constraint will lead to a change of 0 (redundant constraint) or
−1 (effective constraint) in d, and most of the initial constraints are likely to be effective. The selection rule
and the value of k then play an important role as ρ increases, leading to different sublinear regimes.

In the main text, we also studied the change in the rigidity percolation transition width in L×L Miura-ori
under the Most Efficient selection rule as the number of choices k increases. In Table 1, we present the
detailed statistics of the transition width for different pattern sizes L× L = 5× 5, 10× 10, 15× 15, 20× 20,
25× 25, 30× 30 and different number of choices k = 1, 2, 4, 8, 16, 32. Specifically, we record the values of ρa,
defined as the maximum ρ with P = a, and ρb, defined as the minimum ρ with P = b, and the difference
between them.
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(a) (b)

Figure S2: The change in the actual DOF d under different selection rules with different number
of choices for L × L Miura-ori structures. (a) The Most Efficient selection rule. (b) The Least
Efficient selection rule. For each k = 1, 2, 4, 8, 16, 32, we plot the actual DOF d in all 500 simulations for
all L = 5, 10, 15, 20, 25, 30 on the same plot to visualize the change in d̃. Each partially transparent curve
represents one simulation, and the opacity is proportional to the number of repeated trends.

It can be observed from the table that both ρ0 and ρ1 decrease generally as k increases. However, their
decreasing rates exhibit different behaviors. Specifically, for large pattern size L× L, ρ0 generally decreases
faster than ρ1 when the number of choices increases from k = 1 to some small k. This can also be visualized
by plotting the simulated values of ρ0 and ρ1 as in Fig. S3(a)–(b), from which we can easily see that they
show different decreasing rates. Also, as described in the main text, ρ0 and ρ1 can be fitted using two simple
models involving a negative exponential term (main text Eq. (3.6) and Eq. (3.7)). In Fig. S3(c)–(d), we
plot the fitted values of ρ0 and ρ1 for different pattern size L and number of choices k, from which we can
easily see that both formulas match the simulation results very well. To further justify the formulation of the
models, note that for f(k, L) = r + s exp

(
−akb/Lc

)
(where a, b, c, r, s ≥ 0), the partial derivative ∂f

∂k decays
to zero as k → ∞, which is consistent with the observed saturation behavior. Also, the ratio kb/Lc can
capture the relative sampling intensity with respect to the origami pattern size, thereby naturally modelling
diminishing returns when k ≫ L. Therefore, we adopt this formulation in fitting both ρ0 and ρ1.

One may ask whether the above observations only hold for the transition interval between P = 0 and
P = 1. Besides ρ0 and ρ1, here we also consider the difference between ρ0.1 and ρ0.9 (i.e. the transition width
between P = 0.1 and P = 0.9) and the difference between ρ0.25 and ρ0.75 (i.e. the transition width between
P = 0.25 and P = 0.75). As shown in Table 1, the differences for these transition intervals also show an
increasing trend initially followed by a decreasing trend as k increases. This suggests that our analyses can
be naturally extended to other transition intervals.
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Pattern size (L× L) # choices (k) ρ0 ρ1 ρ1 − ρ0 ρ0.1 ρ0.9 ρ0.9 − ρ0.1 ρ0.25 ρ0.75 ρ0.75 − ρ0.25

5× 5

1 0.6000 1.0000 0.4000 0.6800 1.0000 0.3200 0.7600 0.9600 0.2000
2 0.6000 0.9600 0.3600 0.6400 0.8800 0.2400 0.6800 0.8400 0.1600
4 0.6000 0.8800 0.2800 0.6000 0.7600 0.1600 0.6000 0.7200 0.1200
8 0.6000 0.7200 0.1200 0.6000 0.6800 0.0800 0.6000 0.6400 0.0400
16 0.6000 0.6400 0.0400 0.6000 0.6400 0.0400 0.6000 0.6400 0.0400
32 0.6000 0.6400 0.0400 0.6000 0.6400 0.0400 0.6000 0.6400 0.0400

10× 10

1 0.4200 1.0000 0.5800 0.6700 0.9700 0.3000 0.7500 0.9300 0.1800
2 0.3600 0.9700 0.6100 0.5300 0.8700 0.3400 0.6000 0.8000 0.2000
4 0.3500 0.8600 0.5100 0.4300 0.6800 0.2500 0.4700 0.6100 0.1400
8 0.3500 0.7100 0.3600 0.3700 0.5400 0.1700 0.3900 0.4900 0.1000
16 0.3500 0.5500 0.2000 0.3500 0.4400 0.0900 0.3700 0.4100 0.0400
32 0.3500 0.4600 0.1100 0.3500 0.3900 0.0400 0.3500 0.3700 0.0200

15× 15

1 0.4178 1.0000 0.5822 0.6756 0.9778 0.3022 0.7644 0.9378 0.1733
2 0.3244 0.9778 0.6533 0.4844 0.8667 0.3822 0.5733 0.7911 0.2178
4 0.2933 0.8978 0.6044 0.3644 0.6622 0.2978 0.4222 0.5822 0.1600
8 0.2444 0.6711 0.4267 0.2933 0.5022 0.2089 0.3200 0.4311 0.1111
16 0.2489 0.4800 0.2311 0.2667 0.3689 0.1022 0.2800 0.3378 0.0578
32 0.2444 0.4000 0.1556 0.2489 0.3022 0.0533 0.2533 0.2844 0.0311

20× 20

1 0.3250 1.0000 0.6750 0.6550 0.9825 0.3275 0.7475 0.9400 0.1925
2 0.3250 0.9825 0.6575 0.4775 0.8475 0.3700 0.5550 0.7600 0.2050
4 0.2400 0.8925 0.6525 0.3375 0.6650 0.3275 0.3950 0.5750 0.1800
8 0.2100 0.7025 0.4925 0.2575 0.4625 0.2050 0.2825 0.4025 0.1200
16 0.1950 0.5325 0.3375 0.2200 0.3325 0.1125 0.2325 0.2900 0.0575
32 0.1875 0.3150 0.1275 0.1975 0.2625 0.0650 0.2050 0.2400 0.0350

25× 25

1 0.4400 1.0000 0.5600 0.6832 0.9696 0.2864 0.7824 0.9328 0.1504
2 0.3040 0.9648 0.6608 0.4672 0.8432 0.3760 0.5552 0.7632 0.2080
4 0.2448 0.8816 0.6368 0.3216 0.6144 0.2928 0.3744 0.5216 0.1472
8 0.1776 0.7328 0.5552 0.2336 0.4640 0.2304 0.2640 0.3936 0.1296
16 0.1600 0.4512 0.2912 0.1888 0.3024 0.1136 0.2048 0.2672 0.0624
32 0.1536 0.3200 0.1664 0.1680 0.2288 0.0608 0.1760 0.2080 0.0320

30× 30

1 0.4044 0.9989 0.5944 0.6722 0.9756 0.3033 0.7678 0.9367 0.1689
2 0.2689 0.9700 0.7011 0.4500 0.8656 0.4156 0.5300 0.7600 0.2300
4 0.2089 0.9633 0.7544 0.2967 0.6333 0.3367 0.3600 0.5411 0.1811
8 0.1600 0.6622 0.5022 0.2178 0.4300 0.2122 0.2478 0.3700 0.1222
16 0.1444 0.4656 0.3211 0.1700 0.2856 0.1156 0.1867 0.2422 0.0556
32 0.1300 0.3133 0.1833 0.1467 0.2178 0.0711 0.1544 0.1933 0.0389

Table 1: Experimental transition values of the probability of getting a 1-DOF L× L Miura-ori
structure under the Most Efficient selection rule. For each pattern size L, we run 500 simulations
with an L × L Miura-ori pattern and calculate the probability P of getting a 1-DOF structure. We then
define ρa as the maximum ρ with P = a and ρb as the minimum ρ with P = b and record their values for
different a, b for different number of choices k. The difference between every pair of values is also recorded.

S4 Additional analysis of the general rectangular case

In Eq. (3.10) in the main text, we gave a simple quadratic model for describing the difference between the
critical transition density and the theoretical minimum density ρdiff = ρ∗ − ρmin for general m× n Miura-ori
structures with different number of choices under the Most Efficient selection rule. In Fig. S4, we provide
additional examples with mn = 36, 64, 100, 144, 196. It can be observed that the simulated ρdiff is highly
symmetric in all examples. Also, we can easily see that the fitted values of ρdiff using our proposed model
match the simulation results very well.

Also, we proposed a simple approximation formula for the rigidity percolation transition width ρw for any
given (m,n, k) for general m× n Miura-ori structures in the main text. In Fig. S5, we provide additional
examples with mn = 36, 64, 100, 144, 196 for visualizing the change of ρw with different combinations of
(m,n, k). Again, we can see that the fitted ρw using our proposed model largely resembles the simulated
transition width for all mn.

Besides, as ρw is roughly symmetric about log(m/n) = 0, it is natural to ask whether one can also
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(a)

(b)

(c)

(d)

Figure S3: The simulated and fitted ρ0 and ρ1 for L× L Miura-ori structures under the Most
Efficient selection rule. (a)–(b) The simulated ρ0 and ρ1, where each data point represents the result
obtained from 500 simulations for a given set of parameters (L, k) (with L = 5, 10, 15, 20, 25, 30 and k =
1, 2, 4, 8, 16, 32). (c)–(d) The fitted ρ0 and ρ1 obtained using the proposed models in Eq. (3.6) and Eq. (3.7)
in the main text.

Figure S4: The simulated and fitted ρdiff = ρ∗ − ρmin for general m× n Miura-ori structures under
the Most Efficient selection rule. The first row shows the simulation results for mn = 36, 64, 100, 144, 196,
where each data point represents the result obtained from 500 simulations for a specific combination (m,n, k)
with k = 1, 2, 4, 8, 16, 32. The second row shows the fitted values of ρdiff using our proposed model in Eq. (3.10)
in the main text.

approximate ρw using a simple quadratic polynomial in log(m/n) analogous to the one for ρdiff in the main
text. Here, we consider the following alternative approximation formula for ρw:

ρw(m,n, k) ≈
(
ρw(L, k)−

1

mn

)(
1−

(
log(m/n)

log(mn/4)

)2
)

+
1

mn
, (S16)
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Figure S5: The simulated and fitted rigidity percolation transition width ρw for general m× n
Miura-ori structures under the Most Efficient selection rule. The first row shows the simulation
results formn = 36, 64, 100, 144, 196, where each data point represents the result obtained from 500 simulations
for a specific combination (m,n, k) with k = 1, 2, 4, 8, 16, 32. The second row shows the fitted values of ρw
using our proposed model.

where ρw(L, k) is the fitted value for the square case L × L with L =
√
mn using main text Eq. (3.8).

Specifically, note that for m = n, we have log(m/n) = 0 and hence(
ρw(L, k)−

1

mn

)
(1− 0)2 +

1

mn
= ρw(L, k). (S17)

In other words, Eq. (S16) is identical to Eq. (3.8) in the main text if m = n. Also, it is easy to see that
Eq. (S16) is perfectly symmetric and gives the same value for (m,n, k) and (n,m, k), which matches our
observation. Moreover, for the extreme case where m = 2 or n = 2, note that all facets of the Miura-ori
structure are boundary facets and we need to explicitly add the quad planarity constraints to all of them to
make the structure 1-DOF. This requires exactly mn steps and hence the theoretical transition width will be
1/(mn). Now, if n = 2, we have

1−
(

log(m/n)

log(mn/4)

)2

= 1−
(
log(mn/2)/2)

log(mn/4)

)2

= 1− 1 = 0, (S18)

and it follows from Eq. (S16) that

ρw ≈ 0 +
1

mn
=

1

mn
. (S19)

Similarly, if m = 2, we have ρw ≈ 1/(mn). This shows that Eq. (S16) matches the expected ρw at the peak
and the two endpoints. In Fig. S6, we compare the fitted values of ρw by this simple quadratic model and
the simulation results for different combinations of (m,n, k) as in the main text. It can be observed that this
alternative model gives a qualitatively good fit, with most data points being close to the line y = x. However,
comparing this plot with the plot for the original model in main text Fig. 10(c), we can see that the original
model in main text Eq. (3.12) gives a better fit with a smaller deviation from y = x.

Altogether, this alternative model provides a simple and reasonably accurate way to connect the rigidity
percolation transition width of L× L Miura-ori structures with that of all other Miura-ori structures with
the same total number of facets.
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Figure S6: A comparison between the simulated rigidity percolation transition width ρw and
the alternative model in Eq. (S16) for m × n Miura-ori structures. Each data point represents
the fitted value (x-coordinate) and simulated value (y-coordinate) for a combination of (m,n, k), with
mn = 25, 36, 49, 64, . . . , 400 and k = 1, 2, 4, 8, 16, 32. The red line represents y = x.
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